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We propose a systematic method to construct robust optimal quantum control at high orders by inverse
optimization and apply it for the generation of ultrarobust optimal quantum gates. We derive explicit integrals
that characterize robustness up to seventh order against pulse amplitude for time or energy minimization. At
fifth order, time optimization is achieved for a flat pulse and a detuning featuring a dual-frequency oscillation.
We analyze its performance and compare it to composite pulse techniques: Ultrarobust inverse optimization is
considerably faster (in the range 16%–40% depending on the considered gate) than the best composite pulses
with similar performance.
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I. INTRODUCTION

Quantum gates are key elements in quantum information
and their production, which is resistant against imperfections,
is determinant to elaborate practical quantum computers [1].
Well-known alternative methods to standard adiabatic, i.e.,
slow, approximate, and energetically expensive techniques
[2,3] or accelerated adiabatic passage [4–8] use composite
techniques [9–16]. Recently, various forms of shortcut to adi-
abaticity techniques have been proposed, which offer families
of exact solutions [17,18]. In particular, protocols based on
inverse engineering can achieve robust control via the intro-
duction of arbitrary Ansätze, as shown in [19–22]. However,
these methods, while exact and potentially faster than standard
adiabatic passage, are not specifically designed to be optimal
and still cost unnecessary energy and time, which might be
detrimental regarding decoherence. In this paper we focus on
exact and robust gate achievements adding the requirement
of optimality, typically with respect to time or energy. We
highlight that we define such an optimality requirement in an
absolute way, which is possible when robustness is quantified.
More specifically, we apply perturbation theory to determine
the transfer profile as a function of the deviation of the ideal
controls and a given robustness order that corresponds to the
nullification of its derivatives at the corresponding order of
perturbation theory.

Optimal control theory (OCT) is a powerful tool to mitigate
intensities of the control pulses and speed up the evolution,
allowing one in principle to reach the ultimate bounds in the
system [23]. Besides numerical implementation of OCT, such
as gradient ascent algorithms [24], the Pontryagin maximum

*Contact author: sguerin@u-bourgogne.fr

principle (PMP) [25–27] allows analytic (or semianalytic)
derivation of the optimal controls (typically with respect to
time or energy) in a finite-dimensional problem. The PMP
using an extended Hilbert space [28] allows an elegant inte-
gration of the robustness constraints, but leads to complicated
systems to solve.

Two geometric approaches [29–33] have been proposed
recently in order to derive optimal and robust solutions op-
erating at the ultimate bounds of the system. One approach,
referred to as robust inverse optimization (RIO) [30], is an
optimization procedure producing the geodesic minimizing a
given cost and constrained by the robustness integrals with
boundaries ensuring exact fidelity in the dynamical variable
space (typically dynamical angles). The controls are next
inversely determined from the time-dependent Schrödinger
equation and the derived geodesic. It optimally improves the
robust inverse engineering protocols of Refs. [19,20,22] since
no Ansätze to parametrize the dynamical angles are needed.
Analytic solutions can be derived for the problem of robust-
ness with respect to pulse inhomogeneities [33]. The RIO
procedure has been demonstrated recently on IBM’s quantum
computers in a digital version for state-to-state transfer robust
against pulse inhomogeneities at third and fifth orders [34].

In this paper the RIO method is reformulated in a system-
atic way and is referred to as ultra-RIO. We derive in particular
the form of the controls robust against pulse inhomogeneities
at fifth order for state-to-state transfer (used in [34]) and
quantum gates. In this paper we assume a unitary evolution
corresponding to gate operations occurring much faster than
any decay. Aiming at optimal time is therefore of paramount
importance.

The paper is organized as follows. In Sec. II we introduce
the model and the inverse-engineering method. In Sec. III we
present the single-shot shaped-pulse (SSSP) method, which
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is generalized to solve ultrarobust problems. The method is
applied in Sec. IV to derive the differential equations by
Euler-Lagrange optimization. Optimal trajectories robust at
fifth order against field inhomogeneities are obtained in Sec. V
for arbitrary population transfers and in Sec. VI for quantum
gates. In Sec. VII we show that the optimal problem robust
in the detuning (inhomogeneous broadening) can be treated
similarly by RIO. We summarize and discuss our results in
Sec. VIII. We present in the Appendixes the details of the
calculations.

II. MODEL AND INVERSE-ENGINEERING METHOD

In this section and the next one, we follow the presentation
of [33] in order to provide the main elements to be considered
for high-order robustness. We study the Hamiltonian

Hλ = H0 + λV (1a)

= h̄

2

[−� �

� �

]
+ h̄

2

[ −δ α� + β

α� + β δ

]
, (1b)

where the Hamiltonian

H0 = h̄

2

[−� �

� �

]
(2)

in the basis of |0〉 = [1 0]
T

and |1〉 = [0 1]
T

represents
the qubit driven by the controls: the pulsed Rabi frequency
� ≡ �(t ) (considered real without loss of generality) and
the detuning � ≡ �(t ). The term λV is a perturbation of
known form (represented by V ) but of unknown amplitude,
which is characterized by the parameter λ ≡ (α, β, δ). Here
α is a coefficient modifying the Rabi field amplitude (pulse
inhomogeneities), δ features inhomogeneous broadening or a
slow stochastic noise in the energy levels of the qubit (i.e.,
considered in a quasistatic representation), and β features a
slow stochastic transverse noise. Taking the term V as pertur-
bation of the Hamiltonian H0, we will show that robustness
requirements with respect to changes of α, β, and γ can
be reduced to a problem of nullifying the derivatives of the
excitation profile to a target state order by order (see Sec. III).

The solution of the time-dependent Schrödinger
equation (TDSE) ih̄ ∂

∂t |φ0(t )〉 = H0|φ0(t )〉 is conveniently
parametrized with three angles: the mixing angle θ ≡ θ (t ) ∈
[0, π ], the internal (or relative) phase ϕ ≡ ϕ(t ) ∈ [−π, π ],
and a global phase γ ≡ γ (t ) ∈ [0, 2π ] as

|φ0(t )〉 =
[

eiϕ/2 cos(θ/2)
e−iϕ/2 sin(θ/2)

]
e−iγ /2, (3)

corresponding to the equation of motion in the dynamical
variable space:

θ̇ = � sin ϕ, (4a)

ϕ̇ = � + � cos ϕ cot θ, (4b)

γ̇ = �
cos ϕ

sin θ
= θ̇

cot ϕ

sin θ
. (4c)

The inverse-engineering method consists in determining the
Hamiltonian elements from the dynamics by inverting the
TDSE H0 = ih̄[ ∂

∂t U0(t, ti )]U
†
0 (t, ti ), i.e., from inversion of

Eqs. (4), one can determine the detuning and the Rabi fre-
quency as functions of θ , ϕ̇, and γ̇ :

� = ϕ̇ − γ̇ cos θ, (5a)

� = θ̇

sin ϕ
= ±

√
θ̇2 + γ̇ 2 sin2 θ. (5b)

We will consider � > 0 without loss of generality for the
problem of robustness with respect to pulse inhomogeneities.
One can determine from (4c) the phase

ϕ = arctan

(
θ̇

γ̇ sin θ

)
,

{
0 � ϕ � π for θ̇ � 0
−π < ϕ < 0 otherwise.

(6)

Equation (4c) links the three angles; we can thus consider
two independent dynamical variables. We choose θ (t ) and
γ (t ) for practical technical reasons since the pulse area and
energy can be expressed simply as functions of theses angles
(shown below) and they provide a geometric representation
of the problem. The third dynamical variable ϕ(t ) is given by
cot ϕ = γ̇ sin θ/θ̇ , from which we obtain

ϕ̇ = (θ̈ γ̇ sin θ − γ̈ θ̇ sin θ − γ̇ θ̇2 cos θ )/(θ̇2 + γ̇ 2 sin2 θ ).
(7)

One can write the pulse area [defining γi ≡ γ (ti ) and γ f ≡
γ (t f )] assuming a monotonic γ (t ) where the + (−) sign
corresponds to γ̇ > 0 (γ̇ < 0) as

∫ t f

ti

dt �(t ) = ±
∫ γ f

γi

dγ

√(
d θ̃

dγ

)2

+ sin2 θ̃ ≡ A(θ̃ ), (8)

which does not depend on the time dependence of γ (t ), but
only on θ̃ (γ ) and its derivative. We have defined the depen-
dence on γ as θ̃ (γ (t )) ≡ θ (t ). In general, when γ (t ) is not
monotonic, we can define piecewise functions θ̃ j (γ ) in each
interval j where γ̇ (t ) has a constant sign.

The pulse energy in the electric dipole approximation

E (γ , θ ) =
∫ t f

ti

dt �2(t ) =
∫ t f

ti

dt (θ̇2 + γ̇ 2 sin2 θ ) (9)

depends on the time parametrization of the pulse and thus on
the angles θ (t ) and γ (t ). We will optimize the cost defined as
the pulse area A, the pulse energy E (for a fixed duration t f −
ti), or the duration of the process, i.e., time optimization (for
a given peak amplitude of the control). We denote by |φλ(t )〉
the state of the complete dynamics, the solution of the TDSE
ih̄ ∂

∂t |φλ(t )〉 = Hλ|φλ(t )〉.

III. GENERAL FORMULATION OF THE SINGLE-SHOT
SHAPED-PULSE METHOD FOR THE

ULTRAROBUST PROCESS

A. Formulation and figures of merit

From an initial condition at ti, we assume that the Hamil-
tonian H0(t ) leads exactly to a given target at the end of the
process t f . The process is robust if a perturbation added to the
Hamiltonian leads to a close target at t f in a way that is defined
below.

The SSSP method [20] consists in (i) the perturbative ex-
pansion of |φλ(t f )〉, corresponding typically to a dynamics
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from the ground state |φλ(ti)〉 = |0〉, with respect to λ,

〈φT |φλ(t f )〉 = 1 + O1 + O2 + O3 + · · · , (10)

where On ≡ O(λn) is defined as the (complex) robustness
integral of order n and |φT 〉 the target state, and (ii) the nullifi-
cation of the coefficients Om�n to define a robust process at a
given order n. It can be formulated in terms of propagators.
We define the propagator associated with the unperturbed
Hamiltonian H0 ≡ H0,0,0,

U0(t, ti ) =
[

a ≡ e(i/2)(ϕ−γ ) cos(θ/2) −b̄
b ≡ e−(i/2)(ϕ+γ ) sin(θ/2) ā

]
, (11)

with |a|2 + |b|2 = 1 and Uλ(t, ti ) associated with the traceless
Hamiltonian Hλ(t ). The perturbative solution reads

Uλ(t f , ti )

= U0(t f , ti )

[
1 + λ

ih̄
W1 +

(
λ

ih̄

)2

W2 + · · ·
]

= U0(t f , ti )

[
1 + O1 + O2 + · · · Q1 + Q2 + · · ·
−(Q̄1 + Q̄2 + · · · ) 1 + Ō1 + Ō2 + · · ·

]
,

(12)

with the perturbative matrix terms

λnWn = λn
∫ t f

ti

dt0VI (t0)
∫ t0

ti

dt1VI (t1) · · ·

×
∫ tn−2

ti

dtn−1VI (tn−1), (13)

the perturbation in the interaction representation

λVI (t ) = λU †
0 (t, ti )V (t )U0(t, ti ) = h̄

[
e(t ) f (t )
f̄ (t ) −e(t )

]
,

(14)
the matrix elements

On =
(

λ

ih̄

)n

〈0|Wn|0〉, Qn =
(

λ

ih̄

)n

〈1|Wn|0〉, (15)

and the functions

e(t ) = 1

2
[−δ cos θ + (α� + β ) cos ϕ sin θ ] ≡

∑
λ=α,β,δ

λeλ,

(16a)

f (t ) = 1

2
[δ sin θ + α(γ̇ sin θ cos θ − iθ̇ )

+β(cos ϕ cos θ − i sin ϕ)]eiγ ≡
∑

λ=α,β,δ

λ fλ. (16b)

The unitarity of the solution (12) imposes

|1 + O1 + O2 + · · · |2 + |Q1 + Q2 + · · · |2 = 1. (17)

1. Population transfer

For the case of a population transfer to a target state |φT 〉
(of given angle θ0 and internal phase ϕ0), the final global phase
γ f is irrelevant and one can consider the figure of merit

Fpt = |〈φT |φλ(t f )〉|2 = 1 + Õ1 + Õ2 + Õ3 + · · · , (18)

i.e., up to order n,

F (n)
pt = 1 +

n∑
m=1

Õm, (19)

where Õn denotes the term of order n related to the On as

Õ2n = |On|2 + 2
n−1∑
m=0

Re(O2n−mŌm), (20a)

Õ2n+1 = 2
n∑

m=0

Re(O2n+1−mŌm), (20b)

with O0 = 1. This gives, for the first terms,

Õ1 = 2 Re(O1) = 0, (21a)

Õ2 = |O1|2 + 2 Re(O2), (21b)

Õ3 = 2[Re(O3) + Re(O2Ō1)], (21c)

Õ4 = |O2|2 + 2[Re(O4) + Re(O3Ō1)]. (21d)

Inserting the fidelity (18) into the unitarity condition (17)
leads to

Õ1 + Õ2 + Õ3 + · · · = −|Q1 + Q2 + · · · |2, (22)

which allows one to identify order by order the corrections to
the population transfer as functions of the off-diagonal terms
of the perturbative matrix of (12):

Õ2n+1 = −2
n∑

m=1

Re(Q2n+1−mQ̄m)

= 0 when Õ2(m�n) = 0, (23a)

Õ2n = −|Qn|2 − 2
n−1∑
m=1

Re(Q2n−mQ̄m)

= −|Qn|2 when Õ2(m<n) = 0. (23b)

This in general gives expressions simpler than (but equivalent
to) (21); the first terms read

Õ1 = 0, (24a)

Õ2 = −|Q1|2, (24b)

Õ3 = 0 when Õ2 = 0, (24c)

Õ4 = −|Q2|2 when Õ2 = 0, (24d)

Õ5 = 0 when Õ2 = Õ4 = 0, (24e)

Õ6 = −|Q3|2 when Õ2 = Õ4 = 0, (24f)

Õ7 = 0 when Õ2 = Õ4 = Õ6 = 0. (24g)

It shows that the cancellation up to an even order 2n,
Õ2(m�n) = 0, is obtained for Qm�n = 0, which implies that
the next term automatically cancels out, Õ2n+1 = 0, i.e., for
a given n and for all m � n:

Õ2(m�n) = Õ2(m�n)+1 = 0 when Qm�n = 0. (25)

We conclude that the cancellation of the error up to an order
2n + 1 is satisfied, i.e., F (2n+1)

pt = 1, when Qm�n = 0.
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2. Quantum gate: Trace fidelity

A figure of merit often adopted to determine the fidelity of
a quantum gate is defined as the trace fidelity

Fg,t = 1
2 |Tr(U †

0 U )| = Re〈φT (t f )|φλ(t f )〉, (26)

i.e., up to order 2n + 1:

F (n)
g,t = 1 +

2n+1∑
m=1

Re(Om). (27)

It can be determined by combining (20) and (23):

Re(O2n+1) = −
n∑

m=1

[Re(O2n+1−mŌm) + Re(Q2n+1−mQ̄m)]

= 0 when Re(O2n) = 0, (28a)

Re(O2n) = −1

2
(|On|2 + |Qn|2)

−
n−1∑
m=1

[Re(O2n−mŌm) + Re(Q2n−mQ̄m)]

= −1

2
(|On|2 + |Qn|2) when Re(O2(m<n) ) = 0.

(28b)

The first terms read

Re(O1) = 0, (29a)

Re(O2) = − 1
2 (|O1|2 + |Q1|2), (29b)

Re(O3) = 0 when Re(O2) = 0, (29c)

Re(O4) = − 1
2 (|O2|2 + |Q2|2) when Re(O2) = 0, (29d)

Re(O5) = 0 when Re(O2) = Re(O4) = 0, (29e)

Re(O6) = − 1
2 (|O3|2 + |Q3|2) when Re(O2) = Re(O4) = 0.

(29f)

It shows that the cancellation up to an even order 2n,
Re(O2(m�n) ) = 0, is obtained for Om�n = 0 and Qm�n = 0,
which implies that the next term automatically cancels out,
Re(O2n+1) = 0, i.e., for a given n and for all m � n:

Re(O2(m�n) ) = Re(O2(m�n)+1) = 0

when Om�n = Qm�n = 0. (30)

We conclude that the cancellation of the error up to an
order 2n + 1 is satisfied, i.e., F (2n+1)

g,t = 1, when Om�n =
Qm�n = 0.

3. Connection between trace and Frobenius fidelities

A more accurate fidelity can be used if one considers all
the elements of the gate (12), i.e., both Om and Qm at an
order m. This corresponds to the Frobenius distance fidelity
(or Frobenius fidelity for short) that can be considered up to
an order n:

F (n)
g,d = 1 −

n∑
m=1

√
|Om|2 + |Qm|2 (31a)

= 1 −
n∑

m=1

√
−2 Re(O2m). (31b)

One concludes that the correction of the Frobenius fidelity
at order n is zero, i.e., F (n)

g,d = 1, when the corrections of the
trace fidelity up to order 2n are zero, Re(O2(m�n) ) = 0, i.e.,
Om�n = Qm�n = 0, i.e., F (2n+1)

g,t = 1.
We mostly use the trace fidelity convention in the paper.

The corresponding Frobenius fidelity can be deduced from the
above arguments. For instance, to a trace fidelity up to order 5
corresponds a Frobenius distance fidelity up to order 2.

B. Integrals of robustness

In Appendix A we determine the first integrals of robust-
ness, |Qn| (A4) for the population transfer, complemented by
the |On| (A7) for the quantum gate. The results are summa-
rized in Table I for the first terms.

C. Integrals for population transfer

The fourth (and consequently the fifth) order is zero, Õ4 =
0, when (i)

∫ t f

ti
dt f (t ) = 0 and (ii)∫ t f

ti

e(t )
∫ t

ti

f (t ′)dt ′dt = 0, (32)

i.e., ∫ t f

ti

e(t )x(t )dt = 0,

∫ t f

ti

e(t )y(t )dt = 0, (33)

where we have introduced the new dynamical variables which
augment the dimension of the problem,

x(t ) :=
∫ t

ti

a(t ′)dt ′, ẋ(t ) = a(t ), (34a)

y(t ) :=
∫ t

ti

b(t ′)dt ′, ẏ(t ) = b(t ), (34b)

with x(ti ) = 0 and y(ti ) = 0, where we have defined

a(t ) = Re[ f (t )], b(t ) = Im[ f (t )], (35)

i.e.,

2a = (δ sin θ + αγ̇ sin θ cos θ + β cos ϕ cos θ ) cos γ

+ (αθ̇ + β sin ϕ) sin γ , (36a)

2b = (δ sin θ + αγ̇ sin θ cos θ + β cos ϕ cos θ ) sin γ

− (αθ̇ + β sin ϕ) cos γ . (36b)

The α robustness, involving the functions from (16)

e/α = 1
2 γ̇ sin2 θ ≡ eα, (37a)

f /α = 1
2 (γ̇ sin θ cos θ − iθ̇ ) ≡ fα (37b)

and

xα (t ) :=
∫ t

ti

aα (t ′)dt ′, ẋα (t ) = aα (t ), (38a)

yα (t ) :=
∫ t

ti

bα (t ′)dt ′, ẏα (t ) = bα (t ), (38b)

with

aα ≡ a/α = 1
2 γ̇ sin θ cos θ cos γ + 1

2 θ̇ sin γ , (39a)

bα ≡ b/α = 1
2 γ̇ sin θ cos θ sin γ − 1

2 θ̇ cos γ , (39b)
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TABLE I. Conditions for robustness at order 2n + 1 (with the trace fidelity convention for the quantum gate). Population transfer robustness
requires the (cumulated) conditions in column 2, while gate robustness requires both columns 2 and 3.

2n + 1 Õn = 0 ∪ Re(Om ) = 0 ∪
3

∫ t f
ti

f (t )dt = 0
∫ t f

ti
e(t )dt = 0

5
∫ t f

ti
e(t )

∫ t
ti

f (t ′)dt ′dt = 0
∫ t f

ti
f (t )

∫ t
ti

f̄ (t ′)dt ′dt = 0

7
∫ t f

ti
{ f (t )[

∫ t
ti

e(t ′)dt ′]2 + f̄ (t )| ∫ t
ti

f (t ′)dt ′|2}dt = 0
∫ t f

ti
e(t )| ∫ t

ti
f (t ′)dt ′|2dt = 0

is thus satisfied at fifth order for (i)
∫ t f

ti
fα (t )dt = 0 and (ii)

Eq. (32):∫ t f

ti

dt γ̇ xα sin2 θ = 0,

∫ t f

ti

dt γ̇ yα sin2 θ = 0. (40)

Cancellation of the sixth (and consequently the seventh) order,
Õ6 = 0, requires in addition∫ t f

ti

{ f (t )z2(t ) + f̄ (t )[a2(t ) + b2(t )]}dt = 0 (41)

with the dynamical variable

z(t ) =
∫ t

ti

e(t ′)dt ′, ż(t ) = e(t ). (42)

D. Integrals for the quantum gate

The fourth order involves in addition

Im
∫ t f

ti

f (t )dt
∫ t

ti

f̄ (t ′)dt ′

=
∫ t f

ti

dt
∫ t

ti

[a(t ′)b(t ) − a(t )b(t ′)]dt ′. (43)

According to Table I, the α robustness at fourth order (and
thus at fifth order) requires (i)∫ t f

ti

e(t )dt = 0, (44a)

(ii)
∫ t f

ti
f (t )dt = 0 and

∫ t f

ti
f (t )

∫ t
ti

f̄ (t ′)dt ′dt = 0, which both
can be satisfied via (A7c) for∣∣∣∣

∫ t f

ti

f (t )dt

∣∣∣∣
2

= 1

2

∫ t f

ti

dt γ̇ sin 2θ (xα cos γ + yα sin γ )

+
∫ t f

ti

dt θ̇ (xα sin γ − yα cos γ ) = 0, (44b)

2

α2
Im

( ∫ t f

ti

f (t )dt
∫ t

ti

f̄ (t ′)dt ′
)

= 1

2

∫ t f

ti

dt γ̇ sin 2θ (xα sin γ − yα cos γ )

−
∫ t f

ti

dt θ̇ (xα cos γ + yα sin γ ) = 0, (44c)

respectively, and (iii) Eq. (40).

Cancellation of Re(O6) [and thus Re(O7)] requires in ad-
dition ∫ t f

ti

dt e(t )

∣∣∣∣
∫ t

ti

dt ′ f (t ′)
∣∣∣∣
2

= 0. (45)

IV. OPTIMAL α-ROBUST CONTROL: ARBITRARY
QUANTUM GATE

In this section we treat explicitly the problem of the
α-robust optimal quantum gate (i.e., robust against pulse
inhomogeneities) and derive the corresponding differential
equations by Euler-Lagrange optimization that optimally sat-
isfy the cancellation of the integrals of columns 2 and 3 of
Table I at fifth order. The solutions in terms of the control
parameters (detuning and field amplitude) are next determined
numerically. The problem of population transfer is treated in
the next section as a particular case (where the integrals of
column 2 of Table I are considered). The quantum gates are
derived in Sec. VI.

An arbitrary SU(2) gate corresponds to

U (θ0, ϕ0, γ0) =
[

c ≡ e(i/2)(ϕ0−γ0 ) cos(θ0/2) −d̄
d ≡ e−(i/2)(ϕ0+γ0 ) sin(θ0/2) c̄

]
, (46)

with the angle θ0 and the two phases ϕ0 and γ0 to be controlled
in a robust way. We can consider without loss of generality the
construction of a robust process driving the initial ground state
|0〉 to the state

|φ(t f )〉 = |φT 〉 ≡
[

eiϕ0/2 cos(θ0/2)
e−iϕ0/2 sin(θ0/2)

]
e−iγ0/2, (47)

where the two final phases ϕ f = ϕ0 and γ f = γ0, while of
robust values, are not fixed a priori; they result from the
optimization procedure.

We highlight that application of a preliminary phase gate
(of phase κ)

�κ =
[

e−iκ/2 0
0 eiκ/2

]
(48)

allows one to modify the global phase γ0: γ0 → γ0 + κ . The
phase gate can be generated by applying two successive opti-
mal robust NOT gates [33]. On the other hand, adding a static
phase η0 to the control field � allows the modification of
the internal phase ϕ0 of the state: � → �e−iη0 gives ϕ0 →
ϕ0 − η0.

Equation (4c) implies ϕi = π/2. The problem features thus
the boundaries

θi = 0, θ f = θ0, γi = ϕi = π/2. (49)
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The fidelity is given by (27). The equations corresponding to
the optimal quantum gate trajectory θ̃ (γ ) with respect to pulse
area at fifth order are determined in Appendix B.

A. Optimization with respect to energy or time at fifth order

Robustness at fifth order corresponds to the five constraints
(44) that lead to the five integrals in the formalism of Euler-
Lagrange optimization

ψ0(γ , θ ) ≡
∫ t f

ti

dt γ̇ sin2 θ ≡
∫ t f

ti

dt ϕ0(γ̇ , θ ) = 0,

(50a)

ψ1(γ , θ, xα, yα ) = 1

2

∫ t f

ti

dt γ̇ sin 2θ (xα cos γ + yα sin γ )

+
∫ t f

ti

dt θ̇ (xα sin γ − yα cos γ )

≡
∫ t f

ti

dt ϕ1(γ , γ̇ , θ, θ̇ , xα, yα ) = 0, (50b)

ψ2(γ , θ, xα, yα ) = 1

2

∫ t f

ti

dt γ̇ sin 2θ (yα cos γ − xα sin γ )

+
∫ t f

ti

dt θ̇ (xα cos γ + yα sin γ ) (50c)

≡
∫ t f

ti

dt ϕ2(γ , γ̇ , θ, θ̇ , xα, yα ) = 0, (50d)

ψ3(γ , θ, xα ) =
∫ t f

ti

dt γ̇ xα sin2 θ

≡
∫ t f

ti

dt ϕ3(γ̇ , θ, xα ) = 0, (50e)

ψ4(γ , θ, yα ) =
∫ t f

ti

dt γ̇ yα sin2 θ

≡
∫ t f

ti

dt ϕ4(γ̇ , θ, yα ) = 0, (50f)

complemented by the equations (38) governing the variables
xα and yα , which augment the dimension of the problem,

ẋα = 1
4 γ̇ sin 2θ cos γ + 1

2 θ̇ sin γ ≡ u(γ , γ̇ , θ, θ̇ ), (51a)

ẏα = 1
4 γ̇ sin 2θ sin γ − 1

2 θ̇ cos γ ≡ v(γ , γ̇ , θ, θ̇ ), (51b)

with the boundaries [from the constraint
∫ t f

ti
f (t )dt = 0 at the

final time]

xα (ti ) = xα (t f ) = 0, yα (ti ) = yα (t f ) = 0. (52)

The trajectories γ (t ), θ (t ), xα (t ), and yα (t ) are a solution of
the Euler-Lagrange equations

∂L
∂γ

− d

dt

(
∂L
∂γ̇

)
= 0, (53a)

∂L
∂θ

− d

dt

(
∂L
∂θ̇

)
= 0, (53b)

∂L
∂xα

− d

dt

(
∂L
∂ ẋα

)
= 0, (53c)

∂L
∂yα

− d

dt

(
∂L
∂ ẏα

)
= 0, (53d)

with

L =L0(γ̇ , θ, θ̇ ) + λ0ϕ0(γ̇ , θ ) +
4∑

j=1

λ jϕ j

+ μx(t )[ẋα − u(γ , γ̇ , θ, θ̇ )]

+ μy(t )[ẏα − v(γ , γ̇ , θ, θ̇ )]. (54)

In Appendix C we show that they form a system of six differ-
ential equations

γ̈ + 2γ̇ θ̇ cotθ + (λ0 − λ2/2)θ̇ cotθ

+ θ̇ (κx cos γ + κy sin γ ) + λ2θ̇ (xα sin γ − yα cos γ )

+ (λ3xα + λ4yα )θ̇ cotθ = 0, (55a)

γ̇ 2 sin θ cos θ − θ̈ + (λ0 − λ2/2)γ̇ sin θ cos θ

+ [λ2(xα sin γ − yα cos γ ) + κx cos γ + κy sin γ ]γ̇ sin2 θ

+ (λ3xα + λ4yα )γ̇ sin θ cos θ = 0, (55b)

κ̇x = λ3γ̇ sin2 θ, (55c)

κ̇y = λ4γ̇ sin2 θ, (55d)

ẋα = γ̇ sin θ cos θ cos γ + θ̇ sin γ , (55e)

ẏα = γ̇ sin θ cos θ sin γ − θ̇ cos γ , (55f)

with the six Lagrangian multipliers λ0, λ2, λ3, λ4, κx,i ≡
κx(ti ), and κy,i ≡ κy(ti) (where we have redefined κx →
2κx, κy → 2κy, λ3 → 2λ3, λ4 → 2λ4, xα → xα/2, and yα →
yα/2), which define the optimal robust trajectory. Concerning
the constraints, we have the five integrals (50) and the final
boundary (52) on xα and yα that can be gathered as a single
integral

x2
α (t f ) + y2

α (t f ) = 0, (56)

which coincides with (44b).
We have, as in the lower-order case, the constant of motion

given by

0 = d

dt
(θ̇2 + γ̇ 2 sin2 θ ), (57)

which leads to a constant pulse �0:

θ̇2 + γ̇ 2 sin2 θ = �2
0. (58)

If we assume at initial time that |γ̇i| < ∞, we conclude that

|θ̇i| = |�0|. (59)

From (55a) at the initial time

2γ̇iθ̇i + (λ0 − λ2/2)θ̇i = 0, (60)

we conclude that

γ̇i = −λ0/2 + λ2/4. (61)

We show in Appendix D that we recover the optimal trajectory
with respect to pulse area from the optimal trajectory with
respect to energy, defined by Eqs. (55).
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We conclude that the problem of minimizing the pulse area
A (8) is equivalent to minimizing the time under the constraint
on the bounded control � � �0, and the minimum time

Tmin ≡ (t f − ti )min = 1

�0

∫ γ f

γi

dγ

√
( ˙̃θ )2 + sin2 θ (62)

is achieved when the pulse reaches its maximum at all times
� = �0. The optimization with respect to the pulse energy
(78) uses the same formula (and the same trajectory), but
interpreted differently: The minimum (constant) pulse ampli-
tude �0,min is determined from a given duration T ≡ t f − ti of
the interaction as

�0,min = 1

T

∫ γ f

γi

dγ

√
( ˙̃θ )2 + sin2 θ. (63)

B. Expression of detuning

One can express the detuning as a function of the angles θ

and γ as follows. Deriving (4c) as

γ̇ sin θ = �0 cos ϕ (64)

leads to

γ̈ sin θ + γ̇ θ̇ cos θ = −ϕ̇�0 sin ϕ = −ϕ̇θ̇ , (65)

which allows the substitution of ϕ̇ (4b) in

� = ϕ̇ − γ̇ cos θ (66)

to give

� = −1

θ̇
(γ̈ sin θ + 2γ̇ θ̇ cos θ ). (67)

Using (55a), we finally obtain

� = (λ0 − λ2/2 + λ3xα + λ4yα ) cos θ + [κx cos γ + κy sin γ

+ λ2(xα sin γ − yα cos γ )] sin θ. (68)

This gives, in particular, at initial time,

�i = λ0 − λ2/2. (69)

One can remark that the above formulation can be reduced
to the case of (arbitrary) population transfer by taking λ0 =
λ2 = 0, as studied below.

V. OPTIMAL α-ROBUST COMPLETE POPULATION
TRANSFER: NUMERICAL RESULTS

Optimal α-robust population transfer with respect to en-
ergy or time at fifth order is given by the trajectory solution
of Eqs. (55) with the boundaries (49), but with λ0 = λ2 =
0 since both (44a) and (44c) do not hold. We notice that
Eq. (4c) also imposes ϕ f = π/2 only in the case of com-
plete population transfer. The problem is investigated in detail
in Appendix E 1 for the case of complete population trans-
fer (i.e., with θ0 = π ). We assume a symmetric trajectory
(E5), i.e., with conditions (E8) and (E10). We determine
numerically λ3=1.110 84, λ4= − 0.849 18, κx,i = −0.456 33,
κy,i = −0.722 26, γ f = 1.0845π , and the minimum time

Tmin = 2.7102π/�0. (70)

The resulting trajectory, detuning, dynamics, and robustness
profile are shown in Figs. 1–4, respectively. We notice the

FIG. 1. Optimal robust geodesic θ̃ (γ ) corresponding to the opti-
mal fifth-order robust complete population transfer.

FIG. 2. Detuning (68) corresponding to the time-optimal fifth-
order robust complete population transfer, of trajectory shown in
Fig. 1 with a constant Rabi coupling �0.

FIG. 3. Dynamics of the populations Pj = |〈 j|φλ(t f )〉|2, j =
1, 2, corresponding to the time-optimal fifth-order robust complete
population transfer (using the detuning shown in Fig. 2).
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FIG. 4. Fidelity (transfer population P2) of the optimal fifth-order
(solid line) and third-order (dashed line) RIO complete population
transfer compared to the Rabi profile (dotted line) as a function of
the relative deviation of the pulse amplitude.

large-amplitude oscillations of the dynamics, reminiscent of
the 3π -pulse Rabi oscillations. As expected, the fifth order
features a significantly flatter profile than the third order
(determined in [33]).

VI. ROBUST ARBITRARY GATE: NUMERICAL RESULTS

We consider the construction of the optimal fifth-order α-
robust arbitrary SU(2) quantum gate as defined by (46) and
parametrized by the (given) angle θ0 and the two phases ϕ0

and γ0 and generated by the state (47) from the ground state.

A. Optimization with respect to energy or time

The boundaries read

θi = 0, θ f = θ0, γi = ϕi = π/2, γ f = γ0, ϕ f = ϕ0

(71)
and

|θ̇i| = |�0|, γ̇i = −λ0/2 + λ2/4. (72)

We do not set γ0 = γ f or ϕ0 = ϕ f ; they result from the
numerical calculation of the optimal solution giving γ f and
ϕ f , respectively. We have determined systematically the six
Lagrangian multipliers λ0, λ2, λ3, λ4, κx,i, and κy,i and the
minimum time for a given angle θ0 in the range [0.2, 1]π ,
solving Eqs. (55) with the boundaries (71) and (72).

We started to determine the trajectory for the NOT-type gate
θ0 = π ,

UNOT;κ =
[

0 −eiξ

e−iξ 0

]
, (73)

with ξ ≡ (ϕ0 + γ0)/2. We obtained two possible symmet-
ric NOT trajectories with λ3 = κy,i = 0, referred to as type
1 (λ0 ≈ 3.250�0, λ2 ≈ 0.8988�0, λ4 ≈ 1.944�0, and κx,i ≈
−3.510�0) and type 2 (λ0 ≈ 0.590�0, λ2 ≈ 0.8815�0, λ4 ≈
−1.974�0, and κx,i ≈ −1.549�0), respectively, of the same
pulse area A ≈ 4.20π and γ0 = ϕ0 = π/2, i.e., ξ = π/2.
They are shown in Figs. 5 and 6, respectively.

FIG. 5. Geodesic θ̃ (γ ) of type 1 corresponding to the optimal
fifth-order α-robust NOT gate (see the text for details).

By continuity of the Lagrangian parameters, one can de-
termine the trajectories for other values of θ0, decreasing its
value step by step from π . In practice, the search is much
simpler when one alternatively decreases the final time Tmin,
with which a given θ0 is associated. For any given θ0 < π , we
obtain that the trajectory continuously connected to the NOT

trajectory of type 1 leads to a smaller final time Tmin. This
set of trajectories is simply referred to as type-1 trajectories.
For instance, for the Hadamard gate θ0 = π/2, one obtains
Tmin ≈ 3.2/�0 and Tmin ≈ 3.42/�0 for types 1 and 2, respec-
tively. The corresponding detunings are shown in Figs. 7 and
8, respectively. We thus retain the type-1 trajectories. The ob-
tained Lagrangian multipliers, phases (which are numerically
determined to be identical γ0 = ϕ0), and minimum times Tmin

for the type-1 trajectories are shown in Fig. 9. One can notice
that the minimum time Tmin increases linearly with respect to
θ0 as for the Rabi solution.

The resulting values of the phases γ0 = ϕ0 are given in
Table II for some target SU(2) quantum gates parametrized
by the angles θ0. The pulse area decreases as a function of θ0.

FIG. 6. Same as 5 but for the geodesic θ̃ (γ ) of type 2.
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FIG. 7. Time-optimal detuning for the trajectory of Fig. 5.

As a particular example, the angle θ0 = π/2 corresponds
to a Hadamard-type gate

UH;ϕ0,γ0 = 1√
2

[
e(i/2)(ϕ0−γ0 ) −e(i/2)(ϕ0+γ0 )

e−(i/2)(ϕ0+γ0 ) e−(i/2)(ϕ0−γ0 )

]
, (74)

for which we obtain the off-diagonal phase (ϕ0 + γ0)/2 ≈
1.065π and the diagonal phase ϕ0 − γ0 = 0 (from Table II).
We determine numerically λ0 ≈ 1.959, λ2 ≈ 1.746, λ3 ≈
−1.266, λ4 ≈ 3.305, κx,i ≈ 5.473, κy,i ≈ −7.157, γ0 = ϕ0 ≈
1.065π , and the minimum time

Tmin ≈ 3.20π/�0, (75)

corresponding to a constant pulse of approximate total area of
3.20π . The resulting θ (t ), γ (t ), detuning �(t ), and dynamics
are shown in Fig. 10. The resulting dynamics is shown in
Fig. 10. One can notice the antisymmetric form of the detun-
ing as for the third-order robust solution [33].

FIG. 8. Time-optimal detuning for the trajectory of Fig. 6.

FIG. 9. (a) Lagrange multipliers and (b) corresponding optimal
time and phases producing the fifth-order optimal robust gate as
functions of θ0 (type-1 trajectories; see Fig. 5 for the NOT gate).
The curve of the (nonrobust) minimum time in the Rabi regime
Tmin,Rabi = θ0/�0 is shown as a dashed line for reference.

B. Comparison with the composite pulse technique

In this section the performance of the RIO approach
is compared to the composite pulse (CP) technique. As

TABLE II. Approximate values of the phases γ0 = ϕ0 and pulse
areas resulting from the optimization procedure for some fifth-order
α-robust quantum gates parametrized by θ0.

θ0/π γ0/π = ϕ0/π Pulse area (×π )

1/1000 1.50 1
1/10 1.53 2.37
1/4 1.42 2.77
1/2 1.065 3.20
3/4 0.740 3.70
1 1/2 4.20
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FIG. 10. (a) Optimal fifth-order α-robust geodesic θ̃ (γ ) for the
Hadamard gate (θ0 = π/2) determined from numerical solution of
(55). (b) Resulting detuning and dynamics of the populations Pj , j =
1, 2, realized from the ground state, for robust time-optimal control
[obtained for a constant Rabi frequency �0 according to (62)].

an illustrative example, we consider the fifth-order ro-
bust Hadamard gate (74) studied above, of pulse area
�0Tmin ≈ 3.20π .

According to [14], the CP can be produced using a sym-
metric five-pulse sequence of respective areas (and phases as
the index) ωφ1πφ2πφ3πφ2ωφ1 , with ω = 0.45π , φ1 = 1.9494π ,
φ2 = 0.5106π , and φ3 = 1.3179π . This CP features the
fastest total pulse area (3.9π ) known so far in the literature
for fifth-order α robustness. We conclude that RIO is consid-
erably faster than the CP (18% faster). The robustness profile
of RIO and of CP (both for fifth order) are shown in Fig. 11.
We observe identical performances for ultrahigh fidelities
(corresponding to an error below 10−4). They are com-
pared to third-order RIO and (first-order) Rabi techniques.
The broadening of the curves for higher order is clearly
demonstrated.

Concerning the NOT gate, the pulse area of the RIO method
(A ≈ 4.20π ) is 16% smaller than the best CP (A = 5π ) [14].
For gates with smaller targeted angles θ0, the comparative
performance of RIO increases since the total area of CP does
not change much. For instance, RIO is 40% faster than CP for
θ0 = π/10.

FIG. 11. (a) Fidelity and (b) infidelity in logarithmic scale of the
Hadamard gate as a function of the pulse deviation α for RIO, CP,
and Rabi techniques.

VII. OPTIMAL δ-ROBUST POPULATION TRANSFER

In this section we show that the problem of δ-robust opti-
mal control (i.e., robust against inhomogeneous broadening of
the frequencies or a slow stochastic noise in the energy level
of the qubit) can be treated similarly. We consider the problem
of complete population transfer and derive the correspond-
ing differential equations by Euler-Lagrange optimization that
optimally satisfy the cancellation of the integrals of the first
element of Table I (at third order).

Nullification up to third order leads to∫ t f

ti

dt sin θ cos γ =
∫ t f

ti

dt sin θ sin γ = 0, (76)

which corresponds to the two constraints rewritten as

ψ1(γ , θ ) =
∫ t f

ti

dt sin θ cos γ ≡
∫ t f

ti

dt ϕ1(γ , θ ) = 0,

(77a)

ψ2(γ , θ ) =
∫ t f

ti

dt sin θ sin γ ≡
∫ t f

ti

dt ϕ2(γ , θ ) = 0.

(77b)

Since the final phase is irrelevant for the population transfer
problem, the final global phase γ f is not considered.
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For such a problem with uncertainty in the detuning, one
cannot optimize with respect to pulse area, because this prob-
lem depends on the time parametrization (contrary to the
α-robustness problem). We thus consider below the optimiza-
tion with respect to a time-dependent cost, namely, the pulse
energy or the time of the process itself.

A. Energy optimization

The problem can be formulated as an optimization prob-
lem: finding the trajectory (γ (t ), θ (t )) that minimizes the
pulse energy

E (γ , θ ) =
∫ t f

ti

dt (θ̇2 + γ̇ 2 sin2 θ ) ≡
∫ t f

ti

dt L0(γ̇ , θ, θ̇ )

(78)
under the two constraints (77).

1. General formulation

The problem can be solved by the Lagrange multiplier
method: The trajectory (γ (t ), θ (t )) is the solution of

gradE (γ , θ ) + λ1gradψ1(γ , θ ) + λ2gradψ2(γ , θ ) = 0,

(79)
with λ j , j = 1, 2, the Lagrangian multipliers associated with
the constraints, where the gradient is defined as

gradE (γ , θ ) =
[

∂L0
∂γ

− d
dt

(
∂L0
∂γ̇

)
∂L0
∂θ

− d
dt

(
∂L0

∂θ̇

)
]
, (80a)

gradψ j (γ , θ ) =
⎡
⎣ ∂ϕ j

∂γ
− d

dt

( ∂ϕ j

∂γ̇

)
∂ϕ j

∂θ
− d

dt

( ∂ϕ j

∂θ̇

)
⎤
⎦. (80b)

Equation (79) gives

− d

dt

(
∂L0

∂γ̇

)
+ λ1

∂ϕ1

∂γ
+ λ2

∂ϕ2

∂γ
= 0, (81a)

∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

)
+ λ1

∂ϕ1

∂θ
+ λ2

∂ϕ2

∂θ
= 0, (81b)

i.e.,

−2
d

dt
(γ̇ sin2 θ ) + sin θ (λ2 cos γ − λ1 sin γ ) = 0,

(82a)

2γ̇ 2 sin θ cos θ − 2
d

dt
θ̇ + cos θ (λ1 cos γ + λ2 sin γ ) = 0,

(82b)

i.e.,

γ̈ sin θ + 2γ̇ θ̇ cos θ − λ2 cos γ + λ1 sin γ = 0, (83a)

γ̇ 2 sin θ cos θ − θ̈ + cos θ (λ1 cos γ + λ2 sin γ ) = 0. (83b)

We have divided in the equations above by a factor 2 and
redefined the λ′

js accordingly. The problem can be solved
numerically with the initial condition γ (ti ) = π/2, θ (ti ) = 0,
and γ̇ (ti ) and θ̇ (ti ) both undefined at this stage.

2. Solution: Resonant pulse

The numerical solution of the system (83) gives λ1 = 0,
λ2 = 1, and θ̇i ≈ 1.142 (in fact, since the problem appears to

FIG. 12. Optimal robust geodesic θ (t ) and γ (t ) for the complete
population transfer robust with respect to the detuning with the final
time t f = T ≈ 4.219 24/ω (corresponding to λ2 = 1 and λ1 = 0).
The time of the change of sign of sin γ is t1 ≈ 0.4325T . The time
when θ̇ = 0, corresponding to a zero field � = 0, is t2 ≈ 0.7162T .

be singular when λ1 = 0, we have to use numerically a small
value for λ1). Equation (83a) leads to

γ̈ sin θ + 2γ̇ θ̇ cos θ − cos γ = 0, (84)

of solution γ = ±π/2, i.e., ϕ = ±π/2 (independently of the
sign of ϕ), θ̇ = ±� (where the ± sign is correlated with the
sign of ϕ), and � = 0 [28] (see Fig. 12). Equation (83b)
gives then a differential equation similar to the pendulum
equation of motion (if one shifts θ )

− θ̈ ± λ cos θ = 0, (85)

where the ± sign is correlated with the sign of sin γ and
we have kept λ ≡ λ2 for the normalization of the field (also
associated with the value of θ̇i). The constraint reduces to∫ T

0
dt sin θ (t ) sin γ (t ) = 0, (86)

where the final time is defined t f ≡ T . We notice that sin γ

has to change its sign at a time t1 in order to satisfy the above
constraint.

As shown in Appendix G, the angle θ (t ) for time t ∈ [0, t1]
is given by θ+(t ) of Eq. (G22), denoted by θ0(t ) and written
in terms of the Jacobi amplitude function, the inverse of the
incomplete elliptic integral

θ0(t ) = 2 am(ωt − F (π/4, m), m) + π

2
, (87)

with λ = mω2 (G33), until t = t1,

t1 = 2

ω
F (π/4, m), (88)

for which θ (t1) ≡ θ0(t1) = π . For time t ∈ [t1, t2], we obtain
[similar to (G39)]

θ1(t ) = 2 am( − ωt + F (π/4, m) + 2K (m), m) − π

2
. (89)
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FIG. 13. Rabi frequency (94) corresponding to the angles of
Fig. 12.

The subsequent negative part of the pulse for time t ∈ [t2, T ]
is given by θ+(t ) of Eq. (G30), denoted by θ2(t ) (G42),

θ2(t ) = 2 am(ωt + c′′
2, m) − π

2
(90)

with

c′′
2 = 2F ( arcsin(1/

√
m), m) − F (π/4, m) (91)

until the final time

T = 2F ( arcsin(1/
√

m), m)/ω. (92)

The constraint that has to be satisfied reads∫ t1

0
dt sin θ0(t ) −

∫ t2

t1

dt sin θ1(t ) −
∫ T

t2

dt sin θ2(t ) = 0.

(93)
The pulse reads (G49)

�(t ) = 2ω dn(ωt − F (π/4, m), m) (94)

of peak �0 = 2ω. We find numerically m ≈ 1.210 485 565 4,
which satisfies (93). This gives the duration T ≈
4.219 24/ω ≈ 1.343π/ω ≈ 2.686π/�0, the pulse energy
E ≈ 6.6623ω ≈ 3.331 15�0, and the pulse area (of the
absolute value of �) A ≈ 1.4523π (independent of ω).
The corresponding angles, Rabi frequency, and dynamics of
the populations are shown in Figs. 12–14, respectively. The
transfer profile plotted in Fig. 15 shows the robustness of the
process.

B. Time optimization

Minimization of the time corresponds to the Lagrangian∫ t f

ti

dt = Tmin, i.e., L0 = 1. (95)

In this case, we obtain

−λ2 cos γ + λ1 sin γ = 0, (96a)

cos θ (λ1 cos γ + λ2 sin γ ) = 0, (96b)

FIG. 14. Optimal robust population for the complete population
transfer robust with respect to the detuning corresponding to the
angles of Fig. 12.

which is satisfied for λ1 = λ2 = 0 since the determinant
cos θ (sin2 γ + cos2 γ ) �= 0. We then take (as in the uncon-
straint case) a resonant pulse � = 0, corresponding to ϕ =
±π/2, γ = π/2, or γ = 3π/2, of constant amplitude of ab-
solute value �0 > 0 [28]. This leads, at early times, for which
we choose a positive field, to

θ (t ) = θ0(t ) = �0t, (97)

with the constraint∫ T

0
dt sin θ (t ) sin γ (t ) = 0. (98)

We notice that sin γ has to change its sign at a time t1 in
order to satisfy the above constraint, i.e., as before, such that

FIG. 15. Transfer profiles of the optimal complete population
transfer robust with respect to the detuning from resonance (normal-
ized with the peak Rabi frequency amplitude �0) for energy (solid
line) and time (dotted line) optimizations, respectively, compared to
the Rabi π -pulse profile with a square pulse (dashed line).
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�0t1 = π . At later times t > t1, we have

θ (t ) = θ1(t ) = 2π − �0t, (99)

satisfying the continuity θ1(t1) = θ0(t1), until the pulse
changes its sign at time t2,

θ (t ) = θ2(t ) = �0(t − 2t2) + 2π for t ∈ [t2, T ], (100)

satisfying the continuity θ2(t2) = θ1(t2) and finally θ2(T ) =
π , i.e., T = 2t2 − π/�0. This leads to∫ t2

0
dt sin �0t −

∫ T

t2

dt sin �0(t − 2t2) = 0, (101)

which gives

− 1

�0
[cos �0t]t2

0 + 1

�0
[cos �0(t − 2t2)]T

t2 = 0, (102)

i.e.,

cos �0t2 = 0. (103)

The solution �0t2 = 3π/2 gives the final minimum time (in
units of 1/�0 that can be chosen at will)

T = 2π/�0 (104)

and the bang pulse

�(t ) = �0 for t ∈ [0, t2],

�(t ) = −�0 for t ∈ [t2, T ]
(105)

of area A = 2π and energy E = 2π�0. We notice that, for
the same peak amplitudes, while the time of operation is 25%
smaller than the one that minimizes the energy, the pulse area
is 38% larger.

The transfer profiles comparing the efficiency of RIO for
the energy and time optimization with the Rabi π -pulse trans-
fer are shown in Fig. 15. The energy optimization appears
more robust than the time optimization at the same order and
with a lower pulse area.

VIII. CONCLUSION

In summary, we have formulated the RIO method in a sys-
tematic way in order to produce a robust control at any desired
high order with respect to pulse inhomogeneities. Our analysis
shows that the construction of a robust process up to an odd
order 2n + 1 (for a given integer n) only requires canceling
the first n terms of the perturbative expansion (18) (for the
population transfer) or (27) for the quantum gates (using the
trace fidelity). We have applied the RIO method to generate
optimal and ultrarobust arbitrary SU(2) quantum gates with
respect to energy or time. Time α-robust optimization shows
a constant Rabi coupling and a shaped detuning for any target.

The performance of RIO was compared to the composite
technique. We then observed that RIO is considerably faster
than CP, while having a similar performance. The detuning
features a relatively simple shape with a dual-frequency os-
cillation (see Fig. 10). By comparison, the third order has a
single-frequency (elliptic-cosine) form (see [33]).

Practical application in quantum computing requires an
ultrahigh fidelity with a gate error typically not larger than

10−4. The trace fidelity of the Hadamard shows then an ad-
missible error in the pulse area of 10% at third order and
of 20% at fifth order (see Fig. 11). For the more demanding
Frobenius fidelity, the latter corresponds to an admissible error
of 5% at second order. The pulse shaping of Fig. 8 is then
recommended in practice to preserve ultrahigh fidelity despite
such errors in the (global) pulse amplitude or duration.

An important question that can be treated by RIO concerns
the additional constraint leading to a free single field parame-
ter. We have seen that the α robustness for time minimization
shows natural solutions with a constant coupling � (that can
be chosen at will) and a variable detuning, while the lowest
order of δ robustness shows a constant zero detuning (res-
onance) and a variable coupling. The constraint to a single
parameter (due, e.g., to the experimental implementation) can
be treated within RIO in general by adding a new integral
characterizing this constraint in the angle coordinates. If one
considers, for instance, the α robustness with a given pulse
shape �(t ), the angle γ (t ) is more specifically related to it via
[30,35] ∫ t

ti

�(s)ds =
∫ γ (t )

γi

dγ

√
( ˙̃θ )2 + sin2 θ̃ (106)

and the optimal detuning results from the optimal trajectory
θ̃ (γ ). Another constraint consists in considering a con-
stant detuning � = �0 and a variable coupling �(t ). This
can be addressed via the rescaling of the coupling (for an
arbitrary �0)

s(t ) = 1

�0

∫ t

0
�(s)ds, ṡ = �(t )/�0, (107)

leading to the reduced problem

i
∂

∂s
|φ̃(s)〉 = 1

2

[−�̃(s) �0

�0 �̃(s)

]
|φ̃(s)〉, (108)

with

|φ̃(s)〉 = |φ(t )〉, �̃(s) = �0/�(t ). (109)

This leads to the optimization problem with an effective vari-
able detuning and a constant coupling �0, which has been
treated in this paper. For α robustness, we have obtained a
detuning necessarily passing by zero, which corresponds to
an infinite coupling in the original problem. We conclude that
a constant detuning and a variable coupling amplitude cannot
achieve optimal α robustness.

The applicability of the RIO method requires (i) generating
the dynamical invariants [36] associated with the symmetry
of the problem, from which one can implement the inverse
engineering technique [37,38], and (ii) finding the underlying
Lagrangian multipliers (LMs). The dynamical invariants have
been derived for SU(4) symmetry with interactions of the
form σi ⊗ σi, 1 ⊗ σi, and σi ⊗ 1, i = x, y, z [39], which covers
most of the practical applications of quantum computation in-
volving two-qubit operation. We notice that this does not limit
the applicability to two-, three-, or four-level systems; higher
dimensions with specific symmetries can be considered [40].
For instance, one can compensate for the error in the phase
of a two-qubit controlled- PHASE gate using SU(2)-symmetry
interactions T1 ≡ 1

2σx ⊗ σx, T2 ≡ 1
2σx ⊗ σy, and T3 ≡ 1

21 ⊗ σz
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[41]. Concerning the LMs, we should be able to systematically
process up to one-tenth of the LMs. Robustness with respect to
field inhomogeneities (amplitude, duration, or pulse area) or
inhomogeneous broadening (detuning) requires (i) two LMs
for complete (or partial) population transfer and three LMs
for single-qubit gate (if we consider the trace fidelity) at third
order and (ii) four LMs for complete (or partial) population
transfer and six LMs for single-qubit gate (if we consider the
trace fidelity) at fifth order. If one considers robustness against
both field inhomogeneities and inhomogeneous broadening,
the number of LMs has to be multiplied by 2.

The RIO method is flexible and can be applied for various
problems. For instance, one can consider robust ultrasmall
excitation of a quantum transition needed in some applications
of quantum technologies (e.g., for single-photon generation in
cold atomic ensembles or doped solids by the Duan-Lukin-
Cirac-Zoller protocol [42,43]), as it was recently proposed in
the context of composite pulses [44]. One can then extend the
search shown in Fig. 9 for θ0 below 0.2π . For instance, we
obtain a robust quantum gate with θ0 ≈ π/1000 for �0Tmin =
π , which corresponds to an ultrasmall population transfer
probability of approximately 2.5 × 10−6.

The method developed in this paper can also be directly ap-
plied to take into account imperfections due to slow stochastic
noises. It has to be considered in a quasistatic representation
[29] or with adiabatic arguments. The RIO method has been
recently applied for more general noise models [45].
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APPENDIX A: CALCULATION OF THE INTEGRALS
OF ROBUSTNESS

We calculate the integrals of robustness Qn and On from
their definition (15) and from the matrix products, symboli-
cally written as [where we define e ≡ e(t ), e′ ≡ e(t ′), e′′ ≡
e(t ′′), etc., and in units such that h̄ = 1]

VIV
′

I =
[

e f
f̄ −e

][
e′ f ′

f̄ ′ −e′

]

=
[

ee′ + f f̄ ′ e f ′ − f e′

f̄ e′ − e f̄ ′ f̄ f ′ + ee′

]
(A1)

and

VIV
′

I V ′′
I =

[
ee′ + f f̄ ′ e f ′ − f e′

f̄ e′ − e f̄ ′ f̄ f ′ + ee′

][
e′′ f ′′

f̄ ′′ −e′′

]
(A2)

=
[

(ee′ + f f̄ ′)e′′ + (e f ′ − f e′) f̄ ′′ · · ·
( f̄ e′ − e f̄ ′)e′′ + ( f̄ f ′ + ee′) f̄ ′′ · · ·

]
, (A3)

for Sec. III B. For the Qn we obtain

|Q1| =
∣∣∣∣
∫ t f

ti

dt f (t )

∣∣∣∣, (A4a)

|Q2| =
∣∣∣∣
∫ t f

ti

dt
∫ t

ti

dt ′[e(t ) f (t ′) − f (t )e(t ′)]
∣∣∣∣

=
∣∣∣∣2

∫ t f

ti

dt e(t )
∫ t

ti

dt ′ f (t ′) −
∫ t f

ti

dt f (t )
∫ t f

ti

dt e(t )

∣∣∣∣
= 2

∣∣∣∣
∫ t f

ti

dt e(t )
∫ t

ti

dt ′ f (t ′)
∣∣∣∣ when Q1 = 0, (A4b)

|Q3| =
∣∣∣∣
∫ t f

ti

dt
∫ t

ti

dt ′
∫ t ′

ti

dt ′′[ f (t )e(t ′)e(t ′′)

− e(t ) f (t ′)e(t ′′) + f (t ) f̄ (t ′) f (t ′′) + e(t )e(t ′) f (t ′′)]
∣∣∣∣

=
∣∣∣∣3

2

∫ t f

ti

dt f (t )

( ∫ t

ti

dt ′e(t ′)
)2

−
∫ t f

ti

dt e(t )
∫ t f

ti

dt f (t )
∫ t

ti

dt ′e(t ′)

+
∫ t f

ti

dt f (t )
∫ t f

ti

dt f̄ (t )
∫ t

ti

dt ′ f (t ′)

−
∫ t f

ti

dt f̄ (t )

(∫ t

ti

dt ′ f (t ′)
)2

+
∫ t f

ti

dt e(t )
∫ t f

ti

dt e(t )
∫ t

ti

dt ′ f (t ′)

−
∫ t f

ti

dt e(t )
∫ t

ti

dt ′e(t ′)
∫ t

ti

dt ′ f (t ′)
∣∣∣∣

=
∣∣∣∣2

∫ t f

ti

dt f (t )

(∫ t

ti

dt ′e(t ′)
)2

−
∫ t f

ti

dt e(t )
∫ t f

ti

dt f (t )
∫ t

ti

dt ′e(t ′)

+
∫ t f

ti

dt f (t )
∫ t f

ti

dt f̄ (t )
∫ t

ti

dt ′ f (t ′)

−
∫ t f

ti

dt f̄ (t )

(∫ t

ti

dt ′ f (t ′)
)2

+
∫ t f

ti

dt e(t )
∫ t f

ti

dt e(t )
∫ t

ti

dt ′ f (t ′)

−
∫ t f

ti

dt e(t )
∫ t

ti

dt ′e(t ′)
∫ t f

ti

dt ′ f (t ′)
∣∣∣∣

=
∣∣∣∣
∫ t f

ti

dt

[
2 f (t )

(∫ t

ti

dt ′e(t ′)
)2

− f̄ (t )

( ∫ t

ti

dt ′ f (t ′)
)2]∣∣∣∣ when Qm�2 = 0, (A4c)

using

∫ t f

ti

dt f (t )
∫ t

ti

dt ′e(t ′)
∫ t ′

ti

dt ′′e(t ′′)

= 1

2

∫ t f

ti

dt f (t )

(∫ t

ti

dt ′e(t ′)
)2

, (A5a)

062613-14



OPTIMAL ULTRAROBUST QUANTUM GATES BY INVERSE … PHYSICAL REVIEW A 109, 062613 (2024)

∫ t f

ti

dt e(t )
∫ t

ti

dt ′ f (t ′)

=
∫ t f

ti

dt e(t )
∫ t f

ti

dt f (t ) −
∫ t f

ti

dt f (t )
∫ t

ti

dt ′e(t ′).

(A5b)

One can rewrite the term Q3 by applying integration by parts
with u′(t ) = f̄ (t ) and v(t ) = [

∫ t
ti

dt ′ f (t ′)]2:

Q3 = 2

∣∣∣∣
∫ t f

ti

dt

[
f (t )

( ∫ t

ti

dt ′e(t ′)
)2

+ f̄ (t )

∣∣∣∣
∫ t

ti

dt ′ f (t ′)
∣∣∣∣
2]∣∣∣∣.

(A6)

For the On we obtain

|O1| =
∣∣∣∣
∫ t f

ti

dt e(t )

∣∣∣∣, (A7a)

|O2| =
∣∣∣∣
∫ t f

ti

dt
∫ t

ti

dt ′[e(t )e(t ′) + f (t ) f̄ (t ′)]
∣∣∣∣

=
∣∣∣∣1

2

( ∫ t f

ti

dt e(t )

)2

+ 1

2

∣∣∣∣
∫ t f

ti

dt f (t )

∣∣∣∣
2

+ i Im

( ∫ t f

ti

dt f (t )
∫ t

ti

dt ′ f̄ (t ′)
)∣∣∣∣

=
∣∣∣∣
∫ t f

ti

dt f (t )
∫ t

ti

dt ′ f̄ (t ′)
∣∣∣∣ when O1 = 0, (A7b)

=
∣∣∣∣Im

( ∫ t f

ti

dt f (t )
∫ t

ti

dt ′ f̄ (t ′)
)∣∣∣∣ when O1 = Q1 = 0,

(A7c)

|O3| =
∣∣∣∣
∫ t f

ti

dt
∫ t

ti

dt ′
∫ t ′

ti

dt ′′[e(t )e(t ′)e(t ′′)

+ f (t ) f̄ (t ′)e(t ′′) + e(t ) f (t ′) f̄ (t ′′) − f (t )e(t ′) f̄ (t ′′)]
∣∣∣∣

=
∣∣∣∣1

6

( ∫ t f

ti

e(t )dt

)3

+ 2
∫ t f

ti

dt e(t )

∣∣∣∣
∫ t

ti

dt ′ f (t ′)
∣∣∣∣
2

−
∫ t f

ti

dt e(t )
∫ t f

ti

dt f̄ (t )
∫ t

ti

dt ′ f (t ′)

+
∫ t f

ti

dt f (t )
∫ t f

ti

dt f̄ (t )
∫ t

ti

dt ′e(t ′)

−
∫ t f

ti

dt f (t )
∫ t f

ti

dt e(t )
∫ t

ti

dt ′ f̄ (t ′)
∣∣∣∣

= 2

∣∣∣∣
∫ t f

ti

dt e(t )

∣∣∣∣
∫ t

ti

dt ′ f (t ′)
∣∣∣∣
2∣∣∣∣ when O1 = Q1 = 0.

(A7d)

APPENDIX B: OPTIMAL QUANTUM GATE TRAJECTORY
WITH RESPECT TO PULSE AREA AT FIFTH ORDER

Canceling the terms of the propagator expansion (12) at
first order, i.e.,

∫ t f

ti
dt e(t ) = 0 and

∫ t f

ti
dt f (t ) = 0, and at the

full second order, via (44c) and (40), the constraints become
[where we use (44b) to satisfy

∫ t f

ti
dt f (t ) = 0]

ψ0(θ̃ ) =
∫ γ f

γi

dγ sin2 θ̃ ≡
∫ γ f

γi

dγ ϕ0(θ̃ ) = 0,

(B1a)

ψ1(γ , θ̃ , x̃α, ỹα ) =
∫ γ f

γi

dγ

[
1

2
sin 2θ̃ (x̃α cos γ

+ ỹα sin γ ) ˙̃θ (x̃α sin γ − ỹα cos γ )

]

≡
∫ γ f

γi

dγ ϕ1(γ , θ̃ , ˙̃θ, x̃α, ỹα ) = 0, (B1b)

ψ2(γ , θ̃ , x̃α, ỹα ) =
∫ γ f

γi

dγ

[
1

2
sin 2θ (ỹα cos γ − x̃α sin γ )

+ ˙̃θ (x̃α cos γ + ỹα sin γ )

]

≡
∫ γ f

γi

dγ ϕ2(γ , θ̃ , ˙̃θ, x̃α, ỹα ) = 0, (B1c)

ψ3(γ , θ̃ , x̃α ) =
∫ γ f

γi

dγ x̃α sin2 θ̃

≡
∫ γ f

γi

dγ ϕ3(θ̃ , x̃α ) = 0, (B1d)

ψ4(γ , θ̃ , ỹα ) =
∫ γ f

γi

dγ ỹα sin2 θ̃

≡
∫ γ f

γi

dγ ϕ4(θ̃ , ỹα ) = 0. (B1e)

The trajectories θ̃ (γ ), x̃α (γ ), and ỹα (γ ) are the solution of
the Euler-Lagrange equations

∂L
∂θ̃

− d

dγ

(
∂L
∂ ˙̃θ

)
= 0, (B2a)

∂L
∂ x̃α

− d

dγ

(
∂L
∂ ˙̃xα

)
= 0, (B2b)

∂L
∂ ỹα

− d

dγ

(
∂L
∂ ˙̃yα

)
= 0, (B2c)

with

L(γ , θ̃ , ˙̃θ, x̃α, ˙̃xα, ỹα, ˙̃yα )

= L0(θ̃ , ˙̃θ ) + λ̃0ϕ0(θ̃ ) +
∑
j=1,4

λ̃ jϕ j (γ , θ̃ , ˙̃θ, x̃α, ỹα )

+ μ̃x(γ )[ ˙̃xα − ũ(γ , θ̃ , ˙̃θ )] + μ̃y(γ )[ ˙̃yα − ṽ(γ , θ̃ , ˙̃θ )].
(B3)

This gives

∂L0

∂θ̃
− d

dγ

(
∂L0

∂ ˙̃θ

)
+λ̃0

∂ϕ0

∂θ̃
+

∑
j=1,4

[
λ̃ j

∂ϕ j

∂θ̃
−λ̃ j

d

dγ

(
∂ϕ j

∂ ˙̃θ

)]

− μ̃x
∂ ũ

∂θ
− μ̃y

∂ ṽ

∂θ
+ d

dγ

(
μ̃x

∂ ũ

∂ ˙̃θ
+ μ̃y

∂ ṽ

∂ ˙̃θ

)
= 0, (B4a)
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∑
j=1,4

λ̃ j
∂ϕ j

∂ x̃α

− ˙̃μx = 0, (B4b)

∑
j=1,4

λ̃ j
∂ϕ j

∂ ỹα

− ˙̃μy = 0, (B4c)

i.e.,

2( ˙̃θ )2cotθ̃ + sin θ̃ cos θ̃ − ¨̃θ

[( ˙̃θ )2 + sin2 θ̃]3/2

+ (2λ̃0 − λ̃2)cotθ̃ − 2λ̃2(ỹα cos γ − x̃α sin γ )

+ λ̃3

(
2x̃αcotθ̃ + 1

2
sin γ

)
+ λ̃4

(
2ỹαcotθ̃ − 1

2
cos γ

)

− 2λ̃1(x̃α cos γ + ỹα sin γ ) + μ̃x cos γ + μ̃y sin γ = 0,

(B5a)

˙̃μx − 2λ̃1 ˙̃xα + 2λ̃2 ˙̃yα = λ̃3 sin2 θ̃ , (B5b)

˙̃μy − 2λ̃1 ˙̃yα − 2λ̃2 ˙̃xα = λ̃4 sin2 θ̃ . (B5c)

One can remove the λ̃1 and simplify the above equations by
defining

κ̃x = μ̃x − 2λ̃1x̃α + 2λ̃2ỹα − 1
2 λ̃4, (B6a)

κ̃y = μ̃y − 2λ̃1ỹα − 2λ̃2x̃α + 1
2 λ̃3, (B6b)

giving the complete system

2( ˙̃θ )2cotθ̃ + sin θ̃ cos θ̃ − ¨̃θ

[( ˙̃θ )2 + sin2 θ̃ ]3/2

+ (2λ̃0 − λ̃2)cotθ̃ + 2λ̃2(x̃α sin γ − ỹα cos γ )

+ (λ̃3x̃α + λ̃4ỹα )cotθ̃ + κ̃x cos γ + κ̃y sin γ = 0, (B7a)

˙̃κx = λ̃3 sin2 θ̃ , ˙̃κy = λ̃4 sin2 θ̃ , (B7b)

˙̃xα = sin θ̃ cos θ̃ cos γ + ˙̃θ sin γ , (B7c)

˙̃yα = sin θ̃ cos θ̃ sin γ − ˙̃θ cos γ , (B7d)

with κ̃x(γi ) = κx,i, κ̃y(γi) = κy,i, x̃α (γi ) = xα (ti ) = 0, ỹα (γi) =
yα (ti ) = 0, ˙̃xα (γi ) = ˙̃

iθ sin γi, and ˙̃yα (γi ) = − ˙̃
iθ cos γi (where

we have redefined x̃α → x̃α/2 and ỹα → ỹα/2).

APPENDIX C: OPTIMAL QUANTUM GATE TRAJECTORY
WITH RESPECT TO ENERGY OR TIME AT FIFTH ORDER

The trajectories γ (t ), θ (t ), xα (t ), and yα (t ) are the solution
of the Euler-Lagrange equations (53), which can be written as

∂L0

∂γ
− d

dt

(
∂L0

∂γ̇

)
+ λ0

∂ϕ0

∂γ
− λ0

d

dt

(
∂ϕ0

∂γ̇

)

+
4∑

j=1

[
λ j

∂ϕ j

∂γ
− λ j

d

dt

(
∂ϕ j

∂γ̇

)]

−μx
∂u

∂γ
− μy

∂v

∂γ
+ d

dt

(
μx

∂u

∂γ̇
+ μy

∂v

∂γ̇

)
= 0, (C1a)

∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

)
+ λ0

∂ϕ0

∂θ
− λ0

d

dt

(
∂ϕ0

∂θ̇

)

+
4∑

j=1

[
λ j

∂ϕ j

∂θ
− λ j

d

dt

(
∂ϕ j

∂θ̇

)]

−μx
∂u

∂θ
− μy

∂v

∂θ
+ d

dt

(
μx

∂u

∂θ̇
+ μy

∂v

∂θ̇

)
= 0, (C1b)

λ1
∂ϕ1

∂xα

+ λ2
∂ϕ2

∂xα

+ λ3
∂ϕ3

∂xα

+ λ4
∂ϕ4

∂xα

− μ̇x = 0, (C1c)

λ1
∂ϕ1

∂yα

+ λ2
∂ϕ2

∂yα

+ λ3
∂ϕ3

∂yα

+ λ4
∂ϕ4

∂yα

− μ̇y = 0, (C1d)

with, for optimization with respect to the pulse energy [ac-
cording to (78)],

L0(γ̇ , θ, θ̇ ) = θ̇2 + γ̇ 2 sin2 θ (C2a)

and

ϕ0(γ̇ , θ ) = γ̇ sin2 θ, (C2b)

ϕ1 = γ̇

2
sin 2θ (xα cos γ + yα sin γ )

+ θ̇ (xα sin γ − yα cos γ ), (C2c)

ϕ2 = γ̇

2
sin 2θ (yα cos γ − xα sin γ )

+ θ̇ (xα cos γ + yα sin γ ), (C2d)

ϕ3 = γ̇ xα sin2 θ, (C2e)

ϕ4 = γ̇ yα sin2 θ, (C2f)

ẋα = 1

4
γ̇ sin 2θ cos γ + 1

2
θ̇ sin γ = u, (C2g)

ẏα = 1

4
γ̇ sin 2θ sin γ − 1

2
θ̇ cos γ = v, (C2h)

i.e.,

− 2γ̈ sin2 θ − 4γ̇ θ̇ sin θ cos θ − 2λ0θ̇ sin θ cos θ

+ 2θ̇ sin2 θ [λ1(xα cos γ + yα sin γ )

− λ2(xα sin γ − yα cos γ )]

− 1
2 sin 2θ [(λ1 cos γ − λ2 sin γ )ẋα

+ (λ1 sin γ + λ2 cos γ )ẏα]

− λ3ẋα sin2 θ − 2λ3xαθ̇ sin θ cos θ

− λ4ẏα sin2 θ − 2λ4yαθ̇ sin θ cos θ

− θ̇ sin2 θ (μx cos γ + μy sin γ )

+ 1
4 sin 2θ (μ̇x cos γ + μ̇y sin γ ) = 0, (C3a)

γ̇ 2 sin θ cos θ − θ̈ + (λ0 − λ2/2)γ̇ sin θ cos θ

−γ̇ sin2 θ [λ1(xα cos γ + yα sin γ )

+ λ2(yα cos γ − xα sin γ )]

+γ̇ sin θ cos θ (xαλ3 + yαλ4)

+ 1
4 γ̇ sin2 θ (λ3 sin γ − λ4 cos γ )

+ 1
2 γ̇ sin2 θ (μx cos γ + μy sin γ ) = 0, (C3b)
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μ̇x = λ1(γ̇ cos θ sin θ cos γ + θ̇ sin γ )

−λ2(γ̇ cos θ sin θ sin γ − θ̇ cos γ ) + λ3γ̇ sin2 θ

= 2λ1ẋα − 2λ2ẏα + λ3γ̇ sin2 θ, (C3c)

μ̇y = λ1(γ̇ cos θ sin θ sin γ − θ̇ cos γ )

+λ2(γ̇ cos θ sin θ cos γ + θ̇ sin γ ) + λ4γ̇ sin2 θ

= 2λ1ẏα + 2λ2ẋα + λ4γ̇ sin2 θ. (C3d)

One can remove the λ1 and simplify the above equations by
defining

κx = μx − 2λ1xα + 2λ2yα − 1
2λ4, (C4a)

κy = μy − 2λ1yα − 2λ2xα + 1
2λ3, (C4b)

which forms a system of six differential equations

γ̈ + 2γ̇ θ̇ cotθ + (λ0 − λ2/2)θ̇ cotθ

+ θ̇ (κx cos γ + κy sin γ ) + λ2θ̇ (xα sin γ − yα cos γ )

+ (λ3xα + λ4yα )θ̇ cotθ = 0, (C5a)

γ̇ 2 sin θ cos θ − θ̈ + (λ0 − λ2/2)γ̇ sin θ cos θ

+ [λ2(xα sin γ − yα cos γ ) + κx cos γ + κy sin γ ]γ̇ sin2 θ

+ (λ3xα + λ4yα )γ̇ sin θ cos θ = 0, (C5b)

κ̇x = λ3γ̇ sin2 θ, (C5c)

κ̇y = λ4γ̇ sin2 θ, (C5d)

ẋα = γ̇ sin θ cos θ cos γ + θ̇ sin γ , (C5e)

ẏα = γ̇ sin θ cos θ sin γ − θ̇ cos γ , (C5f)

with the six Lagrangian multipliers λ0, λ2, λ3, λ4, κx,i ≡ κx(ti),
and κy,i ≡ κy(ti ) (where we have redefined κx → 2κx, κy →
2κy, λ3 → 2λ3, λ4 → 2λ4, xα → xα/2, and yα → yα/2) that
define the optimal robust trajectory.

APPENDIX D: RECOVERING OPTIMAL TRAJECTORY
WITH RESPECT TO PULSE AREA FROM ENERGY

OPTIMIZATION AT FIFTH ORDER

We show below that we recover the trajectory defined by
the differential equations (B7) for the minimization of the
pulse area from the optimal trajectory with respect to en-
ergy, defined by Eqs. (55): Using ẋα = ˙̃xαγ̇ and ẏα = ˙̃yαγ̇ ,
Eqs. (55e) and (55f) give (B7c) and (B7d), respectively. Using
θ̈ = γ̇ 2 ¨̃θ + γ̈ ˙̃θ , Eq. (55b) reads

γ̇ sin θ cos θ − γ̇ ¨̃θ − γ̈ ˙̃θ/γ̇ + (λ0 − λ2/2) sin θ cos θ

+ sin2 θ [λ2(xα sin γ − yα cos γ ) + κx cos γ + κy sin γ ]

+ sin θ cos θ (λ3xα + λ4yα ) = 0, (D1)

which gives, using (55a) and θ̇ = γ̇ ˙̃θ ,

2( ˙̃θ )2cotθ + sin θ cos θ − ¨̃θ + [(λ0 − λ2/2)cotθ

+ κx cos γ + κy sin γ + λ2(xα sin γ − yα cos γ )

+ cotθ (λ3xα + λ4yα )][( ˙̃θ )2 + sin2 θ ]/γ̇ = 0. (D2)

Using the constant of motion �2
0 = θ̇2 + γ̇ 2 sin2 θ =

γ̇ 2[sin2 θ + ( ˙̃θ )
2
], i.e.,

γ̇ = �0√
sin2 θ + ( ˙̃θ )2

, (D3)

we recover (B7a), where we have identified the Lagrange
multipliers

λ̃0 = λ0/2�0, λ̃2 = λ2/2�0, λ̃ j = λ j/�0, j = 3, 4,

κ̃x = κx/�0, κ̃y = κy/�0. (D4)

APPENDIX E: SYMMETRY OF THE TRAJECTORIES

1. Complete population transfer

We first invert the derivatives in order to get trajectories as
a function of θ , γ̃ (θ ),

˙̃θ = d θ̃

dγ
= 1

/(
d γ̃

dθ

)
= 1/ ˙̃γ , (E1a)

d

dγ
( ˙̃θ ˙̃γ ) = 0 = ¨̃θ ˙̃γ + ˙̃θ

d

dθ
( ˙̃γ )

d θ̃

dγ
= ¨̃θ ˙̃γ + ( ˙̃θ )2 ¨̃γ , (E1b)

i.e.,

¨̃θ = − ¨̃γ /( ˙̃γ )3. (E2)

We obtain, from (B7),

2 ˙̃γ cotθ + ( ˙̃γ )3 sin θ cos θ + ¨̃γ

[1 + ( ˙̃γ )2 sin2 θ ]3/2
+ 2λ̃2(x̃α sin γ̃ − ỹα cos γ̃ )

+ z̃αcotθ + κ̃x cos γ̃ + κ̃y sin γ̃ = 0, (E3a)

˙̃κx = ˙̃γ λ̃3 sin2 θ, ˙̃κy = ˙̃γ λ̃4 sin2 θ, (E3b)

˙̃zα = ˙̃γ sin θ cos θ (λ̃3 cos γ̃ + λ̃4 sin γ̃ )

+ λ̃3 sin γ̃ − λ̃4 cos γ̃ , (E3c)

with

z̃α = 2λ̃0 − λ̃2 + λ̃3x̃α + λ̃4ỹα (E4)

and all the variables considered as functions of θ : z̃α ≡ z̃α (θ ),
etc. We analyze the problem of complete population transfer:
λ̃0 = λ̃2 = 0 and θ f = π . We consider the backward equa-
tions γ̂ (u) = γ̃ (θ ), ẑα (u) = z̃α (θ ), and κ̂ j (u) = κ̃ j (θ ), j =
x, y, with u = π − θ . This gives ˙̂γ = − ˙̃γ , ¨̂γ = ¨̃γ , ˙̂zα = −˙̃zα ,
¨̂zα = ¨̃zα , ˙̂κ j = − ˙̃κ j , and ¨̂κ j = ¨̃κ j . The resulting differential
equations are of the same form as the original ones (E3) but
with a change of sign of the derivative of ẑα . As a conse-
quence, the trajectory γ̃ (θ ) can be antisymmetric around θ =
π/2, γ̃ (π/2) ≡ γ0 = (γ f + γi )/2 = γ f /2 + π/4 ( j = x, y),
with antisymmetric functions κ̃ j (θ ) and a symmetric function
z̃α (θ ),

γ̃ (π − θ ) = 2γ0 − γ̃ (θ ), (E5a)

˙̃γ (π − θ ) = ˙̃γ (θ ), ¨̃γ (π − θ ) = − ¨̃γ (θ ), (E5b)

κ̃ j (π − θ ) = 2κ j,0 − κ̃ j (θ ), ˙̃κ j (π − θ ) = ˙̃κ j (θ ), (E5c)

z̃(π − θ ) = z̃(θ ), ˙̃z(π − θ ) = −˙̃z(θ ), (E5d)

under the conditions determined below.
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Taking the differential equation (E3) at θ = π − θ0 and
using the above equalities and (E3) at θ0 gives

κ̃x(θ0) cos γ̃ (θ0) + κ̃y(θ0) sin γ̃ (θ0)

+ κ̃x(π − θ0) cos[2γ0 − γ̃ (θ0)]

+ κ̃y(π − θ0) sin[2γ0 − γ̃ (θ0)] = 0, (E6a)

sin θ cos θ0[λ̃3 cos γ̃ (θ0) + λ̃4 sin γ̃ (θ0)]

+ [λ̃3 sin γ̃ (θ0) − λ̃4 cos γ̃ (θ0)]/γ̃ (θ̇0)

= sin θ0 cos θ0{λ̃3 cos[2γ0 − γ̃ (θ0)]

+ λ̃4 sin[2γ0 − γ̃ (θ0)]} − {λ̃3 sin[2γ0 − γ̃ (θ0)]

− λ̃4 cos[2γ0 − γ̃ (θ0)]}/ ˙̃γ (θ0) (E6b)

and Eq. (E6b) leads to

λ̃3 = λ̃4 cos γ f − λ̃3 sin γ f , (E7a)

λ̃4 = λ̃3 cos γ f + λ̃4 sin γ f , (E7b)

i.e., to the conditions

cos γ f = 2λ̃3λ̃4

(λ̃3)2 + (λ̃4)2
, sin γ f = (λ̃4)2 − (λ̃3)2

(λ̃3)2 + (λ̃4)2
. (E8)

Using the integration of Eqs. (B7b), Eq. (E6a) gives

0 = (κx,i + κx,i sin γ f − κy,i cos γ f ) cos[γ̃ (θ0)]

+ (κy,i − κx,i cos γ f − κy,i sin γ f ) sin[γ̃ (θ0)]

+
∫ θ0

0
dθ sin2 θ (λ̃3 + λ̃3 sin γ f − λ̃4 cos γ f ) cos[γ̃ (θ0)]

+
∫ θ0

0
dθ sin2 θ (λ̃4 − λ̃3 cos γ f − λ4 sin γ f ) sin[γ̃ (θ0)]

+ 2(κx,0 cos γ f + κy,0 sin γ f ) sin[γ̃ (θ0)]

+ 2(κy,0 cos γ f − κx,0 sin γ f ) cos[γ̃ (θ0)], (E9)

which using (E7) simplifies to

κx,i = (κy,i − 2κy,0) cos γ f − (κx,i − 2κx,0) sin γ f , (E10a)

κy,i = (κx,i − 2κx,0) cos γ f + (κy,i − 2κy,0) sin γ f , (E10b)

which complete the conditions (E8) for the antisymmetric
trajectory (E5).

2. The NOT gate

We assume an antisymmetric θ (t ) around θ (T/2) = π/2
(defining T = Tmin),

θ (T − t ) = π − θ (t ), (E11a)

θ̇ (T − t ) = θ̇ (t ), θ̈ (T − t ) = −θ̈ (t ). (E11b)

a. Antisymmetric γ (t )

We additionally assume an antisymmetric γ (t ) around
γ0 ≡ γ (T/2) = (γ f + γi )/2 = γ f /2 + π/4:

γ (T − t ) = 2γ0 − γ (t ), (E12a)

γ̇ (T − t ) = γ̇ (t ), γ̈ (T − t ) = −γ̈ (t ). (E12b)

We consider Eqs. (55) at time T − t . From (55e) and (55f) we
have, when γ0 = γ f = π/2, ẋα symmetric ẋα (T − t ) = ẋα (t )

and ẏα antisymmetric ẏα (T − t ) = −ẏα (t ), i.e., xα antisym-
metric xα (T − t ) = −xα (t ) and yα symmetric yα (T − t ) =
yα (t ).

From (55c) and (55d) we have both κ̇x and κ̇y symmetric
κ j (T − t ) = 2κ j,0 − κ j (t ). From (55a) and (55b) at time T −
t , we show that Eqs. (55a) and (55b) are recovered at time t if
κx = const, i.e., λ3 = 0, and κy,0 = 0.

b. Symmetric γ (t )

Alternatively, we consider a symmetric γ (t ) around
γ (T/2):

γ (T − t ) = γ (t ), (E13a)

γ̇ (T − t ) = −γ̇ (t ), γ̈ (T − t ) = γ̈ (t ). (E13b)

From (55e) and (55f) we have both ẋα and ẏα symmetric
xα (T − t ) = −xα (t ) and yα (T − t ) = −yα (t ). From (55c) and
(55d) we have both κ̇x and κ̇y antisymmetric κ j (T − t ) =
κ j (t ). From (55a) and (55b) at time T − t , we show that
Eqs. (55a) and (55b) are recovered at time t if λ0 = λ2 = 0.
We have not found any RIO solution for the NOT gate satisfy-
ing these conditions.

APPENDIX F: ALTERNATIVE FORMULATION OF
OPTIMIZATION OF ROBUST POPULATION TRANSFER

WITH RESPECT TO ENERGY AND TIME
AT FIFTH ORDER

We consider the constraint
∫ t f

ti
f (t )dt = 0, rewritten after

integration by parts∫ t f

ti

dt γ̇ (sin 2θ − 2θ )eiγ − 2i(θ f eiγ f − θie
iγi ) = 0, (F1)

giving

ψ1(γ , θ ) ≡
∫ t f

ti

dt γ̇ cos γ (sin 2θ − 2θ )

≡
∫ t f

ti

dt ϕ1(γ , γ̇ , θ ) = −2θ f sin γ f , (F2a)

ψ2(γ , θ ) ≡
∫ t f

ti

dt γ̇ sin γ (sin 2θ − 2θ )

≡
∫ t f

ti

dt ϕ2(γ , γ̇ , θ ) = 2θ f cos γ f , (F2b)

and the integrals (40), i.e., (50e) and (50f). The constraint∫ t f

ti
f (t )dt = 0 also has to be applied to these variables:

xα (t f ) = 0, yα (t f ) = 0. (F3)

The trajectories γ (t ), θ (t ), xα (t ), and yα (t ) are the solution of
the Euler-Lagrange equations with

L =L0(γ̇ , θ, θ̇ ) +
2∑

j=1

λ jϕ j (γ , γ̇ , θ ) + λ3ϕ3(γ̇ , θ, xα )

+ λ4ϕ4(γ̇ , θ, yα ) + μx(t )[ẋα − u(γ , γ̇ , θ, θ̇ )]

+ μy(t )[ẏα − v(γ , γ̇ , θ, θ̇ )]. (F4)
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This gives

− d

dt

(
∂L0

∂γ̇

)

+
2∑

j=1

[
λ j

∂ϕ j

∂γ
− λ j

d

dt

(
∂ϕ j

∂γ̇

)]
−

4∑
j=3

λ j
d

dt

(
∂ϕ j

∂γ̇

)

−μx
∂u

∂γ
− μy

∂v

∂γ
+ d

dt

(
μx

∂u

∂γ̇
+ μy

∂v

∂γ̇

)
= 0, (F5a)

∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

)
+

4∑
j=1

λ j
∂ϕ j

∂θ

−μx
∂u

∂θ
− μy

∂v

∂θ
+ d

dt

(
μx

∂u

∂θ̇
+ μy

∂v

∂θ̇

)
= 0, (F5b)

λ3
∂ϕ3

∂xα

− μ̇x = 0, λ4
∂ϕ4

∂yα

− μ̇y = 0, (F5c)

with
L0(γ̇ , θ, θ̇ ) = θ̇2 + γ̇ 2 sin2 θ, (F6a)

ϕ1(γ , γ̇ , θ ) = γ̇ cos γ (sin 2θ − 2θ ), (F6b)

ϕ2(γ , γ̇ , θ ) = γ̇ sin γ (sin 2θ − 2θ ), (F6c)

ϕ3(γ̇ , θ, xα ) = γ̇ xα sin2 θ, (F6d)

ϕ4(γ̇ , θ, yα ) = γ̇ yα sin2 θ, (F6e)

ẋα = 1
4 γ̇ sin 2θ cos γ + 1

2 θ̇ sin γ = u, (F6f)

ẏα = 1
4 γ̇ sin 2θ sin γ − 1

2 θ̇ cos γ = v, (F6g)

i.e.,
γ̈ sin2 θ + 2γ̇ θ̇ sin θ cos θ − 2θ̇ sin2 θ (λ1 cos γ + λ2 sin γ )

+ 1
2 sin2 θ (λ3ẋα + λ4ẏα ) + θ̇ sin θ cos θ (λ3xα + λ4yα )

+ 1
2 θ̇ sin2 θ (μx cos γ + μy sin γ )

− 1
4 sin θ cos θ (μ̇x cos γ + μ̇y sin γ ) = 0, (F7a)

γ̇ 2 sin θ cos θ − θ̈ − 2γ̇ sin2 θ (λ1 cos γ + λ2 sin γ )

+ 1
2 γ̇ sin 2θ (λ3xα + λ4yα ) + 1

4 μ̇x sin γ − 1
4 μ̇y cos γ

+ 1
2 γ̇ sin2 θ (μx cos γ + μy sin γ ) = 0, (F7b)

μ̇x = λ3γ̇ sin2 θ, μ̇y = λ4γ̇ sin2 θ. (F7c)

One can simplify by removing λ1 and λ2,

γ̈ sin θ + 2γ̇ θ̇ cos θ

+ 1
2 θ̇ sin θ (κx cos γ + κy sin γ ) + θ̇zα cos θ = 0, (F8a)

γ̇ 2 cos θ − θ̈/ sin θ

+ 1
2 γ̇ sin θ (κx cos γ + κy sin γ ) + γ̇ zα cos θ = 0, (F8b)

with
κx = μx − 4λ1 − 1

2λ4, κy = μy − 4λ2 + 1
2λ3, (F9a)

zα = λ3xα + λ4yα, zα (ti ) = zα (t f ) = 0, (F9b)

i.e.,
κ̇x = μ̇x = λ3γ̇ sin2 θ, κ̇y = μ̇y = λ4γ̇ sin2 θ, (F10a)

żα = 1
2 γ̇ sin θ cos θ (λ3 cos γ + λ4 sin γ )

+ 1
2 θ̇ (λ3 sin γ − λ4 cos γ ). (F10b)

Rewriting κx → 2κx, κy → 2κy, λ3 → 2λ3, and λ4 → 2λ4 in
(F8) and (F10), we finally derive the system of five differential
equations that define the optimal robust trajectory

γ̈ sin θ + 2γ̇ θ̇ cos θ

+ θ̇ (κx cos γ + κy sin γ ) sin θ + θ̇zα cos θ = 0, (F11a)

− θ̈/ sin θ + γ̇ 2 cos θ

+ γ̇ (κx cos γ + κy sin γ ) sin θ + γ̇ zα cos θ = 0, (F11b)

κ̇x = λ3γ̇ sin2 θ, κ̇y = λ4γ̇ sin2 θ, (F11c)

żα = (λ3 cos γ + λ4 sin γ )γ̇ sin θ cos θ

+ (λ3 sin γ − λ4 cos γ )θ̇ , (F11d)

with the four Lagrangian multipliers λ3, λ4, κ0x ≡ κx(ti ), and
κ0y ≡ κy(ti ), which is (55) for λ0 = λ2 = 0.

APPENDIX G: DETERMINATION OF THE SOLUTION OF
THE OPTIMAL δ-ROBUST POPULATION TRANSFER

In Sec. VII we showed that a resonant pulse � = 0 is the
solution of the optimal δ-robust population transfer. The pulse
shape is determined from the pendulum differential equation

− θ̈ ± λ cos θ = 0, (G1)

where the ± sign is correlated with the sign of γ with the
constraint ∫ T

0
dt sin θ (t ) sin γ (t ) = 0. (G2)

We notice that sin γ has to change its sign in order to satisfy
the above constraint. We assume that it happens at a time t1,
which leads to (taking γ = +π/2 for 0 � t < t1)∫ t1

0
dt sin θ (t ) −

∫ T

t1

dt sin θ (t ) = 0. (G3)

We show below that it happens when the trajectory reaches
the south pole of the Bloch sphere, when the transfer becomes
complete. We take initially γi = ϕi = π/2.

The propagator for a chosen positive � reads

U1(t, 0) =
[

cos(A/2) −i sin(A/2)
−i sin(A/2) cos(A/2)

]
, A =

∫ t

0
�(s)ds,

(G4)
where A is the pulse area (and Ȧ > 0). The solution |φ(t )〉 =
U (t, 0)|φ(0)〉 can be written as

|φ(t )〉 =
[

cos(A/2)
−i sin(A/2)

]
=

[
eiπ/4 cos(θ/2)
e−iπ/4 sin(θ/2)

]
e−iπ/4, (G5)

i.e., with γ = ϕ = π/2 and θ ≡ A, until t = t1. When A > π ,
for t > t1, we have θ = 2π − A, i.e., θ̇ = −Ȧ < 0, and the
solution reads

|φ(t )〉 =
[− cos(θ/2)
−i sin(θ/2)

]
=

[
e−iπ/4 cos(θ/2)
eiπ/4 sin(θ/2)

]
e−3iπ/4, (G6)

i.e., with ϕ = −π/2 and γ = 3π/2. The change of γ from
π/2 to 3π/2 (i.e., the change of sign of sin γ ) occurs thus
when the trajectory just overcomes the south pole of the Bloch
sphere. It also goes with a change of sign of ϕ, from π/2 to
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−π/2, and a change of sign of θ̇ , from positive to negative,
until � = 0 at time t2, for which the solution reads [with θ2 ≡
θ (t2) > π ]

|φ(t2)〉 =
[− cos(θ2/2)
−i sin(θ2/2)

]
. (G7)

When � becomes negative, we have the subsequent partial
area A′ = − ∫ t

t2
�(s)ds, i.e., θ̇ > 0. This can be seen from the

formula θ̇ = � sin ϕ, with � < 0 and ϕ = −π/2. For such
negative �, the propagator reads

U2(t, 0) =
[

cos(A′/2) i sin(A′/2)
i sin(A′/2) cos(A′/2)

]
, (G8)

with

A′ = −
∫ t

t2

�(s)ds = θ (t ) − θ2, (G9)

and the solution reads

|φ(t )〉 =
[

cos(A′/2) i sin(A′/2)
i sin(A′/2) cos(A′/2)

][− cos(θ2/2)
−i sin(θ2/2)

]
, (G10)

i.e., at the final time t = T ,

|φ(T )〉 =
[− cos[(A′

T + θ2)/2]
−i sin[(A′

T + θ2)/2]

]
, A′

T = A′(t = T ).

(G11)
The transfer is complete when

A′
T + θ2 = π, i.e., A2 − A′

T = π. (G12)

In summary, the pulse is decomposed as a first positive part
featuring a monotonically increasing θ with ϕ = γ = π/2
until the π area and next a change of sign of ϕ to −π/2
with γ = 3π/2 and a monotonically decreasing θ until θ̇ = 0,
followed by a negative part with a monotonically increasing θ ,
with ϕ = −π/2 and γ = 3π/2.

The precise dynamics is given by Eqs. (83): Eq. (83a)
corresponds to λ1 = 0 at resonance and Eq. (83b) reduces
to an equation involving only λ2 (denoted by λ) and a
constant γ ,

θ̈ − λ sin γ cos θ = 0, (G13)

where sin γ = ±1. The solution can be obtained as follows.
We multiply both sides by θ̇ and integrate (where c1 is a
constant):

1
2 θ̇2 = λ sin γ sin θ + c1. (G14)

We then obtain

dθ√
2λ sin γ sin θ + 2c1

= ±dt, (G15)

where the sign + (−) stands for θ̇ > 0 (θ̇ < 0) and is
correlated with the sign of sin γ . This can be rewrit-
ten to make appear an elliptic integral using u = π/2 − θ

such that sin θ = cos u = 1 − 2 sin2(u/2) and x = −u/2 =
θ/2 − π/4,

2dx√
2λ sin γ (1 − 2 sin2 x) + 2c1

= ±dt, (G16)

i.e., if c1 + λ sin γ > 0,

dx√
1 − m sin2 x

= ±ωdt, (G17)

with

m = 2λ sin γ

λ sin γ + c1
, ω =

√
c1 + λ sin γ

2
. (G18)

The integration gives∫ ν dx√
1 − m sin2 x

= ±ωt + c2, ν = θ

2
− π

4
, (G19)

i.e., in terms of the incomplete elliptic integral of the first kind
defined as

F (ν, m) =
∫ ν dx√

1 − m sin2 x
, (G20)

F (θ±/2 − π/4, m) = ±ωt + c2, (G21)

where θ+ (θ−) is associated with θ̇+ > 0 (θ̇− < 0). Equa-
tion (G19) shows that −π/4 � ν � π/4, imposing m < 2 on
the full range of θ ∈ [0, π ], and, from (G18), c1 > 0. This
gives, after inversion,

θ±(t ) = 2 am(±ωt + c2, m) + π

2
, (G22)

with am(u, m) the Jacobi amplitude function, the inverse of
the incomplete elliptic integral

F (ν, m) = u ⇐⇒ ν = am(u, m). (G23)

Otherwise, if c1 + λ sin γ < 0, the integral (G16) can be writ-
ten in the form

dx√
−1 + m sin2 x

= ±
√

−c1 + λ sin γ

2
dt, (G24)

which, if additionally c1 − λ sin γ > 0, i.e.,

λ sin γ < c1 < −λ sin γ , λ sin γ < 0, (G25)

gives

dy√
1 − m1 sin2 y

= ∓ω1dt, (G26)

with y = x − π/2 and

m1 = 2λ sin γ

λ sin γ − c1
, ω1 =

√
c1 − λ sin γ

2
. (G27)

The integration gives∫ ν dy√
1 − m1 sin2 y

= ±ω1t + c2, ν = θ

2
− 3π

4
, (G28)

i.e., in terms of the incomplete elliptic integral

F (θ±/2 − 3π/4, m1) = ±ω1t + c2, (G29)

and after inversion

θ±(t ) = 2 am(±ω1t + c2, m1) + 3π

2
. (G30)
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The initial condition θ (ti = 0) ≡ θi = 0, θ̇ (0) ≡ θ̇i > 0,
where we assume ϕi = γi = π/2, i.e.,

m = 2λ

λ + c1
, ω =

√
λ + c1

2
, (G31)

gives

F (π/4, m) = −c2, θ̇i =
√

2c1. (G32)

We can use the pair of free parameters {λ, c1} or {m, ω}. Equa-
tion (G31) gives {m, ω} from {λ, c1}; conversely, the latter are
obtained from the former by

λ = mω2, c1 = ω2(2 − m). (G33)

The angle θ (t ) for time t ∈ [0, t1] is given by θ+(t ) of
Eq. (G22), denoted by θ0(t ) and defined in (87), until t =
t1, for which θ = π : F (π/4, m) = ωt1 + c2, i.e., Eq. (88).
For time t ∈ [t1, t2], where ϕ = −π/2 and γ = 3π/2, i.e.,
sin γ = −1, θ (t ) is given by θ−(t ) of Eq. (G30), denoted
by θ1(t ),

θ1(t ) = 2 am(−ω′t + c′
2, m′) + 3π

2
, (G34)

with, from (G27),

m′ = 2λ

λ + c′
1

, ω′ =
√

c′
1 + λ

2
, (G35)

where the constants c′
1 and c′

2 are given by the continuity
θ0(t1) = θ1(t1) = π and θ̇0(t1) = −θ̇1(t1). The minus sign in
the latter term is due to a change of sign of sin ϕ at t1 if we
assume the continuity of the field � [see (4a)]. This gives, for
the derivatives θ̇0(t1) = −θ̇1(t1), from (G15), c′

1 = c1, i.e.,

m′ = 2λ

λ + c1
= m > 1, ω′ =

√
c1 + λ

2
= ω, (G36)

and for θ0(t1) = θ1(t1) = π ,

π = 2 am( − 2F (π/4, m) + c′
2, m) + 3π

2
, (G37)

i.e.,

c′
2 = F (π/4, m), (G38)

and finally

θ1(t ) = 2 am( − ωt + F (π/4, m), m) + 3π

2
. (G39)

The pulse becomes zero at t2 for which θ̇1(t2) = 0, i.e., when
the squared root of (G28) (for m1 ≡ m) nullifies

θ1(t2) = 3π

2
− 2 arcsin(1/

√
m), (G40)

which gives

t2 = [F (π/4, m) + F ( arcsin(1/
√

m), m)]/ω. (G41)

The subsequent negative part of the pulse (for time t ∈ [t2, T ])
is given by θ+(t ) of Eq. (G30), denoted by θ2(t ),

θ2(t ) = 2 am(ωt + c′′
2, m) + 3π

2
, (G42)

which ensures the continuity of the first derivatives θ̇1(t2) =
θ̇2(t2). The continuity θ1(t2) = θ2(t2) gives

c′′
2 = −F ( arcsin(1/

√
m), m) − ωt2

= −2F ( arcsin(1/
√

m), m) − F (π/4, m). (G43)

The final time T is such that

θ2(T ) = 2 am(ωT + c′′
2, m) + 3π

2
= π, (G44)

i.e., Eq. (92). The constraint that has to be satisfied is Eq. (93).
The above constraint does not depend on ω, but only on m
as defined in (G31). We use ω to normalize time (i.e., time
is in units of 1/ω), the θ̇ ′s (hence the amplitude of the Rabi
frequency in units of ω), and the energy (in units of ω as well),

E =
∫ t1

0
dt θ̇2

0 +
∫ t2

t1

dt θ̇2
1 +

∫ T

t2

dt θ̇2
2 , (G45)

where θ̇0(t ) is given by

θ̇0(t ) = 2ω
d

du
am(u, m) for u = ωt − F (π/4, m)

= 2ω
1

d
dν

F (ν, m)
for ν = am(u, m)

= 2ω

√
1 − m sin2[am(u, m)]

= 2ω
√

1 − m sn2(u, m)

= 2ω
√

1 − m sn2(ωt − F (π/4, m), m)

= 2ω dn(ωt − F (π/4, m), m), (G46)

with the Jacobi elliptic sine sn(u, m) := sin[am(u, m)] and the
delta amplitude dn(u, m) :=

√
1 − m sn2(u, m); θ̇1(t ) is given

by

θ̇1(t ) = −2ω
√

1 − m sn2(ωt − F (π/4, m), m)

= −θ̇0(t ) (G47)

and θ̇2(t ) by

θ̇2(t ) = 2ω dn(ωt − F (π/4, m) − 2F ( arcsin(1/
√

m)), m)

= −2ω dn(ωt − F (π/4, m), m)

= −θ̇0(t ). (G48)

Using (4a), we obtain, for the pulse amplitude,

�(t ) = θ̇0(t ) = 2ω dn(ωt − F (π/4, m), m). (G49)

We obtain, for the energy (in units of ω), using the change of
variable s = ωt ,

E/ω = 4
∫ ωT

0
ds dn2(s − F (π/4, m), m). (G50)
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