
PHYSICAL REVIEW A 109, 062609 (2024)

Applications of model-aware reinforcement learning in Bayesian quantum metrology

Federico Belliardo
NEST, Scuola Normale Superiore, I-56126 Pisa, Italy

Fabio Zoratti
Scuola Normale Superiore, I-56126 Pisa, Italy

Vittorio Giovannetti
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy

(Received 12 March 2024; accepted 22 May 2024; published 14 June 2024)

An important practical problem in the field of quantum metrology and sensors is to find the optimal sequences
of controls for the quantum probe that realize optimal adaptive estimation. In Belliardo et al. [arXiv:2312.16985],
we solved this problem in general by introducing a procedure capable of optimizing a wide range of tasks in
quantum metrology and estimation by combining model-aware reinforcement learning with Bayesian inference.
We take a model-based approach to the optimization where the physics describing the system is explicitly
taken into account in the training through automatic differentiation. In this follow-up paper we present some
applications of the framework. The first family of examples concerns the estimation of magnetic fields, hyperfine
interactions, and decoherence times for electronic spins in diamond. For these examples, we perform multiple
Ramsey measurements on the spin. The second family of applications concerns the estimation of phases and
coherent states on photonic circuits, without squeezing elements, where the bosonic lines are measured by photon
counters. This exposition showcases the broad applicability of the method, which has been implemented in the
qsensoropt library released on PyPI, which can be installed with pip.

DOI: 10.1103/PhysRevA.109.062609

I. INTRODUCTION

In recent years, the intersection of quantum mechanics
and machine learning has become a focal point of explo-
ration, with a particular emphasis on leveraging quantum
technologies for various applications. This convergence holds
immense potential for mutual enhancement across both do-
mains. Quantum technologies, notably quantum computers,
offer unique capabilities to tackle classical machine-learning
challenges, such as classification and sampling, utilizing both
classical and quantum data sources [1–3].

Conversely, traditional machine-learning methodologies
can enhance quantum information tasks, including state
preparation [4–7], optimal quantum feedback [8], error cor-
rection [9], device calibration [10–13], characterization [14],
and quantum tomography [15–17]. This work aligns with
the latter category, employing model-aware reinforcement
learning (RL) to derive optimized adaptive and nonadaptive
control strategies for quantum metrology and estimation tasks
[8,18–20].

Specifically, we address the challenge of optimal experi-
mental design [21], a task already explored using machine-
learning techniques [22–26], which we explore in the quantum
realm, finding performances going beyond the current state
of the art [27]. Estimation processes in this context in-
volve numerous nondifferentiable steps, such as simulating
measurements and resampling from posterior distributions,
posing challenges to the application of model-aware RL. To

overcome these obstacles, our approach incorporates tech-
niques like importance sampling, adding log-likelihood to the
loss [8], the reparametrization trick, and the Scibior and Wood
correction [28].

The methodology involves identifying tunable parameters
in a given physical platform and metrological task, allowing
an agent (which can be a neural network, a decision tree,
or a list of trainable controls) to learn an optimal policy
through gradient descent optimization. We have abstracted
and packaged this procedure into the qsensoropt library, which
is available on GitLab [29], together with the online documen-
tation of the classes and the examples of this paper [30]. The
library can also be installed with pip on every machine without
the need for cloning the environment, being it available on
PyPI. This is a versatile tool for finding adaptive policies to
optimize the precision of quantum sensor, which we think
will be of much use for the quantum information community.
By exploiting the classes and function preprogrammed in this
library, users can implement the quantum-mechanical model
of their sensors, and optimize an adaptive or nonadaptive
policy, which can be later exported and implemented in the
experiments.

Demonstrating the broad applicability of our approach,
we optimized examples on the nitrogen-vacancy (NV) center
platform for various metrology tasks, including DC and AC
magnetometry, decoherence estimation, and hyperfine cou-
pling characterization. In the realm of photonic circuits, we
explored applications such as multiphase discrimination, the
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agnostic Dolinar receiver [31], and coherent states classifica-
tion. Our findings showcase the superiority of model-aware
RL over traditional control strategies, even outperforming
model-free RL in multiple scenarios. Through this work we
lay the tools to accelerate the search for optimal control poli-
cies in quantum sensing and metrology, potentially expediting
the widespread industrial application of this quantum technol-
ogy.

The existing literature encompasses various works ad-
dressing challenges akin to our approach, which we have
categorized into four classes according to their relation with
our work. The first class encompasses the competitor ap-
proaches for optimization in quantum metrology [32–36].
These lack coverage of non-greedy or adaptive policies of
Bayesian estimation. The second class contains those op-
timal control algorithms based on the optimization of the
Fisher information [37–45], which again often lack coverage
of Bayesian estimation, adaptivity through the use of neural
networks or can be applied only to NV centers. The third class
design a theoretical approach to optimal control in quantum
sensing, but lack an implementation [20,23,24,46,47]. The
fourth and last class applies variational quantum circuits to
specific metrological tasks [48–54].

In this work, we give an overview of the main components
of the framework that allows quantum metrology tasks to
be optimized with machine learning, with several examples
of interest where we achieved results that are comparable
to or better than the current state of the art for each task.
However, we refer to Ref. [55] for a complete description of
the method and a review of the literature. See also Ref. [56]
for a three-pages explanation of the theory with a single ex-
ample. Although we have also implemented the optimization
of frequentist estimation, based on the Fisher information, the
results present in this paper concern exclusively the domain of
Bayesian estimation.

A. Review of the framework

This section is meant to be a quick review of the various
components of the qsensoropt framework used throughout the
paper. For a rigorous treatment of the theory behind, please
refer to Ref. [55]. See also Sec. I D for a more detailed review
of the quantum model of a sensor and how it is used in
Bayesian estimation with different degrees of control. This
section defines a common mathematical schematization to
quantum metrology, in which we fit all the examples of this
paper. If an optimization problem can be expressed in terms
of this scheme, then it can be optimized with the qsensoropt
library.

The sensor’s model. Some elements of the Bayesian in-
ference process in quantum metrology are universal, in the
sense that they do not depend on the particular task. These
are the Bayesian filtering, the repeated execution of the mea-
surements, and the training of the agent. Together with other
general aspects of the optimization routine, these are imple-
mented in the library. To apply the framework the user needs
to code the model of the specific quantum sensor of interest.
This model should simulate the stochastic outcome extraction
of the measurements and evaluate the probability of observing
a specific outcome for the particular quantum system at hand.

FIG. 1. This general scheme illustrates the information flow
within the measurement loop for a quantum metrology task where
the quantum probe is an NV center. Refer to Sec. II A for a brief
description of the physics of such systems. The environment we aim
to study interacts with the quantum probe and encodes it with the
unknown variables θ. This probe is then measured using a tunable
instrument (1). The outcome of this measurement provides us with
information about the probe’s state and in turn about the environ-
ment’s variables. This information is used to update the posterior
Bayesian distribution on θ (2). Some summary information derived
from the posterior is then input into an agent that decides the new
control parameters for the measurement in the next iteration of the
loop (3). This control is then realized through the electronics of the
experiment. In this picture, the agent is a neural network.

In this description, it should be stated which parameters are
controls, that can be tuned by the experimenter, and which are
the target of the estimation. These last ones, which will be
indicated collectively by the symbol θ, are unknowns related
to the environment of the probe, which are codified during the
probe’s evolution, or they are parameters of the state of the
probe if it has been encoded in a distant laboratory, on which
we have no control. This encoding is formalized later within
the object �θ , defined in Sec. I D.

The measurements loop. A quantum metrology or estima-
tion task usually involves many measurements indexed by
t , through which the information on the target parameters
is accumulated step by step in the Bayesian posterior. The
sequence of measurements is organized in a “measurement
loop,” which is represented in Fig. 1 and it involves three
fundamental steps. An iteration of the loop starts with the sim-
ulation of the evolution and the measurement of the sensor’s
probe, all done thanks to the model implemented by the user.
We indicate with yt the outcome of the t th measurement and
with yt := (y0, y1, . . . , yt ) the list of outcomes until the t th
iteration (included). The second step in the loop’s iteration
is the processing of the outcome, which allows the internal
representation of the Bayesian posterior to be updated. This
is done via a particle filter, which uses an ensemble of points
in the parameter space (called particles) and weights to ap-
proximate the posterior, see Refs. [55,57] for more details.
The initial distribution is the prior π (θ), which is uniform
over some interval in every application presented in this paper.
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At the third and last step of the iteration, some informa-
tion on the state of the estimation and on the posterior is
computed and fed to an agent which evaluates the controls
for the next measurement on the probe, i.e., for the next
iteration of the loop. We indicate with xt the controls of the
t + 1st measurement and with xt := (x0, x1, . . . , xt ) the list of
controls until iteration t (included). This agent doing the con-
trolling will typically be a neural network (NN). This agent
can leverage knowledge from past measurements to optimize
the estimation task’s overall performance, which makes the
control strategy adaptive and non-greedy. The posterior on θ

at the t th iteration of the loop is conditioned on the full list of
previous controls and outcomes, and it will be indicated with
P(θ|xt , yt ). Typically, during the training, a number B > 1 of
simulations of the estimation are executed in parallel with the
same agent in a batch; we call B the batch size. From this
batch, the statistical properties of the strategy produced by the
agent are estimated, like a precision figure of merit specified
by the user, e.g., the mean square error or the error probability.

The precision-resources paradigm. Each iteration of the
measurement loop consumes a certain amount of a specific
“resource” such as the estimation time or the available probes.
Once these resources are depleted, the measurement loop con-
cludes. For each application, the resource must be specified,
and it is as important as the definition of the precision figure of
merit. The goal of the machine-learning framework is to opti-
mize the precision for a fixed maximum amount of consumed
resources. In the simplest case, the resource is just the number
of measurements executed in the whole estimation, which we
indicate with Mmax, which is also the number of total iterations
of the measurement loop.

Overview of the training process. After the measurement
loop ends, an estimator ̂θ for the parameters θ is computed
from from the Bayesian posterior. The user-defined precision
metric serves as the training loss to be minimized through a
stochastic gradient descent procedure, which acts on the train-
able variables of the agent, e.g., the biases and weights in the
case of a NN, which are indicated collectively with the symbol
λ. The gradient of the loss is computed via automatic dif-
ferentiation, where the derivatives flow through the sampling
of stochastic variables, like the measurement outcomes, and
through the physical model of the sensor. This characterizes
the training as model-aware policy gradient reinforcement
learning and special precautions are taken to compute an
unbiased estimator of the gradient [8,55]. Each training step
involves a complete execution of the measurement loop until
the resources are depleted. After multiple training steps, in the
order of O(104), the precision reaches a plateau and the train-
ing is stopped. At this point, the agent has been optimized.
In all the applications of this paper Adam [58] has been used
as an optimizer. The learning rate is set to decrease at each
training step, with an in inverse square root decay law, as
specified in Ref. [59]. The initial learning rate α0 has been
chosen optimally for each simulation. through trial and error.

B. Specifics of each experiment

From the description of this machine-learning approach,
it is clear that in order to apply this technique on a particu-
lar sensor four pieces of information must be specified and

implemented in the code by the user. These are listed in the
following:

(1) The sensor’s model, represented by the code that
defines the probability of each potential outcome in a mea-
surement. This model is typically derived from the Born rule
applied to the physics of the sensor, necessitating the spec-
ification of a division between control and target parameters.
Further insights on how to schematize the quantum mechanics
behind this aspect are detailed in Sec. I D.

(2) The nature and the amount of resources consumed in
the metrological task.

(3) The input to the agent, which must be a function of the
posterior distribution, and in general of the measurement out-
comes for the implementation of an adaptive control policy.

(4) The error figure of merit used to gauge the precision of
the estimation, such as the mean square error.

C. Selection of the agent

In all the adaptive experiments the NN has by default five
hidden layers with 64 neurons each, and the activation func-
tion is tanh. For the nonadaptive strategy, the controls for each
measurement step do not depend on the Bayesian posterior. In
this case, the agent can still be a NN with reduced input, or
instead, we directly optimize the values of the controls in the
training by setting λ := xt . In Sec. IV B we experimented with
using a decision tree to compute the controls. This means that
the posterior is bypassed and the adaptive controls are directly
selected based on the list of past measurement outcomes yt .
More precisely the outcome selects the tree branch at each
node.

D. Dynamical model

In this section, we present a rigorous characterization of
the measurement loop of Fig. 1. To start with, let us observe
that the whole procedure can be represented as an ordered
sequence of concatenated events describing the information
acquired by the agent at the various stages and the associated
evolution of the probe state (see top panel of Fig. 2). In
particular, the event t takes as input the state of the probe
at the beginning of the t th measurement loop (orange), the
control value xt synthesized by the agent in the previous
event (red line), the complete list of the outcomes yt−1 =
(y0, y1, . . . , yt−1) of the measurements performed up to that
point, as well as a possible new encoding of the parameters θ

into the probe state. As shown in the bottom panel of Fig. 2,
a characterization of the t th event is obtained by assigning the
following three elements:

(1) a completely positive, trace preserving (LCPT) linear
map [60,61] �

(t,xt )
θ

describing the physical process which
encodes the parameters θ into the state of the probe at the
beginning of the event (red box of the figure);

(2) a collection of operators {Myt (xt )}yt fulfilling
the normalization condition

∑
yt

Eyt (xt ) = 1, Eyt (xt ) :=
M†

yt
(xt )Myt (xt ) describing the measurement process (black

box);
(3) a control unit (white box).
This is effectively a different way to divide the itera-

tion, more centered on the quantum-mechanical evolution

062609-3



BELLIARDO, ZORATTI, AND GIOVANNETTI PHYSICAL REVIEW A 109, 062609 (2024)

FIG. 2. (top panel) The measurement loop of Fig. 1 represented
as an ordered sequence of concatenated events (cyan boxes). The
violet arrows describe the temporal evolution of the probe state,
the red lines the controls, and the green arrow the measurement
outcomes that accumulate along the way. (bottom panel) Schematic
description of the processes involved in the t th event: first the input
state ρt (θ) of the probe undergoes to a possible new encoding stage
of the parameters θ via the action of the LCPT map �

(t,xt )
θ ; then the

transformed state ρ ′
t (θ) gets measured producing the outcome yt and

the probe emerges as the conditional state ρt+1(θ). As indicated by
the figure all these operations are in part determined by the inputted
control xt . The new value of the parameter xt+1 is determined by
the control unite element elaborating the newly acquired outcome
yt . To connect with the scheme in Fig. 1 observe that the control
unit here encompasses both the particle filter updating the Bayesian
distribution and the neural network.

with respect to Fig. 1 and the previous section, which was
more centered on the machine-learning side and the flow
of information. It is important to connect this two different
representation, and this can be done by observing that the
first two element in the above list, i.e., the LCPT map and
the measurement, are part of the sensor’s model, while the
Bayesian update and the NN are part of the last element, i.e.,
the control unit. The inclusion of the index t in the definition
of �

(t,xt )
θ

allows for the analysis of nonuniform models where
the encoding mechanism varies along the measurement loop.
For instance, setting �

(t,xt )
θ

as the identity map 1 for t � 1
represents models where θ is imprinted on the probe only at
the beginning of the first measurement loop. The explicit in-
clusion of the parameter xt in the definition of {Myt (xt )}yt and
�

(t,xt )
θ

accommodates instead models where the agent exerts
control over the measurement and possibly on the encoding
mechanism (e.g., determining factors such as the duration of
the probe’s interaction with the external system that is respon-
sible for the effect). Define now ρt (θ) := ρ(θ, xt−1, yt−1) the
density matrix of the probe at the beginning of the t th event
[i.e., the state that emerges as output from (t − 1)st event].
According to the model, such configuration is first evolved
via �

(t,xt )
θ

through the mapping

ρt (θ) �→ ρ ′
t (θ) := �

(t,xt )
θ

[ρt (θ)], (1)

producing the state ρ ′
t (θ) := ρ ′(θ, xt , yt−1) that undergoes to

the measurement process defined by the operators {Myt (xt )}yt .
The probability of outcome yt follows the Born rule:

P(yt |θ, xt , yt−1) := Tr
[
Eyt (xt )ρ

′
t (θ)

]
. (2)

The conditional probe state ρt+1(θ) := ρ(θ, xt , yt ) after mea-
surement is determined instead by the formula

ρt+1(θ) := Myt (xt )ρ ′
t (θ)M†

yt
(xt )

P(yt |θ, xt , yt−1)
. (3)

Equations (1) and (3) define the update of the input probe
density matrix from the event t to event t + 1. The update
of the control parameter xt+1 is instead determined by the
classical data processing unit of the model that uses yt as input
information. An essential ingredient of such a procedure is the
Bayesian inference formula,

P(θ|xt , yt ) := P(yt |θ, xt , yt−1)P(θ|xt−1, yt−1)∑
θ′ P(yt |θ′, xt , yt−1)P(θ′|xt−1, yt−1)

, (4)

which allows one to update the posterior probability
P(θ|xt−1, yt−1) acquired at the beginning of the t event to the
posterior probability P(θ|xt , yt ) of the next event.

II. PLATFORMS FOR QUANTUM METROLOGY

A. Experiments on the nitrogen-vacancy center

The first family of examples presented in Sec. III are appli-
cations on the platform of single electronic spins in diamond.
The nitrogen-vacancy (NV) center is a point defect of the
diamond crystal that allows for the initialization, detection,
and manipulation of its electronic spin. It exhibits an ex-
ceptionally long quantum coherence time, maintaining this
property even at room temperature. Consequently, it has found
applications in areas such as magnetometry, thermometry, and
stress sensing [62–65]. The e− spin of the NV center is a
two-level system, and the Ramsey measurement, upon which
the examples in this paper are based, involves the initialization
of such spin in the coherent state |ψ〉 := (|↑〉 + |↓〉)/

√
2 with

a π/2 microwave (MW) pulse, where |↑〉 (|↓〉) is the spin-up
(spin-down) state. The spin is then left to freely evolve and
interact with the environment in order to encode the target pa-
rameters. The duration τ of the time interval of free evolution
is the control parameter in this platform, changed from mea-
surement to measurement. A second π/2 MW pulse closes
the encoding stage. When the NV center is excited with green
light, according to the state of the e− spin, it has different
probabilities of decaying through a radiative or a nonradiative
path, which means that the number of photoluminescence
photons emitted is different for the two states of the spin.
This mechanism allows a reliable direct measurement of the
spin even at room temperature. We can also tune an extra
phase ϕ of the spin evolution through the MW pulse. There
are two possible choices for the resources on this platform,
either we fix the maximum number of Ramsey measurements
Mmax, or we fix the maximum total free evolution time T =∑Mmax−1

t=0 τt , which is the sum of the evolution times in each
Ramsey measurement. In this second case, the measurement
number M is a stochastic variable. We demonstrated the ap-
plicability of our machine-learning methods for single and
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multiparameter metrology on various estimation tasks on NV
centers including both DC [27] and AC magnetometry, de-
coherence estimation [66], and the characterization of the
hyperfine coupling with a 13C nucleus [67].

B. Experiments with photonic circuits

The second family of examples we study is based on
photonic circuits [68–72]. The systems we simulated can all
be realized with lasers as photon sources and passive ele-
ments, like phase plates and beam splitters (BS), together with
number resolving photon counters. We assume to have pro-
grammable elements, which means that we can dynamically
change the values of the phase imprinted by a plat and of
the transmissivity of a BS on a timescale faster than the time
interval between the measurements. This is necessary if we
want to have adaptivity in the estimation. In the examples
of this paper, we range from using a single bosonic mode
system to controlling ten modes. The resources for this class
of experiments are either the number of input states or the
number of photons in a signal. We studied multiphase estima-
tion, the agnostic Dolinar receiver [31], and coherent states
classification, both in the case where the states are classically
known and in the case they must be learned from a quantum
training set. We have avoided the use of active elements in all
these experiments, which would generate single or multimode
squeezing. We also avoided the use of other nonclassical states
of light like Fock states, which would require an implemen-
tation of the physics of the sensor that goes beyond that of
Gaussian systems. This is a limitation only of the presented
applications, and nothing prevents our framework from being
useful also for those systems.

III. APPLICATIONS ON THE NITROGEN-VACANCY
CENTER PLATFORM

All the NV center applications share the same input to the
agent, independently of the nature or the number d of param-
eters to estimate. The construction of this input is presented in
Sec. III A. Similarly all these application share also the same
loss, see Sec. III B.

A. Input to the neural network

The input to the NN is obtained by concatenating, at each
iteration of the measurement loop, the estimators for the un-
known parameters, their standard deviations, their correlation
matrix, the total number of consumed resources up to that
point, and the index of the measurement iteration. All these
variables are rescaled to make them fit in the [−1, 1] interval,
which makes them more suitable to be the inputs of a NN.
More precisely the input at the t th measurement step is com-
posed of

(1) the mean of the posterior given by

̂θt :=
∫

θP(θ|xt , yt ), (5)

normalized to lay in the interval [−1, 1], which is possible
since the prior is uniform with known extrema. These inputs
are d scalars, where d is the number of parameters to estimate,
and will be indicated with the symbol ˜θt in the following.

(2) standard deviations around the mean for each parame-
ter computed from the Bayesian posterior distribution. Given
the covariance matrix 	t defined as

	t :=
∫

(θ −̂θt )(θ −̂θt )
ᵀP(θ|xt , yt )dθ, (6)

the next d inputs to the NN are given by the vector σ̃t , with
entries

σ̃t, j := − 2
10 ln

√
	t, j j − 1, (7)

being
√

	t, j j the said standard deviations. This time, since
we do not know in advance the admissible values for the
covariance matrix, we cannot cast the standard deviation ex-
actly in [−1, 1], but we can do it approximately for standard
deviations in the range (10−5, 1), through the above formula.
These inputs are d scalars.

(3) the correlation matrix χt between the parameters, com-
puted as

χt,i j := 	t,i j√
	t,ii	t, j j

. (8)

This matrix does not need the normalization since its entries
are already in the interval [−1, 1]. The matrix χt is flattened
and each entry is added to the input of the NN. These are d2

further scalars.
(4) the iteration index of the measurement loop t nor-

malized in [−1, 1], according to the maximum number of
measurement steps Mmax, fixed beforehand. This input is a
single scalar, indicated with t̃ := 2t/Mmax − 1.

(5) the amount of consumed resources Rt normalized in
[−1, 1], according to the maximum amount of resources,
R, also fixed beforehand. This is a single scalar indicated
with R̃t := 2Rt/R − 1. For the NV center applications the
resources are either the number of measurements, i.e., Rt := t
and R := Mmax, or the total free evolution time, i.e., Rt :=∑t

k=0 τk and R := Tmax.
The total length of the NN input as a function of the number

of parameters is ni := d2 + 2d + 2. If the NN is used for the
nonadaptive strategy it receives in input only the two scalars
R̃t and t̃ , this is the case for the decoherence estimation in
Sec. III E.

B. Definition of the precision figure of merit

The error on the estimation task for the NV center is

L(λ) := tr[G · K (λ)], (9)

where K (λ) is the mean error matrix of the estimator̂θ on the
batch of B parallel simulations, i.e.,

K (λ) :=
B∑

k=1

(̂θ − θ)(̂θ − θ)ᵀ. (10)

G � 0 is the weight matrix used to obtain a scalar error for the
multiparameter metrological problem, and λ are the trainable
variables of the agent. The estimator ̂θ is the mean of the
posterior defined in Eq. (5) but K (λ) ought not to be confused
with the covariance 	t defined in Eq. (6). The latter refers to a
single estimation, the former to multiples; in other words K (λ)
is the empirical dispersion of the estimator, computed through
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multiple experiments, while 	t is the uncertainty on ̂θt of a
single estimation. The mean error in Eq. (9) can be expanded
as

L(λ) =
B∑

k=1

tr[G · (̂θk − θk )(̂θk − θk )ᵀ], (11)

from which it is clear that the error �(̂θk, θk ) for each single
estimation in the batch should be

�(̂θk, θk ) := tr[G · (̂θk − θk )(̂θk − θk )ᵀ], (12)

where the subscript k is the index of the simulation inside
the batch. For those examples with a fixed maximum amount
of free evolution time Tmax we use the cumulative loss as a
figure of merit for the precision in the training:

Lcum(λ) := 1

MmaxB

Mmax−1∑
t=0

B∑
k=1

�(̂θk,t , θk )

η(θk, Tt,k )
, (13)

with normalizing factor η(θk, Tk ) given by

η(θk, Tt,k ) := min

(
d∑

i=1

Gii
(bi − ai )

12
,

1

Tt,k

)
, (14)

where the sum is over the d parameters θ, being (ai, bi ) the
extrema of the uniform prior on the ith parameter, and Gii the
ith diagonal entry of the weight matrix. The quantity Tt,k is the
total elapsed evolution time, i.e.,

Tt,k :=
t∑

m=0

τm,k, (15)

which plays the role of the amount of consumed resources
and can be different across the batch of estimations. The
quantity τt,k is the evolution time at the iteration index t , for
the kth instance of the estimation in the batch. The figure of
merit Lcum is designed to take into account also the precision
of the intermediate results, and not only the error of ̂θ at
the end of the estimation. For those examples referring to a
measurement-limited estimation we use the logarithm loss,
i.e.,

Llog(λ) := 1

Mmax

Mmax−1∑
t=0

ln

[
1

B

B∑
k=1

�(̂θk,t , θk )

]
, (16)

which is a version of the cumulative loss that does not require
the normalizing factor η and has been found to work better for
measurement-limited estimations.

C. DC magnetometry with time and phase control

1. Description of the task

The NV center electron spin is sensitive to magnetic fields;
for example, static fields determine the electron Larmor fre-
quency, which can be measured as an accumulated phase by
a Ramsey experiment. The spin projection measurement that
follows has a binary outcome according to the selected spin
state. Indicating with ±1 these two outcomes their probabili-
ties are

p(±1|ω, T2, τ ) := 1
2 ± 1

2 e−τ/T2 cos (ωτ + ϕ). (17)

This is the quantum sensor’s model that has to be hard coded
for the RL framework to be applicable. We can easily identify
the theoretical description of the model using the convention
defined in Sec. I D. The initial state for the system is the state
|+〉〈+|, while the physical map �

(t,xt )
θ

is the same at each step
and can be divided in the usual evolution of a spin under the
action of a magnetic field, with Hamiltonian

Ĥ := h̄ω

2
σ̂z, (18)

followed by a ϕ phase rotation and a dephasing of the state.
The phase ω := γ B represents the unknown precession fre-
quency to be estimated, which is proportional to the static
magnetic field B with γ 
 28 MHz/mT. The unitary com-
ponent of the evolution is

Û (τ, ϕ) := exp

[
−i

(
Ĥτ

h̄
+ ϕ

2
σz

)]
, (19)

and we define the action on the state as

Uτ,ϕ (ρ̂ ) := Û (τ, ϕ)ρ̂Û (τ, ϕ)†. (20)

The action of the dephasing integrated on the evolution time
τ can be described by a depolarizing dissipative term that is
written in the form of an LCPT map:

Φτ (ρ̂ ) := ρ̂e−τ/T2 + 1

2
(1 − e−τ/T2 ), (21)

so that the map �
(t,xt )
θ

defined in the breakdown of Sec. I D is

�
(t,xt )
θ

:= Φτt ◦ Uτt ,ϕt , (22)

with xt := (τt , ϕt ). The free evolution time τ and the phase
ϕ are controlled by the trainable agent, while ω is the un-
known parameter to be estimated. The parameter T2 denotes
the transverse relaxation time, serving as the timescale for the
dephasing induced by magnetic noise. Mostly this is caused
by the 13C in the diamond lattice. In some of the examples of
this section we perform multiparameter estimation, indeed the
transverse relaxation time T2 may or may not be an unknown
in the estimation. The prior on the frequency ω is uniform in
(0, 1) MHz. In the simulations with unknown T −1

2 , a narrow
prior, uniform in T −1

2 ∈ (0.09, 0.11) MHz, was chosen. The
optimization of the NV center as a magnetometer has been ex-
tensively studied in the literature with analytical tools [73,74],
with numerics [75–87], and with machine learning [27,88,89],
but with the model-aware RL implemented by qsensoropt, we
were able to outperform these works and redefine the state of
the art for the performances of DC magnetometry with NV
centers.

2. Discussion of the results

We conducted multiple estimations summarized in Fig. 3,
where we compared the performances of the optimized adap-
tive (NN) and nonadaptive strategies against the particle guess
heuristic (PGH) [90], which is a commonly referenced strat-
egy in the literature. Additionally, we introduced a variant
of the σ−1 strategy [74], named σ−1&T −1, which accounts
for the finite coherence time. According to the σ−1&T −1

strategy, the evolution time τt is computed from the covariance

062609-6



APPLICATIONS OF MODEL-AWARE REINFORCEMENT … PHYSICAL REVIEW A 109, 062609 (2024)

FIG. 3. The performances of the optimized adaptive and non-
adaptive strategies are reported in this plots for DC magnetometry
on NV center with time and phase control, together with the same
strategies commonly used in the literature discussed in Sec. III C.
Along with the NN optimized to control τ and ϕ, the performances of
the NN trained to control only the evolution time τ are reported as the
dotted brown line. The first two lines of plots have a fixed T −1

2 , with
only the precession frequency ω being estimated. In contrast, the last
line refers to the estimation of both T −1

2 and ω simultaneously, i.e.,
θ = (ω, T −1

2 ). In both cases G = 1. The shaded gray areas indicate
the Bayesian Cramér-Rao bound, which is the ultimate precision
bound computed from the Fisher information, which can be found
in Appendix A 3. For these estimations, we have used N = 480
particles for the particle filter. In each plot, we reported also the batch
size B and the initial learning rate α0 used in the simulations for the
“adaptive” strategy.

matrix 	t of the current posterior distribution as

τt = [
tr(	t )

1
2 + T̂ −1

2

]−1
, (23)

while the standard σ−1 strategy prescribes τt = tr(	t )−
1
2 . In

the case of a fixed T −1
2 , this value was used instead of its es-

timator T̂ −1
2 . For computing the controls of the PGH strategy,

two particles θ1 and θ2 are drawn from the Bayesian posterior
distribution; the evolution time is then computed as

τt = (||θ1 − θ2||2 + ε)−1, (24)

with ε := 10−5 MHz. As a function of the normalized input to
the NN, the controls τ and ϕ are obtained from(

τt

ϕt

)
=
(

h
π

)
| fNN(˜θt , σ̃t , χt , R̃t , t̃ )| +

(
1 µs

0

)
, (25)

where h, which stands for “height,” is a prefactor that is cho-
sen to be appropriate for each simulation, and should be of the
order of magnitude of the expected optimal τt . The NN is the
function fNN. The prefactors h for our experiments appear in
Table I. For the time-limited estimations these prefactors are
chosen to be roughly in accordance with the maximum value

TABLE I. Prefactor h appearing in Eq. (25) for DC magnetome-
try on an NV center.

Time Measurement

T2 = ∞ T max
20 �2

√
Mmax µs�

T2 < ∞ max{ T max
20 , T2} max{�2

√
Mmax� µs, T2}

T −1
2 ∈ (a, b) max{ T max

20 , a−1} max{�2
√

Mmax� µs, a−1}

of the control predicted by the analysis in Refs. [59,91], for
the measurement-limited case see Appendix C. The constant
shift added in Eq. (25) and the absolute value are necessary to
keep τt strictly positive, which is helpful for the convergence
of the training. The NN has been pretrained to reproduce a
linear ramp for the control time τ , starting from 1 µs and
reaching τ = h at the end of the estimation. This behavior
has been suggested to us by the analytical results exposed in
Appendix C and in Ref. [59]. The same initial controls are
used for the nonadaptive strategy. Besides the optimized adap-
tive strategy with time and phase controls we reported also,
under the name “Only τ ,” the optimized precisions achieved
through controlling the time τt only, also reported in Ref. [55].
From the plots in Fig. 3 we conclude that there is only a
very small advantage in controlling the phase for T2 = 10 µs,
if there is any at all. Similarly, with T2 = ∞, 100 µs no
advantage has been found, although the plots have not been
reported. For T2 = 10 µs and Tmax = 2560 µs the phase control
had converged to the constant ϕ = π , and more training could
not take it out of this minimum. From the plot for T2 = 5 µs
we see that the advantage of controlling the phase ϕ grows
as the coherence time becomes smaller. The results of the
simulations with T −1

2 ∈ (0.09, 0.11) MHz are very similar to
that with T2 = 10 µs because of the relatively narrow prior
on T −1

2 .

3. Future directions

Typically, in the applications, the meaningful resource is
the total time required for the estimation. This does not coin-
cide however with T = ∑Mmax−1

t=0 τt , because the initialization
of the NV center, the readout, and the data processing all take
time. This overhead time is proportional to the number of
measurements, so, in a real experiment, we expect the actual
resource to be a combination of the evolution time T and the
number of measurements, M. In future work, the role of the
higher moments of the Bayesian posterior distribution in the
determination of the controls should be explored. In particular,
it should be understood if with(

τt

ϕt

)
=
(

h
π

)
| fNN(˜θt , σ̃t , χt , γ̂1, μ̃4, μ̃5, . . . , R̃t , t̃ )|

+
(

1 µs
0

)
, (26)

more precision from the adaptivity can be achieved. In this
formula γ̃1 is the skewness of the posterior and μ̃i are its
higher moments. A further improvement of this work would
be to implement nonsingle-shot readout of the NV center
state, since at room-temperature it is the only way to measure
the spin, as done by Zohar et al. [82]. The decoherence model
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we have used in this example and in all the others of the
section works well for surface NV center, while for bulk
centers a better model is

p(±1|ω, T2, τ ) := 1
2 ± 1

2 e−(τ/T2 )2
cos (ωτ + ϕ). (27)

The majority of the theoretical works, especially those papers
involving ML [27], refer to Eq. (17), and we wanted to be con-
sistent with this trend in order to facilitate the comparisons. A
further study could be treating the exponent of the dephasing
term as a nuisance parameter.

D. AC magnetometer

1. Description of the task

In this section, we study the estimation of the intensity
of an oscillating magnetic field of known frequency with an
NV center used as an AC magnetometer. The NV center spin
precesses in the magnetic field of intensity B and frequency ω,
then its state is observed. The model for the binary outcome
of the Ramsey measurement is

p(±1|�, T2, τ ) := 1

2
± 1

2
e−τ/T2 cos

[
�

ω
sin (ωτ )

]
. (28)

These probabilities can be found with a physical setup very
similar to the one described in Sec. III C, where we need to
change the Hamiltonian of the system, which now oscillates
with frequency ω, i.e.,

Ĥ := h̄�

2
cos (ωτ )σ̂z, (29)

in this situation we also neglect the controllable phase ϕ, i.e.,
we set ϕ = 0 for all the measurement steps. The evolution
time τ is controlled by the trainable agent, while � := γ B
is the unknown parameter to be estimated. The parameter T −1

2
may or may not be an unknown in the estimation; in all cases
G = 1. The prior on � is uniform in (0, 1) MHz for all the
examples. The formula for τt is

τt = (1 µs) × | fNN(˜θt , σ̃t , χt , R̃t , t̃ )| + 1 µs. (30)

The weights and biases of the NN are randomly initialized,
and so are the controls for the nonadaptive strategy.

2. Discussion of the results

The results of the strategy optimization for this model are
reported in Fig. 4. Remarkably the time-limited estimations
with long coherence time can saturate the bound set by the
Fisher information. The model used in this example is for-
mally equivalent to Eq. (17) with ϕ = 0, where the adaptive
strategy gives only small advantages, at difference with the
results obtained here for AC magnetometry. This is because
the AC model maps to the DC one in a very different region
of parameters with respect to the region we have explored in
Sec. III C.

3. Future directions

In AC magnetometry the technique of dynamical decou-
pling is often used to improve the sensitivity with respect to �

and to increase the coherence time T2. This consists of a series
of π pulses that reverse the sign of the accumulated phase.

FIG. 4. This figure refers to the problem of AC magnetometry on
an NV center with known frequency ω = 0.2 MHz; see Eq. (28) for
the model. The mean-square error (MSE) of the optimized NN and
static strategies are plotted, together with the performances of the
σ−1, the σ−1&T −1, and the PGH strategies, discussed in Sec. III C.
On the left, the precisions of the time-limited simulations are re-
ported, while the plots on the right refer to the measurement-limited
estimation. For all the plots G = 1. The shaded gray areas indicate
the Bayesian Cramér-Rao bound, which is the ultimate precision
bound computed from the Fisher information, which can be found
in Appendix A 4. For these estimations, we used N = 480 particles
for the particle filter. In each plot, we reported also the batch size B
and the initial learning rate α0 used in the simulations for the adaptive
strategy.

Given ti, 0 < i < L + 1, the times at which the instantaneous
π pulse are applied, the outcome probabilities for a Ramsey
measurement on a noiseless NV center is

p(±1|�, T2, τ )

:= 1

2
± 1

2
cos

[
�

ω

L+1∑
i=1

(−1)i[sin (ωti ) − sin (ωti−1)]

]
,

(31)

with L being the number of pulses, and t0 and tL+1 being re-
spectively the initialization and the measurement times. In the
current simulations we have not used π pulses, but optimizing
their application is the natural extension of this example, left
for future works. For controlling the pulses there are three
possibilities:

(1) The interval between all the pulses is fixed to τ =
ti+1 − ti, which is produced by a NN together with the number
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of pulses L. In this case, we have two controls, one of them L
being discrete.

(2) The controls are the L time intervals τi = ti − ti−1. The
number of pulses is fixed but they can be made ineffective with
τi = 0.

(3) The control is the free evolution time τ together with
a boolean variable, which tells whether a pulse or a measure-
ment has to be applied after the free evolution. This would
require a stateful model for the NV center.

The problem of estimating the magnetic field knowing the
frequency is complementary to the protocol for the optimal
discrimination of frequencies [73], which has been applied to
distinguish two chemical species in a sample. In this work the
authors put forward an optimal strategy for the discrimination
of two frequencies ω and ω + �ω, knowing the intensity of
the field. If �ω � ω and the field intensity is unknown, then
a two stage approach to the problem is possible. We first
estimate the intensity of the field as done in this example,
while considering the frequency ω to be fixed and known,
then we proceed with the optimal frequency discrimination
based on the intensity just estimated. The error probability of
the second stage depends on the precision of the first. Given
a maximum total time for the discrimination, the assignment
of time to the first and the second stages can be optimized
to minimize the final error. It is important for the first stage
to have low sensitivity to variations in the frequency, and
for �ω 
 0 we expect this two stage protocol to be close to
optimality. For optimizing the frequency discrimination with
the field intensity as a nuisance parameter in a fully integrated
protocol the introduction of π pulses is necessary, as they have
been used in Ref. [73]. The natural extension of frequency
discrimination is the estimation of both the intensity and the
frequency of the magnetic field optimally, both starting from
a broad prior. All these improvements are left for future work.

E. Decoherence estimation

1. Description of the task

In this example, we study an NV center subject to variable
decoherence of the dephasing type, that we want to char-
acterize. The model for the binary outcome of the Ramsey
measurement is

p(±1|T, β, τ ) := 1 ± e−(τ/T )β

2
, (32)

that can be obtained with a dynamical model similar to the
one described in Sec. III C, where we need to set the magnetic
field B or equivalently the frequency ω to zero and change
slightly the noise model, using

Φτ (ρ̂ ) := ρ̂e−(τ/T )β + 1

2
[1 − e−(τ/T )β ]. (33)

The evolution time τ is controlled by the trainable agent,
while T −1 and β are the two unknown characteristic param-
eters of the dephasing noise, i.e., respectively the transverse
relaxation time and the decay exponent. In the applications,
the coherence time of the noise encodes some useful informa-
tion about the environment, like the concentration of radicals
in a biological sample or the transport property of a material.

The priors on T −1 and β are uniform in (0.01, 0.1) MHz and
(1.5, 4.0), respectively.

2. Discussion of the results

In this section, we compare the results of various strategies
to control τ , which are the

(1) optimized adaptive strategy with a trained NN, which
outputs the control according to

τt = (100 µs) × | fNN(˜θt , σ̃t , χt , R̃t , t̃ )| + 1 µs. (34)

(2) static strategy implemented with a NN that receives in
input only R̃t and t̃ , i.e.,

τt = (100 µs) × | fNN(R̃t , t̃ )| + 1 µs. (35)

(3) random strategy, where the inverse of the evolution
time τ−1 is chosen randomly and uniformly in the support of
the prior for T −1, i.e., (0.01, 0.1) MHz.

(4) inverse time strategy. In this case, the evolution time

is τ := α
1/β̂
M T̂ −1 for the measurement-limited estimation and

τ := α
1/β̂
T T̂ −1 for the time-limited estimations, where αM =

0.796 81 and αM = 0.437 11. These numerical coefficients
come from the optimization of the Fisher information reported
in Appendix A 5. For the simulations where β is treated as a
nuisance parameter, αM is used also for the time-limited esti-
mation. This strategy not only depends on the current estimate
T̂ −1 for the decoherence time but also on the estimator for the
decay coefficient β̂, and it is, of course, adaptive.

Notice that, differently from the other NV center exam-
ples, the nonadaptive strategy for this application has been
implemented not as a list of controls for each individual mea-
surement but as a NN. The results of the strategy optimization
for this model are reported in Fig. 5. Both the adaptive and
nonadaptive strategies have been pretrained to reproduce a
linear ramp that reaches the maximum τ = 100 µs at the end
of the estimation. From these simulations, we conclude that
there is no advantage in using an NN instead of the strategy
that optimizes the Fisher information, except when we are
interested in the estimation of β.

3. Future directions

Identifying the decay exponent has applications in distin-
guishing the type of NV center, surface of bulk, that we are
dealing with. Such a problem would be formulated in terms
of a discrimination task between β = 1, 2, with T as the
nuisance parameter.

F. Hyperfine coupling estimation

1. Description of the task

In this example, we study the measurement of an NV center
strongly coupled to a 13C nuclear spin in the diamond lattice.
Such nuclear spin is not hidden in the spin bath of nuclei that
are responsible for the dephasing noise, instead, it causes a
relatively large split of the energy levels of the NV center
according to the hyperfine interaction strength and that can
be measured in an experiment. The precession frequency of
the NV center in a magnetic field is determined by the state of
the nuclear spin. In the experiment of Joas et al. [67] multiple
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FIG. 5. In these plots the MSE for the decoherence estimation
on an NV center is reported as a function of the consumed resources,
with the time-limited estimations on the left and the measurement-
limited ones on the right. In the first line of plots, the decaying
exponent β is unknown and it is treated as a nuisance parameter.
Therefore, only the precision on the inverse decay time appears in the
loss. The plots on the second line refer to the case where β is known
and fixed (β = 2), and only T −1 is estimated. In the third line of plots
β and T −1 are unknown and are both parameters of interest. In this
case, the weight matrix is chosen to be G = diag(1, 1/800 MHz2), to
compensate for the different order of magnitude of the values of the
parameters β and T −1. The shaded gray areas indicate the Bayesian
Cramér-Rao bound, which is the ultimate precision bound computed
from the Fisher information, see Appendix A 5 for details. For these
estimations, we have used N = 2048 particles for the particle filter.
In each plot, we reported also the batch size B and the initial learning
rate α0 used in the simulations for the “neural network” strategy.

incoherent nuclear-spin flips happen during the read out, so
that the nuclear spin is in each eigenstate approximately half
of the time. This motivates the choice for model probability of
the Ramsey measurement:

p(±1|ω0, ω1, T2, τ ) := 1
2 ± 1

4 e−τ/T2 [cos (ω0τ ) + cos (ω1τ )],
(36)

which we take directly from Ref. [67]. In such a model, ω0 and
ω1 are the two precession frequencies to be estimated, split
by the hyperfine interaction, T2 is the coherence time, while
τ and ϕ are the controls, that are respectively the evolution
time and the phase. This model is completely symmetric under
permutation of the two precession frequencies, therefore only
those weight matrices G that are permutationally invariant in
the two parameters should be considered for this estimation.
The prior on (ω0, ω1) is the uniform distribution over the tri-
angle in the (ω0, ω1) plane identified by the points (0, 0) MHz,
(0, 1) MHz, and (1, 1) MHz, since we have decided to cancel

FIG. 6. Sum of the mean square errors on the frequencies ω0

and ω1 for the optimized adaptive (NN) and nonadaptive strategies
(static) compared with other common strategies used in the liter-
ature [67] and described in Sec. III C. The shaded gray areas in
the above plot indicate the Bayesian Cramér-Rao bound, which is
the ultimate precision bound computed from the Fisher information,
see Appendix A 6 for details. For these estimations, we have used
N = 4096 particles for the particle filter. In each plot, we reported
also the batch size B and the initial learning rate α0 used in the
simulations for the adaptive strategy.

this permutation symmetry by fixing ω1 > ω0. An important
observation to be made is that the Fisher information matrix
(FI) I (τ, ϕ) for ω0 and ω1 of the model in Eq. (36) is singular
and remains singular even for multiple measurements with
different τ and ϕ. This means that the Fisher information is
of no use in the optimization of the strategy. The controls τ

and ϕ are computed according to Eq. (25) with the prefactor

h = min

(
40,

T2

2

)
. (37)

The means square errors of the two frequencies are weighted
equally with G = 1. The frequency difference is the compo-
nent of the hyperfine interaction parallel to the NV center
quantization axis, i.e., A|| = |ω1 − ω0|.

2. Discussion of the results

Besides the NN and the static strategies, the performances
of the particle guess heuristic (PGH) and of the σ−1 strategies
have been tested. The results are reported in Fig. 6. The NN
is pretrained to reproduce a linear ramp for the control time,
which reaches its maximum τ = h at the end of the estimation,
while the phase control is random. Similarly, the nonadap-
tive strategy is initially a linear ramp in τ and is random in
ϕ. From these simulations, there seems to be no significant
advantage in using an adaptive strategy for the simultaneous
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estimation of the two precession frequencies, neither for large
nor for small coherence times T2. Nevertheless optimizing
with model-aware reinforcement learning still gives us an
advantage with respect to other simpler approaches.

3. Future directions

There is also another way of expressing the outcome prob-
ability of the measurement: instead of defining the model
in terms of ω0 and ω1 we could define it in terms of the
frequencies sum 	 = ω0 + ω1 and difference � = ω1 − ω0,
thus writing

p(±1|	,�, T2, τ )

:= 1

2
± 1

4
e−τ/T2

[
cos

(
	 + �

2
τ

)
+ cos

(
	 − �

2
τ

)]
.

(38)

In this form there is no permutational invariance in 	 and
�, instead, the model is invariant under the transformation
� → −�. Using this expression, we should choose a prior
having � > 0, which means ω1 > ω0, and we should impose
the positivity of the frequencies by requiring 	 > � in the
prior. Since we are interested in the difference �, the sum of
the frequencies 	 would be treated as a nuisance parameter.
The absence of an advantage of the adaptive strategy over the
nonadaptive one is probably also due to the hyper-simplified
information passed to the NN. We are in fact approximating
a complex two-dimensional (2D) posterior, with many peaks
and valleys with a Gaussian. A better approach would be to
train an autoencoder to compress the information contained in
the posterior and pass it to the NN. The autoencoder will be
trained to compress the class of distributions that are produced
by the likelihood of the Sec. III F. In future work, we plan to
extend the estimation to the detection of multiple nuclear spins
surrounding the NV center. For the estimation of n frequencies
in the model

p
( ± 1|{ωi}n

i=0, T2, τ
)

:= 1

2
± 1

2n
e−τ/T2

n−1∑
i=0

cos (ωiτ ), (39)

an appropriate precision figure of merit would be

�(̂θ, θ) := min
π∈Sn

n−1∑
i=0

(ω̂i − ωi )
2, (40)

with θ = (ω0, ω1, . . . , ωn−1) and̂θ = (ω̂0, ω̂1, . . . , ω̂n−1), and
Sn being the permutation group of n elements. If we impose
the condition ωi � ωi+1, then we can get rid of the minimiza-
tion in the permutation. In this case, it is interesting to notice
that the n-dimensional volume of the parameter space for a
uniform prior on ωi which is null outside of (a, b) is reduced
by a factor n! due to the symmetry of the parameters, i.e.,

Vn � (b − a)n

n!
. (41)

This may reduce the number of particles necessary to repre-
sent the Bayesian posterior and make the optimization of this
application accessible.

IV. APPLICATIONS ON THE PHOTONIC
CIRCUITS PLATFORM

In this section, we report all the information and data
related to the examples on the photonic platform, i.e., the
agnostic Dolinar receiver, the classification of known and
unknown coherent states, and multiphase discrimination in a
four-arm interferometer.

A. Agnostic Dolinar receiver

1. Description of the task

In Ref. [55] we already discussed the Dolinar receiver, and
in this section we briefly review the physics of this system and
the task we are trying to solve. The goal consists of distin-
guishing between the two coherent states |−α〉 and |α〉 with α

unknown using a single copy of the signal |±α〉. The Dolinar
receiver, known for its good performance, traditionally uses
a local oscillator (LO) synchronized with the sender’s laser.
Recent studies introduced an alternative, the agnostic Dolinar
receiver, eliminating the need for the LO. Instead, the new
device utilizes n reference states |α〉 sent alongside the signal.
In this setup, classical knowledge about |α〉 is absent, treating
it as an unknown parameter. The device, as shown in Fig. 7,
utilizes |α〉⊗n to discriminate the sign of the signal. The signal
is combined with a reference state on a programmable BS
with transmissivity θt . The result of the photon counting at
each BS is used to update the Bayesian posterior on α and the
signal’s sign. A NN determines the angle θt+1 for the next BS.
This task involves continuous (the signal’s amplitude α ∈ R)
and discrete (signal sign) parameters. The performance of the
receiver is evaluated based on the error probability in the
classification of the signal’s sign, while the amplitude α is a
nuisance parameter. With this schematization, we can identify
the parameters of the dynamical model defined in Sec. I D.
Differently from all the variations of the NV center studied
until now, in this case, there is no dynamical evolution, mean-
ing that the LCPT map �

t,xt
θ

is always equal to the identity.
In this case, all the control is in the collection of operators
{M̂yt (xt )}, which means that the initial state of the probe is
already encoded, as it comes from a different laboratory on
which we do not have any control. The input state for this
procedure is the pure state |α〉⊗n ⊗ |±α〉. At the kth step, the
measurement operators M̂yk (xk ) can be written as the product
of a BS operation, implemented by Û (k,n+1)(θk ), that mixes
the (n + 1)st state, namely, the one to discriminate, with the
reference state in position k, followed by a measurement on
the kth component using photon counting. In equations,

M̂mk (θk ) = |mk〉k〈mk|Û (k,n+1)(θk ), (42)

where we revised slightly the notation to make it closer to
the standard one for a beam splitter, using θk instead of xk as
the mixing angle, and using mk instead of yk as the integer
number that represents how many photons have been counted.
This formula holds for all the steps except the last one, where
two photon-counting operators are present, instead of one.

2. Input to the neural network

The input to the NN is the concatenation of the following
eight scalar values:
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FIG. 7. Representation of the measurement loop for the Dolinar receiver. The signal state |±α〉 is mixed with the reference states and
measured with photon counting. The posterior distribution on α has two components, corresponding to the signs s = ±1. The intensity of the
intermediate signal ψ±

t , the mean and the variance of the posterior, are fed to the NN that computes the next transmissivity.

(1) the signal intensity ψ+
t after the t th measurements,

assuming that the initial state was |+α〉;
(2) the posterior estimator for the initial signal intensity

α̂+, assuming the signal’s sign was s = +;
(3) the variance of the posterior distribution σ̂+ for the

initial signal intensity, assuming the sign was s = +;
(4) the signal intensity ψ−

t after the t th measurements,
assuming that the initial state was |+α〉;

(5) the posterior estimator for the initial signal intensity
α̂−, assuming the signal’s sign was s = −;

(6) the variance of the posterior distribution σ̂− for the
initial signal intensity, assuming the sign was s = −;

(7) the posterior probability p̂+ that the original signal had
a + sign;

(8) the index of the current measurement step, normalized
in the interval [−1,+1] with respect to the total number of
measurements, indicated with t̃ := 2t/Mmax − 1.

The reflectivity θt is produced by the NN through the
following formula:

θt = f NN(ψ+
t , α̂+, σ̂+, ψ−

t , α̂−, σ̂−, p̂+, t̃ )

− π × (nPhot mod 2). (43)

The symbol nPhot indicates the total number of photons mea-
sured up to the point where the NN is called, which controls
the addition of an extra phase −π to the transmissivity. The
same mechanism is implemented for the nonadaptive strategy.

3. Definition of the precision figure of merit

The loss in the agnostic Dolinar receiver measures the error
in guessing the sign of the signal |±α〉, after it has been com-
pletely measured. The lower bound on the error probability
given n copies of the reference states is pH (α), and can be
found in Appendix B 1. We have implemented two possible
policies for guessing the sign s, that we indicate respectively

with ŝBayes and ŝParity. They are, respectively,

ŝBayes( p̂+) :=
{+1 if p̂+ > 0.5
−1 if p̂+ � 0.5,

(44)

and

ŝParity(nPhot) :=
{+1 if nPhot mod 2 = 0
−1 if nPhot mod 2 = 1.

(45)

The Kronecker δ function

δ(x, y) :=
{

1 if x = y,
0 if x �= y,

(46)

is necessary to introduce the losses, which are
(1) loss=0: �( p̂+, s) := 1 − δ (̂sBayes, s);
(2) loss=1: �( p̂+, s) := 1 − p̂s;
(3) loss=2: �(nPhot, s) := 1 − δ (̂sParity, s);
(4) loss=3: �( p̂+, s, α) := 1 − δ (̂sBayes, s) − pH (α);
(5) loss=4: �( p̂+, s, α) := 1 − p̂s − pH (α);
(6) loss=5: �(nPhot, s, α) := 1 − δ (̂sParity, s) − pH (α);

(7) loss=6: �( p̂+, s, α) := 1−δ (̂sBayes,s)
pH (α) ;

(8) loss=7: �( p̂+, s, α) := 1−p̂s

pH (α) ;

(9) loss=8: �(nPhot, s, α) := 1−δ (̂sParity,s)
pH (α) .

All these losses, when averaged, converge to the probabil-
ity of a wrong classification. It is not obvious a priori which
loss is the best one.

4. Discussion of the results

The simulation results are presented in Fig. 8. While in
Ref. [55] we trained the optimized strategies with loss=3
in this paper we used loss=6, which seems however to de-
liver slightly worst results. In both cases, the plots represent
loss=0, averaged over many executions of the estimation
task.
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FIG. 8. Comparison of error probabilities for various strategies
with different numbers of copies of |α〉, specifically n = 4 and n = 8,
for loss=6. The shaded gray area is the region excluded by the
Helstrom bound [92,93], which is the lowest error probability the-
oretically achievable when assuming having an infinite number of
reference states (n = ∞) at disposal. The solid red and violet lines
are the Helstrom bound calculated for a finite number of copies
of |α〉 [31], respectively n = 4 and n = 8. For the details on the
computation of the Helstrom bound see Appendix B 1. The black
dashed line showcases the lowest error found in the old work [31],
without machine learning, while the black solid line is the perfor-
mance achieved using the NN. The performances of the optimal
nonadaptive strategies have not been reported since they cannot rival
those of the NN. For both the training and the performance evaluation
we used N = 512 particles. In each plot, we reported also the batch
size B and the initial learning rate α0 used in the simulations for the
neural network strategy.

B. Quantum machine-learning classification of states

In this example, we put forward a quantum-machine-
learning–based (QML-based) classifier able to distinguish be-
tween three coherent states |α0〉, |α1〉, |α2〉, with α0, α1, α2 ∈
C, given n copies of each of them, which constitute the quan-
tum training set. The signal state is a single copy of a coherent
state, promised to be one of the three training states, i.e., |αs〉
with s = 0, 1, 2. The priors on the components of the training
states |α0〉, |α1〉, |α2〉 are uniform in the harmonic-oscillator

phase space in a square of side 2α centered at the origin, that
is,

αR
i := Re(αi ) ∈ (−α,+α), αI

i := Im(αi ) ∈ (−α,+α),
(47)

for i = 1, 2, 3. Also the prior on the signal classes s =
0, 1, 2 is uniform. What makes this task difficult is that the
complex numbers α0, α1, α2 are not precisely known, not at
least beyond the information coming from the prior. There
are therefore seven parameters to be estimated: the real and
imaginary components of these three complex amplitudes (six
continuous parameters in total), plus the class of the signal s,
which is a discrete parameter. The device that performs this
task is made of programmable BS only, of which we control
the transmissivity θ and the phase ϕ, and is represented in
Fig. 9. The resource consumed in a single execution of the
discrimination task is the average number of photons in the
device, i.e.,

Nph := n(|α0|2 + |α1|2 + |α2|2) + |αs|2. (48)

In this application, we experimented also with using a ternary
decision tree as an agent instead of a NN. The device
presented in this section can also be interpreted as a gener-
alization of the agnostic Dolinar receiver of Sec. IV A.

1. Input to the agent

Let us define the posterior probabilities of the signal being
respectively s = 0, 1, 2 as p̂0, p̂1, and p̂2. This distribution is
computed as the marginal of the Bayesian posterior by inte-
grating over the continuous variables, and can be computed
on the particle filter. In case the agent is a NN, then it receives
as input the following 19 scalars:

(1) the average state of the signal after the t th photon
counting measurements. These are two scalar values, i.e., the
real and imaginary parts of the coherent state, and will be
indicated collectively as ψ̂t . The average is taken over the
posterior distribution.

(2) the mean posterior estimator for the real and imag-
inary components of the complex amplitudes of the three

FIG. 9. Schematic representation of the quantum machine-learning discrimination device controlled by the NN. The training set states
enter sequentially the ports of the BS from above, where they are mixed with the signal. The outcome of the photon counting measurement is
then used to update the posterior distribution on the values of α0, α1, α2, and s. The order in which the measurements are performed is indicated
near the symbols for the photon counters, from which we deduce M = 13. All the outcomes of the previous measurements contribute to the
determination of the next controls through the PF and the NN.
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FIG. 10. Example of a decision tree used in the quantum
machine-learning classifier. A tuple of controls (θ, ϕ) is associated
with each node in the tree. The value ỹt determines the path chosen
in the tree at each node in an experiment.

training states at the t th step, collected in the tuple α̂t :=
(̂αR

0 , α̂I
0, α̂

R
1 , α̂I

1, α̂
R
2 , α̂I

2).
(3) the standard deviations from the mean of the ampli-

tudes of the reference states, collected in the tuple σ̂t :=
(σ̂ R

0 , σ̂ I
0 , σ̂ R

1 , σ̂ I
1 , σ̂ R

2 , σ̂ I
2 ). The scalars passed to the NN are

actually − 1
10 ln σ̂t .

(4) the posterior probability for the initial state to be s = 0,
normalized in [−1,+1], i.e., p̃0 := 2 p̂0 − 1.

(5) the posterior probability for the initial state to be s = 1,
normalized in [−1,+1], i.e., p̃1 := 2 p̂1 − 1.

(6) the posterior probability for the initial state to be s = 2,
normalized in [−1,+1], i.e., p̃2 := 2 p̂2 − 1.

(7) the index of the current photon counting measurement
normalized in [−1,+1], indicated with t̃ := 2t/Mmax − 1.

(8) t̄ = t mod 3 − 1. This tells us whether the current pho-
ton counting is performed by mixing the signal with |α0〉, |α1〉,
or |α2〉.

The two controls for the beam splitter are obtained directly
from the NN as(

θt

ϕt

)
= f NN

(
ψ̂t , α̂t ,− 1

10
ln σ̂t , p̃0, p̃1, p̃2, t̃ , t̄

)
. (49)

Now we focus on the case the agent is a ternary decision tree,
see Fig. 10. In this case, the input is based directly on the
string of outcomes yt instead of going through the Bayesian
posterior distribution. The outcome yt of each measurement,
i.e., the number of photon observed in the photon counter, is
classified into one of the three classes according to the relation
with the mean number of photons �α2�. This is realized by
defining the variable ỹt , i.e.,

ỹt :=
⎧⎨⎩0 if yt � �α2� − 1

1 if yt = �α2�
2 if yt � �α2� + 1.

(50)

The infinite possibilities for the outcomes get reduced to only
three classes without losing too much information. The mod-
ified outcomes up to the t th measurement are used to decide
which branch to follow at each node of a ternary decision tree
and are collected in the tuple ỹt := (̃y0, ỹ1, . . . , ỹt ). The path
in the tree (and the whole controls trajectory) is completely
identified by ỹt . At each node there are a couple of controls
(θ, ϕ) to be used in the next measurement, which are the
trainable variables of the agent and are returned in the call

to the strategy, i.e., (
θt

ϕt

)
= f Tree(ỹt , t ). (51)

where f Tree represents the decision tree.

2. Definition of the precision figure of merit

The precision is the estimated error probability of a wrong
classification. The estimator for the signal class is

ŝ(̂p) := argmax( p̂0, p̂1, p̂2), (52)

where p̂ := ( p̂0, p̂1, p̂2), and the loss for each instance of the
task reads

�(̂p, s) := 1 − δ (̂s, s), (53)

which is one if an error is made and zero if the guess is
right. Averaged on many estimations, it converges to the error
probability for the classification task.

3. Discussion of the results

We have trained the QML classifier for α = 0.75 and
α = 1.00. All the estimations have been performed for n = 4.
We studied the precision of the discrimination device in the
quantum regime, i.e., with a small number of photons, since
for α � 1 the coherent states are perfectly distinguishable.
With α = 0.75, the signal contains on average 0.5 photons, we
should therefore expect relatively large discrimination errors
even with optimal strategies. Nevertheless, the point of the
optimization is to extract every last bit of information from
the device, even in a regime where the errors are relatively
frequent. The performances of the NN and the decision tree
are compared with that of the optimized nonadaptive strat-
egy and the precision of a nonoptimized strategy, for which
each photon counter receiver the same fraction of the signal
|αs〉. The ultimate precision limit is represented by the pretty
good measurement (PGM), discussed in Appendix B. This
last cannot be realized with linear optics and photon counting
and assumes a perfect a priori knowledge of the training
states |α0〉, |α1〉, and |α2〉 which we do not have. To make
a more fair comparison, we assumed the PGM consumes 2n
training states where this QML device consumes only n. The
2n copies are intended to be sufficient to perfectly identify
αi, in order to later perform the corresponding PGM on the
signal |αs〉. Still, the PGM error probability is not expected
to be achievable. The performances of the QML classifier
for different controls are reported in Fig. 11. There is a gap
between the performances of the nonadaptive controls and the
two adaptive strategies (NN and decision tree). This gap starts
from zero and grows with the average number of photons.
This is intuitive since with very few photons we do not expect
the adaptive measurements to be better than the nonadaptive
one, because almost always the measurement outcomes of the
photon counters will be zero, which does not give any infor-
mation about the training states. On the other hand, with many
photons there is more space for learning. This can be also
understood considering the number of possible trajectories of
the Bayesian posterior during the estimation, which is only
one for α = 0 (no update is made, the outcomes are always
zero), and grows exponentially with the number of photons.
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FIG. 11. Error probabilities as a function of the average number
of photons in the QML device for the classification of coherent states,
reported for different strategies. Both neural network and decision
tree are optimized adaptive strategies. The “nonoptimized” strategy
refers to a device where the phase imprinted by the BS are all zero
and the reflectivity is chosen, so that the same fraction of the signal
reaches each one of the photon counters. The shaded gray areas
indicate the performances of the pretty good measurement (PGM)
computed for 2n copies of each training state, see Appendix B 4
for details. This is not the ultimate achievable precision for the
classification problem, but it is a reasonable reference value not
achievable with linear optics. Both the weights of the NN and the
controls in the nonadaptive strategies have been initialized randomly.
For these estimations, we have used N = 512 particles to represent
the posterior. In each plot, we reported also the batch size B and the
initial learning rate α0 used in the simulations for the neural network
strategy.

More possible trajectories means having potentially different
controls on each one of them in order to improve the precision,
which is by definition adaptivity. In Fig. 12 we report some
examples of trajectories.

In our experiments, we observed that the convergence of
the NN to the optimal strategy is slow and does not always
happen (see the case α = 0.75 in Fig. 11), while the decision
tree is shown to be a superior control for this device. In
general, for a problem with many parameters and a relatively

FIG. 12. Five trajectories for the neural network controls θ and
φ are shown as a function of the measurement index t . The color
shade indicates the five different executions of the experiment. The
parameters α0, α1, α2 has been selected at random within the prior
interval, like the signal class s = 0, 1, 2 for these five instances
estimation. There is a tendency for the control trajectories to diverge
in time (this can be seen well in the plot for θ ), since having already
done some measurements means that the controls can be tailored to
the particular instance of the task. This behavior is trained in the NN
but is hard-coded in the decision tree strategy.

small space of possible outcome trajectories, the decision tree
is superior to the NN. On the other hand, with few parameters
and a large space of outcome trajectories (like in the examples
on NV centers), the decision tree is unusable in the form we
presented here and the NN is superior. For a large number
of average photons 〈Nph〉 the error probability curves tend to
saturate. This is because even with infinite n, and therefore
perfect knowledge of the training states, a single copy of the
signal cannot be classified unambiguously. In this application,
we have used N = 512 particles to represent the posterior
distribution, which conventional wisdom says are too few for
the estimation of seven parameters. We have observed though
that using N = 1024 particles does not improve significantly
the precision. Notice that in this device we are performing the
simultaneous estimation of multiple quantum incompatible
parameters [94], that are the real and imaginary components
of the states amplitudes, whose corresponding generators x
and p do not commute. We have also tried to implement the
discrimination on a parallel device, instead of the serial one
represented in Fig. 9. In this case, the original signal is first
equally split on three wires, i.e., |αs〉 → | αs√

3
〉⊗3, and on each

line the signal is mixed with the n copies of the same train-
ing state. The performances of this parallel device, however,
turned out to be always worst then the serial one and are not
reported here.

4. Future directions

The controls from the decision tree have the advantage of
being faster to compute with respect to those of the NN but
storing the tree requires more memory. A future direction of
research could be to trim the decision tree after the training by
keeping only those paths that correspond to the most probable
trajectories.

C. Multiphase discrimination on a photonic circuit

1. Description of the task

In this section, we examine an example of multiphase esti-
mation. We consider an interferometer consisting of four arms
[95], with two balanced quarters serving as the opening and
closing elements, respectively. A quarter generalizes a beam
splitter to have four inputs and four outputs. After passing
through the closing quarter, all wires are measured using
photon counters. Three of the four arms experience phase
shifts with unknown phases ϕi for i = 0, 1, 2. Immediately
after they are subjected to three other phase shifts ci ∈ [0, 2π ),
which are the controls in our experiment, managed by the
agent. In this interferometer, represented in Fig. 13, we simul-
taneously test each line to determine the presence or absence
of a phase shift, which can only assume the two values ϕi ∈
{0, 1} rad. In some practical applications, these phase shifts
could result from the presence on the line of a specific object,
a chemical species, or it could represent a piece of encoded in-
formation that we want to retrieve (think of an optical memory
device). This photonic application can also be considered as a
very rudimental form of adaptive imaging with few photons.
During the experiment a total of Mmax identical copies of
an input state are fed sequentially to the interferometer and
measured independently on the interferometer’s end. Based on
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FIG. 13. Four modes interferometer for the simultaneous estimation of three phases. The interferometer has two balanced quarter as
opening and closing elements, which are the generalization of the balanced BS for four modes in input and four modes in output. The three
unknown phases are called ϕ0, ϕ1, ϕ2 ∈ {0, 1} rad, while the control phases are c0, c1, c2. The input of the NN are the eight probabilities
constituting the posterior distribution on the values of the three phases.

the outcomes of the four photon counting measurements, the
correct values for the tuple ϕ := (ϕ0, ϕ1, ϕ2) is inferred using
Bayesian inference. The agent is an NN that outputs the tuple
of control phases c := (c0, c1, c2) to be applied in the next
round of measurements. The schematization of the dynamical
model defined in Sec. I D can be applied also in this case. The
LCPT map �(t,xt )

ϕ is unitary and thus can be written in the form

�(t,xt )
ϕ (ρ̂ ) := Ûϕρ̂Û †

ϕ , (54)

where we have introduced the unitary operator Ûϕ(ct ), which
is a simple composition of the unitary matrices representing
the quarter and the phase shifts shown in Fig. 13 on each
bosonic line:

Ûϕ := Û (ϕ2)Û (ϕ1)Û (ϕ0)Û quarter. (55)

The measurement operators are similar, and can be written
as a product of unitaries implementing the controlled phase
shifts ci, then the same quarter unitary operator and, lastly,
a series of photon-counting measurements on all the lines,
which can be written as projectors on the base that diagonalize
the number operators for each of the lines. Notice that the
control c can be inserted as a part of the dynamical model
�(t,xt )

ϕ as well as a part of the measurement.

2. Input to the neural network

The input to the NN is build from the concatenation of the
following 10 scalar quantities:

(1) the Bayesian posterior probabilities for the hypotheses
on the values of the phases ϕi, i.e., {w j}8

j=1 with
∑8

j=1 w j = 1.
(2) the index of the measurement step normalized in

[−1,+1], i.e., t̃ := 2t/Mmax − 1, where Mmax is the number
of measurements. A single use of the interferometer, in which
we sent an input state and read all the four photon counters, is
treated as a single measurement.

(3) the normalized average number of photons consumed
in all the previous measurements, indicated with Ñph.

The three controls phases ci are computed as⎛⎝c0

c1

c2

⎞⎠ = 2π f NN
({w j}8

j=1, t̃, Ñph
)
. (56)

3. Definition of precision figure of merit

On each estimation in the batch the error is zero if the
correct phases are guessed correctly and one if the guess is
wrong. Let us indicate with the symbol h ∈ {1, 2, . . . , 8} the
index of the correct value, then the estimator for this discrete
parameter is

ĥ
({w j}8

j=1

)
:= argmax(w1,w2, . . . ,w8), (57)

and the loss is given by

�(̂h, h) := 1 − δ (̂h, h), (58)

which, averaged on the batch, is the probability of a wrong
classification.

4. Discussion of the results

In our simulations the input state always takes the form of
a product of coherent states on the four bosonic wires, i.e.,
|ψ in〉 = |α0α1α2α3〉. We investigate the performance of both
optimized adaptive and nonadaptive strategies for the follow-
ing four inputs having different average number of photons
〈n〉:

(1) |ψ in〉 = |1000〉: α0 = 1, α1 = α2 = α3 = 0, 〈n〉 = 1;
(2) |ψ in〉 = |1100〉: α0 = α1 = 1, α2 = α3 = 0, 〈n〉 = 2;
(3) |ψ in〉 = |1110〉: α0 = α1 = α2 = 1, α3 = 0, 〈n〉 = 3;
(4) |ψ in〉 = |1111〉: α0 = α1 = α2 = α3 = 1, 〈n〉 = 4.
The total number of measurements for each estimation re-

mains fixed to Mmax = 32 in all the plots of Fig. 14, however,
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FIG. 14. These plots display the probability of incorrectly guess-
ing the value of the unknown phases (ϕ0, ϕ1, ϕ2) as a function of the
average number of photons consumed during the estimation, shown
on the lower x axis. The title of each plot indicates the input state
and the maximum average number of photons 〈Nph〉max used for this
values discrimination task. The upper x axis represents the number
of measurements t , i.e., the number of input states |ψ〉 utilized. The
optimized adaptive and nonadaptive strategies are compared with
the random strategy, where the controls ci are randomly selected
uniformly in the interval [0, 2π ). The shaded gray areas indicate
the performances of the pretty good measurement (PGM), computed
for multiple copies of the encoded states, see Appendix B 3 for
the details. This is not the ultimate precision bound regarding this
discrimination problems, but it is a reasonable reference value not
achievable with linear optics. In each plot we reported also the batch
size B and the initial learning rate α0 used in the simulations for the
adaptive strategy.

the maximum number of photons is given by 〈Nph〉max :=
〈n〉Mmax, and varies according to the input state. From Fig. 14,
we infer that for the input states |ψ in〉 = |1000〉, |1100〉, the
adaptive strategy offers some advantage over the nonadaptive
one, while for states with a higher number of photons the
nonadaptive strategy is optimal. The most efficient input, in
terms of the number of photons consumed to achieve a specific
error probability, is |ψ in〉 = |1000〉. The state with three pho-
tons does not perform as well as the other inputs. Regarding
the damage to the sample or the energy consumed, both of
which are proportional to the total number of photons, it is
preferable to conduct multiple measurements, each involving
fewer photons, rather than fewer measurements with a larger
number of photons. Thus, minimizing energy consumption or
potential sample damage requires extending the total measure-
ment time, which may become impractical beyond a certain
limit. For a set number of measurements, and hence a fixed
estimation time, states with a higher photon number generally
outperform those with fewer photons, with |ψ in〉 = |1110〉
being an exception. The observation that either the states

with high or low photon count are optimal, depending on the
resources we consider, underlines the importance of agree-
ing on the nature of the expensive resource while discussing
metrology. For the states |ψ〉 = |1111〉 the NN is not able to
perfectly reproduce the performances of the optimal nonadap-
tive strategy, most probably because it converges to a local
minimum of the loss during the training. Both the NN and
the nonadaptive strategies have been randomly initialized in
[0, 2π ) before the training.

D. Nonadaptive linear classifier of coherent states

1. Description of the task

In the example of this section the goal is to classify a
coherent state |αs〉, which we are promised is one of the
states {|αi〉}d−1

i=1 , which are classically known, at difference
with Sec. IV B. For doing this we employ a network of beam
splitters and phase plates (BS network) that receives in input
the signal |αs〉 to be classified. The other inputs of the network
are in order |α0〉, |α1〉, . . . , |αd−1〉, that is, the reference states
corresponding to the possible values of signal, which are fixed
for each execution of the task. It follows that the network,
represented in Fig. 15, must have d + 1 bosonic wires. The
output of the network is measured with individual photon
counters on each wire. The signal |αs〉 will be classified ac-
cording to the photon-counter outcomes. If more than one
signal state is available multiple BS networks can be stacked
on one another and the classification will be based on the
measurements from all layers. Each layer can have a different
network. This is the only example in which we do not use a
NN, that means we do not have adaptivity. Instead, we directly
optimized the parametrized BS. For the same reason, it is very
simple to describe the dynamical model with the framework
defined in Sec. I D. There is no encoding of the state, meaning
that the LCPT map �

(t,xt )
θ

is the identity, and the measure-
ment operators can be written as a product of the unitary
matrix implementing the BS network followed by projectors
on the Fock states, similarly to what has been done for the
Dolinar receiver in Sec. IV A. We now briefly comment on the
parametrization of the BS network. The initial state of the light
is Gaussian, just like the linear circuit is a Gaussian operation
[96]. We can keep track of the Gaussian state of d + 1 modes
by following the evolution of the displacement r ∈ R2(d+1)

and of the covariance matrix 	 ∈ R2(d+1) × R2(d+1), which
in general is

r → r′ := Sr + d, and 	 → 	′ := S	Sᵀ, (59)

where S is a real symplectic matrix. In this context 	 is
not the covariance matrix of the posterior distribution but the
covariance of Gaussian state of the modes. For a BS network,
which is made of passive elements, we have no additional dis-
placement, i.e., d = 0. Furthermore the energy is conserved,
which means tr(	′) = tr(	SᵀS), that implies SᵀS = 1, since
this condition must hold for every 	. We have arrived at the
results, that the action of a BS network is represented by a real
symplectic and orthogonal matrix S. These two conditions are
equivalent to the matrix S being in the form

S =
(

ReU ImU
−ImU ReU

)
, with U ∈ U (d + 1). (60)
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FIG. 15. On the left we represent the programmable interferometer with the BS network, the input being the signal state |αs〉 and the fixed
reference states |αi〉 with i = 0, 1, . . . , d − 1. On the right we have stacked M layers of interferometers, each receiving a copy of the signal.
The classification is done on the basis of the outcomes of the photodetectors.

The unitary matrix U can then be parametrized as U =
ei(A+A† ), where A ∈ GL(d + 1,C) is a complex matrix, hose
entries are the trainable variables of the agent, i.e., the BS
network in this case. Despite not being an adaptive experi-
ment, this is still a Bayesian estimation, since we start from
a uniform prior over the hypotheses and apply the Bayes’
rule to incorporate the outcomes of the photon counters in the
posterior.

2. Definition of the precision figure of merit

After all the measurements have been performed we obtain
the discrete Bayesian posterior probabilities on the possible
states, i.e., { p̂i}d−1

i=0 , from which we define the estimator for
the signal’s class

ŝ = argmax( p̂0, p̂1, . . . , p̂d−1), (61)

and the loss for an instance of the task

�(̂s, s) := 1 − δ (̂s, s), (62)

which averaged over a batch of tests converges to the error
probability of classification.

3. Discussion of the results

The linear classifier has been trained and tested for some
symmetric configurations of the αi. In particular the roots of
the unit for d = 3, 5, 7, 9 have been chosen. The results are
reported in Fig. 16. For a symmetric configuration of states
the PGM is optimal, but it cannot be achieved with linear
optics, see Appendixes B 2 and B 5 for details. The optimality
of the PGM means that a single layer BS network cannot
achieve its performances, however this raises the interesting
question of how many layers M and copies of the signal |αs〉
are necessary to match or surpass the error probability of the
PGM. Three copies of the signal are always sufficient in these
examples to match the PGM error probability. Beside that, the
performances of the trained BS networks are also compared
with that of randomly extracted BS networks. An interesting
observation is that the advantage over the random strategy that
the trained network has decreases as the number of hypotheses
grows. For d → ∞ we expect to have no gain. An adaptive
strategy may be able to restore the gap with the untrained BS
networks.

V. CONCLUSIONS

Our findings indicate that model-aware RL outperforms
traditional control strategies in multiple scenarios, surpassing
even model-free RL. The fact that many problems can be
solved by minimal changes to the examples could pave the
way for researchers to expedite the search for optimal con-
trols in quantum sensors, potentially accelerating the advent
of their widespread industrial application. With this work,
we believe we have solved the problem of optimal controls
for quantum sensors that are simple enough to be efficiently
simulated. Since the sensor’s model must be simulated on a

FIG. 16. Probability of error in the classification of a coherent
state as a function of the number M of copies of the signal |αs〉
used, which is also the number of layers of BS networks used in
the classifier. The dashed orange line is the average performance of
randomly extracted BS networks. The dotted blue line is the optimal
error probability for a single copy of the signal, while the shaded
gray area indicates the optimal error probability for M copies of the
signal, both computed with the PGM. More details can be found in
Appendix B 5. In each plot we reported also the batch size B and the
initial learning rate α0 used in the simulations for the “optimized”
strategy.
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computer with the overhead of automatic differentiation, we
do not expect to be able to scale this procedure to sensors
more complex than a handful of qubits in the near future.
This limitation excludes the application of model-aware RL to
domains where complex entangled states are used. However,
given their limited experimental use at the moment, this con-
straint on efficient simulability may not significantly impact
the utility of model-aware RL. It is notable that the most rele-
vant platform for quantum metrology today is the single spin
in diamond, which is straightforward to simulate. While large
quantum systems remain inaccessible, we believe that scaling
the procedure to a large number of unknown parameters is
feasible. Although the number of particles and, consequently,
the memory requirements must increase for a growing num-
ber of parameters, we have already successfully optimized a
seven-parameter problem in Sec. IV B. We believe it is possi-
ble to find even more efficient representations of the Bayesian
posterior distribution than the particle filter, which will enable
us to optimize problems with tens of parameters. While we
acknowledge that experimentally relevant problems can only
rarely be approached analytically, the results obtained in this
way can often be valuable in setting up and guiding more pow-
erful numerical optimization, just as the analytical study of
the Fisher information in Appendix A and of phase estimation
in Ref. [59] and Appendix C have been useful in setting the
initial state of the neural network and of the adaptive controls
for the NV centers, and in defining the normalization of the
network’s output.
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APPENDIX A: LOWER BOUNDS FOR
NITROGEN-VACANCY CENTERS

In this section, we apply the Bayesian Cramér-Rao bound
to the estimation of various parameters on the NV center
platform. This bounds will be based on the Fisher information
[21]. Consider a stochastic variable y, which is extracted from
a probability distribution p(y|θ ), where θ is a parameter we
want to estimate. This is a model for an experiment leading
to a stochastic outcome. The information on θ available from
the knowledge of y can be measured by the Fisher information
(FI), defined as

I (θ ) := Ey

[(
∂ ln p(y|θ )

∂θ

)2
]
, (A1)

where the expectation value is taken over the distribution
p(y|θ ). There is also a multiparameter version of the FI, called

the Fisher information matrix (FI matrix), defined as

Ii j (θ) := Ey

[
∂ ln p(y|θ)

∂θi

∂ ln p(y|θ)

∂θ j

]
. (A2)

If the experiment allows us to be controlled through the pa-
rameter x, then the outcome probability is p(y|x, θ ) and the FI
inherits such dependence, i.e., we write I (θ |x). In this paper
the control parameter x is computed from a strategy h, which
stands for “heuristic” and which could be the particle guess
heuristic or a neural network, for example. In this case, we
indicate it explicitly in symbol for the control xh.

1. Bayesian Cramér-Rao bound

Given θ a single parameter to estimate, we call I (θ |xh)
the Fisher information of a sequence of measurements with
controls xh = (xh

0, xh
1, . . . , xh

M−1), which are computed from
a strategy h. The quantity I (θ |xh), together with the Fisher
information of the prior π (θ ), i.e., I (π ), defines a lower bound
on the precision �2θ̂ of whatever estimator θ̂ , which contains
the expectation value of I (θ |xh) on π (θ ) and is optimized on
the strategy h. This lower bounds reads

�2θ̂ � 1

suph Eθ [I (θ |xh)] + I (π )
. (A3)

This definition appears in the work of Fiderer et al. [27].
For the NV center the controls are the evolution time τ

and the phase ϕ, this last, however, does not play any role
in the computation of the lower bound and will be omitted
in the following. For the multiparameter bound we avoid the
complication of introducing the Fisher information matrix and
consider instead the sum of the bounds for two independent
estimations, thus writing instead

tr[G · (̂θ − θ)ᵀ(̂θ − θ)] �
d∑

k=1

1

suph Eθk [I (θk|τh)] + I (πk )
.

(A4)

The Fisher information of a sequence of measurements is
always additive, even if the quantum probe is only measured
weakly, but in dealing with projective measurements, as it is
the case for an NV center, the advantage is that the measure-
ments are uncorrelated, and the same expression for the Fisher
information applies to all of them, independently of the results
of the previous measurements, i.e.,

I (θ |τ) =
M∑

t=1

I (θ |τt ) � M sup
τ

I (θ |τ ), (A5)

where M is the total number of measurements. The optimiza-
tion of the single measurement FI gives directly the precision
bound for the measurement-limited estimation:

�2θ̂ � 1

suph Eθ [I (θ |τh)] + I (π )

� 1

MEθ [supτ I (θ |τ )] + I (π )
. (A6)
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TABLE II. Lower bounds for the precision of the frequency and decoherence time estimation in DC magnetometry on an NV center.

Time Measurement

T2 = ∞
1

T 2 + I (ω)
(A10)

2−2(M+1)

3
MHz2 (A11)

T2 < ∞
1

0.5T T2 + I (ω)
(A12) max

{
2−2(M+1)

3
MHz2,

1

μMT 2
2 + I (ω)

}
(A13)

T −1
2 ∈ (a, b)

1

0.5TE[T2] + I (ω)
+ 1

0.5TE[T2] + I
(
T −1

2

) (A14)
1

μME
[
T 2

2

] + I (ω)
+ 1

μME
[
T 2

2

] + I
(
T −1

2

) (A15)

If the total evolution time is the limiting resource, then, the
expression for the total FI is

I (θ |τ) = T
M∑

t=1

τt

T

[
I (θ |τt )

τt

]
� T sup

τ

I (θ |τ )

τ
, (A7)

with
∑M

t=1 τt = T . In this expression the total FI is the
weighted sum of the renormalized FI of each measurement,
i.e., I (θ |τt )/τt , and can be manifestly upper bounded by
concentrating all the weights on the supremum of the renor-
malized FI. This gives the lower bound for the precision of the
time-limited estimation:

�2θ̂ � 1

suph Eθ [I (θ |τh)] + I (π )

� 1

TEθ

[
supτ

I (θ |τ )
τ

] + I (π )
. (A8)

In the following we apply this general observations to the
derivation of the numerical bounds for DC and AC magne-
tometry, for decoherence estimation, and for the measurement
of the parallel hyperfine coupling.

2. Evaluation of Fisher information

Since the measurement outcome in the NV center is binary,
we can compute the Fisher information for a parameter θ ,
given the control τ , as

I (θ |τ ) = E

[(
∂ ln p(±1|θ, τ )

∂ω

)2
]

=
(

∂ p
∂θ

)2

p(1 − p)
=

(
∂ p
∂θ

)2

1
4 − (

p − 1
2

)2 , (A9)

where we have used the definition in Eq. (A1) and where p :=
p(+1|θ, τ ). For example, for a decoherence-free estimation of
the precession frequency ω we have p := cos2(ωτ/2), from
which ∂ p/∂θ = τ sin(ωτ/2) cos(ωτ/2), and finally I (ω|τ ) =
τ 2.

3. DC magnetometry

The lower bound on the estimation of the frequency ω and
of the inverse of the decoherence time T −1

2 are reported in
Table II and are represented in Fig. 3. The left column contains
the bound for a finite number of measurements M, while right
column refers to the estimation with a fixed total evolution
time T . The first row refers to the estimation of ω with perfect
coherence, the second row refers to the estimation of ω with
a finite and know T2, while the last row refers to the simulta-
neous estimation of ω and T −1

2 treated on equal footing, i.e.,
G = 1. The symbols I (ω) and I (T −1

2 ) indicate the FI of the
prior of the precession frequency and of the decoherence time
respectively. The numerical values of the quantities appearing
in the table, for ω ∈ (0, 1) MHz and T −1

2 ∈ (0.09, 0.11) MHz,
are μ = 0.1619, E[T 2

2 ] = 101.01 µs2, E[T2] = 10.0336 µs,
I (ω) = 12 µs2, I (T −1

2 ) = 3×104 µs2. In the following we
derive these bounds.

(1) The Fisher information for the precession frequency
ω is given by I (ω|τ ) = τ 2, so that supτ I (ω|τ ) = ∞ and the
analysis based on the Cramér-Rao bound does not gives a
useful bound. Eq. (A11) in Table II can be found by observing
that each measurement gives at most one bit of information
about the value of ω, because it has a binary outcomes [27].
This bound is applied to all the measurement-limited estima-
tions in the table in addiction to the one coming from the
Fisher information.

(2) With a finite decoherence time T2 < ∞ the FI for the
frequency ω is

I (ω|τ, T2) = 1

D τ 2e− 2τ
T2 cos2

(
ωτ

2

)
sin2

(
ωτ

2

)
, (A16)

with

D :=
[

e− τ
T2 cos2

(
ωτ

2

)
+ 1 − e− τ

T2

2

]

×
[

e− τ
T2 sin2

(
ωτ

2

)
+ 1 − e− τ

T2

2

]
(A17)
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which, by defining C := cos2(ωτ/2), can be bounded in the
following way:

I (ω|τ, T2) = τ 2e− 2τ
T2 C(1 − C)[

1
4 − e− 2τ

T2
(
C − 1

2

)2] (A18)

� τ 2e− 2τ
T2

1 − e− 2τ
T2

= T 2
2

x2e−2x

1 − e−2x
, (A19)

where x = τ/T2. The maximization in x ∈ R+ gives
supτ I (ω|τ, T2) = μT 2

2 with μ = 0.1619. Inserting this ex-
pression in Eq. (A6) gives the first term in the maximum of
Eq. (A13), the second term was explained in the previous
point.

(3) We now turn to the estimation of an unknown T −1
2 ,

with prior uniform in (0.09, 0.11), alongside ω. The total

MSE is �2ω̂ + �2T̂ −1
2 . The supremum of the FI for ω is

always supτ I (ω|τ, T2) = μT 2
2 , but this time the expectation

value Eθ is not trivial, i.e., Eθ [supτ I (ω|τ, T2)] = μE[T 2
2 ].

The derivative of the probability with respect to T −1
2 , used to

compute the FI is

∂ p

∂T −1
2

= −τe− τ
T2

[
cos2

(
ωτ

2

)
− 1

2

]
. (A20)

With the same notation for the cosine we write the FI for
the inverse of the decoherence time as

I
(
T −1

2 |ω, τ
) = τ 2e− 2τ

T2
(
C − 1

2

)2[
1
4 − e− 2τ

T2
(
C − 1

2

)2]
� T 2

2
x2e−2x

1 − e−2x
. (A21)

The maximization of this expression gives
supτ I (T −1

2 |ω, τ ) = μT 2
2 , which is the same expression

of I (ω|T2, τ ), that again has a nontrivial expectation value on
the parameters. Putting everything together and adding the
prior information on T −1

2 gives Eq. (A15).
(4) Regarding the time-constrained lower bounds, for

T2 = ∞, the total FI is maximized by performing a single
measurement of time duration τ = T , which gives Eq. (A10),
through the application of Eq. (A8).

(5) For T2 < ∞ we have to maximize the normalized FI in
x ∈ R+, i.e.,

I (ω|τ, T2)

τ
� τe− 2τ

T2

1 − e− 2τ
T2

� T2
xe−2x

1 − e−2x
� T T2

2
, (A22)

from which Eq. (A12) follows from Eq. (A8).
(6) In the last case we have to estimate both ω and T −1

2 ∈
(0.09, 0.11) MHz. Regarding the estimation of ω the Fisher
information is always given by Eq. (A22), only that this time
the expectation value on T2 is nontrivial, and produces the first
addend of Eq. (A14). For the estimation of T −1

2 we have a
similar expression for the normalized FI:

I
(
T −1

2 |τ, ω)
τ

� τe− 2τ
T2

1 − e− 2τ
T2

� T2
xe−2x

1 − e−2x
� T T2

2
, (A23)

which similarly needs the expectation value appearing in
Eq. (A8) to give the second piece of Eq. (A14).

4. AC magnetometry

The lower bound on the precision of the frequency � and
of the inverse of the decoherence time T −1

2 , are reported in
Table III and are represented in Fig. 4 of Sec. III D. The
meaning of the rows and columns here are the same as
in Section A 3. The symbols I (�) = 12 µs2 and I (T −1

2 ) =
3×104 µs2 indicate respectively the FI of the prior of the
frequency and of the inverse of the decoherence time. In the
following we derive each of these bounds.

(1) The decoherence-free FI for � in the measurement-
limited case is obtained from Eq. (A9) through the derivative

∂ p

∂�
= sin (ωτ )

ω
cos

[
B

2ω
sin (ωτ )

]
sin

[
B

2ω
sin (ωτ )

]
(A30)

and reads

I (�|τ ) = sin2 ωτ

ω2
� 1

ω2
. (A31)

Inserting this expression in Eq. (A8) gives immediately the
first part of Eq. (A25) in Table III. The second operand of the
max come from analysis on the number of bits [27], which we
already discussed in the previous section.

(2) For the time-limited estimation of � we have to maxi-
mize the normalized FI in x = ωτ ∈ R+:

I (�|τ )

τ
= 1

ω

sin2 (ωτ )

ωτ
= 1

ω

sin2 x

x
� γ

ω
, (A32)

where γ = 0.724 611. By inserting this result into Eq. (A8)
we get Eq. (A24).

(3) For the case T2 < ∞ we do not compute any new
bound, instead we use the one for the decoherence-free es-
timation, which must be valid also for the noisy model.
Accordingly, Eq. (A27) is equal to Eq. (A25) and Eq. (A26)
is equal to Eq. (A24).

(4) For the simultaneous estimation of � and of T −1
2

we use the same bound computed for DC magnetometry
for the precision on T −1

2 and obtain Eqs. (A29) and (A28)
for the measurement-limited and time-limited estimation,
respectively.

5. Decoherence estimation

In this section, we report the bounds based on the FI for
the estimation of the inverse of the decoherence time T −1

2 and
the exponent β on the NV center platform, which are reported
in Fig. 5 of Sec. III E. The numerical coefficients appearing
in Table IV are μ = 0.161 90, δ = 0.244 29, χ = 0.239 66,
ε = 0.206 87, η = 0.105 82, ψ = 2.430 13, E[T 2

2 ] = 103 µs2,
E[T2] = 25.5848 µs, E[T −1

2 ] = 0.0450 MHz2, E[β2] =
8.083 32, E[β−2] = 0.166 66, I (T −1) = 1481.48 µs2, and
I (β ) = 1.92. We proceed in deriving point by point the lower
bounds of the above table from the Fisher information.

(1) The derivative of the model probability in T −1
2 is given

by

∂ p

∂T −1
2

= −1

2
e
−
(

τ
T2

)β

βτ

(
τ

T2

)β−1

, (A39)
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TABLE III. Lower bounds on the estimation precision of the magnetic field intensity and decoherence time in AC magnetometry on an
NV center.

Time Measurement

T2 = ∞
1

γ T
ω

+ I (�)
(A24) max

{
2−2(M+1)

3
MHz2,

1
M
ω2 + I (�)

}
(A25)

T2 < ∞
1

γ T
ω

+ I (�)
(A26) max

{
2−2(M+1)

3
MHz2,

1
M
ω2 + I (�)

}
(A27)

T −1
2 ∈ (a, b)

1
M
ω2 + I (�)

+ 1

0.5TE[T2] + I
(
T −1

2

) (A28)
1

γ T
ω

+ I (�)
+ 1

μME
[
T 2

2

] + I
(
T −1

2

) (A29)

from which we obtain the FI from Eq. (A9):

I
(
T −1

2

∣∣τ, β) = β2T 2
2

e
−2

(
τ

T2

)β (
τ
T2

)2β

1 − e
−2

(
τ

T2

)β
. (A40)

By defining x = (τ/T2)β ∈ R+ we rewrite the above expres-
sion as

I
(
T −1

2

∣∣τ, β) = β2T 2
2

e−2xx2

1 − e−2x
� μβ2T 2

2 , (A41)

which inserted into Eq. (A6), by taking the expectation value
on the parameters β and T2, gives the expression in Eq. (A34).

(2) For β = 2 we can avoid the expectation value of β2,
which is replaced by the factor 4 in Eq. (A34) of Table IV.

(3) For the simultaneous estimation of T −1
2 and β we need

an expression for the Fisher information on β, which can be
obtained from the derivative

∂ p

∂β
= −1

2

(
τ

T2

)β

e
−
(

τ
T2

)β

ln

(
τ

T2

)
, (A42)

and reads

I (β|τ, T2) = 1

β2

(
τ
T2

)2β
e−2

(
τ

T2

)β

log2
(

τ
T2

)β
1 − e

−2
(

τ
T2

)β

� 1

β2

x2e−2x log2 x

1 − e−2x
� χ

β2
, (A43)

where x = (τ/T2)β ∈ R+. The coefficient χ comes from
the maximization of the function in x only. Given the re-
sult supτ I (β|τ, T2) = χβ−2, we insert this expression into
Eq. (A6), obtaining the second term of Eq. (A38).

(4) Regarding the time-limited estimation, the relevant
quantity to optimize is the renormalized FI again. For the
estimation of T −1

2 this reads

I
(
T −1

2 |τ, β)
τ

= β2T T2
e−2xx2− 1

β

1 − e−2x

� β2T T2 sup
x,β

e−2xx2− 1
β

1 − e−2x
(A44)

= δβ2T T2, (A45)

TABLE IV. Lower bounds for the precision of the characterization of a dephasing noise on an NV center.

Time Measurement

β nuis.

1

δTE[T2]E[β2] + I
(
T −1

2

) (A33)
1

μME[T 2
2 ]E[β2] + I

(
T −1

2

) (A34)

β = 2

1

4εTE[T2] + I
(
T −1

2

) (A35)
1

4μME[T 2
2 ] + I

(
T −1

2

) (A36)

Both

1

ψTE[T −1
2 ]E[β−2] + I (β )

+ 1

δTE[T2]E[β2] + I
(
T −1

2

)
(A37)

1

χME[β−2] + I (β )
+ 1

μME[T 2
2 ]E[β2] + I

(
T −1

2

) (A38)
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TABLE V. Lower bounds for the estimation precision of two precession frequencies, split by the hyperfine interaction of the NV center
with a 13C nucleus.

Time Measurement

T2 = ∞
2

1
4 T 2 + I (ω)

(A47)
2−M

24
MHz2 (A48)

T2 < ∞
2

1
8 TE[T2] + I (ω)

(A49) max

{
2−M

24
MHz2,

2
1
4 μMT 2

2 + I (ω)

}
(A50)

where δ is the supremum of the function in x ∈ R+ and
β ∈ (1.5, 4), realized for β = 1.5. Inserting the expression
above in Eq. (A8) and taking the expectation values of the
parameters produces Eq. (A34).

(5) The β = 2 bound can be obtained from Eq. (A45)
by maximizing only on x. The coefficient ε in Eq. (A34) is
defined as ε = supx[(e−2xx

3
2 )/(1 − e−2x )]. After adding the FI

from the prior we get Eq. (A34).
(6) For the estimation of β we again maximize the nor-

malized FI in x ∈ R+:

I (β|τ, T2)

τ
= 1

T2β2

x2− 1
β e−2x log2 x

1 − e−2x

� 1

T2β2
sup
β,τ

x2− 1
β e−2x log2 x

1 − e−2x

� ψT −1
2 β−2, (A46)

which inserted in Eq. (A8) gives the second part of the bound
in Eq. (A37), the first being identical to Eq. (A34).

6. Hyperfine-coupling estimation

In this section, we report the precision lower bounds for the
estimation of the parallel hyperfine coupling of the NV center
electron spin with a carbon nucleus, which are plotted in Fig. 6
of Sec. III F. These bounds are based on the one computed
for DC magnetometry in Section A 3. The numerical coeffi-
cients in the table are μ = 0.161 90 and I (ω) = 18.181 81 µs2.
The true values of both frequencies ω0 and ω1 are extracted
uniformly in (0, 1) MHz in the simulations, however, since
they are completely symmetrized in the model likelihood,
the true prior is the uniform distribution over the triangle
in the (ω0, ω1) plane identified by the points (0, 0) MHz,
(1, 0) MHz, and (1, 1) MHz. Given σ 2 the variance of such
distribution we define I (ω) := 1

2σ 2 the prior FI for a single
frequency. In the following we give a derivation for the bounds
in the Table V.

(1) Starting from Eq. (A11), based on the bit counting
argument, we observe that 2M measurements are needed for
having N bits of information for each of the phases ω0,1 ∈
(0, 1) MHz. The MSE on a single phase after N measurement
is thus limited by 2−M/12. For two phases the bound becomes
2−M/6. Since it is not easy to implement the information on
the triangular prior in this bound, we consider a square subset

of the triangular prior only, i.e., we fix ω0 ∈ (0.5, 1) MHz and
ω1 ∈ (0, 0.5) MHz. This means dividing the bound further by
a factor of four, which gives us Eq. (A48) of Table V.

(2) The FI for a single frequency is 1/4 that of the DC
magnetometry example of Eq. (A10), i.e., I (ω0,1) = T 2/4 in
the infinite coherence case. This comes from the factor 1/2
in the likelihood. For two parameters this gives the bound of
Eq. (A47).

(3) The same argument can be made to go from
Eqs. (A13)–(A50) and from Eqs. (A12)–(A49).

APPENDIX B: LOWER BOUNDS
FOR PHOTONIC CIRCUITS

In this section, we present the precision lower bound
for the photonic based applications. These are the agnostic
Dolinar receiver, the multiphase discrimination task on the
four bosonic lines interferometer, the linear classifier of multi-
ple states, and the QML classifier of three coherent states. All
these examples are based on the identification of the correct
hypothesis among a finite number of them. Accordingly, the
figure of merit for their performances is the probability of a
wrong classification. The bounds presented here for this fam-
ily of tasks are based either on the Helstrom bound [92] and on
its generalizations, or on the pretty good measurement (PGM),
which gives good results for the one shot classification of
states [97]. This approach does not really give a lower bound
for the precision, in all cases but one, nevertheless we use it as
a reference value, and given the fact that performing the PGM
requires in general entangled measurements we consider its
precision to be unachievable by means of photon counting and
linear optics only.

1. Helstrom bound

Consider a pure state |ψ〉 in the Hilbert space H. We are
assured that this state is either |ψ0〉 or |ψ1〉, both of which also
reside in H. Our objective is to correctly identify which state
it is. If we are free to perform whatever POVM measurement
on |ψ〉, then the error probability is bounded as

Pe � PH
e := 1

2 − 1
2

√
1 − |〈ψ0, ψ1〉|2. (B1)

This is called the Helstrom bound [92] and for two orthogonal
states is PH

e = 0. In the Dolinar receiver, where the task is to
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discriminate |±α〉, the Helstrom bound reads

PH
e = 1

2 − 1
2

√
1 − |〈−α,+α〉|2

= 1
2 − 1

2

√
1 − e−4|α|2 . (B2)

This is represented by the shaded gray region on the precision
plots of the Dolinar receiver in Fig. 8 of Sec. IV A. In this
work we study however the agnostic Dolinar receiver, where
the task is to discriminate the states |α〉 ⊗ |α〉⊗n and |−α〉 ⊗
|α〉⊗n, without having any classical knowledge on the value
of α. It can be proved [31] that the error lower bound in this
case is

PH
e := 1

2

⎛⎝1 − 1

2

∞∑
k=0

P (k;
√

n + 1α)

√
1 −

(
n − 1

n + 1

)2k
⎞⎠,

(B3)

where P (k; μ) is the probability distribution of a Poissonian
variable, i.e.,

P (k; μ) := μke−μ

k!
. (B4)

The Helstrom bound with limited n is plotted as the red lines
of Fig. 8.

2. Pretty good measurement

Suppose we are given a state |ψ〉 ∈ H and we are promised
it belongs to the set of states {|ψ j〉}m

j=1, which are classically
known. The a priori probabilities for the states are pj for j =
1, . . . , m. We can perform whatever measurement on |ψ〉 and
the task is to identify the state in the set. A good approach to
this problem, which does not require solving a semidefinite
program, is the PGM [97], which prescribes performing the
POVM measurement MPGM := {Mj}m

j=1, whose operators are

Mj := p jS
− 1

2 |ψ j〉〈ψ j |S− 1
2 , (B5)

where S := ∑m
j=1 p j |ψ j〉〈ψ j |. If in the measurement the out-

come corresponding to the jth operator is observed, then the
guess for the state classification is |ψ j〉. The error probability
of the PGM is therefore

PPGM
e = 1 −

m∑
j=1

p jTr(Mj |ψ j〉〈ψ j |). (B6)

In our applications to photonic circuits such measurements
are not optimal and in general their performance cannot be
achieved with linear optics and photon measurement. They
provide nevertheless a useful reference value for the estima-
tion precision. Throughout the thesis the computation of PPGM

e
has been carried out numerically.

3. Multiphase discrimination

In this work we studied the problem of multiphase dis-
crimination on a four arms interferometer, for four different
input states. To give a reference value on the precision of
the discrimination we apply the PGM. Let us break the inter-
ferometer and remove the control phases {ci}3

i=1, the closing
quarter, and the photodetectors. The photon states after the
encoding with the phases {ϕi}3

i=1 are, respectively,

(1) ∣∣ 1
2 e−iϕ0 , 1

2 ie−iϕ1 , 1
2 ie−iϕ2 ,− 1

2

〉
, (B7)

(2)∣∣ 1
2 (1 + i)e−iϕ0 , 1

2 (−1 + i)e−iϕ1 , 1
2 (1 + i)e−iϕ2 , 1

2 (−1 + i)
〉
,

(B8)

(3) ∣∣ 1
2 + ie−iϕ0 , 1

2 ie−iϕ1 , 1
2 ie−iϕ2 ,− 1

2 + i
〉
, (B9)

(4)

|ie−iϕ0 , ie−iϕ1 , ie−iϕ2 , i〉 (B10)

for the input states with one, two, three, and four photons
on average. We are allowed to consume n input states in order
to produce n copies of the encoded coherent states reported
above. These are then sent to an adder, which perform the
operation

U |α〉⊗n = |√nα〉 (B11)

on the n coherent states for each of the four bosonic wires.
On this resulting state of the interferometer the PGM is then
executed. The error probability can be expressed as a function
of the number of input states n or as a function of the total
number of employed photons, and is the gray area represented
in Fig. 14 of Sec. IV C. Although this is not rigorously a lower
bound on the precision it serves as a reference value, which is
most certainly impossible to saturate with the device at our
disposal.

4. Quantum machine-learning classifier

In the QML task we have a device that identifies the class
s of a signal |αs〉, given the quantum training set |α0〉⊗n ⊗
|α1〉⊗n ⊗ |α2〉⊗n. To perform the PGM we must know clas-
sically the states that we aim to distinguish and this is not
possible with a finite quantum training set. We suppose that by
consuming double the amount of reference states, i.e., 2n for
each class, we can estimate the complex numbers α0, α1, α2

exactly and then apply the optimal PGM. For many instances
of the classification task, with the reference states |α0〉, |α1〉,
|α2〉 and the signal |αs〉 extracted according to their prior, we
compute the error probability of the PGM, i.e., PPGM

e , and
associate to it the average number of consumed photons

Nph = 2n(|α0|2 + |α1|2 + |α2|2) + |αs|2. (B12)

We then average the data points (Nph, PPGM
e ) in order to

compute the expected error probability 〈PPGM
e 〉 for a certain

average number of photons. This curve defines the shaded
gray area in Fig. 11 of Sec. IV B. Although this is not rig-
orously a lower bound on the precision it serves as a reference
value, which is most certainly impossible to saturable with the
device at our disposal.

5. Linear classifier of multiple states

The last example on the photonic circuit platform of
Sec. IV D concerns the classification of a signal state |αs〉, that
can take values in the set of known states {|α j〉}m

j=1. For this
discrimination we employ only a network of beam splitters,
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which is statically optimized, and no adaptivity is taken into
account. By virtue of the cyclic symmetry of the states to
discriminate, the PGM is optimal [98–100] and its error rate
defines the shaded gray area in the plots of Fig. 16. Again we
are using an adder, with action reported in Eq. (B11), to build
the state |√Mαs〉 out of M copies of the signal, which in the
device are passed to the M layers of the discriminator. On the
state |√Mαs〉 the PGM is executed and its precision is plot as
a function of M.

APPENDIX C: ANALYTICAL OPTIMIZATION
FOR THE NITROGEN-VACANCY CENTER

In this Appendix, we optimize the precision of magnetic-
field estimation on an NV center, with the tools developed in
Ref. [59]. In the present paper we have so far allowed the con-
tinuous tuning of the parameters τ and ϕ, but now we suppose
that only τ j = 2 j−1 can be measured, for j = 1, 2, . . . , K ,
and similarly we are limited to ϕ = 0, π

2 . We parametrize a
strategy under these constraints by defining ν j the number of
measurements performed with time τ j . The total number of
Ramsey measurements is then

M := 2
K∑

j=1

ν j . (C1)

By applying the phase algorithm presented in Ref. [59] and
using the corresponding analytical tool to upper bound its
precision we can write

�2ω̃ �
(

2π

3

)2
⎛⎝ 1

4K
+ 16

K∑
j=1

A

4 j−1
C−ν j

⎞⎠, (C2)

where C 
 1.66 and A 
 0.60 are numerical constants. We
can find the optimal measurement distribution that optimizes
this upper bound with the methods of Lagrangian multiplier:

L :=
(

2π

3

)2
⎛⎝ 1

4K
+ 16

K∑
j=1

A

4 j−1
C−ν j

⎞⎠−λ

⎛⎝2
K∑

j=1

ν j−M

⎞⎠.

(C3)

The optimization on ν j gives

ν j = νK + 2

log2 C
(K − j). (C4)

The number of measurements ν j should be integers, but in the
following we neglect the rounding as we are only interested in
extracting the scaling of the precision of the phase estimation
procedure. By substituting Eq. (C4) in Eq. (C2) we get

�2θ̂ �
(

2π

3

)2

(1 + 64KAC−νK )
1

4K
, (C5)

and the resource resummation reads

M = K

(
νK − 1

log2 C

)
+ K2

log2 C
. (C6)

We now extract νK as a function of M and K from Eq. (C6),
and substitute it in Eq. (C5) to get

�2ω̂ �
(

2π

3

)2
(

1

4K
+ 32KA

2− M log2 C
K

2K

)
. (C7)

Observe that 2−(M log2 C)/K < 1 ∀ K � 0 and that the right-
hand side of Eq. (C7) tends to zero for K → ∞, because the
term K at numerator of

32KA
2− log2 C M

K

2K

cannot compensate the exponential in the denominator. As
K → ∞ we have νK → 0, but this is a nonphysical solution
because it must be νK � 1. Therefore the maximum allowed
K (:= K�) corresponds to νK� = 1. In this case, the resource
resummation reads

M = K�

(
1 − 1

logb C

)
+ K�2

logb C
. (C8)

For K� � 1 the above equation gives

K� = √
log2 C

√
M. (C9)

This result led us to the choice of the prefactor h that
corresponds the maximum τ . According to this derivation,
neglecting the factor

√
log2 C, which is of order one, we get

the maximum free evolution time τK� 
 2
√

M . Inserting K�

into Eq. (C7) and neglecting the subleading terms, we arrive
at the scaling

�2θ̂ � O

( √
M

4
√

log2 C
√

M

)
. (C10)

This scaling for the precision is exponential in the square root
of the number of measurements. If the free evolution time fol-
lows instead the power law τ j = bj−1, then the corresponding
Lagrangian for the optimization of the precision is

L :=
( π

nbK−1

)2
+

K∑
j=1

(
2π

nbj−2

b

b − 1

)2

AC−ν j

+ λ

⎛⎝2
K∑

j=1

ν j − M

⎞⎠, (C11)

with n = b + 1. The optimization with respect to ν j gives the
expression

ν j = νK + 2

logb C
(K − j), (C12)

and the resource resummation is

M = K

(
νK − 1

logb C

)
+ K2

logb C
. (C13)

The same analysis done before give the precision scaling

�2θ̂ � O

( √
M

b2
√

logb C
√

M

)
. (C14)

We wish to emphasize that this is an achievable scaling of
the precision for a fixed number of measurements M, which
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has to be compared with the unachievable lower bound on the
precision, obtained through a bit-counting argument [27]:

�2θ̂ � 2−2(M+1)

3
, (C15)

which has been used as a lower bound in Section A. This
bound is computed assuming that each measurement gives
exactly one bit of information about the phase θ . In summary,
while the precision lower bound for this counting of the re-
sources scales as O(4−N ), we have been able to prove the
achievability of the (much worse) O(

√
N4−√

N ) scaling.
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[28] A. Ścibior and F. Wood, Differentiable particle filtering with-
out modifying the forward pass, arXiv:2106.10314.

[29] F. Belliardo, F. Zoratti, and V. Giovannetti, qsensoropt: Quan-
tum sensor optimisation (2022).

[30] F. Belliardo, F. Zoratti, and V. Giovannetti, qsensoropt docu-
mentation (2022).

062609-26

https://doi.org/10.1088/1367-2630/ab783c
https://arxiv.org/abs/2003.02989
https://arxiv.org/abs/1811.04968
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1038/s41534-019-0201-8
https://doi.org/10.1038/s41534-019-0141-3
https://doi.org/10.22331/q-2022-06-28-747
https://doi.org/10.1103/PRXQuantum.4.030305
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1103/PhysRevLett.123.230502
https://doi.org/10.1088/2058-9565/ac16ed
https://doi.org/10.1038/s41534-021-00497-w
https://doi.org/10.1116/5.0058163
https://doi.org/10.1038/s41534-021-00434-x
https://doi.org/10.1038/s41534-020-0248-6
https://doi.org/10.1038/s41534-021-00436-9
https://doi.org/10.3390/sym14050874
https://doi.org/10.21468/SciPostPhysLectNotes.29
https://doi.org/10.1103/PhysRevA.107.010101
https://doi.org/10.1080/10619127.2021.1881364
https://doi.org/10.1038/s42256-021-00360-9
https://doi.org/10.1103/PRXQuantum.2.020303
https://arxiv.org/abs/2106.10314


APPLICATIONS OF MODEL-AWARE REINFORCEMENT … PHYSICAL REVIEW A 109, 062609 (2024)

[31] F. Zoratti, N. D. Pozza, M. Fanizza, and V. Giovannetti, An
agnostic-Dolinar receiver for coherent states classification,
Phys. Rev. A 104, 042606 (2021).

[32] J. J. Meyer, J. Borregaard, and J. Eisert, A variational toolbox
for quantum multi-parameter estimation, npj Quantum Inf. 7,
89 (2021).

[33] M. Zhang, H.-M. Yu, H. Yuan, X. Wang, R. Demkowicz-
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