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Quantum sensing utilizing unique quantum properties of non-Hermitian systems to realize ultraprecision
measurements has been attracting increasing attention. However, the debate on whether non-Hermitian systems
are superior to Hermitian counterparts in sensing remains an open question. Here, we investigate the quantum
information in PT -symmetric quantum sensing utilizing two experimental schemes based on the trapped-ion
platform and explore the relationship between PT -symmetric quantum sensors and quantum resources. It
turns out that the existence of advantages of non-Hermitian quantum sensing heavily depends on additional
information resources carried by the extra degrees of freedom introduced to construct PT -symmetric quantum
sensors. Moreover, the practical application of non-Hermitian quantum sensing with superior performance is
primarily restricted by the extra resource consumption accompanied by the postselection, while the superiority
of non-Hermitian quantum sensing can be efficiently achieved in the presence of reasonable quantum resources.
Our study provides theoretical references for the efficient construction of non-Hermitian quantum sensors with
superior performance based on quantum resources and has potential applications in the research field of quantum
precision measurement.
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I. INTRODUCTION

In conventional quantum mechanics, the fundamental
assumption of Hermiticity guarantees the reality of the
eigenvalues of Hamiltonians and the unitarity of the time
evolution of quantum systems. However, in the last two
decades, non-Hermitian (NH) quantum mechanics has re-
ceived considerable attention. Bender and Boettcher proposed
that PT -symmetric systems possessing non-Hermiticity can
maintain real and positive energy spectra [1,2] and rede-
fined the PT inner product [3]. PT -symmetric systems can
also be reinterpreted as a NH subsystem embedded into a
larger Hermitian system [4–7]. Mostafazadeh further intro-
duced pseudo-Hermiticity and explored a more general sense
of PT symmetry [8,9]. The development of NH physics has
been greatly propelled by the proposal of PT symmetry, and
its applications have been widely extended across various re-
search branches of quantum science and technology [10–12].
Particularly, the exceptional point (EP) of a PT -symmetric
Hamiltonian involves a switch in the eigenvalues from real
to complex accompanying the degeneracy of the eigenstates
[13–15], in consequence, PT symmetry is spontaneously
broken. Hence, the EP-induced degeneracy (coalescence with
criticality [16]), caused by the sensitivity divergence of the
eigenenergy spectral gap [17], becomes one of the most
striking characteristics of NH systems [18–20], and the ob-
servation of PT -symmetry spontaneous breaking has been
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realized in various experimental works [21–24]. Recent stud-
ies, both in theory [25–28] and experiment [17,29,30], have
reported that the EP can enhance both quantum and (quasi-)
classical sensing [31].

Quantum sensing (QS) combined with precision measure-
ment and quantum physics exploits unique quantum features
to achieve ultraprecision measurement [32,33]. Within the
framework of quantum theory, developing precise mea-
surement methods to surpass the limitations of classical
techniques by leveraging quantum resources is currently one
of the main goals in this research field. In the last dozen years,
QS has made rapid development in various systems [34],
including single photon [35,36], cold atoms [37,38], trapped
ions [39,40], superconducting qubits [41], and solid-state
spins [42,43]. Our study is based on the trapped-ion plat-
form, which has certain advantages such as long coherence
time, multiple vibrational modes, strong robustness against
environmental disturbances, and high connectivity between
qubits, making it suitable for QS [39]. Recently, a debate has
emerged regarding whether NH physics is superior in sens-
ing. Except for the studies of EP-enhanced quantum sensing
(EPQS) [17,25–30], some investigations also reported that
sensors possessing unique NH characteristics have improved
performance [44–48]. While some research suggested that the
reported performance improvement might not have taken a
full account of the effects of introduced noise [49–53], other
works also indicated that the improved performance could
exist even considering noise [54–57]. A recent study proposed
that when comparing the performance of quantum sensors, it
is essential to fix the quantum resources consumed by these
sensors [58]. As far as we know, few studies have considered
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that, on the premise of superior sensing performance, the
advantages of non-Hermitian quantum sensing (NHQS) may
be restricted by certain factors in practical applications, such
as plenty of potential resource consumption with low effi-
ciency. In light of the foregoing, we conduct a study to explore
the condition under which the superiority of NHQS exists,
investigate the additional quantum resource requirements ac-
companying the performance improvement of NHQS, and
determine the corresponding resource utilization rate when
the superiority of NHQS is present.

In this paper, based on two schemes of quantum simula-
tions of PT -symmetric systems, we verify that the EP does
indeed significantly amplify the population shift as a response
to the perturbation of the estimated parameter, which seems
to be exploited to improve QS performance. However, we
also observe that the EP may not always enhance suscepti-
bility regarding the estimated parameter, and non-Hermiticity
may reduce the susceptibility even without involving the EP.
We further explore the relationship between PT -symmetric
quantum sensors and quantum resources, and demonstrate
that the advantages of NHQS over its counterpart, Hermitian
quantum sensing (HQS), deeply depend on whether the extra
degrees of freedom introduced to construct PT -symmetric
systems carry additional quantum information. Moreover, the
restrictions on practically improving performance in NHQS
mainly arise from postselection involving additional resource
consumption in realistic constructions of PT -symmetric sys-
tems, while within the framework of resource theory, EPQS
does indeed possess potential superiority, as its resource uti-
lization rate can periodically reach 100% with the sensitivity
bound achieving zero. This work has a potential promotion to
develop quantum precision measurement.

The paper is organized as follows. In Sec. II, two schemes
of quantum simulations of the PT -symmetric system based
on the trapped-ion platform are briefly introduced. In Sec. III,
PT -symmetric EPQS is verified by the population shift and
susceptibility, and the advantages and restrictions of NHQS
are investigated by the quantum Fisher information (QFI) and
sensitivity bound. In Sec. IV, the superior performance of
NHQS is discussed from the perspective of resource theory.
Finally, conclusions and outlook are given in Sec. V.

II. PT -SYMMETRIC QUANTUM SYSTEM

The PT -symmetric quantum system, of which energy is
balanced with gain (|1〉) and loss (|2〉), is governed by a NH
Hamiltonian:

HPT = ω

2
σx + i

γ

2
σz, (1)

where ω and γ are the coupling rate and tunable gain-loss rate,
σx,y,z are Pauli matrices with σz = |1〉〈1| − |2〉〈2|, and E± =
±κ/2 with κ =

√
ω2 − γ 2 are the eigenvalues of HPT (the

eigenvectors |E±〉 accord with the standard Dirac inner prod-
uct). The ratio γ /ω usually quantifies the non-Hermiticity in
the system. When γ /ω ∈ (0, 1), HPT is in the PT -symmetric
phase and γ /ω = 1 is regarded as the EP of HPT [13,14],
while γ = 0 denotes an absence of non-Hermiticity and the
PT -symmetric system degrades into a Rabi oscillator. Gen-
erally, NH dynamics is nonunitary due to the non-Hermiticity

in the system, and the trace-preserving dynamics generated
by a NH Hamiltonian HNH = H+ + H− (with H± = ±H†

± and
H− = −i�) [59] (h̄ = 1) is

ρ̇t = −i[H+, ρt ] − {�, ρt } + 2Tr(ρt�)ρt , (2)

where ρt is a normalized density operator. The solution of
Eq. (2) can also be simply expressed as

ρt = UPT ρ0U
†
PT

Tr(UPT ρ0U
†
PT )

, (3a)

where UPT = exp(−iHPT t ). Considering an initial pure state
ρ0 = |ψ0〉〈ψ0|, Eq. (3a) is reduced to

|ψt 〉 = UPT |ψ0〉√
〈ψ0|U †

PT UPT |ψ0〉
= cnUPT |ψ0〉, (3b)

with the normalized factor cn = (〈ψ0|U †
PT UPT |ψ0〉)−1/2.

Note that although the mathematical form of Eq. (3) is uni-
tarylike, both UPT and the corresponding NH dynamics are
still nonunitary in the standard Dirac sense. The major dis-
tinction between conventional (Hermitian) and PT quantum
mechanics is the definition of the inner product; hence the PT
inner product, whose associated norm is positive definite, is
introduced for making sense of PT quantum mechanics [2,3].
To be clear and concise, we set the experiment-dependent
parameter ω → 1 with the corresponding period of dynamics
T = 2π/ω → 2π and scale the evolution time with τ = κt in
subsequent numerical calculations and plots.

On the other hand, within the framework of standard
quantum mechanics, realizing a NH Hamiltonian in a single
quantum system poses quite a challenge. Currently, the pri-
mary approach for quantum simulation of the PT -symmetric
Hamiltonians involves introducing extra degrees of free-
dom, such as an auxiliary system [22,36,60–63] [Scheme
I in Fig. 1(a)] or an external environment [23,24,40,64]
[Scheme II in Fig. 1(b)]. For the first one, based on the
Naimark-dilation theory and the postselection techniques, a
PT -symmetric system can be reinterpreted as a subspace in
a larger Hilbert space [4], and the PT -symmetric nonunitary
dynamics is equivalent to the unitary dynamics in enlarged
Hilbert space. For the other one, an open quantum sys-
tem, whose dynamics obeys the Lindblad master equation,
is dominated by an effective NH Hamiltonian when quan-
tum jumps are ignored in the Lindbladian dissipator [14].
The experimental studies [63–65] have determined that the
trapped-ion platform is feasible in realizing a PT -symmetric
system based on these schemes. In the following, two schemes
for simulating the PT -symmetric system will be briefly in-
troduced (for more details, see Appendixes A and B). To
facilitate reading, relevant systems in this paper, along with
their corresponding abbreviations and symbols, are listed in
Table I, and the correlations between these systems are shown
in Fig. 1(c).

Scheme I: Naimark-dilated quantum system. Utilizing the
Naimark-dilation theory, the PT -symmetric system can be
regarded as a NH subsystem embedded into a larger Hermitian
system, which is achieved by embedding the PT -symmetric
subspace HPT into a larger Hermitian space HH(4d) =
HPT (2d) ⊕ HA(2d) with an auxiliary subspace HA [4] by
constructing a Hermitian metric operator η = η† based on
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FIG. 1. Experimental schemes of quantum simulations of the
PT -symmetric system based on a trapped ion. (a) Scheme I with
the digital quantum simulation method: Choosing Zeeman sub-
levels of the trapped 40Ca+ ion as |1〉 = |42S1/2(mJ = −1/2)〉,
|2〉 = |32D5/2(mJ = −1/2)〉, |3〉 = |42S1/2(mJ = +1/2)〉, and |4〉 =
|32D5/2(mJ = +1/2)〉. Any S-D transition (red lines) can be im-
plemented by a resonance drive using a 729-nm laser. Another
397-nm laser is used for cooling and fluorescence detection. Initial-
state preparation and arbitrary unitary operation can be decomposed
into appropriate sequences of S-D equatorial rotation R(θ, φ) =
exp[−iθ (cos φ σ m

x + sin φ σ m
y )/2], where θ and φ are the rotation

angle and laser phase, and σ m
x,y are Pauli matrices [63]. (b) Scheme

II with the analog quantum simulation method: Choosing Zeeman
sublevels of the trapped 40Ca+ ion as |1〉 = |42S1/2(mJ = −1/2)〉,
|2〉 = |32D5/2(mJ = +1/2)〉, and |3〉 = |42S1/2(mJ = +1/2)〉. The
trapped 40Ca+ ion is initially prepared in |1〉 and then is res-
onantly driven to |2〉 by a 729-nm laser, and an 854-nm laser
induces a tunable loss in |2〉 through coupling |2〉 to a short-life
level |42P3/2(mJ = +3/2)〉 which quickly decays to |3〉. Another
393-nm laser is used for cooling and fluorescence detection [64].
(c) Correlations between systems in this paper, details are given in
Appendixes.

TABLE I. Symbols and corresponding quantum systems.

System (Abbr.) Symbols

PT -symmetric system ρt , ρPT
Enlarged Hermitian system ρ̃4d, |�t 〉
Auxiliary system (A system) ρA
PT -symmetric subsystem (PT -sub) |ψt 〉
Auxiliary subsystem (A-sub) |χt 〉
Dissipative two-level system �eff , ρeff

Three-level system �t

Artificial PT -symmetric system �PT

the pseudo-Hermiticity condition ηHPT = H†
PT η [9]. With

the basis {|i〉} (i = 1, 2, 3, 4), the PT -symmetric subsystem
(PT -sub) |ψt 〉 is denoted with {|1〉, |2〉}, and the auxiliary
subsystem (A-sub) |χt 〉 is denoted with {|3〉, |4〉}. Obeying
the PT inner product (μ, ν) = (PT μ)ν [3], the eigenvectors
|E±〉 of HPT satisfy that (E±, E∓) = 0 and (E±, E±) = ±1.
Arranging them as � = (|E+〉 |E−〉), the dimensionless metric
operator is defined by

η = (��†)−1 = 1

κ
(γ σy + I), (4)

which is considered as a synchronization link of dynamics
between A-sub |χt 〉 and PT -sub |ψt 〉,

|χt 〉 = η|ψt 〉, (5)

and the enlarged Hermitian system is constructed as

|�t 〉 = Cn

([
1
0

]
⊗ |ψt 〉 +

[
0
1

]
⊗ |χt 〉

)
= Cn

(
ψt

χt

)
, (6)

where Cn = 1/
√〈ψt |ψt 〉 + 〈χt |χt 〉 is a normalized factor, and

ρ̃4d = |�t 〉〈�t | represents the normalized density operator
of enlarged Hermitian system with the initial state ρ̃0 =
|�0〉〈�0| related to |�0〉 = (ψ0 χ0)T, where |χ0〉 = η|ψ0〉 is
the initial state of A-sub and |ψ0〉 for PT -sub. The corre-
sponding time-evolution operator is

UH =
(

UPT 0
0 ηUPT η−1

)
, (7)

and then Eq. (6) can be expressed in |�t 〉 = U4d|�0〉, where
U4d = (Cncn)UH = exp(−iH4dt ). Now, with the Naimark-
dilation theory, we have obtained the unitary time-evolution
operator U4dU †

4d = I associated with the Hermitian Hamilto-
nian H4d = H†

4d, and the corresponding unitary time evolution
ρ̃4d = U4dρ̃0U

†
4d. Populations in the state |i〉 (i = 1, 2, 3, 4) of

the enlarged Hermitian system ρ̃4d, represented by the matrix
diagonal elements Pi(t ) = ρ̃ ii

4d, are exhibited in Figs. 2(a) and
2(b), in which |1〉 for PT -sub and |3〉 for A-sub.

Considering the postselection, we can obtain the normal-
ized population for PT -sub:

P̃1 = P1

P1 + P2
; P̃2 = P2

P1 + P2
, (8a)

and the corresponding normalized population for A-sub:

P̃3 = P3

P3 + P4
; P̃4 = P4

P3 + P4
. (8b)

If the postselection is executed successfully, the enlarged Her-
mitian system with Pi(t ) = ρ̃ ii

4d (i = 1, 2) in Eq. (8a) would
collapse to the PT -symmetric system with pi(t ) = ρ ii

t (i =
1, 2), where ρ ii

t are the matrix diagonal elements of ρt in
Eq. (3a). The success rate and failure rate of postselection are
respectively denoted as psuc = P1 + P2 and pfail = 1 − psuc,
shown in Figs. 2(c) and 2(d). After executing the postse-
lection, normalized density matrices of the PT -symmetric
system ρPT and auxiliary system (A system) ρA are respec-
tively degraded into

ρPT = ρt = |ψt 〉〈ψt |
Tr(|ψt 〉〈ψt |) =

(
ρ11

t ρ12
t

ρ21
t ρ22

t

)
, (9a)
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FIG. 2. Populations and related quantities vs the scaled evolution
time τ = κt for different non-Hermiticity γ /ω with the initial condi-
tions |ψ0〉 = |+〉y and |�0〉 = (ψ0 ηψ0 )T. Population of subsystems
in enlarged Hermitian system before the postselection: (a) PT -sub
ρ̃11

4d , and (b) A-sub ρ̃33
4d . Related quantities of the postselection:

(c) success rate psuc, and (d) failure rate pfail. Population of systems
after the postselection: (e) PT -symmetric system ρ11

PT , and (f) A
system ρ11

A .

where ρ
i j
t (i, j = 1, 2) with |ψ0〉 = |+〉y, and

ρA = |χt 〉〈χt |
Tr(|χt 〉〈χt |) =

(
ρ22

t ρ21
t

ρ12
t ρ11

t

)
, (9b)

where ρ
i j
t (i, j = 1, 2) with |ψ0〉 = |−〉y, and the pure states

|±〉y = (|1〉 ± i|2〉)/
√

2 are the eigenvectors of the Pauli ma-
trix σy. Population in |1〉 of ρPT and ρA are exhibited in
Figs. 2(e) and 2(f), respectively.

Note that the PT -symmetric system (or A system) ob-
tained from executing the postselection is different from the
PT -sub (or A-sub) in the enlarged Hermitian system. The
former one possessing trace-preserving dynamics is obtained
by executing the postselection on the enlarged Hermitian sys-
tem; the latter one is without performing the postselection, of
which dynamics is not trace preserving. Although the PT -sub
(or A-sub) placed in the subspace of the larger Hermitian
space possesses non-trace-preserving dynamics, the enlarged
Hermitian system retains trace-preserving dynamics. Addi-
tionally, Eq. (9) indicates that A-sub does indeed possess
the PT symmetry due to the synchronization link η with
PT -sub, and consequently the EPs of PT -sub and A-sub
are overlapping. The interlaced dynamics behavior shown in
Figs. 2(e) and 2(f) also demonstrates that two subsystems pos-
sess an anti-mirror-symmetric correlation, and the enlarged
Hermitian system is combined by two synchronized PT -
symmetric subsystems (i.e., the enlarged Hermitian system
can be regarded as a pseudo-dual-PT -symmetric system).
More details of Scheme I are given in Appendix A.

Scheme II: Effective non-Hermitian Hamiltonian of open
quantum system. PT symmetry requires an exact energy
balance of gain and loss, which is challenging to achieve
within the quantum realm. Coupling Hermitian systems with
a dissipative reservoir can overcome this obstacle [18,21].

Considering a dissipative two-level system (i.e., an open quan-
tum system), whose energy is only with loss (|2〉) and without
gain (|1〉), is described by an effective NH Hamiltonian with
the basis {|i〉} (i = 1, 2):

Heff = ω

2
σx − iγ |2〉〈2| = HPT − i

γ

2
I, (10)

where HPT is given by Eq. (1). The dissipative two-level
system can also be expressed as a three-level system [24], the
coherent transition is denoted by |1〉 ↔ |2〉 with the coupling
rate ω, the loss of the system is represented by |2〉 → |3〉 with
the tunable decay rate γ , and |1〉 � |3〉. The dynamics of the
three-level system obeys the Lindblad master equation with a
Liouvillian superoperator L:

�̇t = L�t = −i[H0, �t ] + (
J�t J

† − 1
2 {J†J, �t }

)
, (11)

where H0 = ωσx/2 is the coherent transition Hamiltonian,
and J = √

γ |3〉〈2| is the jump operator. The dynamics of the
dissipative two-level system governed by Heff can be deter-
mined by a lower-dimension (3D → 2D) Lindblad master
equation reduced from Eq. (11):

�̇eff = L�eff = −i[Heff , �eff ], (12)

where �eff is a non-normalized density operator of the dis-
sipative two-level system. Equation (12) indicates that the
lower-dimension superoperator L without quantum jumps
plays the same role as the effective NH Hamiltonian Heff in
the dissipative dynamics. The solution of Eq. (12) can also be
simply expressed as

�eff = Ueff�0U
†
eff , (13)

where Ueff = exp(−iHefft ). Equation (13) can be reduced to
�eff = |ψeff〉〈ψeff | and |ψeff〉 = Ueff |ψ0〉 for initial pure states
�0 = ρ0 = |ψ0〉〈ψ0|. In the practical experiment [64], the di-
rectly measured quantity is

�PT = eγ t�eff, (14)

where eγ t denotes the gain term, which is artificially added
to simulate the characteristic of energy balance between gain
and loss in the PT -symmetric system, and �PT can be renor-
malized as

ρPT = �PT
Tr(�PT )

= eγ t�eff

Tr(eγ t�eff )
= �eff

Tr(�eff )
= ρeff . (15a)

Equation (15a) indicates that after the renormalization, both
�PT and �eff degrade into the normalized ρt = ρPT = ρeff in
Eq. (3a); hence the effective NH Hamiltonian of the dissipa-
tive two-level system can be used to equivalently describe the
PT -symmetric system. From the perspective of the postselec-
tion [24], ρPT can also be obtained by directly performing the
postselection on �t :

ρPT = 1

�11
t + �22

t

(
�11

t �12
t

�21
t �22

t

)
=

(
ρ11

t ρ12
t

ρ21
t ρ22

t

)
, (15b)

where �
i j
t (i, j = 1, 2, 3) are matrix elements of �t given by

solving Eq. (11), psuc = �11
t + �22

t is the success rate of post-
selection, and ρ

i j
t (i, j = 1, 2) are matrix elements of ρt in

Eq. (3a). The population of artificial PT -symmetric system
�PT and dissipative two-level system �eff with |ψ0〉 = |+〉y =
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FIG. 3. Populations and related quantities vs τ for different γ /ω

with the initial condition |ψ0〉 = |+〉y: (a) dissipative two-level sys-
tem �11

eff ; (b) success rate psuc of the postselection for dissipative
two-level system �eff ; (c) artificial PT -symmetric system �11

PT ;
(d) population of |i〉 in three-level system �t and the corresponding
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(|1〉 + i|2〉)/
√

2 (i.e., three-level system �t with |ψ̃0〉 =
|+̃〉y = (|1〉 + i|2〉 + 0|3〉)/

√
2) are respectively exhibited in

Figs. 3(c) and 3(d).
After executing the renormalization or postselection, the

dissipative dynamics in Fig. 3(a) would degrade into the
PT -symmetric dynamics in Fig. 2(e), which shows that
constructing the PT -symmetric system by introducing an
environment can also be regarded as a kind of method of
expanding dimension (e.g., 2D → 3D). However, the steady
state of a dissipative two-level system is associated with a
vanishing success rate, as shown in Figs. 3(b) and 3(d), indi-
cating that such an expansion will be broken under prolonged
evolution. Besides, the Liouvillian superoperator L, expressed
by a NH matrix, possesses EPs which can be defined by the
degeneracy points of L eigenmatrices [14]. It can be eas-
ily determined that at γ /ω = 1, the Hamiltonian exceptional
point (HEP) of HPT in Eq. (1) coincides with the Liouvillian
exceptional point (LEP) of L in Eq. (12). More details of
Scheme II are given in Appendix B.

III. PT -SYMMETRIC QUANTUM SENSING

In Sec. III A, based on the two schemes mentioned above,
we first examine (i) population shift and (ii) susceptibility,
to verify whether the EP can potentially enhance QS. And
then, in Sec. III B we discuss (iii) the condition for existing
advantages of NHQS over HQS by using QFI and a sensitivity
bound, and investigate (iv) whether the postselection imposes
restrictions on improving the performance of NHQS.

A. PT -symmetric EP-enhanced quantum sensing

Quantum sensing achieves ultraprecision sensing by using
the unique quantum properties of PT -symmetric systems,
such as the eigenstates coalescence and the susceptibility di-
vergence at the EP, which is called EPQS.

1. Population shift with respect to the perturbation
of estimated parameter

Population shift is considered a response to the perturba-
tion of the estimated parameter and directly reflects the ability
to distinguish population change under the perturbation. From
the perspective of quantum parameter estimation, the esti-
mated parameter is directly coupled to the degrees of freedom
of the system, and the introduced parameter-dependent pertur-
bation can be represented by a Hermitian Hamiltonian:

H1 = δ

2
σx. (16)

Generally, the perturbation amplitude δ is rather weak, and
the parameter-dependent PT -symmetric Hamiltonian under
the perturbation is

H̃PT (ω) = HPT + H1 = �

2
σx + i

γ

2
σz, (17)

with � = ω + δ. Equations (1) and (10) are accordingly mod-
ified as ω → � and HPT → H̃PT , and the coupling rate
ω is the parameter to be estimated. The population shifts
of |1〉 related to the estimated-parameter perturbation δ for
different systems are shown in Fig. 4. It can be observed
that near the EP (γ /ω = 1 − 10−5), even a tiny perturbation
(δ/ω = 0.1% and 0.5%) can lead to a significant popula-
tion shift depicted by red curves, but the population shift
of Hermitian counterpart (γ = 0) does not respond to the
perturbation, which indicates that the PT -symmetric sys-
tem (before introducing extra degrees of freedom) and the
systems of two schemes (after introducing auxiliary system
or external environment) are all extremely sensitive to the
estimated-parameter perturbation near the EP. Based on this,
the EP has the potential to enhance QS. The main mechanism
of the EP-enhanced response of perturbation is the strong
dependency of energy-level splitting on the parameter near
the EP [15]. The derivative of eigenvalues and eigenvectors
with respect to the estimated parameter diverges at EP, which
is also one of the fundamental distinctions between NH and
Hermitian Hamiltonians. However, eigenvalue variations un-
der the perturbation may not be an applicable measure of the
comprehensive sensing performance at the EP [53]. To fur-
ther comprehend the EP-enhanced response, the susceptibility
concerning the estimated parameter would be considered.

2. Susceptibility with respect to the estimated parameter

Susceptibility quantifies how sensitively the population
would respond to the variation of estimated parameter. It is
defined by the derivative of the normalized population in |i〉
of the parameterized state ρω with respect to the estimated pa-
rameter ω, because the normalized population would become
extremely sensitive to the parameter at certain measurement
points with a given evolution time [27], and it can also be
directly obtained by taking the derivative of population with
respect to ω:

Sω = ∂ωρ ii
ω, (18)

where ρ ii
ω is the ith diagonal element of the corresponding

parameter-dependent density matrix ρω. Usually, the maxi-
mum susceptibility corresponds to the optimal measurement
point.
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For Scheme I, SPT
ω of the PT -symmetric system shown

in Fig. 5(a) exhibits a divergent feature in the vicinity of the
EP (γ /ω = 0.99) and possesses a sensitive response to the
perturbation (δ/ω = 0.1%, thinner curves). It can be antici-
pated that the EP divergence of susceptibility appears having
the potential to achieve sensing with arbitrary precision. And
SA

ω of A system, shown in Fig. 5(b), is consistent with SPT
ω

and also presents a divergent feature and sensitive response in
the vicinity of the EP. From the perspective of the enlarged

Hermitian system, Figs. 5(c) and 5(d) show that although
S4d

ω exhibits a similar pattern of EP divergence and sensitive
response as that of the PT -symmetric system, both the speed
and intensity of the EP divergence are noticeably restrained
and weakened. This primarily results from two systems con-
nected by the synchronization link η, which possess interlaced
evolution behavior of Sω [in Figs. 5(a) and 5(b)]. This also
leads to an internal constraint between PT -sub and A-sub,
thereby weakening the EP divergence.
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As for Scheme II, Seff
ω of the dissipative two-level system

does not diverge near the EP shown in Fig. 5(e), which is
entirely different from that of the PT -symmetric system.
Instead, Seff

ω approaches zero during prolonged evolution and
shows little response to the perturbation. Particularly, Seff

ω of
the dissipative two-level system (γ �= 0) is distinctly weaker
compared to its Hermitian counterpart [γ = 0, blue-dotted
curves in Fig. 5(e)]. In other words, the stronger the non-
Hermiticity, the weaker Seff

ω [violet-dotted curves in Fig. 5(f)],
even if it presents a faint response to the perturbation. This
contrasts with the superior feature observed in Scheme I, in
which non-Hermiticity can dramatically enhance the suscep-
tibility [red and green curves in Fig. 5(f)].

Consequently, the anticipation that the EP divergence of
susceptibility can be used to achieve sensing with arbitrary
precision is not necessarily accurate, since the EP may not
always enhance the susceptibility with respect to the estimated
parameter. On the contrary, the non-Hermiticity may reduce
the susceptibility even without involving the EP. To explore
the condition of existing the superiority of NHQS, we would
further investigate QFI and sensitivity bound in quantum
measurements.

B. Advantages and restrictions of non-Hermitian
quantum sensing

As mentioned above, the debate on whether NHQS is
superior to HQS remains ongoing. Here, a question is pre-
sented: What is the condition under which the superiority of
NHQS exists? Supposing that NHQS indeed possesses supe-
rior sensing performance, it is necessary to consider whether
the performance improvement comes with potential costs or
losses.

1. Sensitivity of non-Hermitian quantum sensors

In quantum metrology, the sensitivity is represented by
QFI, which is defined as the supremum of classical Fisher
information and regarded as a measure of the precision of
parameter estimation. The inverse of QFI sets the lower bound
on the error of estimation [66]. In NH or open quantum sys-
tems, parameterized processes typically involve nonunitary
dynamics, which can be mapped from unitary dynamics in
larger systems, enabling the direct application of concepts
such as QFI and sensitivity bound to parameter estimation
based on such mapped dynamics [58]. With the symmetric
logarithmic derivative (SLD),

∂ωρω = 1
2 (Lωρω + ρωLω ), (19)

the definition of QFI is given by
Fω = Tr

(
ρωL2

ω

)
, (20a)

where Lω is the SLD operator, and ρω is an arbitrary param-
eterized state. With the spectral decomposition of a density
matrix, ρω = ∑

n εn|ψn〉〈ψn|, Eq. (20a) can be expanded in
the eigenvector representation of ρω:

Fω =
∑

n

(∂ωεn)2

εn
+

∑
n

4εn〈∂ωψn|∂ωψn〉

−
∑
n �=m

8εnεm

εn + εm
|〈∂ωψn|ψm〉|2. (20b)

For a pure parameterized state ρω = |ψω〉〈ψω|, Eq. (20b)
can be reduced to Fω = 4(〈∂ωψω|∂ωψω〉 − |〈ψω|∂ωψω〉|2).
Considering a general two-level system [66–68], the basis-
independent expression of QFI can be explicitly obtained,

Fω = Tr[(∂ωρω )2] + 1

det (ρω )
Tr[(ρω∂ωρω )2], (20c)

and Eq. (20c) can also be reduced to Fω = 2Tr[(∂ωρω )2] for
a pure ρω. The channel QFI corresponding to the maximum
achievable QFI is obtained by optimizing over all possible
probe states. The optimal probe state is to always a pure
state (see Appendix C) due to the convexity of QFI [69].
The inverse of channel QFI quantifies the sensitivity bound
of parameter estimation,

δω � 1√
NFω

, (21)

where N represents the repetitions of measurement, and
Eq. (21) is the well-known quantum Cramèr-Rao bound.

Note that realistic constructions of PT -symmetric sys-
tems necessitate a postselection involving a success rate;
as a consequence, Eq. (20) characterizes the estimated-
parameter information obtained from a single measurement,
and Eq. (21) represents the corresponding sensitivity bound
(N = 1). When performing repeated measurements, it is nec-
essary to consider the success rate of postselection. By
averaging the outcomes of repeated measurements, the in-
formation (i.e., QFI) obtained from a repeated-averaged
measurement can be expressed. As for Scheme I, under the
postselection, the weighted QFI Iω obtained from a repeated-
averaged measurement for the PT -symmetric system and A
system are given as

Isuc
ω = FPT

ω psuc, (22a)

I fail
ω = FA

ω pfail, (22b)

where Isuc
ω represents QFI when the postselection is executed

successfully, the other I fail
ω for failure. By summing Isuc

ω and
I fail

ω , the total QFI obtained from a repeated-averaged mea-
surement involving the success rate is

Isubs
ω = Isuc

ω + I fail
ω . (23a)

Without (or before) the postselection, the total QFI of the
enlarged Hermitian system, uninvolved with the success rate,
is directly represented by Fω in Eq. (20):

I4d
ω = F4d

ω . (23b)

For Scheme II, the total QFI of a dissipative two-level system
obtained from a repeated-averaged measurement is

Ieff
ω = F eff

ω peff
suc, (24)

where the success rate peff
suc = �11

t + �22
t is denoted by the

trace of �eff . The sensitivity bound represented by Eq. (21)
is correspondingly modified with Fω → Iω:

δω � 1√
NIω

. (25)

In order to determine whether NHQS is superior to HQS,
QFI Fω, Iω and sensitivity bound δω of the two schemes are
contrastively exhibited in Fig. 6 with the optimal probe state
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FIG. 6. QFI Fω in Eq. (20), Iω in Eqs. (22) and (24), and sensitivity bound δω in Eq. (21) with respect to the estimated parameter ω vs τ for
different γ /ω with the averaged-measure scale N = 1. (a)–(c) for Scheme II, dissipative two-level system �eff : (a) QFI with single successful
measurement, F eff

ω ; (b) QFI with repeated-averaged measurement, Ieff
ω ; (c) sensitivity bound with single successful measurement, δωeff . (d)–(f)

for Scheme I, PT -symmetric system ρPT and A system ρA of enlarged Hermitian system under the postselection: (d) QFI with single
measurement, FPT

ω and FA
ω ; (e) QFI with repeated-averaged measurement, IPT

ω and IA
ω ; (f) sensitivity bound with single measurement,

δωPT and δωA. Other related quantities with the same system parameters: (g) success rate peff
suc of the postselection in dissipative two-level

system ρeff for Scheme II; (h) success rate psuc and (i) failure rate pfail of the postselection in enlarged Hermitian system ρ̃4d for Scheme I.

|ψ0〉 = |+〉y (i.e., a pure initial state). Since the repetitions N
in δω of a NH system is the same as its Hermitian counterpart,
we plot subsequent figures with the averaged-measure scale
N = 1.

For Scheme II, Figs. 6(a) and 6(c) indicate that F eff
ω

and δωeff of the dissipative two-level system (γ �= 0) ob-
tained from a single successful measurement are generally
lower compared to their Hermitian counterparts (γ = 0), and
slightly surpass Hermitian counterparts during the initial pe-
riod only (shown in subfigures). The oscillatory evolution
behavior of F eff

ω can be attributed to the simultaneous en-
coding and loss of estimated-parameter information in the
parameterized process. And F eff

ω completely loses during
prolonged evolution because the steady state does not con-
tain any estimated-parameter information. This loss results
from the non-Hermiticity (i.e., dissipation) in the dissipa-
tive two-level system jointed with the invariance of total
estimated-parameter information in the parameterized pro-
cess. In Fig. 6(b), Ieff

ω involving the postselection appears to
be at a notable decrease and accelerated loss compared to
F eff

ω , because the success rate gradually vanishes as peff
suc → 0,

shown in Fig. 6(g).
As for Scheme I, the synchronization link η connects

subsystems of the enlarged Hermitian system and leads to
the relevance of interlaced dynamics behaviors shown in
Figs. 2(e) and 2(f) between the PT -symmetric system and

A system even after postselection. This relevance makes evo-
lution behaviors of FPT

ω and FA
ω obtained from a single

measurement in the PT -symmetric system and A system
also exhibit an interlaced pattern as shown in Fig. 6(d). Ob-
viously, the introduced degrees of freedom of the A system
equally carry the estimated-parameter information. Contrary
to Scheme II, the presence of the non-Hermiticity (γ �= 0)
based on Scheme I significantly enhances Fω and δω com-
pared to the Hermitian counterparts (γ = 0), even in the
absence of the EP. Considering a repeated-averaged measure-
ment, Figs. 6(e) and 6(f) also show that, despite the success
rate of postselection being oscillatory shown in Fig. 6(h),
the non-Hermiticity indeed increases the information obtained
from measurements and improves the corresponding sensi-
tivity bound without involving the EP. In simple terms, for
NHQS based on Scheme I, the stronger the non-Hermiticity,
the higher the sensitivity, which means a superior QS perfor-
mance, while NHQS based on Scheme II is inferior to HQS.

Consequently, the A system, introduced for practically
constructing the PT -symmetric system based on Scheme
I, does indeed provide additional estimated-parameter infor-
mation which actually enhances the coding ability of the
parameter generator in the parameterized process. By com-
parison, based on Scheme II, the total estimated-parameter
information remains invariant in the parameterized process,
and the dissipative effect leads the information of the system
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to flow into the external environment, and thereby the cod-
ing ability of the parameter generator is counteracted. This
demonstrates that the advantages of NHQS over HQS deeply
depend on the extra degrees of freedom introduced to con-
struct NH quantum sensors whether they carry additional
estimated-parameter information. Moreover, the effectiveness
of the additional estimated-parameter information, derived
from the extra degrees of freedom and represented by its
capacity to be encoded into the parameterized state of the
target PT -symmetric system, contributes to enhancing the
precision of parameter estimation.

In addition, a recent work presented a novel perspective
on dissipative QFI based on the Liouvillian parameterized
process [70]. The authors proposed that due to the funda-
mental differences in the quantum levels of HEP and LEP,
with HEP being interpretable as a semiclassical limit of LEP,
LEP provides a more accurate elucidation of the singularity of
open systems compared to the HEP. This also explains why an
EP does not always lead to an improvement in measurement
precision. However, regardless of the measurement precision
attainable near either HEP or LEP, the information obtained
from measurements in a dissipative system is generally lower
than that without dissipation and is completely lost during
prolonged evolution. Although we calculated the conventional
QFI of a dissipative system (in Scheme II) governed by an
effective NH Hamiltonian in Eq. (10) whose HEP coincides
with LEP, we focus on figuring out the potential physical
mechanism that enhances the measurement precision of NH
systems and exploring the restrictions on the performance
improvement of NHQS (in Scheme I), which possesses su-
periority over HQS and may not necessarily involve the EP.

Another theoretical study recently proposed a general con-
clusion on the fundamental sensitivity limits for NH quantum
sensors [58]; we also concur with their viewpoint that when
comparing the performance of quantum sensors, it is neces-
sary to fix the quantum resources consumed by these sensors.
Hence, the Naimark-dilated ancilla system or the NH system
considered in their study does not increase the amount of
estimated-parameter information of the entire system during
the parameterized process. As a result, ultraprecision pa-
rameter estimation, unsurprisingly, cannot be attained at the
EP for their sample systems. Nevertheless, our work centers
on investigating whether superior performance can exist in
NHQS. We demonstrated that if the introduced degrees of
freedom contain the estimated-parameter information, it will
enhance the coding ability of the parameter generator during
the parameterized process and make the superiority of NHQS
present (as Scheme I); otherwise, it will weaken the parameter
coding ability (as Scheme II). Based on this, we will further
consider the quantum resources consumed in NHQS.

Of course, as we look forward to effectively improving
the QS performance by utilizing the characteristics of NH
quantum sensors, our attention would be devoted to Scheme
I, which provides a superior indicator of sensitivity in NHQS.
In the following, from the perspective of quantum resources,
our goal is to determine whether there exists an additional
requirement of information resources accompanied by the
performance improvement of NHQS and to ascertain the cor-
responding resource utilization rate, which has a profound
influence on practically taking advantage of NHQS.

2. Information costs and sensitivity losses related
to the postselection

Within the framework of resource theory [71], resources
are identified by certain quantum properties of systems. The
benefits of these quantum resources are quantified for various
quantum information processing tasks, and the difference in
attainable tasks between those with and without the resources
will be primarily considered. The notions of quantum pa-
rameter estimation have been introduced into the framework
of resource theories and made significant progress, and all
quantum resources have been proven to confer an advantage
in metrology [72]. Since its clear physical meaning related
to quantum fluctuation and favorable mathematical properties,
QFI can be employed as a reliable resource measure [73]. In
this context, QFI emerges as the most natural measure for
connecting quantum resources with QS [33]. Based on con-
ceptions of QFI Iω and sensitivity bound δω in Eqs. (23) and
(25), we introduce the following definitions. The information
cost ξIω

is associated with the postselection and represents the
utilization rate of information resources:

ξIω
= �Iω

I4d
ω

= I4d
ω − Isubs

ω

I4d
ω

, (26)

where Isubs
ω corresponds to the presence of postselection,

while I4d
ω corresponds to the absence of postselection. Ac-

cording to the function of postselection, the lower the
information cost ξIω

is, the less redundant information is
required, which indicates more available estimated-parameter
information encoded in the quantum state. ξIω

= 1 represents
that the postselection destroys the coding ability of the pa-
rameter generator and depletes all the information resources;
ξIω

= 0 denotes the absence of redundant information (i.e.,
the resource utilization rate is 100%). And the corresponding
sensitivity loss related to the postselection is

ζδω = δω4d

δωsubs
=

√
Isubs

ω

I4d
ω

. (27)

The ratio of sensitivity bounds δω4d and δωsubs directly
demonstrates the sensitivity losses caused by the postselec-
tion: a lower ζδω indicates a higher utilization rate of resource
consumption, and ζδω = 1 represents the absence of sensitiv-
ity losses, while ζδω = 0 is the sensitivity total loss (i.e., the
resource utilization rate is 0%).

Focusing on Scheme I, which possesses superiority in QS,
Fig. 7(a) indicates that QFI Isubs

ω (thicker, lighter curves)
obtained from the measurements is indeed decreased by the
postselection, compared with I4d

ω (thinner, darker curves).
Obviously, the stronger the non-Hermiticity, the larger QFI,
but the more redundant information is required to be encoded
into the parameterized state as shown in Fig. 7(c). Such an
additional requirement of information distinctly increases re-
source consumption during the parameterized process, such as
the extra energy usage [53], which poses an extra challenge for
the practical implementation of ultraprecision NHQS and im-
poses restrictions on its practicable applications. Meanwhile,
Fig. 7(b) shows that the postselection increases the costs of
information resources and sensitivity losses. The stronger the
non-Hermiticity, the more sensitivity loss shown in Fig. 7(d).
Particularly, at EP (γ /ω = 1), Fig. 7(e) shows that the
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in Eq. (26) vs τ for different γ /ω; (d) sensitivity losses ζδω in Eq. (27) vs τ for different γ /ω.

Information costs ξIω
and sensitivity losses ζδω with the postselection vs γ /ω at (e) τ = 5 and (f) τ = 2π .

postselection depletes all information resources (ξIω
= 1)

and completely eliminates sensitivity (ζIω
= 0). This demon-

strates that under the postselection, the resource utilization
rate decreases to 0% at EP, which makes the superior per-
formance of EPQS meaningless for practical applications.
In simple terms, although the non-Hermiticity in the PT -
symmetric system indeed makes a superior performance of
NHQS (γ �= 0) over its Hermitian counterpart [γ = 0, blue
curves in Figs. 7(a) and 7(b)], it unavoidably introduces more
information resource requirements under the postselection.

It is easy to determine that the susceptibility Sω = ∂ωρ ii
ω in

Eq. (18) corresponds to one of the diagonal elements of the
SLD operator matrix ∂ωρω in Eq. (19). Meanwhile, the SLD
operator is a crucial component in the definition of QFI in
Eq. (20), which quantifies the sensitivity. The superior per-
formance of NHQS is revealed by the precision of parameter
estimation, which is improved by the non-Hermiticity without
involving EP [in Fig. 6(f)], and the susceptibility diverges at
EP [see Fig. 5(f)]. However, it seems counterintuitive that
under the postselection the susceptibility diverges at EP, at
which sensitivity is eliminated with a resource utilization rate
of 0% [in Fig. 7(e)]. This contradiction can be attributed to
the periodicity in the evolution behavior of the PT -symmetric
system. Particularly, by setting τ = 2π , ζδω = 1 [in Fig. 7(f)]
can also be obtained even without involving the EP (star points
of γ /ω = 0.95 in Fig. 7), which instead indicates that the
resource utilization rate is 100%. Note that the main objective
here is to determine the potential costs or losses associated
with the performance improvement of NHQS; hence we dis-
cussed the additional requirement of information resources
without considering the special case of (half-) periodic points
τ = nπ (n = 1, 2, 3 . . . ).

Consequently, based on Scheme I, the practical implemen-
tation of performance improvement of NHQS is primarily
restricted by the postselection related to the additional con-
sumption of information resources accompanied by a low

utilization rate, even if the PT -symmetric quantum sensor
possesses a superior indicator in QS.

IV. DISCUSSIONS

Undoubtedly, we do indeed expect the performance of QS
to be effectively improved. If we can realize the superiority of
NHQS with high efficiency and low consumption of quantum
resources, why would we not?

In light of what has been discussed, we have to address
the issue related to utilization rate, particularly concerning
the additional energy usage involved in the practical construc-
tion of PT -symmetric quantum sensors. Based on the effect
of dissipation and quantum fluctuation, both Refs. [58,70]
alleged that exceptional estimation precision cannot be at-
tained at the EP for their models. It is obvious that the useful
quantum resources required for ultraprecision metrology are
compromised by the dissipation and decoherence in quantum
systems. One of the results of our investigation demonstrates
that the performance of NHQS can be enhanced by non-
Hermiticity even in the absence of the EP. The superiority of
NHQS derives from the extra degrees of freedom introduced
to practically construct the PT -symmetric system, carrying
additional quantum resources. This is closely associated with
the structure scheme of NH quantum sensors. Another sig-
nificant finding of our investigation reveals that the practical
application of NHQS based on Scheme I with superior per-
formance is primarily restricted by the additional resource
consumption accompanied by the postselection.

Notwithstanding the above, there indeed exists a notewor-
thy feature in EPQS, considering the periodic (half-periodic)
points with a vanished success rate (failure rate) at the
EP, a unique phenomenon arises: QFI diverges at the EP
(i.e., the lower bound of parameter estimation error achieves
zero) and the resource utilization rate reaches 100%. Ex-
cept that the success (or failure) rate of postselection
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periodically vanishes and the eigenstates coalesce at the EP,
we further demonstrate that the mechanism behind this unique
phenomenon is highly correlated with quantum resources.
We unambiguously believe that if the amount of estimated-
parameter information during the parameterized process does
not increase, achieving NHQS with arbitrary precision at the
EP under the quantum fluctuation and noise would be impos-
sible. However, if the introduced degrees of freedom carry
the additional estimated-parameter information, the statement
would be inaccurate. Such as for non-Markovian dynam-
ics, the estimated-parameter information is retrieved back
from the environment to the system, and the presence of
information flow would enhance the parameter estimation
precision and the signal-to-noise ratio (SNR) of QS at the
EP of a non-Markovian PT -symmetric sensor [57]. The
non-Markovianity represents a typical quantum resource in
the nonconvex resource theories, and surpassing the limits
set by quantum noise necessitates the utilization of quantum
resources.

Nevertheless, in the absence of constraints on resource con-
sumption, Hermitian systems can also achieve ultraprecision
QS utilizing quantum resources, such as quantum entangle-
ment. This is one core of the debate on whether NH systems
outperform their Hermitian counterparts in sensing. In the
scenario of reasonably providing an equal amount of quantum
resources, NHQS will be superior to its counterpart HQS,
since its resource utilization rate reaches 100% at periodic
points that can be leveraged as optimal measurement points,
which indicates that it is necessary to further evaluate the
tradeoff between quantum precision measurement and quan-
tum resources rather than merely estimate the superiority.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated the advantages and re-
strictions of PT -symmetric QS, utilizing two schemes based
on the trapped-ion platform, and explored the relationship
between PT -symmetric quantum sensors and quantum re-
sources. Our results show that the superior performance of
NHQS depends on whether the extra degrees of freedom
introduced to practically construct the PT -symmetric system
carry additional information resources. Moreover, in practical
application, the advantages of NHQS are primarily restricted
by the postselection introducing extra information resource
requirements. However, NHQS does indeed possess poten-
tial superiority in the presence of extra quantum resources,
attributed to its resource utilization rate achieving 100% at
periodic points, while the lower bound of parameter estima-
tion error reaches zero at the EP. This discovery is pivotal
for realizing ultraprecision NHQS with high efficiency and
low quantum resource consumption, which is worthwhile
to further research; the relevant achievements will con-
tribute to advancing the research field of quantum precision
measurement.

PT -symmetric systems have great research value in
various application fields due to their quantum character-
istics. Achieving high-fidelity quantum simulation of the
PT -symmetric system becomes a primary task to un-
lock its application potential. The comprehensive perfor-
mance of quantum computers determines the accuracy and

scope of quantum simulation, while the quantum simulation
evaluates and verifies the quantum computing performance,
and the trapped-ion system has emerged as one of the most
promising candidates to realize quantum computation in the
NISQ era. However, the fidelity of both experimental schemes
mentioned above currently falls far short of the required stan-
dards for practical applications. To tackle the key challenges
of quantum computation on trapped-ion systems in the NISQ
era, we are diligently conducting a series of optimization
studies on the comprehensive performance of a trapped-ion
quantum computation platform. For the future, our industrious
endeavors will focus on implementing the efficient ultrapre-
cision PT -symmetric QS on the trapped-ion platform. This
work will provide theoretical guidance for the next stage of
experimental efforts on the trapped-ion platform.
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APPENDIX A: MORE DETAILS OF SCHEME I

1. PT -symmetric system

The PT -symmetric Hamiltonian primarily considered in
this paper is

HPT = ω

2
σx + i

γ

2
σz = ω

2

(
iγ /ω 1

1 −iγ /ω

)
. (A1)

The ratio γ /ω is usually regarded as the non-Hermiticity
in the system described by HPT . The spontaneous PT -
symmetry breaking is generated by the interplay of the tunable
gain-loss rate γ and the coupling rate ω; when γ /ω ∈ (0, 1),
HPT is in the PT -symmetric phase with real eigenvalues;
while when γ /ω ∈ (1,∞), HPT is in the PT -symmetry bro-
ken phase with a pair of complex conjugate eigenvalues. And
γ /ω = 1 usually represents the EP of HPT , at which the
eigenvalues transition from being real to complex conjugate,
accompanied by the degeneracy of the eigenstates. When
γ = 0, representing an absence of non-Hermiticity, the PT -
symmetric system degrades into a (Hermitian) Rabi oscillator
with coupling rate ω. Based on the eigenvalue equation,

HPT |E±〉 = E±|E±〉, (A2a)

the eigenvalues of HPT are given by

E± = ±κ/2, (A2b)

where κ =
√

ω2 − γ 2. According to the standard Dirac inner
product 〈E±|E∓〉 = 0, the orthogonal eigenvectors are given
as

|E±〉 = 1

ω

(
iγ ± κ

ω

)
. (A2c)

Non-Hermitian Hamiltonians (HNH �= H†
NH) always can be

decomposed into Hermitian and anti-Hermitian parts as
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HNH = H+ + H− with H± = ±H†
±. We decompose the PT -

symmetric Hamiltonian HPT in Eq. (A1) into

H+ = ω

2
σx; H− = −i� = i

γ

2
σz, (A3)

and solve the NH dynamics equation [59]

ρ̇t = −i[H+, ρt ] − {�, ρt } + 2Tr(ρt�)ρt . (A4)

However, the NH dynamics Eq. (A4) for a normalized ρt is
usually hard to solve analytically. Its solution can also be
expressed as a unitarylike form:

ρt = UPT ρ0U
†
PT

Tr(UPT ρ0U
†
PT )

=
(

ρ11
t ρ12

t

ρ21
t ρ22

t

)
, (A5)

where UPT = exp(−iHPT t ) is the nonunitary time-evolution
operator of the PT -symmetric system and ρ0 is an arbitrary
initial state. Considering an initial pure state ρ0 = |ψ0〉〈ψ0|,

|ψ0〉 = a0|1〉 + b0|2〉 =
(

a0

b0

)
, (A6)

the solution in Eq. (A5) can be reduced to

|ψt 〉 = UPT |ψ0〉√
〈ψ0|U †

PT UPT |ψ0〉
= cnUPT |ψ0〉

= at |1〉 + bt |2〉 =
(

at

bt

)
, (A7a)

where

at = cn

[
a0 cos

(
κt

2

)
+ 1

κ
(a0γ − ib0ω) sin

(
κt

2

)]
;

bt = cn

[
b0 cos

(
κt

2

)
− 1

κ
(b0γ + ia0ω) sin

(
κt

2

)]
, (A7b)

and the renormalized factor cn is given by

1

cn
2

= Tr(UPT |ψ0〉〈ψ0|U †
PT ) = 〈ψ0|U †

PT UPT |ψ0〉

=
[

b0 cos

(
κt

2

)
− 1

κ
(ia0ω + b0γ ) sin

(
κt

2

)]

×
[

b∗
0 cos

(
κt

2

)
+ 1

κ
(ia∗

0ω − b∗
0γ ) sin

(
κt

2

)]

+
[

a0 cos

(
κt

2

)
+ 1

κ
(a0γ − ib0ω) sin

(
κt

2

)]

×
[

a∗
0 cos

(
κt

2

)
+ 1

κ
(a∗

0γ + ib∗
0ω) sin

(
κt

2

)]
.

(A7c)

The corresponding density operator ρt in Eq. (A5) can be
represented as

ρt = |ψt 〉〈ψt | =
(

at

bt

)
(a∗

t b∗
t ), (A8a)

and the matrix elements of normalized ρt are

ρ11
t = |at |2; ρ22

t = 1 − ρ11
t = |bt |2;

ρ12
t = at b

∗
t ; ρ21

t = (
ρ12

t

)∗ = bt a
∗
t . (A8b)

The initial state in this paper is chosen as

|ψ0〉 = |+〉y =
√

2

2

(
1
i

)
, (A9)

i.e., a0 = 1/
√

2; b0 = i/
√

2, where |±〉y = (|1〉 ± i|2〉)/
√

2
are the eigenvectors of the Pauli matrix σy.

Scheme I: Naimark-dilated quantum system. We now
discuss quantum simulating the PT -symmetric Hamilto-
nian through introducing an auxiliary system. Utilizing
the Naimark-dilation theory, embedding the PT -symmetric
subspace into a larger Hermitian space with an auxiliary
subspace, the PT -symmetric nonunitary dynamics can be
mapped from a unitary dynamics in the enlarged system, and
the process is decomposed into the following two steps.

Step 1: Utilizing the Naimark-dilation theory. Constructing
a Hermitian metric operator η = η† based on the pseudo-
Hermiticity condition [9]:

ηHPT = (ηHPT )† = H†
PT η† = H†

PT η. (A10)

With the basis {|i〉} (i = 1, 2, 3, 4), the PT -symmetric subsys-
tem (PT -sub) |ψt 〉 is denoted with {|1〉, |2〉}, and the auxiliary
subsystem (A-sub) |χt 〉 is denoted with {|3〉, |4〉}. According
to the PT inner product [3],

(μ, ν) = (PT μ)ν, (A11)

where P = σx is the parity operator and T is the complex con-
jugate operator, the orthonormal eigenvectors |E±〉 of HPT are
satisfied with (E±, E∓) = 0 and

(E±, E±) = ±1, (A12a)

while returning to |E±〉 according to the standard Dirac inner
product given by Eq. (A2c):

(E±, E±) = (PT |E±〉)|E±〉 = ±2κ

ω
, (A12b)

and setting f as the normalized factor of transformation:

1

f 2
= 2κ

ω
�⇒ f = 1√

2κ/ω
. (A13)

We arrange |E±〉 = f |E±〉 into the row matrix,

� = (|E+〉 |E−〉) = f (|E+〉 |E−〉)

= 1√
2κω

(
iγ + κ iγ − κ

ω ω

)
, (A14)

and the metric operator is defined by

η = (��†)−1 = ω

κ

(
I + γ

ω
σy

)

= ω

κ

(
1 −iγ /ω

iγ /ω 1

)
. (A15)

We regard the metric operator η as a synchronization link of
dynamics between A-sub [non-normalized |χt 〉] and PT -sub
[normalized |ψt 〉 in Eq. (A7a)]:

|χt 〉 = η|ψt 〉 =
(

ct

dt

)
, (A16a)

where

ct = 1

κ
(ωat − iγ bt );

dt = 1

κ
(iγ at + ωbt ). (A16b)
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There are three serial perspectives for comprehending the
dynamics of an enlarged Hermitian system: (a) constructing
a total wave function of the enlarged Hermitian system by
directly connecting the dynamics of PT -sub and A-sub by the
synchronization link η as Eq. (A17); (b) figuring out the total
unitary time-evolution operator of the enlarged Hermitian sys-
tem and obtaining its purely unitary evolution processing as
Eqs. (A18) and (A19); (c) expanding a Hermitian Hamiltonian
to govern the dynamics of an enlarged Hermitian system such
as Eq. (A20).

By embedding the PT -symmetric space as a NH subspace
HPT into a larger Hermitian space HH(4d) = HPT (2d) ⊕
HA(2d) with an auxiliary subspace HA [4], and the wave
function of the enlarged Hermitian system is constructed as

|�t 〉 = Cn

([
1
0

]
⊗ |ψt 〉 +

[
0
1

]
⊗ |χt 〉

)

= Cn

(
ψt

χt

)
= (ãt b̃t c̃t d̃t )

T, (A17a)

with the renormalized factor

Cn = 1√〈ψt |ψt 〉 + 〈χt |χt 〉
= 1√

1 + |ct |2 + |dt |2
, (A17b)

elements of |�t 〉 with |ψ0〉 = |+〉y are given as

ãt = c4d(+)[κ cos (κt/2) + (ω + γ ) sin (κt/2)];

b̃t = ic4d(−)[(ω − γ ) cos (κt/2) − κ sin (κt/2)];

c̃t = c4d(+)[(ω + γ ) cos (κt/2) + κ sin (κt/2)];

d̃t = ic4d(−)[κ cos (κt/2) − (ω − γ ) sin (κt/2)], (A17c)

where c4d(±) = [4ω(ω ± γ )]−1/2.
The unitary time evolution of the enlarged Hermitian sys-

tem according to Eq. (A17) can also be expressed as

|�t 〉 = Cn

(
ψt

χt

)
= Cn

(
ψt

ηψt

)
= Cn

(
cn(UPT ψ0)

cn(ηUPT η−1χ0)

)

= Cncn

(
UPT 0

0 ηUPT η−1

)(
ψ0

χ0

)

= C̃n

(
UPT 0

0 UA

)(
ψ0

χ0

)
= C̃nUH

(
ψ0

χ0

)
= U4d|�0〉, (A18a)

where UA = ηUPT η−1, with UPT = exp(−iHPT t ), and the
purely unitary time-evolution operator of the enlarged Hermi-
tian system is

U4d = (Cncn)UH = C̃nUH, (A18b)

with the renormalized factor

C̃n = 1/

√
〈ψ0|U †

PT UPT |ψ0〉 + 〈χ0|U †
AUA|χ0〉, (A18c)

and the unitarylike UH is directly obtained by applying the
synchronization link of subsystems dynamics η:

UH =
(

UPT 0
0 UA

)
=

(
UPT 0

0 ηUPT η−1

)
. (A18d)

With the Naimark-dilation theory, we have deduced the uni-
tary time-evolution operator U4dU †

4d = I related with the
purely Hermitian Hamiltonian H4d = H†

4d, which is obtained

from U4d = exp(−iH4dt ). And the purely unitary evolution of
the enlarged Hermitian system (denoted by the normalized
density operator ρ̃4d) is represented as

ρ̃4d = |�t 〉〈�t | = U4d|�0〉〈�0|U †
4d = U4dρ̃0U

†
4d, (A19a)

where ρ̃0 = |�0〉〈�0| is the initial state related to |�0〉 =
(ψ0 χ0)T, here |χ0〉 = η|ψ0〉 is the initial state of A-sub and
|ψ0〉 for PT -sub given by Eq. (A9), and the matrix diagonal
elements [i.e., population in |i〉 (i = 1, 2, 3, 4)] of normalized
ρ̃4d are

ρ̃11
4d = |ãt |2 = [ω − γ cos (κt ) + κ sin (κt )]/4ω;

ρ̃22
4d = |b̃t |2 = [ω − γ cos (κt ) − κ sin (κt )]/4ω;

ρ̃33
4d = |c̃t |2 = [ω + γ cos (κt ) + κ sin (κt )]/4ω;

ρ̃44
4d = |d̃t |2 = 1 − (|ãt |2 + |b̃t |2 + |c̃t |2)

= [ω + γ cos (κt ) − κ sin (κt )]/4ω, (A19b)

and other matrix off-diagonal elements:

ρ̃12
4d = (

ρ̃21
4d

)∗ = i[γ − ω cos (κt )]/4ω;

ρ̃13
4d = (

ρ̃31
4d

)∗ = [κ + ω sin (κt )]/4ω;

ρ̃14
4d = (

ρ̃41
4d

)∗ = −i[κ cos (κt ) + γ sin (κt )]/4ω;

ρ̃23
4d = (

ρ̃32
4d

)∗ = i[κ cos (κt ) − γ sin (κt )]/4ω;

ρ̃24
4d = (

ρ̃42
4d

)∗ = [κ − ω sin (κt )]/4ω;

ρ̃34
4d = (

ρ̃43
4d

)∗ = −i[γ + ω cos (κt )]/4ω. (A19c)

Note that the unitary time evolution of the enlarged Her-
mitian system in this paper is directly characterized by
connecting the dynamics of two subsystems with the syn-
chronization link η. We have verified that this time-evolution
process is consistent with that of Ref. [4], which proposed a
unitary evolution governed by an expanded dimension Hamil-
tonian. The corresponding H4d based on the PT -symmetric
system in this paper is

H4d = f 2[I ⊗ (HPT η−1 + ηHPT )]

+ f 2[iσy ⊗ (HPT − H†
PT )]. (A20)

Step 2: Executing the postselection. Considering the post-
selection performed on the enlarged Hermitian system, the
success rate and failure rate of postselection are respectively
denoted as

psuc = P1 + P2;

pfail = 1 − psuc = P3 + P4, (A21)

where Pi(t ) = ρ̃ ii
4d (i = 1, 2, 3, 4) is the population in |i〉 of the

enlarged Hermitian system, and ρ̃ ii
4d are the matrix diagonal

elements of ρ̃4d in Eq. (A19b). The renormalized population
for PT -sub:

P̃1 = P1

P1 + P2
= ρ11

PT ; P̃2 = P2

P1 + P2
= ρ22

PT , (A22a)

the corresponding renormalized population for A-sub:

P̃3 = P3

P3 + P4
= ρ11

A ; P̃4 = P4

P3 + P4
= ρ22

A . (A22b)
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By executing the postselection on the enlarged system ρ̃4d,
if successful, ρ̃4d is degraded into the PT -symmetric system
ρPT :

ρPT = ρt = |ψt 〉〈ψt |
Tr(|ψt 〉〈ψt |) =

(
ρ11

t ρ12
t

ρ21
t ρ22

t

)
, (A23a)

where ρ
i j
t (i, j = 1, 2) of ρt in Eq. (A5) with |ψ0〉 = |+〉y:

ρ11
PT = ρ11

t = 1

2
[1 + cptκ sin (κt )];

ρ12
PT = ρ12

t = i
cpt

2
[γ − ω cos (κt )];

ρ21
PT = ρ21

t = (
ρ12

t

)∗ = −i
cpt

2
[γ − ω cos (κt )];

ρ22
PT = ρ22

t = 1 − ρ11
t = 1

2
[1 − cptκ sin (κt )], (A23b)

where cpt = [ω − γ cos(κt )]−1; if it fails, ρ̃4d is degraded into
the A system ρA:

ρA = |χt 〉〈χt |
Tr(|χt 〉〈χt |) =

(
ρ22

t ρ21
t

ρ12
t ρ11

t

)
, (A24a)

where ρ
i j
t (i, j = 1, 2) of ρt in Eq. (A5) with |ψ0〉 = |−〉y:

ρ11
A = ρ22

t = 1

2
[1 + caκ sin (κt )];

ρ12
A = ρ21

t = −i
ca

2
[γ + ω cos (κt )];

ρ21
A = ρ12

t = (
ρ21

t

)∗ = i
ca

2
[γ + ω cos (κt )];

ρ22
A = ρ11

t = 1 − ρ22
t = 1

2
[1 − caκ sin (κt )], (A24b)

where ca = [ω + γ cos(κt )]−1. Equations (A23) and (A24)
indicate that because of the full synchronization link η with
the PT -sub, the A-sub does indeed possess the feature of
PT symmetry. In consequence, two subsystems possess an
anti-mirror-symmetric correlation [see Figs. 2(e) and 2(f)],
and the enlarged Hermitian system combined by two fully
synchronized PT -symmetric subsystems can be regarded as a
pseudo-dual-PT -symmetric system, and EPs of PT -sub and
A-sub overlap at γ /ω = 1.

APPENDIX B: MORE DETAILS OF SCHEME II

Scheme II: Effective non-Hermitian Hamiltonian of open
quantum system. Here we discuss quantum simulating the
PT -symmetric Hamiltonian by introducing an external envi-
ronment. As we know, the dynamics of open quantum systems
obey the Lindblad master equation [74],

ρ̇t = Lρt , (B1a)

with the dynamics generator L, which is an arbitrary, linear or
nonlinear, Liouvillian superoperator,

L(·) ≡ −i[H0, (·)] + D(·), (B1b)

and the dissipator D(·) is defined by the Lindbladian

D(·) = J (·)J† − 1

2
{J†J, (·)}, (B1c)

where J (·)J† represents the quantum jump term with the
quantum jump operator J , and {J†J, (·)} denotes the coherent
nonunitary dissipation terms.

Method 1: Effective rule and renormalization. In order
to study the PT -symmetric system with HPT , consider a
dissipative two-level system described by an NH Hamiltonian
Heff with the Hilbert eigenvector basis {|i〉}H (i = 1, 2):

Heff = ω

2
σx − iγ |2〉〈2| = HPT − i

γ

2
I

= ω

2

(
0 1
1 −i2γ /ω

)
, (B2)

where ω is the coupling rate, γ is the tunable decay rate, and
EPs of Heff and HPT overlap at γ /ω = 1.

First, such a dissipative two-level system can also be
regarded as an effective description of a three-level sys-
tem based on the perturbation approximation, with the basis
{|i〉}H (i = 1, 2, 3), where the coherent transition is denoted
by |1〉 ↔ |2〉 with the coupling rate ω, the dissipation of the
two-level system is represented by |2〉 → |3〉 with the tunable
decay rate γ , and there is no transition between |1〉 � |3〉. The
dynamics of the three-level system can be described by the
Lindblad master equation with a Liouvillian superoperator L:

�̇t = L�t = −i[H0, �t ] + D�t

= −i
[ω

2
σx, �t

]
+

(
J�t J

† − 1

2
{J†J, �t }

)
, (B3)

where �t is the normalized density operator of the three-level
system, H0 = ωσx/2 is the coherent transition Hamilto-
nian, and J = √

γ |3〉〈2| is the quantum jump operator.
Through solving the Lindblad master Eq. (B3) with the
initial state |ψ̃0〉 = |+̃〉y = (|1〉 + i|2〉 + 0|3〉)/

√
2 and �̃0 =

|ψ̃0〉〈ψ̃0|, we can obtain the density operator �t and its matrix
elements:

�11
t = c3L[ω − γ cos (κt ) + κ sin (κt )];

�12
t = ic3L[γ − ω cos (κt )];

�21
t = (

�12
t

)∗ = −ic3L[γ − ω cos (κt )];

�22
t = c3L[ω − γ cos (κt ) − κ sin (κt )];

�33
t = 1 − (

�11
t + �22

t

) = 1 − 2c3L[ω − γ cos (κt )];

�13
t = �31

t = �23
t = �32

t = 0, (B4)

where c3L = e−γ t [2(ω − γ )]−1.
Secondly, according to the effective rule of open quantum

systems, the dynamics generated by Heff in Eq. (B2) can
be depicted by reducing the dimension of Eq. (B3). This is
accomplished by ignoring the quantum jumps and modify-
ing the coherent nonunitary dissipation of |2〉 → |3〉 in the
Lindbladian dissipator D�t to the decay term −iγ |2〉〈2| in the
effective Hamiltonian Heff with the loss rate γ , and then the
lower-dimension Lindblad master equation without consider-
ing quantum jumps, can be used to describe the dynamics of
dissipative two-level system:

�̇eff = L�eff = −i[Heff , �eff ], (B5a)
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and the corresponding system of differential equations:

�̇11
eff = iω

(
�12

eff − �21
eff

)
/2;

�̇12
eff = iω

(
�11

eff − �22
eff

)
/2 − γ �12

eff ;

�̇21
eff = iω

(
�22

eff − �11
eff

)
/2 − γ �21

eff ;

�̇22
eff = iω

(
�21

eff − �12
eff

)
/2 − 2γ �22

eff . (B5b)

We now deduce the corresponding matrix of superoperator
L without quantum jumps with the Liouvillian eigen-
vector basis {��l}L (l = 1, 2, 3, 4) ≡ {�̂l} = {|i〉〈 j|}H (i, j =
1, 2) based on a vectorized representation in Ref. [14]:

L =

⎛
⎜⎜⎝

0 iω/2 −iω/2 0
iω/2 −γ 0 −iω/2

−iω/2 0 −γ iω/2
0 −iω/2 iω/2 −2γ

⎞
⎟⎟⎠, (B6a)

and the eigenvalues EL(i) (i = 1, 2, 3, 4) of L matrix are

{EL(i)} = {−γ ± iκ(1)(4),−γ(2)(3)}, (B6b)

with the LEP γ /ω = 1 coincided with the HEP of HPT , since
the LEP of L without quantum jumps is exactly the same as
the HEP of Heff in Eq. (B2), along with HPT . The solution of
Eq. (B5) equals the matrix elements of the lower-dimension
�t in Eq. (B4):

�
i j
eff = �

i j
t , (i, j = 1, 2). (B7)

The solution can also be simply expressed as

�eff = Ueff�0U
†
eff , (B8)

where Ueff = exp(−iHefft ) and �0 = |ψ0〉〈ψ0| with |ψ0〉 =
|+〉y = (|1〉 + i|2〉)/

√
2. In order to exactly simulate the

characteristic of energy balance of gain and loss in the PT -
symmetric system, by directly adding a gain term iγ |1〉〈1|
on Heff of the dissipative two-level system whose energy is
only with loss and without gain, the artificial PT -symmetric
system can be obtained:

�PT = eγ t�eff. (B9)

Finally, by performing the renormalization on �PT ,

ρPT = �PT
Tr(�PT )

= eγ t�eff

Tr(eγ t�eff )
= �eff

Tr(�eff )
= ρeff , (B10)

we then realize the construction of PT -symmetric system
ρPT governed by HPT through the dissipative two-level sys-
tem ρeff dominated by an effective NH Hamiltonian Heff .

Method 2: Postselection. From the perspective of the post-
selection techniques [24], after solving the Lindblad master
Eq. (B3) and obtaining the density matrix �t of three-level sys-
tem, we can also achieve PT -symmetric system ρPT through
directly performing the postselection on the three-level
system �t :

ρPT = 1

�11
t + �22

t

(
�11

t �12
t

�21
t �22

t

)
=

(
ρ11

t ρ12
t

ρ21
t ρ22

t

)
, (B11)

where ρ
i j
t (i, j = 1, 2) of ρt in Eq. (A5) with |ψ0〉 = |+〉y, and

the success rate of postselection psuc = �11
t + �22

t is actually
denoted by the trace of �eff in Eq. (B7).

APPENDIX C: PARAMETER INFORMATION
ENCODED IN PURE STATES

The SLD operator is denoted by ∂ωρω = (Lωρω + ρωLω )/2
in Eq. (19), and QFI Fω = Tr(ρωL2

ω ) in Eq. (20a) for
the parameters is simply the diagonal element of the QFI
matrix [66], which consists of only one element for single-
parameter estimation. With the spectral decomposition ρω =∑N

n=1 εn|ψn〉〈ψn|, where εn and |ψn〉 are the nth eigenvalue
and eigenstate of the full-rank density matrix ρω, and N =
dim ρω. The derivative of ρω with respect to the estimated
parameter ω can be expressed as

∂ωρω =
∑

n

(∂ωεn|ψn〉〈ψn| + εn|∂ωψn〉〈ψn|

+ εn|ψn〉〈∂ωψn|). (C1)

Based on Eqs. (19) and (C1),

〈ψn|∂ωρω|ψm〉 = 1
2 (εn + εm)〈ψn|Lω|ψm〉

= ∂ωεnδnm + εm〈ψn|∂ωψm〉 + εn〈∂ωψn|ψm〉.
(C2)

Utilizing 〈ψn|∂ωψm〉 = −〈∂ωψn|ψm〉, we can obtain

〈ψn|Lω|ψm〉 = δnm
∂ωεn

εn
+ 2(εm − εn)

εn + εm
〈ψn|∂ωψm〉. (C3)

Based on Eq. (C3) and the basis vector completeness, the
definition Eq. (20a) can be decomposed into classical and
quantum parts as Fω = FQ + FC:

FQ =
∑

n

4εn(εm − εn)2|〈ψn|∂ωψm〉|2
(εn + εm)2

=
∑

n

4εn〈∂ωψn|∂ωψn〉 −
∑
n �=m

8εnεm

εn + εm
|〈∂ωψn|ψm〉|2;

FC =
∑

n

(∂ωεn)2

εn
. (C4)

Thus, the qualitative difference in the impact on the
precision of parameter estimation arises from whether the
additional estimated-parameter information derived from
the A-system Eq. (A24) can be encoded in the parameterized
state of the target PT -symmetric system Eq. (A23).

In the case of the initial pure state ρ0 = |ψ0〉〈ψ0|,

Fω = 4〈ψ0|�2Hω|ψ0〉 � ‖Hω‖2 = (εα − εβ )2 ≡ F c
Q,(C5)

where 〈ψ0|�2Hω|ψ0〉 represents the variance of the parameter
generator Hω = i(∂ωUω )U †

ω under the state |ψ0〉, and ‖.‖ is
the seminorm. When εα(β ) is the maximum (minimum) eigen-
value of Hω, one can derive the channel QFI F c

Q corresponding
to the maximum QFI Fmax

ω achievable by optimizing over all
possible probe states. This derivation also demonstrates that
the optimal probe (initial) state is always a pure state.

062611-15



WANG, WU, WU, AND CHEN PHYSICAL REVIEW A 109, 062611 (2024)

[1] C. M. Bender and S. Boettcher, Real spectra in non-Hermitian
Hamiltonians having PT symmetry, Phys. Rev. Lett. 80, 5243
(1998).

[2] C. M. Bender, Making sense of non-Hermitian Hamiltonians,
Rep. Prog. Phys. 70, 947 (2007).

[3] C. M. Bender, D. C. Brody, and H. F. Jones, Complex extension
of quantum mechanics, Phys. Rev. Lett. 89, 270401 (2002).

[4] U. Günther and B. F. Samsonov, Naimark-dilated PT-
Symmetric brachistochrone, Phys. Rev. Lett. 101, 230404
(2008).

[5] U. Günther and B. F. Samsonov, PT-symmetric brachistochrone
problem, Lorentz boosts, and nonunitary operator equivalence
classes, Phys. Rev. A 78, 042115 (2008).

[6] S. Croke, PT-symmetric Hamiltonians and their application in
quantum information, Phys. Rev. A 91, 052113 (2015).

[7] K. Kawabata, Y. Ashida, and M. Ueda, Information retrieval and
criticality in parity-time-symmetric systems, Phys. Rev. Lett.
119, 190401 (2017).

[8] A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry:
The necessary condition for the reality of the spectrum of a
non-Hermitian Hamiltonian, J. Math. Phys. 43, 205 (2002).

[9] A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry. II:
A complete characterization of non-Hermitian Hamiltonians
with a real spectrum, J. Math. Phys. 43, 2814 (2002).

[10] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, Cambridge, England, 2011).

[11] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11 (2018).

[12] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv.
Phys. 69, 249 (2020).

[13] M.-A. Miri and A. Alù, Exceptional points in optics and pho-
tonics, Science 363, eaar7709 (2019).

[14] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Quantum exceptional points of non-Hermitian Hamiltonians
and Liouvillians: The effects of quantum jumps, Phys. Rev. A
100, 062131 (2019).

[15] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[16] W. D. Heiss, The physics of exceptional points, J. Phys. A:
Math. Theor. 45, 444016 (2012).
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