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In this paper, we propose a one-step scheme for implementing the nonadiabatic holonomic SWAP gate with Ry-
dberg atoms. By applying invariant-based reverse engineering to design the effective Hamiltonian of the system,
a suitable evolution path for implementing nonadiabatic holonomic quantum computation is found. In addition,
the systematic-error-sensitivity nullified optimal control method is considered in the parameter selections, so
that the scheme is insensitive to the systematic error of pulses. We also estimate the effects of random noise,
the random initial phase of the pulses, the Doppler shift, and decoherence on the scheme. The numerical results
show that the scheme exhibits fairly good performance against these negative factors. Finally, we generalize
the scheme to realize the non-Clifford SWAP gates. Therefore, this scheme can provide a feasible framework for
implementing high-fidelity and robust SWAP gates and non-Clifford SWAP gates with Rydberg atoms.
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I. INTRODUCTION

Neutral atoms interacting through dipole-dipole interac-
tions have been used to construct promising platforms for
quantum computing [1,2]. Rydberg atoms are a kind of neu-
tral atom excited to high-lying Rydberg states, exhibiting
significant Rydberg-Rydberg interactions (RRIs) [3]. Neutral
Rydberg atoms display the following two distinct dynamics:
(1) Once an atom is excited to its Rydberg state, because the
linewidth of the excitation is significantly narrower than the
energy shift caused by the RRI, other atoms within the block-
ing radius cannot be excited to the Rydberg state, which is
called the Rydberg blockade [4–7]. (2) If the Rabi frequencies
are not resonant, with huge two-photon detunings close to
the energy shift of the RRI, an opposite phenomenon occurs:
more than one atom is pumped into the Rydberg state, which is
known as Rydberg antiblockade [8–13]. These two excitation
processes provide promising methods for the construction of
quantum logic gates, such as Rydberg blockade gates [14–17]
and Rydberg antiblockade gates [18–23].

Although various schemes [24–27] have been proposed to
realize a Rydberg-mediated quantum gate, one-step imple-
mentations of two-qubit gates or multiqubit gates, especially
some commonly used gates (e.g., the SWAP gate and the
Fredkin gate [28]), have been discussed in only a few arti-
cles. The SWAP gate is an important two-qubit gate which
is widely used in quantum computing [29], entanglement
swapping [30], and quantum repeaters [31]. The SWAP gate
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in existing Rydberg-mediated gate schemes usually involves
multiple fragment pulses, requiring three or more steps, and
two or more Rydberg states involved in a single Rydberg atom
[27,32,33]. The multistep operation of quantum gates makes
quantum computing more complicated and increases the sen-
sitivity to errors and noise in quantum computing. Therefore,
the one-step implementation of a high-fidelity SWAP gate is
more advantageous for the realization of quantum computing
in neutral atoms.

For the implementation of high-fidelity quantum gates, the
scheme should be robust to experimental interference factors,
including systematic errors, random noise, and decoherence.
Nonadiabatic holonomic quantum computation (NHQC) has
received significant attention in recent years because of its
potential to overcome these interference factors [34–38]. First
of all, NHQC is not limited by adiabatic conditions, which
makes the evolution faster than adiabatic holonomic quantum
computation [39–42], thus reducing the influence of deco-
herence. In addition, NHQC is based on geometric phases,
which depend on the global properties of the evolution paths,
and, consequently, is insensitive to parameter fluctuations in
the process of a cyclic evolution [43–50]. Importantly, recent
studies [51–54] have shown that NHQC can significantly en-
hance the robustness against systematic errors by cooperating
with control and optimal methods, such as reverse engineering
[55–64] and the systematic-error-sensitivity nullified optimal
control method [65–69]. Therefore, realizing high-fidelity and
robust quantum gates based on NHQC is promising.

In this paper, we propose a one-step scheme to realize
the nonadiabatic holonomic SWAP gate for Rydberg atoms
by using invariant-based reverse engineering. The physical
system consists of two Rydberg atoms. When the atoms
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are driven by laser pulses with large detuning, we derive
an effective Hamiltonian. Then, invariant-based reverse en-
gineering is applied to design the evolution path of NHQC
based on the effective Hamiltonian. We further employ the
systematic-error-sensitivity nullified optimal control method
[65] to modify the parameters, so that the scheme is ro-
bust to systematic errors of the pulses. The validity of the
scheme is verified by numerical simulations based on the full
Hamiltonian. Meanwhile, we also use numerical simulations
to analyze the influence of systematic errors, random noise,
the random initial phase of the pulses, the Doppler shift, and
decoherence on the scheme. The results show that the scheme
maintains relatively high fidelity in the presence of these im-
perfections. Finally, the scheme is generalized to realize the
non-Clifford SWAP gates. Therefore, the scheme may provide
an idea for the realization of high-fidelity and robust SWAP

gates and their extensions.
This paper is organized as follows. In Sec. II, the protocols

for NHQC based on invariant-based reverse engineering are
reviewed. In Sec. III, we introduce the model and the Hamilto-
nian of the system and propose the scheme for the holonomic
SWAP gate by combining invariant-based reverse engineer-
ing and the systematic-error-sensitivity nullified method. In
Sec. IV, the validity of the scheme is proved with numerical
simulations, and the influence of systematic errors, random
noise, and decoherence on the scheme is analyzed. In Sec. V,
we extend the scheme to realize the non-Clifford SWAP gates.
Finally, the conclusions are given in Sec. VI.

II. NON-ADIABATIC HOLONOMIC QUANTUM
COMPUTATION WITH INVARIANT-BASED

REVERSE ENGINEERING

A. Lewis-Riesenfeld invariant theory

We first introduce the Lewis-Riesenfeld invariant theory
[70]. We consider a system Hamiltonian H (t ) and assume a
Hermitian operator I (t ) satisfying the equation (h̄ = 1)

i
∂

∂t
I (t ) − [H (t ), I (t )] = 0 (1)

exists. The Hermitian operator I (t ) is called a dynamic
invariant. The solution of the time-dependent Schrödinger
equation i|�̇(t )〉 = H (t )|�(t )〉 for the system can be ex-
panded by the nondegenerate eigenvectors {|ψl (t )〉} of the
dynamic invariant I (t ) as

|�(t )〉 =
∑

l

cl |�l (t )〉, |�l (t )〉 = exp[iαl (t )]|ψl (t )〉, (2)

where cl = 〈ψl (0)|�(0)〉 (l = 0, 1, 2, . . . ) is the correlation
coefficient and αl (t ) is the Lewis-Riesenfeld phase defined as

αl (t ) =
∫ t

0
〈ψl (t

′)|
[

i
∂

∂t ′ − H (t ′)
]
|ψl (t

′)〉dt ′. (3)

Therefore, the dynamic invariant I (t ) can be used to analyze
the evolution of the system. In addition, by constructing the
dynamic invariant I (t ) and making a proper ansatz for its pa-
rameters, the Hamiltonian H (t ) also can be derived in reverse
via Eq. (1) [71]. Lie algebra is commonly utilized as a foun-
dational approach in the construction of dynamic invariants,
providing the necessary algebraic structure and properties that

help in identifying such quantities [72,73]. This methodology
not only facilitates a deeper understanding of the systematic
dynamics but also enables the determination of the underlying
Hamiltonian governing its time evolution.

B. Nonadiabatic holonomic quantum computation with a
dynamic invariant

In this section, we briefly introduce the theory of NHQC
with a dynamic invariant. First, we consider a computational
subspace S that can be used to implement NHQC. According
to Ref. [51], it is necessary to select a set of time-dependent
vectors {|φ̃l (t )〉} spanning S and meet the cyclic evolution
condition |φ̃l (0)〉 = |φ̃l (T )〉 (T is the total operation time). In
addition, the operator ζ̃l (t ) = |φ̃l (t )〉〈φ̃l (t )| needs to obey the
von Neumann equation

d

dt
ζ̃l (t ) = −i[H (t ), ζ̃l (t )]. (4)

When the above two conditions are satisfied, the evolution
operator in the subspace S can be described as

U (T, 0) =
∑

l

ei[ϑ̃l (T )+
̃l (T )]ζ̃l (0), (5)

with

ϑ̃l (t ) = −
∫ t

0
〈φ̃l (t

′)|H (t ′)|φ̃l (t
′)〉dt ′,


̃l (t ) =
∫ t

0
〈φ̃l (t

′)|i ∂

∂t ′ |φ̃l (t
′)〉dt ′, (6)

where ϑ̃l (t ) and 
̃l (t ) are the dynamic phase and the geo-
metric phase acquired by the vector |φ̃l (t )〉 during the time
interval [0, t], respectively. When ϑ̃l (T ) = 0, a purely geo-
metric phase can be obtained.

Based on the theory in Sec. II A, the nondegenerate eigen-
vectors of a dynamic invariant can be used as an alternative to
the auxiliary vectors {|φ̃l (t )〉}. According to Ref. [53], for the
nondegenerate eigenvectors |φl (t )〉 of a dynamic invariant, the
von Neumann equation

d

dt
ζl (t ) = −i[H (t ), ζl (t )], (7)

with ζl (t ) = |φl (t )〉〈φl (t )| being naturally satisfied. There-
fore, for the computational subspace S spanned by a set of
nondegenerate eigenvectors {|φl (t )〉} of a dynamic invariant,
the satisfaction of the von Neumann equation does not need
to be verified again. To realize NHQC, it is only necessary
to eliminate the dynamic part of the Lewis-Riesenfeld phase
obtained in [0, T ] as

ϑl (T ) = −
∫ T

0
〈φl (t )|H (t )|φl (t )〉dt = 0. (8)

In this case, the remaining part of Lewis-Riesenfeld phase,


l (T ) =
∫ t

0
〈φl (t )|i ∂

∂t
|φl (t )〉dt, (9)

is purely geometric.
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FIG. 1. Level configuration of the computational atom k (k =
1, 2).

III. SWAP GATE BASED ON NHQC

A. Physical model and Hamiltonian

In this section, we introduce a physical model for imple-
menting the SWAP gate with Rydberg atoms. As shown in
Fig. 1, the neutral 87Rb atom k (k = 1, 2) has two ground
states, |0〉k and |1〉k , and a Rydberg state, |r〉k . The transition
|0〉k ↔ |r〉k (|1〉k ↔ |r〉k) is driven by a classical field with
Rabi frequency �0k (�1k) and blue (red) detuning �0k (�1k).
In addition, the RRI strength is V . Under the rotating-wave
approximation, the Hamiltonian H (t ) of the system takes the
following form:

H (t ) =
2∑

k=1

[�0k (t )e−i�0kt |r〉k〈0| + �1k (t )ei�1kt |r〉k〈1|

+ H.c.] + V |rr〉〈rr|. (10)

We consider �01 = �12 + V and �02 = �11 + V and
move into a rotating frame via the unitary operator R =
exp(iV t |rr〉〈rr|), giving rise to

H ′(t ) = RH (t )R† + iR†Ṙ

= �01(t )e−i(�12+V )t (|r0〉〈00| + |r1〉〈01|)
+�02(t )e−i(�11+V )t (|0r〉〈00| + |1r〉〈10|)
+�01(t )e−i�12t |rr〉〈0r| + �11(t )ei(�11+V )t |rr〉〈1r|
+�02(t )e−i�11t |rr〉〈r0| + �12(t )ei(�12+V )t |rr〉〈r1|
+�11(t )ei�11t (|r0〉〈10| + |r1〉〈11|)
+�12(t )ei�12t (|0r〉〈01| + |1r〉〈11|) + H.c. (11)

Under the conditions |�11 + V |, |�12 + V |, |�11|, |�12| �
|�01(t )|, |�02(t )|, by using the second-order perturbation the-
ory [74], the effective Hamiltonian can be calculated as

Heff (t ) = �1(t )|01〉〈rr| + �2(t )|10〉〈rr| + H.c., (12)

with

�1(t ) = −�∗
12(t )�∗

01(t )

(
1

�12
− 1

�12 + V

)
,

�2(t ) = −�∗
11(t )�∗

02(t )

(
1

�11
− 1

�11 + V

)
. (13)

Here, the Stark shift terms are omitted because they can be
eliminated by using auxiliary pulses or levels [23,75,76].

In order to implement the holonomic SWAP gate with
the Rydberg atoms, we assume �1(t ) = �0(t )cosθ , �2(t ) =

�0(t )eiϕsinθ , and �0(t ) = �̃0(t )eiμ(t ). In addition, a set of
orthogonal basis vectors is defined as {|+〉 = cos θ |01〉 +
eiϕsinθ |10〉; |−〉 = sin θ |01〉 − eiϕcosθ |10〉}. In this case, the
effective Hamiltonian in Eq. (12) can be rewritten as

Hg(t ) = �0(t )|+〉〈rr| + H.c.

= �x(t )σx + �y(t )σy + 0 × σz, (14)

with �x(t ) = �̃0(t )cos[μ(t )], �y(t ) = �̃0(t )sin[μ(t )], σx =
|rr〉〈+| + H.c., σy = −i|rr〉〈+| + H.c., and σz = |rr〉〈rr| −
|+〉〈+|.

B. Robust pulse design via invariant-based reverse engineering
and optimal control theory

Let us detail the creation of pulse sequences by combining
invariant-based reverse engineering and the systematic-error-
sensitivity nullified optimal control method [65]. The effective
Hamiltonian in Eq. (14) has an SU(2) symmetry dynamic
structure. Therefore, the dynamic invariant can be constructed
by the superposition of three generators of the SU(2) algebra
with time-dependent parameters λx(t ), λy(t ), and λz(t ) [73] as

Ig(t ) = λx(t )σx + λy(t )σy + λz(t )σz. (15)

By inserting the contents of Eqs. (14) and (15) into Eq. (1),
we can obtain

λ̇x(t ) = 2�y(t )λz(t ), λ̇y(t ) = −2�x(t )λz(t ),

λ̇z(t ) = 2�x(t )λy(t ) − 2�y(t )λx(t ). (16)

Based on Eq. (16), a constraint equation can be formulated
for the coefficients of the dynamic invariant Ig(t ), expressed
as λ2

x (t ) + λ2
y (t ) + λ2

z (t ) = C2 with a real constant C. When
C is set to 1, the parameters λx(t ), λy(t ), and λz(t ) can be
accordingly defined as

λx(t ) = sin β1 sin β2, λy(t ) = sin β1 cos β2,

λz(t ) = cos β1, (17)

with β1 and β2 being the time-dependent parameters. Accord-
ing to Eqs. (16) and (17), the solutions of �x(t ) and �y(t ) can
be obtained as

�x(t ) = (β̇2 sin β2 tan β1 − β̇1 cos β2)/2,

�y(t ) = (β̇2 cos β2 tan β1 + β̇1 sin β2)/2. (18)

In addition, the eigenvectors of the dynamic invariant Is(t ) can
also be obtained as [64–66]

|φ+
g (t )〉 = cos

β1

2
|rr〉 + ie−iβ2 sin

β1

2
|+〉,

|φ−
g (t )〉 = ieiβ2 sin

β1

2
|rr〉 + cos

β1

2
|+〉. (19)

The corresponding eigenvalues are 1 and −1, respectively.
According to the results of Eqs. (8) and (9), we can calculate
the time derivatives of the dynamic phases and the geometric
phases acquired by |φ±

g (t )〉 as follows:

ϑ̇±
g (t ) = ∓ β̇2 sin2 β1

2 cos β1
, 
̇±

g (t ) = ±β̇2 sin2 β1

2
. (20)

To satisfy the cyclic evolution conditions |φ±
g (0)〉 =

|φ±
g (T )〉 (T is the total time of evolution), the boundary
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condition β1(0) = β1(T ) = 0 is needed. Then, to obtain a
pure geometric phase, the parameter can be designed as [77]

β1(t ) = π sin2(πt/T ),

β2(t ) = −
gε(t ) + β̃2(t ),

ε(t ) =
{

0, t ∈ [0, T/2),
1, t ∈ [T/2, T ], (21)

where β̃2(t ) is an undetermined analytic function. With the
above assumptions of β1(t ) and β2(t ), the dynamic phase
ϑ−

g (t ) is eliminated in the whole evolution process [ϑ−
g (T ) =

0], and the pure geometric phase is 
−
g (T ) = 
g (see Ap-

pendix A for details). Therefore, the evolution operator can
be described as

Ug(T, 0) = ei
g|+〉〈+| + |−〉〈−|. (22)

Furthermore, returning to the computational basis
{|00〉, |01〉, |10〉, |11〉}, the evolution operator is represented
as

U0(
g, ϕ, θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 Q W 0

0 E R 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

with Q = ei
gcos2θ + sin2θ , W = e−iϕ (ei
g − 1)cosθsinθ ,
E = eiϕ (ei
g − 1)cosθsinθ , and R = cos2θ + ei
gsin2θ . If we
select 
g = π, ϕ = π , and θ = π/4, the SWAP gate can be
realized, and the gate operator is

U0(π, π, π/4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

The boundary conditions of parameters β1(t ) and β2(t )
have already been determined. The next step is to formulate
specific expressions for these parameters that will derive the
control fields. To realize quantum gates, it is known that the
gate fidelities can suffer from systematic errors introduced
by parameter imperfections. To mitigate the effects of
systematic errors, we can choose parameters β1(t ) and β2(t )
by using the systematic-error-sensitivity nullified optimal
method [65]. In the presence of systematic errors with error
coefficients η0 and η1 (η0, η1 ∼ η), the Rabi frequencies
of the laser pulses become �0k (t ) → (1 + η0)�0k (t )
and �1k (t ) → (1 + η1)�1k (t ). According to Eq. (13),
we have �1(t ) → (1 + η0)(1 + η1)�1(t ) = (1 + η0 +
η1)�1(t ) + O(η2) and �2(t ) → (1 + η0)(1 + η1)�2(t ) =
(1 + η0 + η1)�2(t ) + O(η2), where O(η2) denotes terms of
order η2 or beyond. Thus, in the presence of systematic errors
in the control field, the effective Hamiltonian in Eq. (14) can
be rewritten as follows:

H ε
g (t ) = (1 + ε)�0(t )|+〉〈rr| + H.c., (25)

FIG. 2. The control fields �x (t ) and �y(t ) versus t .

where ε = η0 + η1 is the effective error coefficient. By using
the time-dependent perturbation theory, we can obtain [65,66]

|ψε
g (T )〉 = |ψg(T )〉 − iε

×
∫ T

0
dtUg(T, t )Hg(t )|ψg(t )〉 + O(ε2), (26)

where |ψε
g (T )〉 [|ψg(T )〉] denotes the state of the system in the

presence (absence) of systematic errors. Since the state |−〉 is
dynamically decoupled from the Hamiltonian Hg(t ) and the
evolution with the initial state |+〉 is described by |ψg(t )〉 =
eiα−(t )|φ−

g (t )〉, the fidelity of evolution is estimated as

Fg = 1 − ε2

∣∣∣∣
∫ T

0
e2iα−(t )〈φ+

g (t )|Hg(t )|φ−
g (t )〉dt

∣∣∣∣
2

+ O(ε3),

(27)

with α+(t ) = −α−(t ) being considered. Therefore, the sys-
tematic error sensitivity Qg [65] in this case is calculated as
follows:

Qg = − ∂2Fg

2∂ε2

∣∣∣∣
ε=0

=
∣∣∣∣
∫ T

0
exp[iχ (t )]β̇1 sin2 β1dt

∣∣∣∣
2

,

(28)

with χ (t ) = β2(t ) + 2α−(t ). In order to minimize the in-
fluence of system-error sensitivity Qg, we select χ (t ) =
χ0{2β1(t ) − 2 sin[2β1(t )]} [65,67] for t ∈ [0, T/2), with χ0

being a time-independent parameter. For time node t =
T/2, χ (t ) shifts as �χ = �β2 + 2�
−

g = 
g, leading to
a modified expression for χ (t ) as χ (t ) = 
g + χ0{2β1(t ) −
2 sin[2β1(t )]} for the time range [T/2, T ]. Consequently, Qg

can be solved as Qg = sin2(χ0π ) sin2(
2
g/2)/χ2

0 . If we set
χ0 as a nonzero integer, the value of Qg equals zero, which
means that the minimum of the systematic error sensitivity is
achieved. Considering that, when we determine the maximum
pulse intensity, a larger value of χ0 extends the operation
time, we select χ0 = 1. Accordingly, β2(t ) is calculated as
β2(t ) = −
gε(t ) + 4 sin3[β1(t )]/3 for t ∈ [0, T ].

Based on the parameters designed above, we plot the
time variations of the control fields �x and �y in Fig. 2
and obtain the maximum value of the control field �max =
maxt∈[0,T ]{|�(t )|} = 20.35/T .
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(a) (b)

(c) (d)

FIG. 3. (a) The time evolution of populations for the states |+〉
and |rr〉. (b) The time evolution of populations for the states |−〉
and |rr〉. The time evolution of the population is defined as P =
|〈�p|�0(t )〉|2, where |�p〉 ∈ {|+〉, |−〉, |rr〉} is the state corre-
sponding to the evolution of the population and �0(t ) is the state
of the system at time t . (c) The dynamic phase ϑ−

g (t ) and geometric
phase 
−

g (t ) in the implementation of the SWAP gate versus t with
the effective Hamiltonian. (d) The time evolution of populations for
the computational basis states |00〉, |01〉, |10〉, and |11〉. The time
evolution of the population is defined as P′ = |〈�′

p|�s(t )〉|2, where
|�′

p〉 ∈ {|00〉, |01〉, |10〉, |11〉} is the state corresponding to the
evolution of the population and �s(t ) is the state of system at time t .

IV. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, numerical simulations are used to prove
the validity and robustness of the scheme. In order to
meet the conditions {|�11 + V |, |�12 + V |, |�11|, |�12| �
|�01(t )|, |�02(t )|}, we choose V = 5000/T , �11 = �12 =
1700/T , and �01 = �02 = 6700/T . The solutions of the Rabi
frequencies of the classical fields are given in Appendix B.
Considering an experimental reported Rydberg interaction
strength V = 2π × 50 MHz [63,76,78], where the distance
between the centers of Rydberg atoms is about d = 3.755 µm
with the van der Waals coefficient C6 = 8.8 × 1011 µm6/s
[79,80], the total time of system evolution is T = 15.92 µs.
Under the current parameter conditions, the scheme is numer-
ically simulated and discussed.

A. The validity of the scheme

Before the robustness analysis of the scheme, it is nec-
essary to verify the validity of the effective Hamiltonian in
Eq. (14). In Figs. 3(a) and 3(b), we plot the time evolution
of populations for the states |+〉, |−〉, and |rr〉 using the full
Hamiltonian in Eq. (10). In Fig. 3(a), during the evolution
period, the states |+〉 and |rr〉 experience population transfer
and finally return to the initial population. In Fig. 3(b), due to
the dynamical decoupling of states |−〉 and |rr〉, the popula-
tions of the two states remain unchanged during the evolution.
It can be seen that the results shown in Fig. 3(b) are in
good agreement with the expectations. Moreover, the dynamic

(a) (b)

(d)(c)

FIG. 4. (a) The average fidelity F̄g(t ) of the holonomic SWAP gate
versus t with the full Hamiltonian. (b) The final average fidelity
F̄g(T ) versus the systematic error coefficient for different parameters
χ0 with η0 = η1 = η. (c) The final average fidelity F̄g(T ) versus η0

and η1 with χ0 = 0. (d) The final average fidelity F̄g(T ) versus η0 and
η1 with χ0 = 1.

phase ϑ−
g (t ) and geometric phase 
−

g (t ) acquired during the
evolution are shown in Fig. 3(c). From Fig. 3(c), it can be
observed that the dynamic phase ϑ−

g (t ) gradually vanishes as
t approaches T , whereas the geometric phase 
−

g (t ) obtains
a predetermined value of 
−

g (T ) = 
g = π at time T . This
indicates that the evolution leads to the acquisition of a purely
geometric phase.

Finally, we choose a special initial state |�s(0)〉 =
1√
2
(|00〉 + |10〉) to verify the validity of the holonomic

SWAP gate. Correspondingly, the target state is |�s(T )〉 =
1√
2
(|00〉 + |01〉). The populations of the computational basis

states |00〉, |01〉, |10〉, and |11〉 are shown in Fig. 3(d). It can
be seen that the populations of states |00〉 and |11〉 remain
unchanged, while states |01〉 and |10〉 accomplish a population
inversion. Therefore, based on the above analysis, we verify
the validity of the effective Hamiltonian in Eq. (14), and the
holonomic SWAP gate can be successfully realized.

B. The robustness of the scheme

To estimate the performance of the holonomic SWAP gate
with different initial states, we define the average fidelity for
all possible initial states as [81,82]

F̄g(t ) = 1

N (N + 1)
{Tr[M(t )M†(t )] + |Tr[M(t )]|2}, (29)

where M(t ) = PcU
†

SWAPU (t )Pc, USWAP = |00〉〈00| +
|10〉〈01| + |01〉〈10| + |11〉〈11|, Pc = |00〉〈00| + |01〉〈01| +
|10〉〈10| + |11〉〈11| is the projection operator onto the
computational subspace, and N = 4 represents the dimension
of the computational subspace. The average fidelity F̄g(t )
versus t calculated with the full Hamiltonian in Eq. (10)
is plotted in Fig. 4(a). According to Fig. 4(a), the average
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(a) (b)

FIG. 5. (a) The final average fidelity F̄g(T ) versus simulation
counts under AWGN with SNR RN = 10. (b) The average fidelity
versus SNR RN . The green dashed line exhibits the fitting results
based on ln[1 − F̄g(T )] ∝ −RN .

fidelity of the holonomic SWAP gate is F̄g(T ) = 0.9991 at
t = T , which is in accordance with the expectation.

Taking into account the systematic error of the laser pulse,
we plot the final average fidelity F̄g(T ) of the SWAP gate versus
the systematic error coefficient with the parameters χ0 = 0,
χ0 = 0.5, and χ0 = 1 in Fig. 4(b). As shown in Fig. 4(b),
when the systematic error sensitivity is completely eliminated
(χ0 = 1), the average fidelity of the SWAP gate is F̄g(T ) >

0.9937 when η ∈ [−0.1, 0.1], which shows that the scheme is
insensitive to systematic error. It can also be observed that the
final average fidelity drops to F̄g(T ) = 0.9025 when η = 0.1
with χ0 = 0, i.e., without the optimal control [37,83–86].
Next, we show the relationships of the final average fidelity
F̄g(T ) versus η0 and η1 with the parameters χ0 = 0 and χ0 = 1
in Figs. 4(c) and 4(d), respectively. Figures 4(c) and 4(d) show
more clearly that the scheme using the optimal control is more
robust to systematic errors. That is, with the help of invariant-
based reverse engineering and the systematic-error-sensitivity
nullified optimal method, the robustness of the scheme against
the systematic errors of laser pulses is greatly enhanced.

In addition to systematic error, random noise is also an
inevitable factor in practical experiments. In order to simulate
the influence of various random processes, the additive white
Gaussian noise (AWGN) [53,87–89] is selected as a typical
noise model. Here, we use AWGN to evaluate the perfor-
mance of the scheme in a noisy environment. The actual Rabi
frequency under the influence of AWGN is

�′
0k (t ) = �0k (t ) + NAWG(�0k (t ), RN ),

�′
1k (t ) = �1k (t ) + NAWG(�1k (t ), RN ), (30)

where NAWG(�0k (t ), RN ) [NAWG(�1k (t ), RN )] denotes a func-
tion generating AWGN with the signal-to-noise ratio (SNR)
RN for the control field �0k (t ) [�1k (t )]. Because random noise
shows different effects in two separate simulations, in order
to estimate the impact of AWGN, multiple numerical simu-
lations should be carried out. We performed 50 simulations
for the final average fidelity F̄g(T ) with SNR RN = 10, and
the results are shown in Fig. 5(a). According to Fig. 5(a), in
the presence of AWGN, the final average fidelity fluctuates
in a very small range (the fluctuation range does not exceed
0.0008). For 50 simulations, the average fidelity is higher than
0.9984. Meanwhile, in Fig. 5(b), we show the average fidelity
of the SNR from 5 to 20. The error bars (standard deviation)
in Fig. 5(b) are obtained by repeating the calculation of the

(a) (b)

FIG. 6. The distribution of the fidelity F̄g(T ) when (a) the
random initial phase δP ∈ N (0, σ 2

P ), with σP = 0.2, and (b) the
Doppler-shift-inducing detuning δD ∈ N (0, σ 2

D ), with σD/(2π ) =
11.08 kHz.

average fidelity. The relationship between the average fidelity
and SNR RN is ln[1 − F̄g(T )] ∝ −RN . The final average fi-
delity is higher than 0.99 with SNR RN ∈ [5, 20]. Therefore,
the results show that the scheme is robust to random noise.

Due to the imperfections of the laser emitter, the laser-
induced Rabi oscillations between the ground and excited
states of the atom carry a random initial phase. The uncer-
tainty in the initial phase can be modeled by a Gaussian
distribution. The random initial phase may occur at each pulse
and corresponds to a laser pulse of the form �eiδP , where
δP ∈ N (0, σ 2

P ) is the Gaussian distribution of the random
initial phase and σ 2

P is the variance. We performed 10 000
simulations of the final average fidelity F̄g(T ) for σP = 0.2
and plot a histogram of the final average fidelity against its
corresponding occurrence probability in Fig. 6(a). According
to Fig. 6(a), the results demonstrate that the probability that
the final average fidelity is greater than 0.956 is 58.65%, and
the average result of 10 000 simulations is 0.9399. On the
whole, the scheme still produces acceptable gate fidelity under
the influence of random initial phases of pulses.

The Doppler shift caused by fluctuations in the velocity
range of atoms due to atomic thermal motion is an impor-
tant factor that cannot be ignored in experiments. According
to concrete reports [90–93], the Doppler shift leads to a
random detuning δD on each atom site, i.e., δD ∈ N (0, σ 2

D),
which is simulated as the error term HD = δD|r〉〈r| added
to the original Hamiltonian in Eq. (10). The value of δD

is given by σD = keffvrms, with keff = |k|1〉↔|e〉 + k|e〉↔|r〉| be-
ing the effective wave vector of the two-photon transition
|1〉 ↔ |r〉 and vrms = √

kBT/m being the one-dimensional
rms velocity spread of atoms. Bringing in the values of
the Boltzmann constant kB, atomic mass m = 87 × 1.66 ×
10−27 kg, and atomic temperature T = 2 µK, we can derive
the rms velocity spread vrms = 0.0139 m/s. Furthermore, we
can drive |1〉 ↔ |e〉 (|e〉 ↔ |r〉) with a 780-nm (480-nm) laser
with |k〉|1〉↔|e〉| = 2π/780 nm−1 (|k|e〉↔|r〉| = 2π/480 nm−1).
These two lasers can be focused onto the atomic array from
opposite directions to minimize the Doppler shift [90], result-
ing in keff = 2π/480 nm−1 − 2π/780 nm−1 and σD/(2π ) =
11.08 kHz. Since the energies of the ground states |0〉 and |1〉
are close, the Doppler shifts are almost the same for |1〉 ↔ |r〉
and |0〉 ↔ |r〉. Thus, the error term HD = δD|r〉〈r| can well
describe the Doppler shift effect in the present atomic sys-
tem. Based on the above descriptions, we performed 10 000
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FIG. 7. The final fidelity Fg(T ) of the holonomic SWAP gate ver-
sus the atomic decay rate with the initial state �s(0).

simulations for the final average fidelity F̄g(T ) and plot a
histogram of the final average fidelity against its correspond-
ing occurrence probability in Fig. 6(b). The average result
of 10 000 simulations is 0.9211. Most of the final average
fidelity of the simulations lies in the region above 0.9, and
the probability that the final average fidelity is greater than
0.96 is even closer to 50%. Therefore, the scheme maintains
acceptable gate fidelity even when affected by the Doppler
shift.

Decoherence is inevitable for the experimental process.
Atomic decay is the main decoherence factor affecting the
scheme. Influenced by decoherence, the evolution of the sys-
tem is governed by a master equation [94] as follows:

ρ̇(t ) = i[ρ(t ), H (t )]

+
2∑

k=1

1∑
p=0

Lkpρ(t )L†
kp − 1

2
[L†

kpLkpρ(t ) + ρ(t )L†
kpLkp],

(31)

where ρ(t ) is the density operator of the system, H (t ) is
the original Hamiltonian, k is the atomic number, and p cor-
responds to the state |0〉 or |1〉. In addition, the Lindblad
operator Lkp = √

�kp|p〉k〈r| is the corresponding decay from
Rydberg state |r〉k to the ground state |p〉k . For simplicity, we
assume the atomic decay rate �kp = �.

Similarly, in order to verify the robustness of the holo-
nomic SWAP gate to decoherence, we choose |�s(0)〉 =

1√
2
(|00〉 + |10〉) as the initial state. We plot the final fidelity

Fg(T ) of the holonomic SWAP gate with the initial state |�s(0)〉
versus the atomic decay rate in Fig. 7. The lifetime of the
Rydberg state at the principal quantum number of the Rb
atom of 70 is around 400 µs, which changes to a dissipation
coefficient of about 2.5 kHz over here, <3 kHz [95]. For the
atomic decay rate from 0 to 3 kHz, the final fidelity Fg(T ) is
still very high (above 0.9770). Therefore, the scheme can still
work well in the presence of decoherence.

V. EXTENDING THE SCHEME TO THE NON-CLIFFORD
SWAP GATES

According to the evolution operator in Eq. (23), the
scheme can be extended to realize the non-Clifford SWAP

gates [96–102]. When (
g, ϕ, θ ) = (απ, π, π/4), we can
implement the SWAPα gate, and the corresponding evolution
operator is represented as

USWAPα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1
2 (1 + eiπα ) 1

2 (1 − eiπα ) 0

0 1
2 (1 − eiπα ) 1

2 (1 + eiπα ) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

When α = 1/2, the commonly used
√

SWAP gate can be real-
ized. In order to realize the iSWAP gate and the

√
iSWAP gate,

a controlled-Z (CZ) gate is required,

UCZ(
g = π, ϕ, θ = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

along with the two following steps: (1) performing the CZ

gate described above and (2) realizing the iSWAP (
√

iSWAP)
gate by choosing (
g, ϕ, θ ) = (π, π/2, π/4) [(
g, ϕ, θ ) =
(π, π/2, π/8)]. The evolution operators corresponding to the
two gates are as follows:

UiSWAP = U (π, π/2, π/4)UCZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U√
iSWAP = U (π, π/2, π/8)UCZ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1√
2

i√
2

0

0 i√
2

1√
2

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

For the implementation of the controlled-SWAP (CSWAP)
gate, also known as the Fredkin gate [99,100], we need to add
a third atom as the control atom, coupled to the original target
atoms 1 and 2, as shown in Fig. 8. The transition |0〉3 ↔ |r〉3

is driven by a classical field with Rabi frequency �3 and blue
detuning �3. The RRI strength between atoms 3 and 1 (3 and
2) is V13 (V23). Under the rotating-wave approximation, the
Hamiltonian of the system takes the following form:

Hc(t ) = H (t ) ⊗ I3 + I1 ⊗ I2 ⊗ H3(t )

+V13|r〉1〈r| ⊗ I2 ⊗ |r〉3〈r| + I1 ⊗ V23|rr〉23〈rr|,
(35)
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FIG. 8. (a) Schematic for implementing a CSWAP gate. Inset: con-
trol atom 3 is coupled to target atoms 1 and 2 described in Fig. 1, with
RRI strengths V13 and V23. The effective �-type system of the target
atoms is coupled to the control atom with RRI strength V13 + V23.

where H (t ) is given in Eq. (10) and H3(t ) =
�3e−i�3t |r〉3〈0| + H.c. Similarly, we consider �01 =
�12 + V , �02 = �11 + V and move into a rotating frame via
the unitary operator R1 = exp[iV t (|rr0〉〈rr0| + |rr1〉〈rr1|)],
giving rise to

Hc1(t ) = R1Hc(t )R†
1 + iR†

1Ṙ1

= H ′(t ) ⊗ I3 + I1 ⊗ I2 ⊗ H3(t ) + V |rrr〉〈rrr|
+V13(|r0r〉〈r0r| + |r1r〉〈r1r| + |rrr〉〈rrr|)
+V23(|0rr〉〈0rr| + |1rr〉〈1rr| + |rrr〉〈rrr|)
+ (�3e−i(�3+V )t |rrr〉〈rr0| + H.c.)

+ (−�3e−i�3t |rrr〉〈rr0| + H.c.), (36)

where H ′(t ) is given in Eq. (11). Like for Eqs. (11) and (12),
we can obtain the effective Hamiltonian for the three-atom
system from Eq. (36) as

Hc2(t ) = Heff (t ) ⊗ I3 + I1 ⊗ I2 ⊗ H3(t ) + V |rrr〉〈rrr|
+V13(|r0r〉〈r0r| + |r1r〉〈r1r| + |rrr〉〈rrr|)
+V23(|0rr〉〈0rr| + |1rr〉〈1rr| + |rrr〉〈rrr|)
+ (�3e−i(�3+V )t |rrr〉〈rr0| + H.c.)

+ (−�3e−i�3t |rrr〉〈rr0| + H.c.), (37)

where Heff (t ) is given in Eq. (12). We consider the condi-
tions V13 = V23 = V , �3 = 2V , and V � �3, �1(t ), �2(t )
and move into a rotating frame via the unitary operator
R2 = exp(iHV t ), with HV = 3V |rrr〉〈rrr| + V (|r0r〉〈r0r| +
|r1r〉〈r1r| + |0rr〉〈0rr| + |1rr〉〈1rr|). If we neglect the fast-
oscillating terms, the Hamiltonian in Eq. (37) can be
simplified as

Hc3(t ) = �1(t )|010〉〈rr0| + �2(t )|100〉〈rr0|
+�1(t )|011〉〈rr1| + �2(t )|101〉〈rr1|
+�3|rrr〉〈rr0| + H.c. (38)

Here, the Stark shift terms are also omitted because they can
be eliminated by using auxiliary pulses or levels [23,75,76].
We define Hr = �3|rrr〉〈rr0| + H.c., whose eigenstates are
|�̃±〉 = (±|rr0〉 + |rrr〉)/

√
2, with corresponding eigenval-

ues of ±�3. Transforming Hc3(t ) to the frame defined by

FIG. 9. The average fidelity of the holonomic CSWAP gate versus
t with the full Hamiltonian.

R′ = exp(iHrt ) gives rise to

Hc4(t ) = R′Hc3(t )R′† + iR′†Ṙ′

= 1√
2

[�1(t )−i�3t |010〉〈�̃+| − �1(t )i�3t |010〉〈�̃−|

+�2(t )−i�3t |100〉〈�̃+| − �2(t )i�3t |100〉〈�̃−|]
+�1(t )|011〉〈rr1| + �2(t )|101〉〈rr1| + H.c. (39)

Considering the condition �3 � �1(t ), �2(t ) and, in the case
of the large detuning condition, the oscillating terms with
frequencies ±�3 can be neglected. Therefore, the dynamics of
the three atoms can be governed by the effective Hamiltonian

HCS = Heff (t ) ⊗ |1〉3〈1|. (40)

Equation (40) indicates that only when the state of the control
atom is |1〉3 does the SWAP gate on atoms 1 and 2 work,
which is exactly a CSWAP gate U CSWAP = I1 ⊗ I2 ⊗ |0〉3〈0| +
U0(π, π, π/4) ⊗ |1〉3〈1|. Finally, we plot the average fidelity
of the holonomic CSWAP gate versus t calculated with the full
Hamiltonian in Eq. (35) in Fig. 9. The average fidelity of
the CSWAP gate can reach 0.9989 at t = T , which proves the
feasibility of the scheme.

For the N-atom CSWAP gate, we also perform a brief expan-
sion. The system consists of atoms 1 and 2 as target atoms and
atoms k′ (k′ = 3, 4, . . . , N) as control atoms. The laser drives
to the target atoms, and the control atoms are the same as in
Fig. 8. However, here, we assume that the individual control
atoms simply have Rydberg-Rydberg interactions only with
the target atoms and that there are no interactions between the
individual control atoms. Under the rotating-wave approxima-
tion, the Hamiltonian of the system for N atoms is as follows:

HN (t ) = H (t )
N⊗

k′=3

Ik′ +
N∑

k′=3

[
k′−1⊗
n=1

In ⊗ Hk′ (t )
N⊗

n′=k′+1

I ′
n

]

+
N∑

k′=3

[
V1k′ |r〉1〈r|

k′−1⊗
n=2

In ⊗ |r〉k′ 〈r|
N⊗

l=k′+1

Il

+ I1 ⊗ V2k′ |r〉2〈r|
k′−1⊗
n=3

In ⊗ |r〉k′ 〈r|
N⊗

l=k′+1

Il

]
, (41)
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where H (t ) is given in Eq. (10) and Hk′ (t ) =
�k′e−i�k′ t |r〉k′ 〈0| + H.c. According to Eqs. (35)–(38),
considering the conditions V1k′ + V2k′ = �k′ and V1k′ , V2k′ �
�1(t ), �2(t ), �k′ , we neglect the fast-oscillating terms, and
the Hamiltonian in Eq. (41) can be simplified as

H ′
N = �1(t )|01〉〈rr|

N⊗
k′=3

(|1〉k′ 〈1| + |0〉k′ 〈0|)

+�2(t )|10〉〈rr|
N⊗

k′=3

(|1〉k′ 〈1| + |0〉k′ 〈0|)

+
N∑

k′=3

�k′ |rr〉〈rr|
k′−1⊗
n=3

In ⊗ |r〉k′ 〈0|
N⊗

l=k′+1

Il + H.c.

(42)

According to Eqs. (38)–(40), considering the condition �k′ �
�1(t ), �2(t ), we can ignore the high-frequency term from the
large detuning condition. Therefore, the dynamics of the N-
atom system is governed by the effective Hamiltonian

HNCS = Heff (t )
N⊗

k′=3

|1〉k〈1|. (43)

Equation (43) indicates that target atoms 1 and 2 execute the
SWAP gate only when the states of all control atoms are |1〉.

VI. CONCLUSION

In conclusion, we proposed a one-step scheme to real-
ize the nonadiabatic holonomic SWAP gate with Rydberg
atoms via invariant-based reverse engineering. The physical
system contains two Rydberg atoms as the carriers of in-
formation. By driving two atoms with large detuned laser
pulses, the effective Hamiltonian can be calculated. Subse-
quently, invariant-based reverse engineering was applied to
the effective Hamiltonian with SU(2) dynamical structure, and
the evolution path of NHQC was constructed. In addition, the
systematic-error-sensitivity nullified optimal control method
was used in the selection of parameters, which ensured that the
scheme is insensitive to the systematic error of pulses. Numer-
ical simulations demonstrated the validity of the scheme and
showed that the scheme performs fairly well in the presence
of systematic errors, random noise, the random initial phase
of the pulses, the Doppler shift, and decoherence. Finally, the
scheme was expanded to realize the non-Clifford SWAP gates.
Therefore, the scheme may provide some useful perspectives
for the realization of SWAP gates and non-Clifford SWAP gates
with Rydberg atoms.
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APPENDIX A: THE DYNAMIC PHASE AND THE
GEOMETRIC PHASE OBTAINED FROM

THE EVOLUTION PROCESS

Let us describe the calculation of the dynamic phase and
geometric phase obtained in the process of evolution. Accord-
ing to Eq. (21), β̇2(t ) can be described by β̇2(t ) = −
gδ(t −
T/2) + ˙̃β2(t ), with δ being the Dirac delta function. We as-
sume the variation of β̃2(t ) is symmetrical about t = T/2, i.e.,
β̃2(t ) = β̃2(T − t ). Therefore, it can be derived as

˙̃β2(t ) = dt̃

dt

d

dt̃
β̃2(t̃ ) = − ˙̃β2(t̃ ), (A1)

with t̃ = T − t . For the dynamic phase, we have

ϑ−
g (T )

= −
∫ T

0

˙̃β2(t ) sin2[β1(t )]

2 cos β1(t )
dt

+
∫ T

0


gδ
(
t − T

2

)
sin2[β1(t )]

2 cos β1(t )
dt

= −
∫ T/2

0

˙̃β2(t ) sin2[β1(t )]

2 cos β1(t )
dt −

∫ T

T/2

˙̃β2(t ) sin2[β1(t )]

2 cos β1(t )
dt

= −
∫ T/2

0

˙̃β2(t ) sin2[β1(t )]

2 cos β1(t )
dt −

∫ 0

T/2

˙̃β2(t̃ ) sin2[β1(t̃ )]

2 cos β1(t̃ )
dt̃

= 0. (A2)

Here, the condition β1(T/2) = π is used. In addition, the
geometric phase is


−
g (T ) = −

∫ T

0

˙̃β2(t ) sin2 β1(t )

2
dt

+
∫ T

0

gδ

(
t − T

2

)
sin2 β1(t )

2
dt

= 
g −
∫ T/2

0

˙̃β2(t ) sin2 β1(t )

2
dt

−
∫ T

T/2

˙̃β2(t ) sin2 β1(t )

2
dt

= 
g −
∫ T/2

0

˙̃β2(t ) sin2 β1(t )

2
dt

−
∫ 0

T/2

˙̃β2(t̃ ) sin2 β1(t̃ )

2
dt̃

= 
g. (A4)

APPENDIX B: SOLUTION OF THE RABI FREQUENCY OF
CLASSICAL FIELDS

According to the designed control fields �x(t ) and �y(t ),
we can inversely solve the Rabi frequency of the classical field
as follows:

� f (t ) = − [�x(t ) + i�y(t )] cos
(

π
4

)
(

1
�12

− 1
�12+V

) ,
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�′
f (t ) = − [�x(t ) + i�y(t )] sin

(
π
4

)
eiπ(

1
�11

− 1
�11+V

) ,

�01(t ) = |� f (t )|1/2, �12(t ) = eiν1(t )|� f (t )|1/2,

�02(t ) = |�′
f (t )|1/2, �11(t ) = eiν2(t )|�′

f (t )|1/2, (B1)

with

ν1(t ) = arctan
Im[� f (t )]

Re[� f (t )]
,

ν2(t ) = arctan
Im[�′

f (t )]

Re[�′
f (t )]

. (B2)

[1] G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch,
Quantum logic gates in optical lattices, Phys. Rev. Lett. 82,
1060 (1999).

[2] D. S. Weiss and M. Saffman, Quantum computing with neutral
atoms, Phys. Today 70(7), 44 (2017).

[3] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, UK, 1994).

[4] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and
M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev.
Lett. 85, 2208 (2000).

[5] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Dipole blockade and quantum in-
formation processing in mesoscopic atomic ensembles, Phys.
Rev. Lett. 87, 037901 (2001).

[6] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D.
Yavuz, T. G. Walker, and M. Saffman, Observation of
Rydberg blockade between two atoms, Nat. Phys. 5, 110
(2009).

[7] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau,
D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Obser-
vation of collective excitation of two individual atoms in the
Rydberg blockade regime, Nat. Phys. 5, 115 (2009).

[8] C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in
Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett.
98, 023002 (2007).

[9] T. Pohl and P. R. Berman, Breaking the dipole blockade:
Nearly resonant dipole interactions in few-atom systems,
Phys. Rev. Lett. 102, 013004 (2009).

[10] J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Z.
Wang, Breakdown of the dipole blockade with a zero-area
phase-jump pulse, Phys. Rev. A 80, 053413 (2009).

[11] T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller,
Evidence of antiblockade in an ultracold Rydberg gas, Phys.
Rev. Lett. 104, 013001 (2010).

[12] W. Li, C. Ates, and I. Lesanovsky, Nonadiabatic motional ef-
fects and dissipative blockade for Rydberg atoms excited from
optical lattices or microtraps, Phys. Rev. Lett. 110, 213005
(2013).

[13] S. Basak, Y. Chougale, and R. Nath, Periodically driven ar-
ray of single Rydberg atoms, Phys. Rev. Lett. 120, 123204
(2018).

[14] X.-F. Shi, Deutsch, Toffoli, and CNOT gates via Rydberg block-
ade of neutral atoms, Phys. Rev. Appl. 9, 051001(R) (2018).

[15] C. P. Shen, J. L. Wu, S. L. Su, and E. J. Liang, Construction
of robust Rydberg controlled-phase gates, Opt. Lett. 44, 2036
(2019).

[16] K. Y. Liao, X. H. Liu, Z. Li, and Y. X. Du, Geometric Rydberg
quantum gate with shortcuts to adiabaticity, Opt. Lett. 44, 4801
(2019).

[17] B. J. Liu, S. L. Su, and M. H. Yung, Nonadiabatic noncyclic
geometric quantum computation in Rydberg atoms, Phys. Rev.
Res. 2, 043130 (2020).

[18] S. L. Su, E. J. Liang, S. Zhang, J. J. Wen, L. L. Sun, Z. Jin, and
A. D. Zhu, One-step implementation of the Rydberg-Rydberg-
interaction gate, Phys. Rev. A 93, 012306 (2016).

[19] S. L. Su, H. Z. Shen, E. J. Liang, and S. Zhang, One-step
construction of the multiple-qubit Rydberg controlled-phase
gate, Phys. Rev. A 98, 032306 (2018).

[20] J. L. Wu, S. L. Su, Y. Wang, J. Song, Y. Xia, and Y. Y. Jiang,
Effective Rabi dynamics of Rydberg atoms and robust high-
fidelity quantum gates with a resonant amplitude-modulation
field, Opt. Lett. 45, 1200 (2020).

[21] T. H. Xing, X. Wu, and G. F. Xu, Nonadiabatic holonomic
three-qubit controlled gates realized by one-shot implementa-
tion, Phys. Rev. A 101, 012306 (2020).

[22] H. D. Yin, X. X. Li, G. C. Wang, and X. Q. Shao, One-step
implementation of Toffoli gate for neutral atoms based on
unconventional Rydberg pumping, Opt. Express 28, 35576
(2020).

[23] J. L. Wu, Y. Wang, J. X. Han, Y. K. Feng, S. L. Su,
Y. Xia, Y. Y. Jiang, and J. Song, One-step implementation
of Rydberg-antiblockade SWAP and controlled-SWAP gates
with modified robustness, Photonics Res. 9, 814 (2021).

[24] C. Dlaska, K. Ender, G. B. Mbeng, A. Kruckenhauser, W.
Lechner, and R. van Bijnen, Quantum optimization via four-
body Rydberg gates, Phys. Rev. Lett. 128, 120503 (2022).

[25] M. Gärttner, K. P. Heeg, T. Gasenzer, and J. Evers, Dynamic
formation of Rydberg aggregates at off-resonant excitation,
Phys. Rev. A 88, 043410 (2013).

[26] X. F. Shi and Y. Lu, Quantum gates with weak van der Waals
interactions of neutral Rydberg atoms, Phys. Rev. A 104,
012615 (2021).

[27] X. F. Shi, F. Bariani, and T. A. B. Kennedy, Entanglement
of neutral-atom chains by spin-exchange Rydberg interaction,
Phys. Rev. A 90, 062327 (2014).

[28] E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theor.
Phys. 21, 219 (1982).

[29] R. Barends et al., Diabatic gates for frequency-tunable
superconducting qubits, Phys. Rev. Lett. 123, 210501
(2019).

[30] W. Ning, X. J. Huang, P. R. Han, H. K. Li, H. Deng,
Z. B. Yang, Z. R. Zhong, Y. Xia, K. Xu, D. N. Zheng,
and S. B. Zheng, Deterministic entanglement swapping in
a superconducting circuit, Phys. Rev. Lett. 123, 060502
(2019).

[31] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin,
Quantum repeaters based on atomic ensembles and linear op-
tics, Rev. Mod. Phys. 83, 33 (2011).

062610-10

https://doi.org/10.1103/PhysRevLett.82.1060
https://doi.org/10.1063/PT.3.3626
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1038/nphys1178
https://doi.org/10.1038/nphys1183
https://doi.org/10.1103/PhysRevLett.98.023002
https://doi.org/10.1103/PhysRevLett.102.013004
https://doi.org/10.1103/PhysRevA.80.053413
https://doi.org/10.1103/PhysRevLett.104.013001
https://doi.org/10.1103/PhysRevLett.110.213005
https://doi.org/10.1103/PhysRevLett.120.123204
https://doi.org/10.1103/PhysRevApplied.9.051001
https://doi.org/10.1364/OL.44.002036
https://doi.org/10.1364/OL.44.004801
https://doi.org/10.1103/PhysRevResearch.2.043130
https://doi.org/10.1103/PhysRevA.93.012306
https://doi.org/10.1103/PhysRevA.98.032306
https://doi.org/10.1364/OL.386765
https://doi.org/10.1103/PhysRevA.101.012306
https://doi.org/10.1364/OE.410158
https://doi.org/10.1364/PRJ.415795
https://doi.org/10.1103/PhysRevLett.128.120503
https://doi.org/10.1103/PhysRevA.88.043410
https://doi.org/10.1103/PhysRevA.104.012615
https://doi.org/10.1103/PhysRevA.90.062327
https://doi.org/10.1007/BF01857727
https://doi.org/10.1103/PhysRevLett.123.210501
https://doi.org/10.1103/PhysRevLett.123.060502
https://doi.org/10.1103/RevModPhys.83.33


EFFECTIVE NONADIABATIC HOLONOMIC … PHYSICAL REVIEW A 109, 062610 (2024)

[32] H. Z. Wu, Z. B. Yang, and S. B. Zheng, Quantum state swap
for two trapped Rydberg atoms, Chin. Phys. B 21, 040305
(2012).

[33] A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, and
P. Zoller, Designing frustrated quantum magnets with laser-
dressed Rydberg atoms, Phys. Rev. Lett. 114, 173002 (2015).

[34] E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M.
Johansson, and K. Singh, Non-adiabatic holonomic quantum
computation, New J. Phys. 14, 103035 (2012).

[35] G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C.
Kwek, Nonadiabatic holonomic quantum computation in
decoherence-free subspaces, Phys. Rev. Lett. 109, 170501
(2012).

[36] P. Z. Zhao, G. F. Xu, and D. M. Tong, Nonadiabatic geometric
quantum computation in decoherence-free subspaces based on
unconventional geometric phases, Phys. Rev. A 94, 062327
(2016).

[37] Z. Y. Xue, J. Zhou, and Z. D. Wang, Universal holonomic
quantum gates in decoherence-free subspace on superconduct-
ing circuits, Phys. Rev. A 92, 022320 (2015).

[38] Y. M. Wang, Y. Su, X. Chen, and C. F. Wu, Dephasing-
protected scalable holonomic quantum computation on a Rabi
lattice, Phys. Rev. Appl. 14, 044043 (2020).

[39] P. Zanardi and M. Rasetti, Holonomic quantum computation,
Phys. Lett. A 264, 94 (1999).

[40] L. A. Wu, P. Zanardi, and D. A. Lidar, Holonomic quantum
computation in decoherence-free subspaces, Phys. Rev. Lett.
95, 130501 (2005).

[41] L. M. Duan, J. I. Cirac, and P. Zoller, Geometric manipulation
of trapped ions for quantum computation, Science 292, 1695
(2001).

[42] J. Pachos, P. Zanardi, and M. Rasetti, Non-Abelian Berry
connections for quantum computation, Phys. Rev. A 61,
010305(R) (1999).

[43] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. London, Ser. A 392, 45 (1984).

[44] Y. Aharonov and J. Anandan, Phase change during a cyclic
quantum evolution, Phys. Rev. Lett. 58, 1593 (1987).

[45] E. Sjöqvist, A new phase in quantum computation, Physics 1,
35 (2008).

[46] Q. X. Lv, Z. T. Liang, H. Z. Liu, J. H. Liang, K. Y. Liao,
and Y. X. Du, Noncyclic geometric quantum computation with
shortcut to adiabaticity, Phys. Rev. A 101, 022330 (2020).

[47] J. Zhang, T. H. Kyaw, D. M. Tong, E. Sjöqvist, and L. C.
Kwek, Fast non-Abelian geometric gates via transitionless
quantum driving, Sci. Rep. 5, 18414 (2015).

[48] S. L. Zhu and P. Zanardi, Geometric quantum gates that are
robust against stochastic control errors, Phys. Rev. A 72,
020301(R) (2005).

[49] Z. N. Zhu, T. Chen, X. D. Yang, J. Bian, Z. Y. Xue, and
X. H. Peng, Single-loop and composite-loop realization of
nonadiabatic holonomic quantum gates in a decoherence-free
subspace, Phys. Rev. Appl. 12, 024024 (2019).

[50] P. Z. Zhao, G. F. Xu, Q. M. Ding, E. Sjöqvist, and D. M. Tong,
Single-shot realization of nonadiabatic holonomic quantum
gates in decoherence-free subspaces, Phys. Rev. A 95, 062310
(2017).

[51] B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung,
Plug-and-play approach to nonadiabatic geometric quantum
gates, Phys. Rev. Lett. 123, 100501 (2019).

[52] S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum compu-
tation on superconducting circuits with optimal control, Adv.
Quantum Technol. 3, 2000001 (2020).

[53] Y. H. Kang, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Flex-
ible scheme for the implementation of nonadiabatic geometric
quantum computation, Phys. Rev. A 101, 032322 (2020).

[54] Y. X. Du, Z. T. Liang, H. Yan, and S. L. Zhu, Geometric quan-
tum computation with shortcuts to adiabaticity, Adv. Quantum
Technol. 2, 1900013 (2019).

[55] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S.
Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity:
Concepts, methods, and applications, Rev. Mod. Phys. 91,
045001 (2019).

[56] S. Martínez-Garaot, E. Torrontegui, X. Chen, and J. G. Muga,
Shortcuts to adiabaticity in three-level systems using lie trans-
forms, Phys. Rev. A 89, 053408 (2014).

[57] Y. C. Li, D. Martínez-Cercós, S. Martínez-Garaot, X. Chen,
and J. G. Muga, Hamiltonian design to prepare arbitrary states
of four-level systems, Phys. Rev. A 97, 013830 (2018).

[58] X. Laforgue, X. Chen, and S. Guérin, Robust stimulated Ra-
man exact passage using shaped pulses, Phys. Rev. A 100,
023415 (2019).

[59] B. Rousseaux, S. Guérin, and N. V. Vitanov, Arbitrary qudit
gates by adiabatic passage, Phys. Rev. A 87, 032328 (2013).

[60] D. Ran, W. J. Shan, Z. C. Shi, Z. B. Yang, J. Song, and Y. Xia,
Pulse reverse engineering for controlling two-level quantum
systems, Phys. Rev. A 101, 023822 (2020).

[61] Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng,
Optimal shortcut approach based on an easily obtained inter-
mediate Hamiltonian, Phys. Rev. A 95, 062319 (2017).

[62] B. H. Huang, Y. H. Kang, Y. H. Chen, Q. C. Wu, J. Song,
and Y. Xia, Fast quantum state engineering via universal SU(2)
transformation, Phys. Rev. A 96, 022314 (2017).

[63] R. H. Zheng, Y. H. Kang, D. Ran, Z. C. Shi, and Y.
Xia, Deterministic interconversions between the Greenberger-
Horne-Zeilinger states and the W states by invariant-based
pulse design, Phys. Rev. A 101, 012345 (2020).

[64] X. Chen, E. Torrontegui, and J. G. Muga, Lewis-Riesenfeld
invariants and transitionless quantum driving, Phys. Rev. A 83,
062116 (2011).

[65] A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Op-
timally robust shortcuts to population inversion in two-level
quantum systems, New J. Phys. 14, 093040 (2012).

[66] X. T. Yu, Q. Zhang, Y. Ban, and X. Chen, Fast and robust
control of two interacting spins, Phys. Rev. A 97, 062317
(2018).

[67] D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, Robust
quantum control by a single-shot shaped pulse, Phys. Rev.
Lett. 111, 050404 (2013).

[68] L. Van-Damme, D. Schraft, G. T. Genov, D. Sugny, T.
Halfmann, and S. Guérin, Robust not gate by single-shot-
shaped pulses: Demonstration of the efficiency of the pulses in
rephasing atomic coherences, Phys. Rev. A 96, 022309 (2017).

[69] R. H. Zheng, Y. H. Kang, S. L. Su, J. Song, and Y. Xia, Robust
and high-fidelity nondestructive Rydberg parity meter, Phys.
Rev. A 102, 012609 (2020).

[70] H. R. Lewis and W. B. Riesenfeld, An exact quantum theory
of the time-dependent harmonic oscillator and of a charged
particle in a time-dependent electromagnetic field, J. Math.
Phys. 10, 1458 (1969).

062610-11

https://doi.org/10.1088/1674-1056/21/4/040305
https://doi.org/10.1103/PhysRevLett.114.173002
https://doi.org/10.1088/1367-2630/14/10/103035
https://doi.org/10.1103/PhysRevLett.109.170501
https://doi.org/10.1103/PhysRevA.94.062327
https://doi.org/10.1103/PhysRevA.92.022320
https://doi.org/10.1103/PhysRevApplied.14.044043
https://doi.org/10.1016/S0375-9601(99)00803-8
https://doi.org/10.1103/PhysRevLett.95.130501
https://doi.org/10.1126/science.1058835
https://doi.org/10.1103/PhysRevA.61.010305
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/Physics.1.35
https://doi.org/10.1103/PhysRevA.101.022330
https://doi.org/10.1038/srep18414
https://doi.org/10.1103/PhysRevA.72.020301
https://doi.org/10.1103/PhysRevApplied.12.024024
https://doi.org/10.1103/PhysRevA.95.062310
https://doi.org/10.1103/PhysRevLett.123.100501
https://doi.org/10.1002/qute.202000001
https://doi.org/10.1103/PhysRevA.101.032322
https://doi.org/10.1002/qute.201900013
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/PhysRevA.89.053408
https://doi.org/10.1103/PhysRevA.97.013830
https://doi.org/10.1103/PhysRevA.100.023415
https://doi.org/10.1103/PhysRevA.87.032328
https://doi.org/10.1103/PhysRevA.101.023822
https://doi.org/10.1103/PhysRevA.95.062319
https://doi.org/10.1103/PhysRevA.96.022314
https://doi.org/10.1103/PhysRevA.101.012345
https://doi.org/10.1103/PhysRevA.83.062116
https://doi.org/10.1088/1367-2630/14/9/093040
https://doi.org/10.1103/PhysRevA.97.062317
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1103/PhysRevA.96.022309
https://doi.org/10.1103/PhysRevA.102.012609
https://doi.org/10.1063/1.1664991


XIAO, KANG, ZHENG, SONG, CHEN, AND XIA PHYSICAL REVIEW A 109, 062610 (2024)

[71] X. Chen and J. G. Muga, Engineering of fast population trans-
fer in three-level systems, Phys. Rev. A 86, 033405 (2012).

[72] U. Güngördü, Y. Wan, M. A. Fasihi, and M. Nakahara, Dy-
namical invariants for quantum control of four-level systems,
Phys. Rev. A 86, 062312 (2012).

[73] E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, Hamilto-
nian engineering via invariants and dynamical algebra, Phys.
Rev. A 89, 043408 (2014).

[74] D. F. James and J. Jerke, Effective Hamiltonian theory and
its applications in quantum information, Can. J. Phys. 85, 625
(2007).

[75] S. L. Su, Y. Tian, H. Z. Shen, H. Zang, E. Liang, and S. Zhang,
Applications of the modified Rydberg antiblockade regime
with simultaneous driving, Phys. Rev. A 96, 042335 (2017).

[76] D. X. Li and X. Q. Shao, Unconventional Rydberg pumping
and applications in quantum information processing, Phys.
Rev. A 98, 062338 (2018).

[77] Y. H. Kang, Y. Xiao, Z. C. Shi, Y. Wang, J. Q. Yang, J.
Song, and Y. Xia, Effective implementation of nonadiabatic
geometric quantum gates of cat-state qubits using an auxiliary
qutrit, New J. Phys. 25, 033029 (2023).

[78] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Entanglement of two individual
neutral atoms using Rydberg blockade, Phys. Rev. Lett. 104,
010502 (2010).

[79] Y. M. Liu, X. D. Tian, D. Yan, Y. Zhang, C. L. Cui, and
J. H. Wu, Nonlinear modifications of photon correlations via
controlled single and double Rydberg blockade, Phys. Rev. A
91, 043802 (2015).

[80] K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté,
Long-range interactions between alkali Rydberg atom pairs
correlated to the ns–ns, np–np and nd–nd asymptotes, J. Phys.
B 38, S295 (2005).

[81] P. Zanardi and D. A. Lidar, Purity and state fidelity of quantum
channels, Phys. Rev. A 70, 012315 (2004).

[82] L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of
quantum operations, Phys. Lett. A 367, 47 (2007).

[83] Z. Y. Xue, J. Zhou, Y. M. Chu, and Y. Hu, Nonadiabatic holo-
nomic quantum computation with all-resonant control, Phys.
Rev. A 94, 022331 (2016).

[84] Z. Y. Xue, F. L. Gu, Z. P. Hong, Z. H. Yang, D. W. Zhang,
Y. Hu, and J. Q. You, Nonadiabatic holonomic quantum com-
putation with dressed-state qubits, Phys. Rev. Appl. 7, 054022
(2017).

[85] P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M.
Tong, Rydberg-atom-based scheme of nonadiabatic geo-
metric quantum computation, Phys. Rev. A 96, 052316
(2017).

[86] Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang,
Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Single-loop
realization of arbitrary nonadiabatic holonomic single-qubit
quantum gates in a superconducting circuit, Phys. Rev. Lett.
121, 110501 (2018).

[87] D. Dong, C. Chen, B. Qi, I. R. Petersen, and F. Nori, Robust
manipulation of superconducting qubits in the presence of
fluctuations, Sci. Rep. 5, 7873 (2015).

[88] D. Dong, C. Wu, C. Chen, B. Qi, I. R. Petersen, and F. Nori,
Learning robust pulses for generating universal quantum gates,
Sci. Rep. 6, 36090 (2016).

[89] J. L. Wu, Y. Wang, J. X. Han, C. Wang, S. L. Su, Y. Xia,
Y. Jiang, and J. Song, Two-path interference for enantiomer-
selective state transfer of chiral molecules, Phys. Rev. Appl.
13, 044021 (2020).

[90] H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz,
A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D.
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