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Characterization of overparametrization in the simulation of realistic quantum systems
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Quantum computing devices require exceptional control of their experimental parameters to prepare quantum
states and simulate other quantum systems. Classical optimization procedures used to find such optimal control
parameters have further been shown in idealized settings to exhibit different regimes of learning. Of interest in
this work is the overparametrization regime, where for systems with a sufficient number of parameters, global
optima for prepared state and compiled unitary fidelities may potentially be reached exponentially quickly. Here,
we study the robustness of overparametrization phenomena in the presence of experimental constraints on the
controls, such as bounding or sharing parameters across operators, as well as in the presence of noise inherent
to experimental setups. We observe that overparametrization phenomena are resilient in these realistic settings
at short times, however fidelities decay to zero past a critical simulation duration due to accumulation of either
quantum or classical noise. This critical depth is found to be logarithmic in the scale of noise, and optimal
fidelities initially increase exponentially with depth, before decreasing polynomially with depth, and with noise.
Our results demonstrate that parametrized Ansätze can mitigate entropic effects from their environment, offering
tantalizing opportunities for their application and experimental realization in near-term quantum devices.
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I. INTRODUCTION

There exist many active avenues and experimental plat-
forms for the quantum information community to explore and
advance quantum technologies, including trapped ions [1,2],
superconducting qubits [3–5], neutral atoms [6–9], nuclear
magnetic resonance [10,11], and several other intriguing ap-
proaches. To harness these technologies’ full potential for
tasks of interest in quantum information [12–14], in particular
state preparation or unitary compilation [15], it is imperative
to exercise precise control through the manipulation of experi-
mental parameters. This complex, high-dimensional quantum
control problem arises in numerous applications [16–20] and
is addressed through classical simulation and parameter op-
timization. Insight into such procedures, in experimentally
relevant quantum settings, is therefore necessary to further our
ability to rigorously control such systems.

Quantum control shares striking similarities with the field
of classical deep learning, where large parametrized models
are used to discover and represent complex patterns in large
amounts of data. Beyond the resemblance of being variational
algorithms concerned with optimizing high-dimensional sys-
tems for technological advancement, a series of observations
[21–23] has led to direct equivalencies in learning phenomena
between variational quantum algorithms and deep learning.
A striking example is overparametrization and lazy training
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[24,25]. In classical systems, excessively parametrized mod-
els can learn efficiently with negligible adjustments to their
parameters, leading to improved generalization performance
and training efficiency. A similar phenomenon has been an-
ticipated in ideal settings for noise-free variational quantum
algorithms [26–28]. It is observed that in the overparametrized
regime, the optimization landscape becomes almost free of
suboptimal minima, and optimization may converge exponen-
tially quickly.

Here we explore overparametrization via the classical sim-
ulation of quantum systems, within experimentally feasible
settings. We investigate these phenomena within the quantum
optimal control paradigm, where systems evolve under con-
tinuous time evolution [10,16,19], and within the variational
quantum algorithms paradigm, where systems evolve under
discretized sets of operations [15,21,29].

We find that overparametrization phenomena are robust un-
der realistic settings, including constrained parametrizations,
and imposing noisy nonunitary Ansatz. For a given periodic
Ansatz, where quantum circuit depth dictates the number of
model parameters, we find that inclusion of parameter con-
straints shifts the overparametrization depth boundary by a
system-size-dependent factor. However, the dominant over-
parametrization phenomenon, of exponential convergence of
optimization routines with depth, persists. In noisy settings,
we observe that there are different regimes of optimiza-
tion convergence. For depths beyond the overparametrization
depth, but before a noise-induced critical depth, exponential
convergence of optimization routines with depth still occurs.
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However, beyond this critical depth, an excessive amount
of noise accumulates, and the optimization diverges poly-
nomially with depth, and with noise. To complement these
numerical findings, analytical investigations into the noise and
depth scaling of the infidelity objectives, and other metrics
including the entropy and purity of the parametrized states,
provide an explanation for these behaviors. Overall, these
findings suggest overparametrization is resilient when impos-
ing experimental feasibility, offering opportunities for this
phenomenon to be exploited in future simulated and existing
quantum experiments.

The work is structured as follows. In Sec. II, we define
general parametrized quantum channels and objective tasks
of interest, namely noisy infidelities for state preparation and
unitary compilation. In Sec. III, we interpret the form of noisy
parametrized channels as expectation values of k-error chan-
nels, and we perform an analysis on the scaling of infidelity
objectives with respect to noise and depth. In Sec. IV, we
demonstrate overparametrization and other learning phenom-
ena in constrained and noisy parameterized quantum systems.
From numerical studies, we quantify the relationships be-
tween noise and depth at optimality. Finally in Secs. V and VI,
we discuss the implications of these results and the resulting
compromises that occur between numerical and experimental
feasibility.

II. BACKGROUND

This work aims to understand the abilities of parametrized
quantum systems in realistic, experimentally feasible set-
tings. Critically, noise, resulting from systems interacting
with their environment, is well known to be detrimental
to quantum computation [15,30,31]. Example effects in-
clude noise-induced symmetry breaking [32], fundamental
differences in sampling and annealing trajectories [33], and
noise-induced barren plateaus [34]. Initial numerical inves-
tigations by Fontana et al. [35] demonstrate that noise,
represented by noise scales or probabilities γ , accumulates
with depth M. There are also well-known compromises be-
tween expressiveness, i.e., how much of the desired space
of solutions can be represented by an Ansatz via increased
depth [36], and trainability, i.e., the ability of an Ansatz to
be optimized. However, these precise relationships in noisy
settings have yet to be confirmed quantitatively.

The parametrized systems of interest simulated in this
work are representative of various noisy intermediate scale
quantum devices (NISQ) [3,5,9]. These systems consist of N
qubits, each with local space dimension D = 2 and total space
dimension d = DN . These qubits may have fixed interqubit
couplings, however they can be manipulated with external,
time-dependent fields over a time T , or equivalently depth
of simulation M. Please refer to Appendix A for a com-
plete description of the parametrized Ansätze studied in this
work. Such experimental parameters are generally constrained
due to feasibility [20,30], and this work seeks to quantify
the amount with which constraints affect the capabilities of
parametrized quantum systems. We assume there are gener-
ally on the order of P = O(poly(N )M ) variable parameters in
the system, where generally the system size N dependence is
held fixed. Thus changes in parameter counts are reflected in

the simulation depth M, and any notion of overparametriza-
tion is discussed in the context of depth. We take as an
example in this work nuclear magnetic resonance systems
where nuclei, acting as D = 2 level qubits, are manipulated
by time-dependent magnetic pulses [11,20,37,38].

Underlying this analysis are principles from learning the-
ory based on studies of overparametrization in ideal quantum
settings, including unitary compilation [26], variational quan-
tum eigensolvers [27,39], and general quantum circuits [28].
These works have subsequently been followed up by initial
theoretical studies on the effects of noise. Within an informa-
tion theoretic context, the quantum Fisher information [40]
is used as a metric to determine whether a quantum system
is overparametrized. Within a general optimization context to
complement neural-tangent kernel approaches for asymptotic
learning dynamics [22], Riemannian gradient flow dynamics
[39] are used to assert the convergence of overparametrized
systems with bounded gradient noise. For our purposes, over-
parametrization refers to when there are an adequate number
of parameters P > P̃ or depths M > M̃, such that the full
space of G-dimensional solutions to tasks is spanned by the
parametrized Ansatz. Within this regime, we investigate the
resulting overparametrization phenomena of the possible ex-
ponential convergence of noisy optimization procedures with
depth. Imposing constraints on the optimization related to
experimental feasibility, including restricting individual con-
trol of qubits, is also known to decrease convexity in the
objective landscape [13,41,42], and it requires many opti-
mization heuristics. Please refer to Appendix B for a more
complete description of overparametrization, including quan-
titative bounds on the overparametrization depth related to the
quantum Fisher information.

Based on these studies, we hypothesize that there ex-
ists a critical evolution time or depth Mγ > M̃ where
overparametrization has occurred, however too much noise
has also accumulated. This noise is expected to prevent
parametrized systems from accomplishing fidelity-based tasks
with arbitrary precision. To confirm these predictions, we
will consider the average behavior of infidelities, optimized
independently over a distribution of tasks. We therefore con-
jecture that there are convergent and divergent phases of the
optimization,

Optimization ∼

⎧⎪⎨
⎪⎩

Plateau, M < M̃,

Convergent, M̃ < M < Mγ ,

Divergent, M > Mγ .

(1)

This work aims to confirm these conjectures of depth-
dependent regimes of learning phenomenon in nonideal
settings.

To quantify the effects of noise on the evolution and abil-
ities of parametrized quantum systems to perform tasks of
interest, we define parametrized quantum channels as

�θγ =Nγ ◦ Uθ , (2)

with a unitary channel Uθ parametrized by variable parameters
θ , and a nonunitary channel Nγ parametrized by constant
noise scales γ .
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For the unitary channel, we assume the Hamiltonian driv-
ing the evolution

H (t )
θ =

∑
μ

H (t )
μ : H (t )

μ = θ (t )
μ Gμ (3)

at a continuous time t ∈ [0, T ]. The Hamiltonian is defined
by a set of generators {Gμ}, which are generally assumed to
be acting on at most k qubits. Assuming the evolution is ap-
proximately piecewise constant over M time steps τ = T/M
allows for first-order temporal Trotterization of the resulting
unitary operator

Uθ = T e−i
∫ T

0 dt H (t )
θ =

M∏
m

U (m)
θ + O(τ 2). (4)

Q order spatial Trotterization of the operator across the N
qubits at time index m is also possible. Here Trotterization
is represented as a product of a function of lower-order Trot-
terizations, denoted by the Q superscript,

U (m)
θ = e−iτH (m)

θ =
(Q)∏
μ

U (m,Q)
μ + O(τQ+1). (5)

The final first-order temporally localized unitary channel, with
Q-order spatial Trotterization, is

Uθ = ◦M
m U (m,Q)

θ : U (m,Q)
θ = ◦μU (m,Q)

μ , (6)

with resulting gate operators related to the Hamiltonian gen-
erators

U (m,Q)
μ = e−iτH (m,Q)

μ . (7)

Please refer to Appendix A for a complete description of these
schemes.

For the nonunitary channel, we consider temporally and
spatially local independent noise acting on the K = NM sites
(m, i) of possible errors

Nγ = ◦M
m

(◦N
i N (m)

γi

)
. (8)

For our purposes, we decompose each local noise channel into
a convex combination of an identity component, and what we
refer to as a nonidentity error component,

N (m)
γi

≡ (1 − γ )Ii + γK(m)
γi

. (9)

The forms of the nontrivial Kγ depend on the specific noise
model of interest. Noise models considered in this work in-
clude local dephasing, amplitude damping, and depolarization
noise. Such local noise models are known to be relevant
in several quantum computing implementations [43,44]. Our
analytical and numerical approaches are easily transferable
to spatially correlated noise models across multiple qubits,
however such studies concerning any nontrivial effect of
correlated noise are left for future work. Please refer to Ap-
pendix C for a complete description of each noise channel, and
to Appendix D for an analytical treatment of noise-induced ef-
fects. Given the temporal and spatial locality of the Trotterized
unitary and nonunitary channel, we finally reach the explicit
Ansatz form of interlaced noise and unitary evolution,

�θγ = ◦M
m

(
N (m)

γ ◦ U (m)
θ

)
, (10)

leading to our overall channel circuit diagram in Fig. 1.

FIG. 1. Parametrized quantum channel with layers of Trotterized
local (blue squares) and two-body (pink rectangles) unitary opera-
tors, followed by local noise channels (hatched green squares) after
each layer, with an initial state (leftmost gray circles).

In this work, we take as our parametrized unitary Ansatz
evolution generated by the nuclear magnetic resonance
(NMR) Hamiltonian consisting of N , D = 2 qubit Pauli op-
erators

H (t )
θ =

∑
i

θ x
i

(t )Xi +
∑

i

θ
y
i

(t )Yi

+
∑

i

hiZi +
∑
i< j

Ji jZiZ j . (11)

Generally in such systems, we have control over the variable
time-dependent local transverse X and Y fields at qubit i,
with additional constant time-independent longitudinal local
Z at qubit i and nonlocal ZZ fields at qubits i �= j. Such
Hamiltonians allow for universal control over qubits, with
the local and nonlocal gates allowing entangling gates to be
implemented. We use experimentally relevant scales for our
Ansätze in Table I, and details of the Ansatz are discussed
in Appendix E. To compare our choice of NMR Ansatz
to other implementations, we collect rough estimates [45]
from recent literature of the 1-qubit TU1 and 2-qubit TU2

gate times, and decoherence times Tγ , for NMR [10,17,46],
trapped ion [1,2,46], superconducting qubit [3,4,46], and neu-
tral atom [6–8] quantum computing experiments in Table III
of Appendix E. NMR systems are limited by experimental
feasibility. Their small nonlocal coupling constants J limit
how much qubits can be correlated at each time step TU1 =
O(τ ), increasing significantly the necessary 2-qubit gate times
TU2 = O(1/J ). This translates into NMR systems having the

TABLE I. Experimentally relevant constants for constrained
NMR Ansatz.

N Number of qubits ∼1 − 4
M Number of time steps ∼O(100 − 104)
τ Trotterization time step ∼O(75 − 100 µs)
T Evolution time = Mτ ∼ O(375 µs − 500 ms)
Q Spatial Trotterization order = 2
P Number of parameters ∼O(poly(N )M )
J Constant longitudinal coupling ∼O(π/2 × 102 Hz)
h Constant longitudinal field ∼O(π/2 kHz)
θ Variable transverse field ∼O(π/2 MHz)
γ Noise scale ∼O(10−14 − 10−1)
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largest effective depth TU2/TU1 ∼ O(100) required for each 2-
qubit gate, and having the smallest effective maximum depth
Tγ /TU2 ∼ O(102) before coherence, among considered im-
plementations. We therefore note that any conclusions drawn
from this work regarding the explicit scale of noise or depth
of models where phenomena occur are specific to this NMR
Ansatz. However, we believe other similarly universal Ansätze
should exhibit comparable behavior, at their specific Ansatz-
dependent scales.

The choice of a universal Ansatz spanning the full space
of G = O(d2) unitaries also simplifies transferability to other
universal Ansätze, and avoids any bias by restricting evo-
lution to being within a subspace. Techniques used other
implementations [3] that also generally have origins in NMR
techniques and their proof of principle quantum algorithm
experiments [18,38], including zero-noise extrapolation [44],
dynamical decoupling [47], and refocusing procedures [38].
These approaches are highly relevant to interpretations of the
phenomena observed.

Given this parametrized Ansatz, we wish to assess its
ability to represent targets of interest, such as operator com-
pilation, where sequences of operators are optimized to
approach a target operator, and state preparation, where initial
states transformed by sequences of operators are optimized to
approach a target state [48]. Such tasks arise often in quantum
algorithms, and they depend crucially on targets being within
the span of the Ansatz. Here we focus on unitary compilation
and pure state preparation, given a parametrized Ansatz with
universal control over the full space of unitary operators. The
parameters θ of the Ansätze are optimized via optimization
routines, and given an initial pure state σ , and target unitaries
U or target pure states ρ, we assess the abilities of the respec-
tive parametrized unitaries and states,

Uθγ ≈ U, (12)

ρθγ = �θγ (σ ) ≈ ρ = U (σ ). (13)

Objective metrics of infidelities with respect to the given uni-
tary compilation and state preparation tasks [49] are chosen to
quantify these Ansätze through optimization,

LU
θγ = 1 − (1/d2)|tr(U †Uθγ )|2, (14)

Lρ
θγ = 1 − tr(ρρθγ ). (15)

We also define the impurity, von-Neumann entropy, and rela-
tive entropy divergence, relative to a pure state ρ as

Iθγ = 1 − tr
(
ρ2

θγ

)
, (16)

Sθγ = −tr(ρθγ ln (ρθγ ))/ln (d ), (17)

Dρ
θγ = −tr(ρln (ρθγ ))/ln (d ), (18)

for later interpretations of noise-induced phenomena.
In general, the optimization of objectives Lθγ → L∗

θγ ,
particularly in noisy settings to determine the optimal
parametrization θ∗

γ , has no closed forms [50]. Whether there
are similarities between optimal noisy and noiseless quan-
tities, such as infidelities L∗

θγ ≈ L∗
θ , or even more strongly

between parameters θ∗
γ ≈ θ∗, remains an open question [32].

In our subsequent analysis, in addition to numerical studies,

we derive analytically the leading-order scalings of the dis-
cussed quantities of interest, given our variables of the depth
M and the noise scale γ .

We also note that all plotted statistics in this work reflect
average behaviors of the Ansatz across independent optimiza-
tions with respect to Haar random initial pure states and Haar
random targets. The minimum infidelity reached for each in-
dependent optimization for a given fixed depth and noise scale
is used for statistics across samples. Error bars and shaded
regions represent one standard deviation from the mean of
samples. Lower error bars are plotted equal in length to the
upper error bar on a log scale, and nonvisible error bars can be
considered to be equal in scale to any plot markers. Error bars
in this work generally appear to be relatively orders of mag-
nitude smaller than their corresponding average values, and
S = 50 � O(100) samples are deemed adequate to capture all
behaviors well in practice for N � 4 qubits. We note, how-
ever, that optimization hyperparameters, as per Appendix F,
in particular the use of a modified conjugate-gradient-based
optimizer with a Wolfe condition line search and appropriate
learning rates, must be carefully selected. Our initial studies
indicated that at larger depths and larger small noise scales,
after an initially smooth convergence in infidelity, optimiza-
tion routines can oscillate rapidly between local minima, as
also observed in previous optimization studies [27]. A point
concerning notation used in this work: quantities computed
within a noisy context generally have γ subscripts, such as pa-
rameters obtained in a noisy setting θγ . Otherwise in noiseless
settings, any noise subscripts are dropped. The Trotterization
order Q superscripts are also generally dropped for simplicity
as Q = 2 is held fixed.

III. METHODS

We now develop formalisms to understand the scaling of
channel-dependent quantities with respect to depth and noise
scales. We first develop methods for comparing constrained
versus unconstrained noiseless Ansätze, as detailed in Ap-
pendix B. We follow the formalism developed by Larocca
et al. [28], which sets bounds on the rank R = R(P) � P of
the quantum Fisher information Fθμν

to determine whether
a quantum system with P parameters is overparametrized.
At an overparametrization limit P̃ = O(G), defined in terms
of the dimension of the space spanned by the Ansätze, this
metric’s rank is shown to transition from being full rank
R = P for underparametrized P < P̃, to saturating at this limit
R = P̃ for adequately or overparametrized P � P̃. Underlying
these definitions of overparametrization is the quantum Fisher
information’s rank generally reflecting how many directions
a parametrized Ansatz may span in its space of solutions.
We seek to generalize these intuitions from state-dependent
Ansätze to unitary-dependent Ansätze, independent of the ini-
tial state being transformed. The conventional state Fisher
information Fρ

θ is defined in terms of states ρθ , given a state
preparation objective Lρ

δ ∼ tr(ρθρθ+δ ). We define a general-
ized unitary Fisher information FU

θ , developed concurrently
by Haug et al. [51], that is strictly dependent on the unitary
Ansatz Uθ . Given our unitary compilation objective LU

δ ∼
tr(U †

θ Uθ+δ ), we may derive the unitary Fisher information
as the leading-order deviation, in the perturbing parameters
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δ → 0, of the objective

FU
θμν

= 1

d2
Re(d tr(∂μU †

θ ∂νUθ )

− tr(∂μU †
θ Uθ )tr(U †

θ ∂νUθ )), (19)

which reduces to the state Fisher information definition in the
limit of tracing over d = 1-dimensional states

Fρ
θμν

= Re(〈∂μρθ |∂νρθ 〉 − 〈ρθ |∂μρθ 〉〈∂νρθ |ρθ 〉). (20)

The rank of the unitary quantum Fisher information subse-
quently offers insight into the capabilities of an Ansatz to span
a set of unitaries, and to potentially become overparametrized
for compilation tasks. We also may derive expressions for the
resulting noise-dependent quantities that allow for an easier
interpretation for noise-induced phenomena. Crucially, we
differentiate states by their number of errors due to local noise,

Nγ =
K∑
k

∑
χk∈[2]K

|χk=k|

◦M
m ⊗N

i γ χk
m
i (1 − γ )1−χk

m
i K(m)χk

m
i

γi . (21)

Here, we refer to an error as any single nonidentity noise
operation Kγ acting locally at any of K = NM possible qubits
and time indices, interlaced within a unitary Ansatz Uθ . We
then may define k-error channels �θγk that are convex com-
binations of channels consisting of all possible locations of
k � K errors, represented by multi-indices χk ∈ [2]K : |χk| =
k, each with probability γ k . The channels that generate at
most K-error noisy states, can therefore be seen to have an
interesting form of an expectation value over a distribution of
k-error channels,

�θγ = 〈�θγk

〉
k∼pKγ

. (22)

For noise models defined in terms of strictly identity or non-
trivial errors, the exact distribution over the errors

pKγ (k) = (Kk )γ k (1 − γ )K−k (23)

is the binomial distribution with mean Kγ . As discussed in
Appendix C, other interpretations for noise can arise due to the
binomial distribution being equivalent to other distributions in
various limits of γ and K . Grouping the K, γ -dependent terms
yields the leading-order scaling

�θγ − �θ =
K∑

k>0

(K
k

)
γ k�θγ�k . (24)

We denote k-error channels as the uniform convex combina-
tion of all possible error locations

�θγk = 1(K
k

) ∑
χk

�
χk
θγ , (25)

and we denote at-most-k-error operators as the nonuniform
combination of all possible l � k error locations

�θγ�k =
k∑
l

(−1)k−l
(k

l

)
�θγl , (26)

where specific k-error channels with errors at locations χk are
denoted as

�
χk
θγ = ◦M

m

[[
◦N

i K(m)
γi

χk
m
i

]
◦ U (m)

θ

]
. (27)

For example, the k = 1-order deviation from the noiseless
channel

�θγ�1 = 1

K

M,N∑
m,i

U (>m)
θ ◦ (K(m)

γi
− Ii
) ◦ U (�m)

θ (28)

depends on the nontriviality of the K possible single K(m)
i �= Ii

local channels. Generalizing this interpretation, the k-order
deviation depends on how the

(k
l

)
possible l � k-error chan-

nels combine, weighted by their binomial coefficients, to
cancel or deviate from the trivial noiseless channel. Channels
consisting of multiple q types of errors at indices χk ∈ [q]K

may also be written as an expectation over a generalized
multinomial distribution of channels.

As derived in Appendix C, gradients along parameter di-
rections μ of objectives, which are linear in the parametrized
channels with constant noise, follow parameter shift rules
[52]. We denote such gradients with perturbing parameter
angles ϕ and coefficients αϕ , which are dependent on the
spectrum of the Ansatz generators

∂μ�θγ =
∑

ϕ

αμ
ϕ �θ+ϕ γ . (29)

These parameter shift rules indicate that the linear nature
of the noise interlaced with the parametrized unitary Ansatz
perturbatively affects the noisy quantities.

Whether classical sources of noise impose similar noise-
induced phenomena to the quantum noise sources studied is
a separate important question when determining the robust-
ness of parametrized systems. As developed in Appendix D,
we introduce the notion of classical noise due to numerical
precision, or floating point error scale ε, and we determine its
similarity to the quantum noise scale γ . This error affects both
the representation and numerical operations of floating point
scalars, which we extend to matrices A ∈ M(d ) and matrix
multiplication

k∏
μ

Aμ →
k∏

ε

μ

Aμ =
∑

χ∈[2]k

k∏
μ

Aμ�χμ (30)

for error matrices � ∈ M(d ), interlaced at locations χ .
We then relate classical ε = ε(d ) = ‖�‖, and quantum γ =
O(‖K‖) noise phenomena, given the number of k = O(K ) =
O(poly(N )M ) matrix multiplication operations that are sub-
ject to classical error, are related to the number of K possible
quantum errors in the Ansatz. We are thus able to derive
exact bounds on the deviations of noisy infidelities from their
noiseless counterparts

|Lθε − Lθ | � |1 − (1 + ε)2k| ∼ O(2kε), (31)

|Lθγ − Lθ | � 2|1 − (1 − γ )K | ∼ O(2Kγ ), (32)

with the use of various properties of norms such as Holder and
von-Neumann’s inequalities for Schatten matrix norms [53].
Both classical and quantum noisy infidelities scale similarly:
polynomially in the noise scale, exponentially in the number
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of errors, and identically in the limit of small local error scales.
However, the constant classical error factors depend on the
dimension of the space of interest and the number of pa-
rameters, indicating that larger classically simulated systems
experience potentially greater error. This scaling of infidelities
analysis is Ansatz-independent and provides valuable insight
into general deviations of noisy quantities from their noiseless
counterparts. However tighter bounds are potentially possible
if there are symmetries or relationships between the noise and
dynamics, or if the optimization is analytically tractable, and
if an exact form for Lθ∗

γ γ may be derived. These upper bounds,
as will be discussed in Sec. IV, also relate to the critical point
at which noise effects begin to dominate for greater numbers
of operations, and optimization enters a divergent regime.

IV. RESULTS

Classical simulations and analytical calculations are per-
formed to quantify changes in the behavior of parametrized
systems and their optimization, with depth and with noise
scale. NMR Ansatz and simulation details are described in
Appendix E and Appendix F, and all data can be found in
a repository [54].

A. Unconstrained versus constrained optimization

We first investigate the effects of constraints on noiseless
Haar random unitary compilation, with respect to the number
of optimization iterations and various depths M. The con-
trollable transverse fields θ

x,y(m)
i at each time step m ∈ [M]

and qubit i ∈ [N] are constrained due to it being difficult to
exercise individual control over qubits, θ x,y(m)

i = θ x,y(m), pulse
amplitudes are bounded |θ x,y(m)

i | � θ̄ , and are generally turned
off at the start and end of experiments, θ

x,y(0,M−1)
i = 0.

Given the trends throughout optimization for the N = 4
NMR Ansatz and Haar random targets, as well as the rank sat-
uration of the generalized unitary Fisher information metric in
Fig. 2, we observe exponential infidelity convergence beyond
a depth M > M̃ ≈ G ∼ O(256). We thus claim numerically
that in noiseless settings, constrained optimization converges
as

Lθ ∼ e−αM : M > M̃ (33)

for some rate of convergence α. In practice, M ≈ O(1000) �
M̃ is necessary for adequate convergence within a feasi-
ble number of optimization iterations. We also note that, in
particular at larger depths, constrained tasks exhibit greater
variance relative to unconstrained tasks, however both types
of tasks have generally low relative variance, suggesting an
appropriate choice of optimization hyperparameters, as per
Appendix F.

We note that the nonlocal coupling J � h, θ is much
smaller than other scales, and for experimentally realistic time
steps, τJ � 1. This limits how much of a nonlocal entangling
gate can be implemented in a single time step, an essential part
of generating Haar random unitaries. From these simulations,
we conjecture that these constraints necessitate that the mini-
mum depth where overparametrization can occur is increased

FIG. 2. Convergence of unitary compilation infidelity with re-
spect to optimization iteration and depth M (colored/gradient) for
the N = 4 NMR Ansatz. (a) Unconstrained parametrization with
independent qubit parameters, and no boundary conditions. (b) Con-
strained parametrization with shared qubit parameters, and zero-field
temporal boundary conditions. Constrained tasks require compara-
ble iterations or depth to converge comparably to unconstrained
tasks, and they exhibit exponential convergence beyond M > M̃ ≈
O(d2) = O(256). (c) Constrained quantum Fisher information eigen-
value spectrum at optimality. The spectrum is full-rank R = P for
M < M̃ before saturating at rank R = P̃ ∼ O(d2) � P for M � M̃,
indicating overparametrization.
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by a subexponential factor in the number of qubits,

M̃Constrained ∼ O

(
1

τJ
poly(N )

)
M̃Unconstrained. (34)

Other than a shift in the overparametrization boundary, the
given constraints do not appear to fundamentally affect the
exponential infidelity convergence. We also note that even for
relatively small system sizes of N � 4, several orders of mag-
nitude deeper circuits than are typically classically simulated
[26–28], with up to O(105) gates, are necessary to study such
realistic systems.

B. Noisy state preparation

We now investigate the effects of local noise on Haar
random pure state preparation. Here parameters are uncon-
strained according to experimental feasibility to ensure all
observed phenomena are due to noise. Given our findings
on the effects of constraints, to leading order, imposing con-
straints should only shift the depth-dependent results by a
noise-independent factor.

To demonstrate the interplay between depth and noise
scales on optimized infidelities, we plot infidelities with re-
spect to each independent quantity in Fig. 3. Here we display
unital dephasing noise, and other unital and nonunital noise
models are shown to exhibit similar behavior in Appendix C.
When varying the noise scale in Fig. 3(a), for small noise
scales the average optimal infidelity [solid lines in Fig. 3(a)]
strictly scales as expected with depth. Increasing the noise
scale past a depth-dependent critical noise scale γM causes
infidelities to increase polynomially, between linearly and
quadratically, until the infidelities plateau at their maximum
value. We also investigate trends when inserting parameters
learned in the noisy setting into an identical, but noiseless
unitary Ansatz, yielding infidelities [dashed lines in Fig. 3(a)].
Such noiseless, tested infidelities are superior than their cor-
responding trained noisy infidelities in terms of their greater
critical noise scale γMNoiseless > γMNoisy : the noiseless infidelities
increase in the divergent regime at much larger noise scales.
This suggests the optimization is learning about the underly-
ing unitary dynamics, and is not just preparing another mixed
state that happens to be close to the target pure state. The error
bars of both the noisy trained and noiseless tested infidelities
are equal in the convergent regime with γ < γM [overlapped
markers in the left of Fig. 3(a)], and they are orders of mag-
nitude smaller in the divergent regime with γ > γM . Overall,
the trends in error suggest the optimization and dynamics are
most uncertain within the regime around and past the noise
scale γM , indicating increased complexity near this transition.

The noiseless behavior can partly be explained from pa-
rameter shift rules for gradients of parametrized channels with
constant noise, as derived in Appendix C. The noisy state is
a convex combination of parametrized pure states, each with
identical gradient directions to the noiseless case, albeit with
magnitudes that are scaled by polynomials of the noise scale.
Therefore, the trajectory of the gradient-based optimization
remains similar at small noise scales in both noisy and noise-
less cases.

When varying the depth, we observe a critical noise-
dependent depth Mγ that occurs in Fig. 3(b). Previously
decreasing infidelities with depth in a convergent regime

FIG. 3. Behavior of state preparation infidelity with respect to
unital dephasing noise γ and depth M for the N = 4 NMR Ansatz.
(a) Trained noisy infidelity (solid), and tested infidelity of noisy
parameters in noiseless Ansatz (dashed), with respect to noise scale,
for various depths M (colored/gradient). Infidelities are depth-
dependent and noise-independent for small noise scales, before
universally increasing polynomially with noise. Tested noiseless in-
fidelities indicate that the underlying unitary dynamics are being
learned resiliently. (b) Critical depth for noisy infidelity for various
noise scales (colored/gradient). Infidelities improve exponentially
with depth, up until a noise-induced critical depth, where entropic
effects worsen infidelities polynomially.

for M < Mγ increase uniformly with depth in a divergent
regime for M > Mγ . Beyond this depth, the increase in
expressiveness of the Ansatz to prepare arbitrary states from
increasing the number of variable parameters is outweighed
by the accumulated noise from the increased sources of er-
ror. From a trainability standpoint, beyond this critical depth,
noise-induced barren plateaus may be occurring, leading to
a decrease in trainability where the gradients are unable to
find the ideal trajectory to reach optimality. Alternatively,
from an expressiveness standpoint, noise potentially increases
in an uncontrolled manner the number of directions permit-
ted to be explored in the objective landscape [40]. Future
work should investigate the density of mixed states that
are perturbatively away from a given pure state [15,55]. As
discussed below, through analytical calculations, we offer
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FIG. 4. Behavior of unitary compilation infidelity with respect to
depth M and classical floating point noise scale ε (colored/gradient)
for various N NMR Ansatz, relative to the noiseless case (black).
Decreasing error scale verifies the classical noise model’s suitability
and estimates the architecture-dependent machine precision of ε ∼
O(10−16). Classical noise is also shown to exhibit a critical depth Mε

and divergent regime.

complementary interpretations into exactly how entropic ef-
fects begin to dominate infidelity behaviors.

C. Universal effects of classical and quantum sources of noise

These studies bring to mind the question of whether noise-
induced critical depth phenomena can be attributed to strictly
quantum or potentially classical noise phenomena. For very
deep ideal noiseless Ansatz with M > O(1000), infidelities
approach machine precision and start to increase with depth.
This suggests floating point errors accumulate for large num-
bers of simulated operations. As per the noise models derived
in Appendix D, we insert artificial classical floating point error
of different scales into simulations, as per Fig. 4. Adding zero-
mean random errors with standard deviation proportional to
error scales to results of floating point operations shows simi-
lar trends in noise-induced convergent and divergent regimes.
Since unitary compilation tasks have quadratically more de-
grees of freedom than state compilation tasks, their infidelities
decrease slower with depth. Furthermore, infidelity curves
reach their critical depth at earlier depths for smaller system
sizes due to the exponentially smaller spaces to search.

Infidelities are shown to increase and enter the divergent
regime when they reach a scale proportional to that of the
error scale. This error scale may be approximately upper
bounded by the derived deviations of the noisy infidelities
from their noiseless counterparts. By decreasing the artificial
floating point error, the curves also converge to the supposedly
noiseless case, offering an estimate for the machine precision
of ε ∼ O(10−16). These trends open many questions on the
viability of large-scale simulations close to machine preci-
sion with finite floating point architectures. Can arbitrarily
large systems be accurately simulated without resorting to
inefficient arbitrary precision arithmetic, or error mitigation
or correction approaches [14,44]?

V. DISCUSSION

From numerical experiments, we find for a given scale
of local noise γ that there is a critical depth of circuit Mγ ,

beyond which optimal infidelities increase with depth due to
an accumulation of noise. From fitting procedures discussed
in Appendix C, we are able to determine the critical depth to
be logarithmic in the noise scale

Mγ ∼ ln(1/γ ). (35)

The optimal infidelity is therefore approximately

Lθ∗γ |Mγ
∼ e−αMγ ∼ γ α, (36)

with 1 � α � 2, confirming previous conjectures of linear or
quadratic scaling of infidelity with noise [35]. The interpreta-
tion of a noisy channel being a binomial distribution of k-error
channels also suggests that parametrized quantum channels
can mitigate approximately

K̄γ ∼ γ ln(1/γ ) (37)

errors. Determining whether the optimization is finding
a parametrization that explicitly performs error mitigation
[30,44,56], or even error correction through a parametrized
encoding [57], would constitute important future contribu-
tions [14,58]. The presence of a noise-induced depth is also
reminiscent of weak measurement-induced phase transitions
[59]. However, these noise-induced effects intuitively should
be apparent at all system sizes, and do not seem to be related to
typical indicators of phase transitions such as scale invariance.

As derived in Appendix C, the Bloch representation allows
explicit leading-order scaling of quantities with respect to
depth and noise to be derived. Here, we represent states as ρ =
(1/d )(I + λ · ω), with Bloch coefficients λ associated with a
set of d2 − 1 nonidentity trace orthogonal basis operators ω.
Channels � may then be represented as affine transformations
λ → �λ + υ. Parametrized noisy channels �θγ with K pos-
sible errors may be decomposed into strictly unitary uθ and
unital uθγ and nonunital ηθγ noise-dependent components

�θγ = (1 − γ )K uθ + [1 − (1 − γ )K ]uθγ , (38)

υθγ = [1 − (1 − γ )K ]ηθγ . (39)

In this Bloch representation, we may then express a
parametrized noisy state as

ρθγ = (1 − γ )Kρ + [1 − (1 − γ )K ]εθγ + �θγ . (40)

This decomposition expresses the interplay of the
parametrized unitary and noise-induced nonunitary
components of the channel. The unitary component rotates
what we refer to as the pure component of the state. This
component consists of a superposition of the pure target state
ρ, with associated coefficients λ, and an orthogonal pure state
with orthogonal associated coefficients ζ ⊥ λ, represented
within the traceless deviation term �θγ . The noise component
of the channel scales the pure component of the state with the
noise scale 1 − γ , plus it shifts the state by what we refer to as
the mixed component of the state εθγ , with associated Bloch
coefficients εθγ . In the limit of the optimization reaching
optimality in the noisy setting θ → θ∗

γ , the pure component
of the state approaches the pure target state, the deviation
term �θ∗

γ γ → 0 approaches zero, and there only remains an
inherent noise-dependent mixed component εθ∗

γ γ . We may
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then assume that optimality is reached in this noisy setting,
and channel-dependent quantities may be expanded in the
number of errors and noise scale. At optimality, we find our
quantities of interest analytically scale similarly to leading
order in K, γ , namely

Lρ

θγ ∼ Kγ
d − 1

d

(
1 − λ · εθγ

λ2

)
+ O
((K

2

)
γ 2
)
, (41)

Iθγ ∼ 2Kγ
d − 1

d

(
1 − λ · εθγ

λ2

)
+ O
((K

2

)
γ 2
)
, (42)

Sθγ ∼ O(Kγ ), Dρ
θγ ∼ O(Kγ ). (43)

As derived in Appendix C, the Bloch representation allows
exact leading-order terms to be derived for quantities that
are strictly polynomial functions of the Bloch coefficients.
Quantities that are more complex, for example logarithmic,
functions of the Bloch coefficients require knowledge of the
algebras governing the specific choice of basis ω, yielding
in principle calculable [60] but nonintuitive forms. Impor-
tantly, when the mixed components εθγ ‖ λ become pure,
or aligned with the pure target coefficients, quantities differ
from their noiseless values by strictly higher-order terms.
This purification of the mixed component could be due to
the lack of noise, or the specific combination of parametriza-
tions and noise models forcing the system towards a pure
state, and it describes general error mitigation. The use of
Block representations thus allows simplified and occasionally
Ansatz-independent depictions of noise-induced phenomena.
Beyond the critical depth, infidelities appear both analyti-
cally and numerically to be linear functions of entropy and
impurity, and they scale with the overlap of the pure target
state with the mixed component. In particular, at low noise
scales in the divergent noisy regime, analytical predictions
and numerical simulations of the discussed quantities all cor-
respond precisely, as demonstrated in Fig. 9 in Appendix C.
Further, from Fig. 5, all quantities appear to collapse together
with increasing noise scales. Reasoning that noise phenomena
dominate at M = Mγ , when the scale of the optimization-
driven decreasing optimized infidelity Lρ

θ∗
γ γ reaches the scale

of the entropic-driven increasing analytical infidelity Lρ

θ∗γ ,

Lρ
θ∗
γ γ ∼ e−αM

∣∣
Mγ

≈Lρ
θ∗γ ∼ NMγ

∣∣
Mγ

, (44)

and we recover our numerically predicted noise-induced
critical depth Mγ ∼ ln(1/γ ). We note that bipartite (entan-
glement) entropy, between a system and its environment,
is generally bounded strictly by the system size N = K/M.
However, noisy quantities are polynomials of k-error factors
pKγ (k) ∼ O(Kkγ k ). The additional degree of freedom rep-
resenting the strength of system-environment interactions γ

appears to suppress the higher-order polynomial factors.
Universal behaviors in the divergent regime can be

attributed to entropy-increasing phenomena, once the
parametrized channel has rotated the state to within a
depth-dependent distance from the target state. However, at
large noise scales there are important distinctions between
unital versus nonunital types of noise. For unital noise,
such as dephasing noise in Fig. 3, a potential explanation

FIG. 5. Behavior of infidelity, entropy, and impurity with re-
spect to depth M and nonunital amplitude damping noise γ

(colored/gradient) for the N = 4 NMR Ansatz. At small noise scales,
quantities scale identically linearly with depth and with noise in the
divergent, entropic driven regime. At large noise scales, unlike unital
noise, nonunital noise infidelities decrease polynomially with depth
once the parametrized unitary aligns the state towards the target pure
state.

is that the combination of the potentially close to Haar
random parametrized unitaries, and the accumulated noise,
induces depolarization. Entropy is shown to increase
linearly with depth, at practically all noise scales, and
dominates the infidelity behaviors. For nonunital noise,
such as amplitude damping noise in Fig. 5, at small noise
scales the behavior appears qualitatively similar to unital
noise of linearly increasing infidelity along with impurity
and entropy. However, nonunital noise appears to have
fundamentally different nonuniversal behavior at large noise
scales. Nonunital noise forces the state into a specific (pure)
state, which appears to improve the infidelities. Unlike in
the overparametrized regime, however, infidelities appear to
decrease polynomially with depth. Adequately parametrized
unitaries at depths far beyond the typical overparametrization
bound appear necessary to rotate some components of this
forced state towards the target state. Ultimately, optimization
routines in a noisy setting are shown to be capable of rotating
the pure components of states towards target pure states, and
they exhibit overparametrization phenomena. Once objectives
approach a noise-induced entropy-dependent scale, entropic
effects then dominate objective behavior with increasing
depth. Finally, fundamental differences between unital and
nonunital noise at large depths and large noise scales are
relevant when considering NISQ applications.

VI. CONCLUSION

Through this work’s classical simulation and analyti-
cal treatments, overparametrization phenomena for quantum
systems are shown to be robust under realistic settings. Infi-
delities decrease exponentially with depth in the convergent
regime before increasing polynomially with depth and with
noise in the divergent regime. These scalings provide essen-
tial data for the experimental design of variational quantum
algorithms.
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When assessing the relevance of this work, given we sim-
ulate specifically NMR systems with depths M ∈ [10, 5000]
and noise scales γ ∈ [10−18, 10−2], we must assess the depth
and noise scales of other implementations, such as trapped
ions, superconducting qubits, and neutral atoms in Table III.
Given our derived logarithmic dependence with noise scales
of the noise-induced critical depth, we conjecture that NMR
systems’ robustness deteriorates at depths Mγ ∼ O(200) and
noise scales of γM < O(10−3) if we require infidelities
L < O(10−4). Although the full span of considered depths
and noise scales exceeds currently experimentally feasible
regimes for NISQ implementations, the derived limits where
robustness deteriorates are still approaching currently feasible
scales. Other implementations are expected to show identical
phenomena, with some Ansatz-dependent shift in these depth
and noise scales. It should also be noted that nonunital noise
appears to allow for reimproved infidelities in the divergent
regime at exceptionally large depths of M ∼ O(5000) and
large noise γ ∼ O(10−2). There may be intriguing nontrivial,
noise-type induced emergent phenomena at these large depths,
even if these regimes are currently impractical experimen-
tally. This work further serves as studies of general noise
phenomena, which are likely to be encountered when existing
implementations are scaled to address practical problems. The
conclusions drawn, therefore, support the necessity of quan-
tum error correction, and they challenge aspirations [61,62]
of existing NISQ applications being scaled to thousands of
qubits and gates.

Finally, we remark that entropic effects appear to domi-
nate only beyond a critical number of errors in the system.
General parametrized systems are thus shown to be capable of
suppressing entropic behavior imposed by their environment.
By locating the noise-induced critical depth, problems can
be optimized to their best-case objectives across all depths,
for example in coveted quantum control problems [19]. This
opens up intriguing applications [63] for variational Ansätze,
both classical and quantum, and we are excited about their
potential.
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APPENDIX A: BACKGROUND

In these Appendixes, we elaborate on the specific
parametrized quantum channel Ansätze studied in this work.
We discuss the unitary and nonunitary components of the
channel, and their approximations and derivations via Trot-
terization. These Trotterized forms correspond to quantum
circuit models of continuous evolution of quantum systems up
to a specified order of precision, and they are used for classical
simulation.

1. Unitary evolution

The unitary evolution operator takes the form of the time
ordered matrix exponential of the Hamiltonian

Uθ = T e−i
∫ T

0 dt H (t )
θ . (A1)

Here the time-dependent Hamiltonian driving the evolution
takes the parametrized form

H (t )
θ =

∑
μ

H (t )
μ , (A2)

with a set of poly(N ) parameters θ (t ) at each time t ∈ [0, T ].
Each term in the Hamiltonian is parametrized with fixed gen-
erators G = {Gμ} as

H (t )
μ = θ (t )

μ Gμ. (A3)

The set of operators {Gμ} may contain local or nonlocal oper-
ators, and generally is at least partially noncommuting.

This continuous evolution generated by exponential maps
of Hamiltonians must be discretized temporally and spatially
across the space of subsystems for feasible classical simula-
tion. This discretization further allows for comparison with
the variational quantum circuit paradigm. Depending on the
control problem of interest, there are several choices for
the specific discretization scheme. Further, given constraints
placed on the parameters, the explicitly optimized parameters
may take various functional forms.

2. Trotterization

To classically simulate such time-dependent systems, uni-
taries are Trotterized both temporally and spatially across the
space. To first-order in time,

Uθ ≈
M∏
m

U (m)
θ + O(τ 2), (A4)

where the time has been discretized into M time steps of size
τ = T/M, and evolution at each time step m ∈ [M] is

U (m)
θ = e−iτH (m)

θ . (A5)

Further, depending on the commutation relations between
terms in the Hamiltonian to Q-order in space across the qubits,
at a given instance m in time,

U (m)
θ ≈

(Q)∏
μ

U (m,Q)
μ + O

([
H (m)

μ , H (m)
ν

]
Q+1

τQ+1
)
. (A6)

The product
∏(Q)

μ represents a product over some function of
lower-order Trotterizations, denoted by U (m,Q)

μ , with the error
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being proportional to the Q + 1-deep nested commutator of
Hamiltonian terms at time m [65]. For Q = 2, the product
is equal to the forward and backward ordering of first-order
Trotterized operators

U (m,Q)
μ

Q=2= U (m)
μ

1/Q
, (A7)

with a factor of 1/Q in the generators to ensure consistency,
and

U (m)
θ

Q=2≈
⇀∏
μ

U (m)/Q
μ

↼∏
μ

U (m)/Q
μ + O(τ 3). (A8)

The resulting evolution can be directly described by a
parametrized quantum circuit, consisting of operators U (m)

μ

with locality of the corresponding Hamiltonian generator Gμ.
Therefore, the following results, up to the precision of these
discretizations, are relevant both in the discrete gate-based
circuit model of quantum systems and the continuous time
evolution model, more generally seen in pulse-level and quan-
tum control problems [19,66].

3. Parametrized quantum channels

To understand the effects of noise on the evolution and
abilities of such a system to represent various targets, we
describe the evolution with parametrized quantum channels
acting on states as

�θγ =Nγ ◦ Uθ (A9)

such that the evolved parametrized state from an initial state
σ is

ρθγ = �θγ (σ ). (A10)

The channel is composed of a noiseless unitary channel with
variable parameters θ ,

Uθ (·) =Uθ · U †
θ , (A11)

and a noisy nonunitary Kraus operator channel with fixed
noise parameters γ ,

Nγ (·) =
∑

α

K (α)
γ · K (α)

γ

†
. (A12)

All channels must be normalized such that they are trace-
preserving.

Given the Trotterization of the continuous time evolution,
we define the channel as a composition of M layers of chan-
nels at each time step,

�θγ = ◦M
m

(
N (m)

γ ◦ U (m)
θ

)
. (A13)

We also make use of the notation for the composition of
channels before or after an index m as

�
≶m
θγ = ◦l≶m

(
N (l )

γ ◦ U (l )
θ

)
. (A14)

We also write the Q-order spatial Trotterization of the unitary
part of the channel as a composition over the Trotterized
unitaries, with identical notation to the products of unitaries
when deriving their Trotterization,

U (m)
θ = ◦(Q)

μ U (m,Q)
μ , (A15)

and we can similarly define the notation for composition of
channels before or after an index μ as

U (m)
≶μ

= ◦(Q)
ν≶μ

U (m,Q)
ν . (A16)

These notations may be combined for partial channels relative
to before or after an index (μ, m), such that

�θγ = �(>m)
γ ◦ N (m)

γ ◦ U (m)
>μ ◦ U (m)

μ ◦ U (m)
<μ ◦ �(<m)

γ . (A17)

The corresponding partially forward evolved state relative to a
state σ from the action of the channel before an index (μ, m)
may then be denoted as

ρ (<m)
<μγ = �(<m)

<μγ (σ ), (A18)

and the corresponding backward evolved operator relative to
an input operator O from the adjoint action of the channel after
an index (μ, m) may also be denoted as

O(>m)
>μγ = �(>m)

>μγ

†
(O). (A19)

This notation is used to understand parameter shift rules for
channels, and to derive the scaling of objectives with noise
and with depth. Here we have dropped the (m, Q) super-
script notation for the Q-order spatial Trotterization in favor
of (m) superscript notation for simplicity, and it is assumed
that operators at spatial indices are implicit functions of the
Trotterization scheme.

APPENDIX B: LEARNING PHENOMENA

In these Appendixes, we give an overview of learning phe-
nomena in quantum settings, in particular overparametrization
phenomena, and we discuss their relevance to this work. We
derive a unitary version of the quantum Fisher information,
and we show numerically that its rank acts as an indicator
of overparametrization identically to the state quantum Fisher
information studied in previous works. Finally, we use these
results to confirm that overparametrization phenomena occur
in realistic settings, as per established definitions.

A key aspect of this work involves understanding whether
in realistic settings indicators of overparametrization, in par-
ticular exponential convergence of the optimization with the
number of parameters, still occur. We follow the approaches
by Larocca et al. [28], later followed up by Garcia-Martin
et al. [40], which set bounds on the rank of the quantum
Fisher information to determine whether a quantum system
is overparametrized, both in noiseless and then noisy settings.

Overparametrization in this context, as per the Fisher in-
formation definition [28], refers to when there are adequate
number P parameters such that the model Ansatz can span the
space [22,26] of the dynamical Lie algebra G formed by its
generators {Gμ}. This parametrization generally translates to
the optimization procedure being able to converge exponen-
tially with the number of optimization iterations. This may
occur due to a fundamental change in the objective landscape
where it becomes much more convex in this regime. It may
also be accompanied by what is known as lazy training, where
the optimal parameters are negligibly different from their ran-
dom initial values.

In the continuous time evolution, or gate-based circuit
formalisms, these generators are the noncommuting terms in
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the underlying Hamiltonian that drives the evolution, and the
dynamical Lie algebra is formed by the Lie closure

G = 〈{Gμ}〉Lie (B1)

of all linearly independent nested commutators of these gen-
erators.

This dynamical Lie algebra span forms a subspace G ⊆ H
of the full space H where the operators act, and it has dimen-
sion

G = |G|. (B2)

Within the context of spaces with dimension d = DN , ex-
ample algebras associated with the Lie closure that arise in
quantum control settings include the special unitary algebra
su(DN ) with dimension |su(DN )| = D2N − 1, or the sym-
plectic algebra sp(2N ) with dimension |sp(2N )| = 2N2 + N .
Generally, the dynamical Lie algebra dimension is either a
polynomial or an exponential function of the system size
N , and one-dimensional Lie algebras have been classified in
[67]. The number of parameters P for a fixed periodic Ansatz
repeated for M layers generally scales as

P ∼ O(poly(N )M ) (B3)

and the depth itself may depend on the system size, depending
on the Ansatz. For overparametrization to occur, the number of
parameters must be of at least similar order to this dimension,

P > P̃ ∼ O(G), (B4)

and in ideal settings, overparametrization occurs when exactly
P̃ = G.

A key indicator [28,40] of overparametrization is whether
the rank of the quantum Fisher information Fθ ,

RF
θ = rank(Fθ ) � G, (B5)

saturates at this dimension. It can be shown that this saturation
is independent of where you are in the objective or parameter
landscapes, and it does not occur only at optimality.

Similar bounds for the Hessian Hθ of the objective, being
objective- and target-dependent, only occur at optimality,

RH
θ∗ = rank(Hθ ) � G, (B6)

and otherwise the Hessian is generally full rank RH
θ = P.

We should also note recent developments [40] in under-
standing the effects of noise on variational quantum circuits
in the context of the spectrum of the quantum Fisher informa-
tion. Small amounts of local noise are shown to allow more
directions to be searched [55]. These additional directions
in the state space may increase or decrease the parametrized
state’s purity. However, for increasing noise scales the system
becomes exponentially less sensitive to its parameters, and it
can search fewer and fewer directions. As shown in Sec. IV,
we also observe different regimes depending on the noise
scales, which confirm this recent analysis. We observe that the
quasilinear scaling of infidelity with noise is at the boundary
of the convergent and divergent regimes. There is finite noise
that suppresses the system’s abilities to achieve perfect infi-
delity, however not so much as to reach the divergent regime.

1. Unitary quantum Fisher information

We now study the form of the quantum Fisher information,
which can be shown [68] to be proportional to the second-
order correction to the Bures metric, also referred to as the
Fubini-Study metric in the case of pure states. This quan-
tity offers insight into which directions of the space can be
reached, given the variational Ansatz.

Here, we generalize the definition of the Fisher information
from states to a state-independent definition that only depends
on the underlying parametrized unitary, similar in form to
another recent study of generalized metrics [51].

We now investigate the second-order term, or Fisher-like
information of distance measures LU

θ between a parametrized
unitary Uθ with parameters θ = {θμ}, and a fixed reference
unitary U over a d-dimensional space. We define LU

θ∗ =
LU

θ |Uθ=U to be the parametrized unitary evaluated exactly at
the reference unitary.

Let a distance LU
θ between unitaries (that is not a proper

distance metric as it does not satisfy the triangle inequality)
be related to the absolute trace overlap

LU
θ = 1 − 1

d2
|tr(U †Uθ )|2, (B7)

with derivatives with respect to θ of

∂μLU
θ = −2

1

d2
Re(tr(U †

θ U )tr(U †∂μUθ )), (B8)

∂μνLU
θ = −2

1

d2
Re(tr(U †

θ U )tr(U †∂μνUθ )

− tr(∂μU †
θ U )tr(U †∂νUθ )). (B9)

At optimality where Uθ = U ,

LU
θ∗ = 0, ∂μLU

θ∗ = 0,

∂μνLU
θ∗ = 2

1

d2
Re(d tr(∂μU †

θ ∂νUθ )

− tr(∂μU †
θ Uθ )tr(U †

θ ∂νUθ )). (B10)

To define the Fisher information metric, we define it as the
leading-order behavior of the objective given a perturbation
of parameters θ → θ + δ, evaluated at U = Uθ , yielding

LU
θ+δ =FU

θμν
δμδν + O(δ3), (B11)

with the Fisher information metric being

FU
θμν

= 1

d2
Re(d tr(∂μU †

θ ∂νUθ )

− tr(∂μU †
θ Uθ )tr(U †

θ ∂νUθ )). (B12)

This state-independent quantity, identical to other Fisher in-
formation metrics, contains a term that reflects the change in
the Ansatz, plus a corrective term to ensure gauge invariance,
with additional dimensionality d factors to reflect that the
action of the Ansatz with respect to specific states is not being
considered.

We can also use a proper distance metric in terms of the
Frobenius norm ‖A‖2 = tr(A†A) [69], such that a proper ob-
jective is invariant up to phases between the operators

L̃U
θ = 1 −

√
1 − LU

θ = 1

2

1

d
max

φ
‖Uθ − eiφU‖2, (B13)
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FIG. 6. Metrics of overparametrization for constrained unitary compilation of an N = 4 qubit NMR Ansatz for various depths M
(colored/gradient). (a) Hessian spectrum of eigenvalues. The Hessian is shown to be full-rank at optimality for depths below the constrained
overparametrization depth. Except at optimality in the overparametrized regime, all directions of the span of the Ansatz are able to be reached
during optimization with respect to a target unitary. (b) Quantum Fisher information spectrum of eigenvalues. The quantum Fisher information
is shown to be full-rank at optimality for depths below the overparametrization depth. It then saturates at the dynamical Lie algebra dimension
for depths above the overparametrization depth, indicating the capabilities of the Ansatz, independent of the specific target unitary.

with derivatives with respect to θ of

∂μL̃U
θ = 1

2

1

1 − L̃U
θ

∂μLU
θ , (B14)

∂μνL̃U
θ = 1

2

1

1 − L̃U
θ

(
∂μνLU

θ + 2∂μLU
θ ∂νLU

θ

)
, (B15)

such that the optimal proper quantities are identical up to
constant scalings to the improper quantities

L̃U
θ∗ = 0, ∂μL̃U

θ∗ = 0, ∂μνL̃U
θ∗ = 1

2
∂μνLU

θ∗ . (B16)

Therefore, the proper Fisher information metric definition is
identical up to a constant scaling to the improper definition

F̃U
θμν

= 1

2
FU

θμν
. (B17)

For example, when the trace is over d = 1 states, |ρθ 〉 =
Uθ |σ 〉 from an initial fixed state |σ 〉, or equivalently the uni-
taries are projected onto a d = 1-dimensional subspace, the
Fisher information reduces to the standard definition

Fρ
θμν

= Re(〈∂μρθ |∂νρθ 〉 − 〈ρθ |∂μρθ 〉〈∂νρθ |ρθ 〉). (B18)

2. Numerical overparametrization

We now investigate the effects of overparametrization nu-
merically via the quantum Fisher information Fθ and the
objective Hessian Hθ . Here, we optimize N = 4 qubit, con-
strained, noiseless unitary compilation tasks. For the NMR
Ansatz there are D2 − 2 = 2 variable parameters per time
step, meaning there are P = 2M variable parameters per
Ansatz. Given the universal Ansatz, G = DN − 1, we observe
in Fig. 6 that the expected rank saturation occurs at R = P =
G = 255 for N = 4 for the Fisher information, and full rank
saturation occurs at likely R = P � G for the Hessian.

As per previous studies [28], the Fisher metric exhibits
saturation behavior and indicates overparametrization at any
point in the objective or parameter landscape. However, the

Hessian rank does not saturate, and remains full rank at this
point in the landscape achieved by the optimizer. This point
in the constrained landscape, even for P � G, is likely not
optimal, and therefore not saturating the Hessian rank. This
nonoptimality is attributed to the previous studies indicating
that M ∼ O(1000) depth is necessary for this constrained
Ansatz to achieve infidelities close to machine precision. Due
to the quadratic scaling of the memory requirements for com-
puting these P × P dimensional matrices, plus determining
their spectrum, only M ∼ O(600) are currently feasible to
compute in the current implementation.

We should note that for finite machine precision simu-
lations, there is not a definitive method of determining the
rank or number of nonzero eigenvalues of matrices. Here
we choose the heuristic when there is an obvious visual dis-
tinction between the set of zero and nonzero spectra. In the
case in which there is not an obvious cutoff, we choose a
relative precision of λ/λmax > Pε for P parameters and ma-
chine precision ε. It remains an interesting question whether
there is a more principled and physics-informed approach for
determining the rank.

APPENDIX C: BEHAVIOR OF MULTIPLE LAYER
NOISE CHANNELS

In these Appendixes, we investigate properties of quantum
channels consisting of parametrized unitary layers interlaced
with noise. We show that many local noise models form
a binomial distribution over the number of errors or non-
identity noise operations applied throughout the layers. We
perform additional numerical studies to show differences in
the behavior of infidelities with depth for unital versus nonuni-
tal noise. We extract from piecewise fitting the scaling of
the noise-induced critical depth for infidelities, to be log-
arithmic in the noise scale. Finally, we perform analytical
calculations of the leading-order scaling, with depth and noise
scale, of infidelities, impurities, entropies, and relative entropy
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divergences. These scalings match the numerical studies in
this work exactly, and confirm that the divergent regime of
optimization is driven by entropic effects.

There are many choices in the exact noise model Nγ used,
and whether the noise acts globally or locally, both temporally
and spatially. We assume that all noise acts independently in
time and locally on each qubit in this work. The total noise
channel is chosen to take the form of temporally local noise

�θγ = ◦M
m �

(m)
θγ , (C1)

where the unitary and nonunitary components are separable,

�
(m)
θγ = N (m)

γ ◦ U (m)
θ . (C2)

For this work, we also consider spatially local noise models
to represent the nonunitary components of our channels,

N (m)
γ = ◦N

i N (m)
γi

, (C3)

which act identically, and independently, on qubit i at time
step m, with noise scale γ

(m)
i = γ .

We will discuss noise models in terms of the number of er-
rors, or nonidentity operations that they apply to the evolution.
The temporally (and spatially across qubits) noise models in
this work imply that there are

K = NM (C4)

independent sites of possible errors at each site in time and in
space.

As a key assumption for our analysis, we explicitly assume
that the local nonunitary components of the channel can be
written as a convex combination of an identity channel and a
nontrivial (nonidentity) error channel

Nγ ≡ (1 − γ )I + γKγ . (C5)

Here, there is a scale γ of a nontrivial operation Kγ applied,
causing the evolution to deviate from being strictly unitary,
resulting in what we refer to as an error. The nontrivial error
channel is normalized identically as Nγ . If the explicit noise
model Nγ does not strictly contain an identity Kraus operator,
for example if it is nonunital, then the nontrivial error is
defined as

Kγ = 1

γ
Nγ − 1 − γ

γ
I. (C6)

This noise model for the nonunitary component of the
channel forms a binomial distribution over K possible errors
defined by Kγ . Errors can occur at spatial and temporal sites
i ∈ [N] and m ∈ [M], and we use the multi-index χk = {χk

m
i ∈

[2], k ∈ [K]} as an indicator function for where the |χk| =
k � K errors occur across the sites. Given this binomial dis-
tribution description, and using the binomial expansion of the
noise scale factors, the channel may be written as a convex
combinations of k-error, or at most k-error channels

�θγ =
K∑
k

(K
k

)
γ k (1 − γ )K−k�θγk (C7)

=
K∑
k

K−k∑
l

(K
k

)(K−k
l

)
(−1)lγ k+l�θγk (C8)

=
K∑
k

K∑
l=k

(K
k

)(K−k
l−k

)
(−1)l−kγ l�θγk (C9)

=
K∑
k

k∑
l

(K
k

)(k
l

)
(−1)k−lγ k�θγl (C10)

=
K∑
k

(K
k

)
γ k

[
k∑
l

(k
l

)
(−1)k−l�θγl

]
(C11)

=
K∑
k

(K
k

)
γ k�θγ�k . (C12)

We denote trace-preserving channels with k nontrivial errors
as the uniform convex combination of all possible locations of
the k � K errors,

�θγk = 1(K
k

) ∑
χk

�
χk
θγ , (C13)

and we denote traceless operators with at most k nontrivial
errors as the nonuniform combination of all possible locations
of the l � k errors,

�θγ�k =
k∑
l

(−1)k−l
(k

l

)
�θγl , (C14)

where specific k-error channels with k nontrivial errors at
indices χk are denoted as

�
χk
θγ = ◦M

m

[[
◦N

i K(m)
γi

χk
m
i

]
◦ U (m)

θ

]
. (C15)

Therefore, to leading order, the noisy and noiseless channels
differ as per the nontriviality K(m)

γi
�= Ii of K possible local

errors,

�θγ − �θ =
(

M∑
m

N∑
i

U (>m)
θ ◦ K(m)

γi
− Ii ◦ U (�m)

θ

)
γ

+ O
((K

2

)
γ 2
)
. (C16)

1. Noise models

In this work, we consider several noise models Nγ = (1 −
γ )I + γKγ that are relevant to existing quantum devices,
namely independent, local, dephasing, amplitude damping,
and depolarizing noise. These noise models all belong to
the class of unital or nonunital Pauli noise that transform
local Pauli operators PD. For the case of D = 2 qubits, P2 =
{I, Z, X,Y }. The forms of the models are identified by their
nontrivial error component Kγ and are described as follows.

Unital local dephasing noise for all inputs may be written
as

Kγ
dephase(·) = Z · Z†, (C17)

where the nontrivial channel is unitary.
Unital local depolarizing noise for all inputs may be written

as

Kγ
depolarize(·) = tr(·)

D
I, (C18)

where the nontrivial channel is maximally depolarizing.
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Nonunital amplitude damping noise for Pauli inputs P ∈
P2 may be written as

Kγ
amplitude(P) =

⎧⎪⎨
⎪⎩

P + γ Z, P ∈ {I},
(1 − γ )P, P ∈ {Z},√

1 − γ P, P ∈ P2\{I, Z},
(C19)

and the nontrivial channel is complicated by the lack of an
inherent identity Kraus operator.

In the case of the nontrivial components of the noise chan-
nel being single unitary operators V such that Kγ (·) = V · V †,
each k-error channel is unitary, and the original unitary chan-
nel is interlaced with unitaries V at indices χk where errors
occur.

In the case of depolarizing noise where Kγ (·) =
[tr(·)/D]I, partial traces remove any information about the
state at the local indices in χk where errors occur.

2. Probabilistic interpretation of noise channels

Within this formalism, the channel can be represented as
an expectation over a distribution of the number of k � K
possible errors,

�θγ = 〈�θγk 〉k∼pKγ
, (C20)

where for moments of channels with k nontrivial errors,

�θγk = 1(K
k

) ∑
χk

�
χk
θγ . (C21)

The exact distribution with this local noise model used in this
work is the binomial distribution

pKγ (k) = pBinomial
Kγ (k) = (Kk )γ k (1 − γ )K−k, (C22)

which has mean and variance

μKγ = Kγ , �Kγ = Kγ (1 − γ ). (C23)

Such interpretations are also used in error mitigation ap-
proaches [63]. In the limit K → ∞, this distribution tends to
the Gaussian distribution

pKγ (k) → pGaussian
Kγ (k) =

√
1

2π�Kγ

e
− 1

2

(k−μKγ )2

�Kγ , (C24)

which can be shown through the De Moivre–Laplace theorem
[70], a central-limit version of the standardized binomially
distributed variables �

−1/2
Kγ (k − μKγ ).

In the limit K → ∞, γ → 0, and the finite limit Kγ →
λKγ , the distribution tends to the Poisson distribution

pKγ (k) → pPoisson
Kγ (k) = 1

k!
(Kγ )ke−Kγ , (C25)

which can be shown from using Sterling’s approximation for
the binomial coefficient, and equating the generating func-
tions for the distributions.

3. Noisy state preparation

We conduct studies in Fig. 7 of the noise and depth de-
pendence on the optimal infidelities for each of the unital
dephasing and depolarizing and nonunital amplitude damping
noise models. For unital noise, we observe that the critical

depth phenomena seem to be consistent across noise mod-
els at all noise scales, and entropic effects dominate. For
nonunital noise, we observe that the critical depth phenomena
seem to be consistent with unital noise models at all small
noise scales. However, for large noise scales, nonunital noise
forces the state into a specific (pure) state, which dominates
over entropic effects. The infidelities then appear to converge
to nonunity values or potentially decrease polynomially to
zero. The unitary component of the channel appears to be
able to slowly rotate this noise-induced pure state towards
the correct target pure state. In both unital and nonunital
noise models, inserting parameters learned in the noisy setting
into the corresponding noiseless unitary Ansatz indicates that
the noiseless infidelities have greater resilience to increasing
noise scales. This suggests the underlying unitary transforma-
tions are being learned in the noisy settings, however with
greater variance.

4. Noise-induced critical depth

To develop a relationship between noise and an induced
critical depth beyond which infidelities no longer converge
exponentially, we perform piecewise fits, as per Fig. 8. For
each noise scale, we perform exponential and then polynomial
fits, respectively, before and after an approximate location
of the critical depth suggested by the finite amount of data
points available. We are then able to approximate where the
piecewise curves intersect, indicating the location of the crit-
ical depth as a function of noise. Plotting this relationship
suggests a logarithmic relationship between noise and critical
depth. This leads to the optimal infidelity scaling approxi-
mately polynomially, between linearly and quadratically with
noise, and in agreement with previous conjectures about these
relationships [35].

5. Parameter shift rules for quantum channels

Here, we derive parameter shift rules for the gradients of
multiple layer quantum channels. This generalizes previous
results, and provides some explanation for why the optimiza-
tion routines in noisy settings generally appear to converge to
the noiseless optima at small noise scales. Given our compos-
ite channel definition over M layers, written decomposed into
channels before and after an index (μ, m), our state prepara-
tion objectives of the trace infidelity with respect to a pure
state ρ and initial state σ may be written as

Lθγ = 1 − tr
(
U (m)

μ

(
σ (<m)

<μγ

)
U (m)†

>μ

[
N (m)†

γ

(
ρ (>m)

>μγ

)])
. (C26)

These objectives are crucially linear in the states, and there-
fore gradients of the objectives with respect to parameters at
the index (μ, m) are linear functions of the gradients of the
state.

Let Uθ be a single parameter unitary channel, with the cor-
responding unitary operator Uθ = e−iθG, where the Hermitian
generator is involutory up to a factor G2 = ζ 2I . The gradient
of such a unitary channel for an arbitrary input follows the
parameter shift rule

∂θUθ = − i[G,Uθ ] = ζ (Uθ+ϕ − Uθ−ϕ ), (C27)
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FIG. 7. Behavior of infidelity objectives with respect to noise and depth for the N = 4 NMR Ansatz. (a),(b) Dephasing, (c),(d) depolarizing,
(e),(f) amplitude damping. Left: Trained noisy infidelity (solid) and tested infidelity of noisy parameters in noiseless Ansatz (dashed) for various
depths M (colored/gradient). Infidelities of noisy Ansatz are shown to be depth-dependent and noise-independent for small noise scales, before
universally increasing polynomially with noise. Inserting parameters learned in the noisy setting into an identical noiseless Ansatz indicates
that the underlying unitary evolution is being learned, and is resilient to noise. Right: Critical depth for noisy infidelity for various noise scales
γ (colored/gradient). Infidelities are shown to improve exponentially with depth, up until a noise-induced critical depth, where entropic effects
worsen infidelities polynomially with depth. Nonunital noise is also shown to be less dominated be entropic effects at large noise scales.

where we denote ϕ = π/4ζ , and other choices of ϕ are also
possible depending on experimental feasibility. This can be
extended to the k-order gradient of this channel as the k-order
nested commutator

∂k
θUθ = (−i)k[G,Uθ ]k = ζ k

k∑
l

(−1)l
(k

l

)
Uθ+(k−2l )ϕ. (C28)

Unitary channels with generators with more complicated
spectra can be expressed as a linear combination of unitary
channels, with perturbative angles ϕ, weighted by coefficients

αϕ ,

∂k
θUθ =

∑
ϕ

αϕUθ+ϕ. (C29)

Thus gradients of general parametrized channels for constant
noise scales γ have the form

∂μ�θγ =
∑

ϕ

αϕμ
�θ+ϕμ γ , (C30)

and similarly any linear objectives such as ∂ (m)
μ Lθγ have an

identical form.
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FIG. 8. Fit of noise-induced critical depth. (a) Piecewise fits for various noise scales γ (colored/gradient). Objectives decrease exponen-
tially with depth for depths less than the critical depth (black circles), and objectives increase polynomially with depth for depths greater than
the critical depth. (b) Uncertainty propagation is used to estimate the error of the linear-log fit (dashed line) between the estimated critical
depths where the piecewise curves intersect, and the associated noise scales.

6. Relationship between infidelity, impurity,
and von-Neumann entropy

To better understand the phenomena dictating the behav-
ior of infidelities with respect to noise scales and depth, we
also investigate the scaling of the impurity and entropy of
the noisy parametrized states. For completeness, we restate
the impurity, von-Neumann entropy, conditional entropy, and
relative entropy divergence between a d-dimensional state ρ

and a pure state ρ ′, as

L′
ρ = 1 − tr(ρ ′ρ), (C31)

Iρ = 1 − tr(ρ2), (C32)

Sρ = −tr(ρln(ρ))/ln (d ), (C33)

Sρ ′
ρ = −tr(ρ ′ln(ρ))/ln (d ), (C34)

Dρ ′
ρ = Sρ ′

ρ − Sρ ′ . (C35)

We also note that when we use the definitions of parametrized
states ρθγ and target reference states ρ in place of ρ and ρ ′,
we instead use the subscripts θγ and superscripts ρ for these
quantities.

For this analysis, we use the Bloch representation [71],
which describes operators in terms of a trace orthogonal basis
Pd , such that tr(α†β ) = dδαβ for all operators α, β ∈ Pd . This
basis contains the identity, is of size |Pd | = d2, and may
represent an algebra, with structure constants defining their
commutation relations. Let ω = {P : P ∈ Pd\{I}} represent
the vector of all nonidentity operators such that quantum states
with unit traces have the form

ρ = I + λ · ω

d
. (C36)

Here the |Pd | − 1 Bloch coefficients λ fully describe quantum
states. These coefficients are constrained to represent positive-
semidefinite operators, and their magnitude is bounded by the
pure-state boundary described by

λ2 � d − 1. (C37)

The action of arbitrary trace-preserving channels on quan-
tum states can further be described by the affine linear

transformation on the coefficients,

� : λ → �λ + υ. (C38)

This affine linear transformation represents a rotation and
scaling of λ by �, plus a translation to a different axis by υ,
and it can be thought of as a transformation on the generalized
d-dimensional Bloch sphere of radius d − 1. The primary
constraints on the transformations are to remain within this
boundary such that (�λ + υ )2 � d − 1.

If the channel is unital, then the transformation is strictly
linear and υ = 0, otherwise the channel is nonunital. Finally,
if the channel is unitary, � = u is an orthogonal transforma-
tion that preserves the length of λ2.

We also note a useful identity when λ is associated with
a pure state with zero entropy, given the expansion for the
matrix logarithm

ln (I + λ · ω) =
∑
k>0

(−1)k+1

k
(λ · ω)k (C39)

and the tracelessness of λ · ω, meaning

1

d ln (d )

∑
k>1

(−1)k

k(k − 1)
tr((λ · ω)k ) = 1. (C40)

This identity avoids complicated expressions for powers of
Bloch vectors [72].

We may now define quantities in terms of the Bloch co-
efficients. Similarity between quantum states ρ, ρ ′ can be
described either by their trace inner products

tr(ρρ ′) = 1 + λ · λ′

d
= 1 − Lρ ′

ρ , (C41)

or by their cosine similarity with an angle φρ ′
ρ between their

coefficients,

cos φρ ′
ρ = λ · λ′

√
λ2λ′2

= d
(
1 − Lρ ′

ρ

)− 1√
[d (1 − Iρ ) − 1][d (1 − Iρ ′ ) − 1]

. (C42)

062607-17



DUSCHENES, CARRASQUILLA, AND LAFLAMME PHYSICAL REVIEW A 109, 062607 (2024)

Similarly for other functions of interest with respect to a pure
state ρ ′,

Lρ ′
ρ = 1 − 1 + λ · λ′

d
, (C43)

Iρ = 1 − 1 + λ2

d
, (C44)

Sρ = 1 − 1

d ln (d )

∑
k>1

(−1)k

k(k − 1)
tr((λ · ω)k )

= 1 − 1

2

1

ln (d )
λ2 + O(λ3), (C45)

Dρ ′
ρ = 1 − 1

d ln (d )

∑
k>0

(−1)k+1

k
tr((I + λ′ · ω)(λ · ω)k )

= 1 − 1

2

1

ln (d )

(
2
λ · λ′

λ2
− 1

)
λ2 + O(λ3). (C46)

We can also define the generalized α-Renyi infidelities, impu-
rities, entropies, and divergences for α � 1/2,

Lρ ′(α)
ρ = tr

((
ρ ′ 1−α

2α ρρ ′ 1−α
2α

)α)
, (C47)

I (α)
ρ = 1 − tr(ρα ), (C48)

S (α)
ρ = 1

α − 1

1

ln (d )
ln
(
1 − I (α)

ρ

)
, (C49)

Dρ ′(α)
ρ = 1

α − 1

1

ln (d )
ln
(
1 − Lρ ′(α)

ρ

)
. (C50)

Using these definitions, we can show [73] that the entropies
and divergences are monotonically increasing with decreasing
α, and we can identify Dρ ′

ρ with α → 1 and related diver-
gences and infidelities with Dρ ′(1/2)

ρ = −2ln(1 − Lρ ′
ρ )/ln(d ).

Based on these relationships, we have the bounds relating the
conditional entropy and the infidelity,

Sρ ′
ρ � 2

ln (d )
Lρ ′

ρ , (C51)

however we have not found any known similar bounds relating
entropy and infidelity or impurity.

Given our previous expressions for channels consisting of
layers of nonunitary noise with scale γ , interlaced by unitary

channels with parameters θ , resulting in a binomial distribu-
tion over states with at most K errors, we may represent such
parametrized quantum channels in this formalism as

�θγ : �θγ = (1 − γK )uθ + γK uθγ , υθγ = γKηθγ . (C52)

Here, we have explicitly separated the noiseless unitary rota-
tion from the other nonunitary and nonunital transformations,
and we defined the error-dependent noise scale as

(1 − γK ) = (1 − γ )K . (C53)

Therefore, the transformed coefficients, given an initial state
σ with coefficients ξ , are transformed by unitary and noise
components of the transformation

λθγ = (1 − γK )uθ ξ + γK uθγ ξ + γKηθγ (C54)

= (1 − γK )λθ |γ + γKεθγ . (C55)

Here, we decompose the transformed state into what we refer
to as the pure and mixed components. The pure component
of the state may be written in terms of a reference pure
state ρ with coefficients λ, and a pure state with orthogonal
coefficients ζ ⊥ λ as

λθ |γ = uθ ξ = (1 − αθ |γ )λ + βθ |γ ζ , (C56)

where the coefficients implicitly contain a dependence on the
noise from optimization, and they are constrained such that
(1 − αθ |γ )2 + β2

θ |γ = 1. The mixed components of the state
can be written in terms of its unital and nonunital components,

εθγ = uθγ ξ + ηθγ . (C57)

This decomposition allows us to understand how the unitary
and noise components transform the state. The unitary com-
ponent, independent of the noise, rotates the state into the
pure components parallel and perpendicular to ρ. The noise
component then scales both the pure and mixed components
with γK , and performs an affine translation with ηθγ . In the
limit that γ → 0, and assuming converged optimization to
the optimal θ = θ∗ such that ρθ∗ → ρ, the coefficients should
then reduce to αθ∗ , βθ∗ → 0, and the nonunital affine transla-
tion should also vanish, ηθ → 0.

Due to the nontrivial optimization, we do not have a gen-
eral closed-form expression depicting the θ, γ , K dependence
of the pure state components αθ |γ , βθ |γ or the mixed compo-
nent εθγ . However, by expanding out the quantities of interest
in terms of these expressions for the coefficients λθγ , we can
obtain the leading-order scaling of quantities in terms of K, γ .

The inner products of the coefficients are

λ2
θγ = (1 − γK )2λ2 + γ 2

Kε2
θγ + 2γK (1 − γK )2[(1 − αθ |γ )λ + βθ |γ ζ ] · εθγ (C58)

= λ2 − 2Kγ

(
1 − (1 − αθ |γ )

λ · εθγ

λ2
− βθ |γ

ζ · εθγ

λ2

)
λ2 + O

((K
2

)
γ 2
)
, (C59)

λθγ · λ = (1 − γK )(1 − αθ |γ )λ2 + γKλ · εθγ (C60)

= λ2 − αθ |γ λ2 − Kγ

(
1 − αθ |γ − λ · εθγ

λ2

)
λ2 + O

((K
2

)
γ 2
)
. (C61)
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FIG. 9. Behavior of infidelity, impurity, entropy, relative entropy divergence, and cosine dissimilarity of parametrized states relative to
pure target states, with respect to dephasing noise γ (colored/gradient) and depth for the N = 4 NMR Ansatz. (a) Impurity, entropy, relative
entropy divergence. Once the optimized parametrized Ansatz achieves infidelities or relative entropy divergences of the order of the impurity
and entropies, the system is dominated by entropic effects. In this divergent regime, all quantities (colored markers) scale identically, and
leading-order infidelity and impurity analytical values (enlarged gray markers) show exact agreement. (b) Cosine dissimilarity. The unitary
component of the channel is able to align the parametrized state with the target state. For sufficiently low noise scales, this dissimilarity remains
constant, and infidelities increase in the divergent regime strictly due to being scaled by the depth-dependent noise scale.

Powers of Bloch vectors in terms of the target coefficients,
even when αθ |γ = βθ |γ = 0, scale with γ as

(λθγ · ω)k = (1 − γK )k (λ · ω)k + O(γ ). (C62)

All powers k of Bloch vectors, such as those that occur in
infinite series expansions for logarithmic functions appear-
ing in entropies, therefore contribute leading-order terms in
K, γ . It does not then suffice to retain only some O(λk )-order
terms in expansions of such functions to capture the coeffi-
cients of their leading-order behavior with γ . Obtaining these
coefficients to all orders, for all dimensions d , is possible,
however it requires opaque, recursive expressions for products
tr((λ · ω)k ) in terms of the structure constants, such as those
found for the Pauli basis by Sarkar [60].

Therefore, to leading order in K, γ , the quantities of in-
terest show similar scaling with overlaps of the parametrized
state with the target pure state,

Lρ
θγ = d − 1

d
αθ |γ + Kγ

d − 1

d

(
(1 − αθ |γ ) − λ · εθγ

λ2

)

+ O
((K

2

)
γ 2
)
, (C63)

Iθγ = 2Kγ
d − 1

d

(
1 − (1 − αθ |γ )

λ · εθγ

λ2
− βθ |γ

ζ · εθγ

λ2

)

+ O
((K

2

)
γ 2
)
, (C64)

Sθγ = Kγ
d − 1

ln(d )

(
1 − (1 − αθ |γ )

λ · εθγ

λ2
− βθ |γ

ζ · εθγ

λ2

)

+ O
(
λ3

θγ

) ∼ O(Kγ ), (C65)

Dρ
θγ = d − 1

ln(d )
αθ |γ + Kγ

d − 1

ln(d )

(
αθ |γ

(
1 + λ · εθγ

λ2

)

−βθ |γ
ζ · εθγ

λ2

)
+ O
(
λ3

θγ

) ∼ O(Kγ ). (C66)

If the unitary component of the channel transforms the pure
component of the state to exactly the target state such that
αθ |γ = βθ |γ = 0, then expressions simplify further. A hierar-
chy between quantities can be partially observed to leading
order in terms of the overlap λ · εθγ between the mixed com-
ponent of the state and the target state,

Lρ
θγ = Kγ

d − 1

d

(
1 − λ · εθγ

λ2

)
+ O
((K

2

)
γ 2
)
, (C67)

Iθγ = 2Kγ
d − 1

d

(
1 − λ · εθγ

λ2

)
+ O
((K

2

)
γ 2
)
, (C68)

Sθγ = O(Kγ ), (C69)

Dρ
θγ = O(Kγ ). (C70)

Plotting each of these quantities from numerical optimiza-
tions in Fig. 9 for unital dephasing noise, we observe that once
the infidelities or divergences are less than the impurities or
entropies, there is a transition from the convergent to the diver-
gent regime. This transition occurs at a critical depth, before
which increasing depth allows the dominant unitary compo-
nent of the channel to rotate the state to converge to the target
state. Beyond this critical depth, the noise component of the
channel dominates, and the parametrized state scales towards
the mixed state. This divergence of all quantities is shown
numerically at small noise scales to be linear in depth and
noise scale. We also plot the derived analytical leading-order
scaling of the infidelity and impurities with gray enlarged
markers, which are in excellent agreement with the numerical
results. In this divergent regime at small noise scales, we also

062607-19



DUSCHENES, CARRASQUILLA, AND LAFLAMME PHYSICAL REVIEW A 109, 062607 (2024)

observe the numerical hierarchy of the quantities

Dρ

θγ � Lρ

θγ � Iθγ � Sθγ , (C71)

which is in agreement with our infidelity and impurity analyt-
ical results. All quantities also numerically appear to converge
together as noise increases. In the case of unital noise, all
quantities diverge to the worst-case unity values as the noise
and depth increase. In the case of nonunital noise, quantities
potentially converge to optimality polynomially with depth
as the noise and depth increase. This contrasting behavior to
the unital noise case suggests the nonunital terms ηθγ �= 0
dominate the leading-order scaling in this regime.

We also note that the relative entropy divergences show
identical convergent and divergent overparametrized regimes
of optimization as the infidelities. The numerically found
hierarchy of quantities also suggests that infidelity is poten-
tially lower bounded by the divergence. This appears to be
reasonable due to both quantities reflecting distances between
distributions corresponding to the quantum states. Given that
the divergence is used in classical learning tasks, it is also
suitable as an objective function for quantum fidelity-based
tasks, although it is more demanding to compute.

To assess the validity of this assumption of the unitary
component aligning the pure component of the state with the
target state, we note that for small noise scales, the cosine
dissimilarity

1 − ∣∣cos φ
ρ

θγ

∣∣ ∼ O(|αθ |γ |) (C72)

is of order of the alignment of the pure component with the
target state. Plots of the cosine dissimilarity in Fig. 9 indicate
that for sufficiently low noise scales, the dissimilarity remains
constant, or even decreases to machine precision scales. This
suggests that divergences in the infidelities at large depths are
strictly due to the noise component of the channel scaling
the pure component by the depth-dependent noise scales. At
larger noise scales, the cosine dissimilarity is larger, but still
orders of magnitude smaller than the infidelities, and diverges
similarly to the infidelities.

APPENDIX D: CLASSICAL AND QUANTUM
ERROR ANALYSIS

In these Appendixes, we derive and compare the noise-
induced bias of the parameterized noisy states from their
noiseless values, for both classical and quantum noise. We
show both noise types have biases that scale polynomially
with the noise scale, and exponentially with the number of er-
rors induced by the noise. Finally, we discuss the implications
of classical floating point error on the viability of large-scale
simulations without error mitigation.

To bound generally independent errors in simulations,
we use Schatten norms ‖A‖ = ‖A‖p, p ∈ [1,∞] for d-
dimensional matrices A, B ∈ M(d ). Such norms satisfy the
convenient properties of monotonicity ‖A‖p � ‖A‖q, q �
p, subadditivity ‖A + B‖p � ‖A‖p + ‖B‖p, submultiplicativ-
ity ‖AB‖p � ‖A‖p‖B‖p, and being invariant under unitaries
‖UAV †‖p = ‖A‖p for U,V ∈ U (d ). Unitary matrices have
constant norm ‖U‖p = d1/p for U ∈ U (d ), and we de-
note the limp→∞ ‖A‖p = λ(A) norm as the largest singular
value. Finally, Schatten norms satisfy Holder’s ‖AB‖s �

‖A‖p‖B‖q, 1/p + 1/q = 1/s, and von-Neumann |Tr[AB]| �
‖A‖p‖B‖q, 1/p + 1/q = 1 inequalities [53].

1. Classical error analysis

We first investigate the effect of classical floating point
errors on scalar operations, generalizing the results of [74] to
the case of an arbitrary number of successive matrix multipli-
cations.

a. Scalar floating point error

Let us assume that we are performing binary floating point
operations, with the exact, ideal operations denoted by ◦ ∈
{+,−,×, /}. We denote floating point representations of any
exact operations ◦ with subscripts ◦ε .

For operations between scalars, and scalar values them-
selves, we assume they may only be represented with a
relative error, upper bounded by ε, sometimes referred to as
machine precision.

For vectorized operations comprised of vectors of dimen-
sion d , let the relative error be upper bounded by ε = ε(d, ε).
This dependence of the error on the number of operations
d and the machine precision ε may be polynomial, or even
exponential. This general definition includes the case of more
sophisticated computer architectures that perform operations
such as fused-addition-multiplications.

The scalar product between scalars x, y, when d = 1, there-
fore has error

x ◦ε y − x ◦ y = (x ◦ y)ε, (D1)

and in this scalar case, the error is generally proportional to
the machine precision

ε = ε. (D2)

It should be noted that this error could be considered as
deterministic error, where a fixed magnitude error ε is asso-
ciated with the operations. Instead, stochastic error could be
considered,

x ◦ε y − x ◦ y = (x ◦ y)ξ, (D3)

where the error is assumed to be the random variable

ξ ∼�ε (D4)

from a distribution �ε , generally with zero mean and gener-
ally a standard deviation that is proportional to the scale ε.

For successive additions, the order of the operations affects
which terms have greater error, as initial terms accumulate
more error over the course of successive additions. The sum
of d scalars {aμ} has error

d∑
ε

μ

aμ −
d∑
μ

aμ =
d∑
μ

aμεμ, (D5)

where the accumulated error from addition is

εμ = (1 + ε)d−μ − 1. (D6)

The error of summations of d scalars a = {aμ} can be rep-
resented as inner products with a ones vectors 1, and error
vectors ε = {εμ} to account for the accumulated error from
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addition

1 ·ε a − 1 · a = ε · a. (D7)

b. Matrix floating point error

Generalizing beyond scalars, the deterministic error of in-
ner products of d-dimensional matrices A, B can therefore be
represented as an inner product with respect to an error matrix

ABε − AB = A�B. (D8)

Similarly, the stochastic error of inner products of d-
dimensional matrices A, B can therefore be represented as an
inner product with respect to an error matrix,

ABε − AB = A�B, (D9)

where the error is assumed to be the random variable

� ∼ �d×d
ε (D10)

from a distribution �ε , generally with zero mean and gener-
ally a standard deviation that is proportional to the scale ε.

The relative error matrix is arbitrary depending on the
model of computation, and we choose it to be diagonal,

� = {εμ = (1 + ε)d−μ − 1}, (D11)

with norm

‖�‖p =
⎛
⎝ d∑

μ

[(1 + ε)d−μ − 1]p

⎞
⎠

1/p

≈
⎛
⎝ d∑

μ

(d − μ)p

⎞
⎠

1/p

ε

≈ O
(
d

p+1
p
)
ε ∼ O(poly(d ))ε ≡ ε (p) � ε, (D12)

which we define to be upper bounded by a p-norm indepen-
dent error ε.

This can be extended to a product of k matrices
∏k

μ Aμ.
We assume the error acts recursively, propagating from the
initial to final matrix multiplications. Therefore, the matrix
multiplication operation becomes a sum over all possible
locations of the error matrix interlaced within the products,
denoted with a multi-index χl = {χl μ

∈ [2], μ ∈ [k]}, with
the number of errors |χl | = l � k. We assume that errors
also exist on the representation of the matrix elements, yield-
ing an extra error matrix factor at the end of the product,
and errors from additions of the error terms are a secondary
effect.

The error of the product of k matrices
∏k

μ Aμ therefore
takes the form

k∏
ε

μ

Aμ −
k∏
μ

Aμ =
k∑

l>0

∑
χl

k∏
μ

Aμ�χl μ . (D13)

We then use norm inequalities, and define an upper bound
on the norms values ‖Aμ‖p � ‖A‖p to bound the norm of the
absolute matrix multiplicative error,∥∥∥∥∥∥

k∏
ε

μ

Aμ−
k∏
μ

Aμ

∥∥∥∥∥∥
s

=
∥∥∥∥∥∥

k∑
l>0

∑
χl

k∏
μ

Aμ�χlμ

∥∥∥∥∥∥
s

(D14)

�
k∑

l>0

∑
χl

∥∥∥∥∥∥
k∏
μ

Aμ�χlμ

∥∥∥∥∥∥
s

(D15)

�
k∑

l>0

∑
χl

min∑k
μ

1
pμ

+ χlμ
qμ

= 1
s

k∏
μ

‖Aμ‖pμ
‖�‖χlμ

qμ

(D16)

�
k∑

l>0

min
k
p + l

q = 1
s

(k
l

)‖A‖k
p‖�‖l

q (D17)

�
k∑

l>0

(k
l

)
λ(A)kεl (D18)

= λ(A)k[(1 + ε)k − 1]. (D19)

Therefore, the relative multiplicative error is upper bounded
for a general norm by

∥∥∥∏ ε
k
μ Aμ −∏k

μ Aμ

∥∥∥∥∥∥∏k
μ Aμ

∥∥∥ � λ(A)k∥∥∥∏k
μ Aμ

∥∥∥ ((1 + ε )k − 1)

Aμ∈U (d )→ 1

poly(d )
((1 + ε )k − 1), (D20)

where in the case of unitary matrices with unit singular values,
the bound is simplified.

2. Classical error scaling

Let us define a unitary evolution as a product of k, d-
dimensional unitaries U =∏k

μ Uμ that transforms an initial
state as σ → ρ = UσU †. Suppose the evolution is subject
to classical floating point error U → Uε and σ → ρε . An
interesting interpretation is that this noisy evolution with clas-
sical floating point error can be represented by unnormalized
Kraus-like operators, {I, �}, where I + �†� �= I , meaning
the operation is not trace-preserving.

The composite adjoint action of unitaries with k matrix
multiplications with classical error is therefore

ρε =UεσU †
ε = ρ + δε, (D21)

where the perturbation is

δε =
k∑

l+l ′>0

∑
χl ,χ

′
l′

⎡
⎣ k∏

μ

Uμ�χl μ

⎤
⎦σ

⎡
⎣ k∏

μ′
�

χ ′
l′ μ′ †

Uμ′ †

⎤
⎦. (D22)

The absolute norm error, given the nonunitary classical
noise has norm ‖�‖ = ε and the operators are unitaries with
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FIG. 10. Matrix multiplication floating point error scaling with number of multiplications k, with analytical (circles/solid lines), numerical
probabilistic (squares/dotted lines), and numerical data-type (triangles/dashed lines) models scaling for d = 22-dimensional random unitaries
A. Simulated floating point error is shown to increase polynomially with the number of floating point operations. Exact floating point data-types
are in exact agreement with the analytical upper bounds, with the exception of simulated 128-bit data-type, whose error appears to be bounded
by the 64-bit precision, likely attributed to intermediate backend calculations being cast to 64-bit precision.

‖Uμ‖ = poly(d ), is therefore bounded by

‖ρε − ρ‖ �
k∑

l+l ′>0

∑
χl ,χ

′
l′

∥∥∥∥∥∥
⎡
⎣ k∏

μ

Uμ�χl μ

⎤
⎦σ

⎡
⎣ k∏

μ′
�

χ ′
l′ μ′ †

Uμ′ †

⎤
⎦
∥∥∥∥∥∥ (D23)

�
k∑

l+l ′>0

∑
χl ,χ

′
l′

⎡
⎣ k∏

μ

‖Uμ�χl μ‖
⎤
⎦‖σ‖

⎡
⎣ k∏

μ′

∥∥�χ ′
l′ μ′ †

U †
μ′
∥∥
⎤
⎦ (D24)

=
k∑

l+l ′>0

∑
χl ,χ

′
l′

⎡
⎣ k∏

μ

‖�χl μ‖
⎤
⎦‖σ‖

⎡
⎣ k∏

μ′

∥∥�χ ′
l′ μ′ †∥∥
⎤
⎦ (D25)

�
k∑

l+l ′>0

∑
χl ,χ

′
l′

‖σ‖
k∏

μ,μ′
‖�‖χl μ

+χ ′
l′ μ′ (D26)

=
k∑

l+l ′>0

(k
l

)(k
l ′
)‖σ‖εl+l ′ (D27)

= ‖σ‖
⎡
⎣( k∑

l

(k
l

)
εl

)2

− 1

⎤
⎦ (D28)

= ‖σ‖((1 + ε)2k − 1). (D29)

Given the norm of pure input and noiseless output states is
‖ρ‖ = ‖σ‖ = 1, the relative error for pure states is

‖ρε − ρ‖
‖ρ‖ � |1 − (1 + ε)2k|. (D30)

We may then calculate functions of classical noisy states,
such as the infidelity with a (pure) state ρ, as

Lε = 1 − tr(ρρε ) = L − tr(ρδε ). (D31)

Using the Cauchy-Schwartz inequality, we may bound the
bias of the classical noisy infidelities as

|Lε − L| = |tr(ρδε )| � min
1
p + 1

q =1
‖ρ‖p‖δε‖q

� min
1
p + 1

q =1
‖ρ‖p‖σ‖q|1 − (1 + ε)2k|, (D32)

and this noisy linear objective deviation, for pure states, scales
as

|Lε − L| � |1 − (1 + ε)2k|. (D33)
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An example simulation of classical floating point error for
k successive matrix multiplications, by artificially including
noise with different scales ε, is shown in Fig. 10. To investi-
gate this classical error, we compare analytical results (exact
upper bounds on the difference between noisy and noise-
less matrix multiplications), probabilistic results (numerically
adding zero-mean uniformly random errors U [−ε/2, ε/2] to
results of floating point operations), and numerical results (nu-
merically performing matrix multiplications without artificial
noise for standard data types: single point 32-bit precision
with ε ≈ 10−7, double point 64-bit precision with ε ≈ 10−16,
and quadruple point 128-bit precision with ε ≈ 10−19–10−24,
depending on whether the precision is only simulated to
∼80-bit for double precision architectures). We observe good
agreement across all models, and we note the drift in the prob-
abilistic results at a large number of matrix multiplications k
to an effective ε an order of magnitude smaller than simulated.
This suggests the built-in floating point operation algorithms
may be caching results or eliminating some sources of error.
We repeat such experiments across S = 10 samples, and we
also observe negligible error bars within plot markers. This
classical error also shows similar trends to the quantum noise
case of noise-induced convergent and divergent regimes. Fi-
nally, we note that it is difficult to precisely and consistently
define the machine precision ε, or the number of decimal
points of accuracy of a simulation, even for a recognized
floating point data-type. Apart from the often nonlinear de-
pendence of the true machine precision value on the number
of operations and dimensionality of the problem, there are
additionally software effects. These effects include how basic
floating point operations may be vectorized or fused together.
Similarly, there may be hardware effects, such as how the
exact memory layout of different computing architectures can

affect the way in which operations are performed. These stud-
ies, in particular the exact agreement between analytical and
32- and 64-bit data-type numerical results, however, confirm
the appropriateness of our derived models, and they offer
valuable insight into upper bound estimates for a range of
machine precision values.

The simulation package developed for this work [75],
as discussed in Section F, can perform single ε ∼ O(10−7),
double ε ∼ O(10−16), or (simulated) quadratic ε ∼ O(10−19)
floating point arithmetic, and each data type is useful in
understanding the sources of floating point error. However,
quadruple floating point arithmetic is unable to currently be
compiled efficiently for large systems, in addition to the over-
head of the simulated precision. Automatic differentiation
computations also empirically have less than double precision
accuracy, typically ε ∼ O(10−12). Therefore, current large-
scale simulations are infeasible with this data type.

3. Quantum error scaling

Let us define a unitary evolution as a product of k, d-
dimensional unitaries U =∏k

μ Uμ that transforms an initial
state as σ → ρ = UσU †. Suppose the evolution is sub-
ject to quantum error U → Uγ and σ → ργ . This noisy
evolution with quantum error can be represented by the
normalized Kraus operators {√1 − γ I,

√
γ�}, where (1 −

γ )I + γ�†� = I , meaning the operation is trace-preserving.
The composite adjoint action of unitaries with K = NM

matrix multiplications with quantum error is therefore

ργ =Uγ σU †
γ = (1 − γ )Kρ + δγ , (D34)

where the perturbation is

δγ =
K∑

l>0

∑
χl

γ l (1 − γ )K−l

⎡
⎣ K∏

μ

Uμ�χl μ

⎤
⎦σ

⎡
⎣ K∏

μ′
�

χ ′
l′ μ′ †

Uμ′ †

⎤
⎦. (D35)

The absolute norm error, given the unitary quantum noise has norm ‖�‖ = poly(d ) and the operators are unitaries with
‖Uμ‖ = poly(d ), is therefore bounded by

‖ργ − ρ‖ � [(1 − γ )K − 1]‖UσU †‖ +
K∑

l>0

∑
χl

γ l (1 − γ )K−l

∥∥∥∥∥∥
⎡
⎣ K∏

μ

Uμ�χl μ

⎤
⎦σ

⎡
⎣ K∏

μ′
�

χ ′
l′ μ′ †

Uμ′ †

⎤
⎦
∥∥∥∥∥∥ (D36)

= [(1 − γ )K − 1]‖σ‖ +
K∑

l>0

∑
χl

γ l (1 − γ )K−l‖σ‖ (D37)

= [(1 − γ )K − 1]‖σ‖ +
K∑

l>0

(K
l

)
γ l (1 − γ )K−l‖σ‖ (D38)

= 2‖σ‖[(1 − γ )K − 1]. (D39)

Given the norm of pure input and noiseless output states is
‖ρ‖ = ‖σ‖ = 1, the relative error for pure states is

‖ρε − ρ‖
‖ρ‖ � 2|1 − (1 − γ )K |. (D40)

We may then calculate functions of quantum noisy states,
such as the infidelity with a (pure) state ρ as

Lγ = 1 − tr(ρργ ) = L − tr(ρδγ ). (D41)
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TABLE II. Constrained parameters for NMR Ansatz [10]. All parameters are chosen to be experimentally relevant. Some parameters,
however, in particular the time step of 100 µs (unitary compilation) and 75 µs (state preparation), are chosen to be on the maximum end of what
is experimentally feasible, to allow for reasonably efficient simulation.

Parameter Description Value

N Number of qubits 1–4
M Number of time steps 5–5000
τ Trotterization time step 75–100 µs
T Evolution time 375 µs–500 ms
Q Spatial Trotterization order 2
P Number of parameters MN (N + 5)/2
Ji< j Constant longitudinal coupling π/2 {72.4, −130.0, 50.0, 210.0, 20.0, −190.0, −30.0, 60.0, 90.0, −60.0} Hz
hi Constant longitudinal field π/2 {−10.0, 0, −1.0, 29.0, −20.0} kHz
θ̄ Variable transverse field π/2 MHz
γ Noise scale 10−14–10−1

Constrained and shared transverse fields
Zero-field Dirichlet boundary conditions in time

θ̃ Constraints θ
x,y (m)
i = θ x,y (m), |θ x,y (m)| � θ̄ , θ x,y (0,M ) = 0

Using the Cauchy-Schwartz inequality, we may bound the
bias of the quantum noisy infidelities

|Lγ − L| = |tr(ρδγ )| � min
1
p + 1

q =1
‖ρ‖p‖δγ ‖q

� min
1
p + 1

q =1
2‖ρ‖p‖σ‖q|1 − (1 − γ )K |, (D42)

and this noisy linear objective deviation, for pure states, scales
as

|Lγ − L| � 2|1 − (1 − γ )K |. (D43)

4. Classical versus quantum error scaling

We may relate the classical and quantum error scales by
identifying the dimension-dependent classical scale

ε = ε(d ) (D44)

and the number of matrix multiplication operations for M
poly(N ) local unitaries being

k = O(K ) = O(poly(N )M ). (D45)

The error scaling of classical and quantum noisily evolved
states may then be summarized as

‖ρε − ρ‖ � |1 − (1 + ε)2k|, (D46)

‖ργ − ρ‖ � 2|1 − (1 − γ )K |, (D47)

and the linear functions of the perturbed states are also per-
turbed with identical scaling,

|Lε − L| � |1 − (1 + ε)2k|, (D48)

|Lγ − L| � 2|1 − (1 − γ )K |. (D49)

A subtle point to keep in mind is that we are comparing in-
fidelities at fixed variable parameters values. If the parameters
have been optimized in a noisy setting, then the associ-
ated noiseless infidelity Lθγ

, evaluated with these parameters,
likely differs from the true optimal noiseless infidelity Lθ with
parameters optimized in a noiseless setting. If we happen to

be in an overparameterized regime, where the phenomenon of
lazy training occurs [76], parameters may change negligibly
from their initial values. In this regime, the noiseless infi-
delities, with noisy and noiseless trained parameters, possibly
approximately coincide,

θ∗
γ ≈ θ∗. (D50)

In this setting, functions of the parameters such as the infideli-
ties may also approximately coincide,

Lθ∗
γ

≈ Lθ∗ , (D51)

and they can be used in place of each other. Bounds such as
those above comparing noisy and noiseless fidelities may be
relevant, however future studies should investigate the noise-
induced bias in optimization.

APPENDIX E: NUCLEAR MAGNETIC
RESONANCE ANSATZ

In these Appendixes, we include details about the nuclear
magnetic resonance (NMR) Ansatz studied in this work. We
describe the model Hamiltonian, and we document all param-
eter scales

H (t )
θ =

∑
i

θ x
i

(t )Xi +
∑

i

θ
y
i

(t )Yi

+
∑

i

hiZi +
∑
i< j

Ji jZiZ j . (E1)

Here we have control over the variable time-dependent
transverse X and Y fields, with constant time-independent
longitudinal Z and ZZ fields. In these units, the parameters
in Table II are used for this Ansatz. We note that the nonlocal
coupling scale is J � h, θ , and there are time step sizes such
that τJ � 1. To generate a finite angle (π/4 for ZZ) rotation
necessary to implement a single entangling gate, depths of
order M ∼ 1/τJ ∼ O(104) are necessary. Furthermore, the
number of entangling gates necessary to compile Haar ran-
dom unitaries is generally exponential O(DN ) in the number
of qubits [48]. Therefore, these parameter scales, even for

062607-24



CHARACTERIZATION OF OVERPARAMETRIZATION IN … PHYSICAL REVIEW A 109, 062607 (2024)

TABLE III. Comparison of 1-qubit gate times TU1, 2-qubit gate times TU2, decoherence times Tγ , experimentally achieved number of qubits
NU , experimentally achieved depths of 2-qubit gates MU , ratio of 2-qubit to 1-qubit gate times MU12 = TU2/TU1, and the ratio of decoherence
to 2-qubit gate times MγU2 = Tγ /TU2 for various experimental quantum computing implementations. The ratio of 2- to 1-qubit gate times can
be interpreted as the effective depth MU12 necessary to implement 2-qubit gates. The ratio of decoherence times Tγ to 2-qubit gate times can be
interpreted as the effective maximum depth MγU2 before decoherence. For NMR, 1-qubit gate times TU1 = O(τ ) are approximately the pulse
time steps, 2-qubit gate times TU2 = O(1/J ) are approximately inversely related to the 2-qubit coupling, and decoherence times Tγ = O(T2)
are approximately the dephasing times. Tabulated values are experimental apparatus and algorithm specific [45], taken from a range of values
in recent literature.

Implementation TU1 (µs) TU2 (µs) Tγ (ms) NU MU MU12 = TU2/TU1 MγU2 = Tγ /TU2

NMR [10,17,46] 75 5000 1000 ms 12 1000 70 2 × 102

Trapped ions [1,2,46,77,78] 1 50 10000 ms 12 64 50 1 × 106

Superconducting [3,4,46] 0.02 0.1 1 ms 127 60 5 1 × 104

Neutral atoms [6–8] 2 0.5 1000 ms 280 516 0.25 2 × 106

relatively small system sizes of N � 4, indicate that in gen-
eral an even greater total number, possibly superexponential
M > O(DN ), of physical gates are necessary in practice for
these tasks of interest.

We also compare gate times, decoherence times, experi-
mentally tested depths, and effective depths based on these
times for various NISQ implementations in Table III. We note
that each implementation has better and worse properties.
NMR in this work has the largest 2-qubit gate times TU2 =
O(1/J ), which translates to NMR having the largest effec-
tive depth TU2/TU1 ∼ O(100) required for each 2-qubit gate,
and having the smallest effective maximum depth Tγ /TU2 ∼
O(102) before coherence. We emphasize, however, that tabu-
lated values taken from a range of values in recent literature
are very experimental apparatus- and algorithm-specific [45].

APPENDIX F: CLASSICAL SIMULATION
AND OPTIMIZATION

In these Appendixes, we discuss details of the classi-
cal simulation and optimization of the quantum systems
studied in this work. We explain our hyperparameter
choices, optimization routines, and we list all optimization
settings.

The quantum systems in this work are simulated and opti-
mized classically using a compiled, automatic-differentiation
library using the Python JAX backend, developed as a
general differentiable exponentially deep circuit simulator
[75]. This library is optimized for noisy density matrix
simulations with few qubits N < 6, and state-of-the-art
large depth circuits with k ∼ O(105) gates per circuit
instance.

For example, in this work’s NMR Ansatz, circuits consist
of Q = 2 order spatially Trotterized evolution, consisting of
fully connected two-body gates. Local noise on all qubits
after each layer requires up to M ∼ 5 × 103 circuit layers,
and the circuits are simulated roughly 109 times throughout
the optimization routines and loops over Ansatz settings. All
optimizer hyperparameters are shown in Table IV.

When performing gradient-based optimization, the gradi-
ents of these objectives can be expressed analytically with
parameter shift rules, however for the N � 4 system sizes
considered in this work, we use automatic differentiation
for efficiency. An exception is when computing the Hessian

and quantum Fisher information, where computing analytical
gradients is most memory-efficient. For small system sizes,
the unitary and quantum noise operations and infidelities,
specifically the traces over the full space, can also be cal-
culated exactly. Sampling methods, which introduces forms
of shot-noise, and other quantum algorithms, such as the
Hilbert-Schmidt test, and other forms of process tomography,
are not necessary to be implemented. The effects of estimating
such infidelities with sampling and approximate operators for
larger system sizes are important studies to be conducted in
future works.

For computing statistics such as the mean and variance
across S independent optimizations, we sample any inputs
from specific distributions. We generally sample the initial
states σ , target unitaries U , and target states ρ according to
the Haar measure to avoid any biases in targeting a specific
subspace [36]. Expectation values of parametrized functions
of the initial and target states Fθ (σ, ρ), such as infidelities,
may then be computed as

〈Fθ 〉(S) = 1

S

S∑
s

θ̃ (s)∼Uniform
σ (s)∼Haar, ρ (s)∼Haar

Fθ (s) (σ (s), ρ (s) ). (F1)

For artificially simulating floating point error, we add random
matrices to each successive distinct matrix multiplication in
a calculation. Plotted quantities are also calculated at the
optimal parametrization, which is not necessarily at the last
optimization iteration. We also uniformly randomly sample
initial parameters θ = θ̃ , and then we smooth them over the
M time steps with cubic interpolation to be experimentally
implementable.

In this work, we define the parameters as θ = θ (φ), func-
tions of explicit variables φ that are explicitly optimized.
In the unconstrained case, all parameters for each qubit are
independent and are not constrained in magnitude. However in
the constrained case, we impose that the fields are constrained
and coupled to act uniformly across all sites for each operator.
Therefore, θ

x,y
i = θ x,y for each qubit i ∈ [N]. We also bound

all transverse field magnitudes |θ x,y
i | � θ̄ . We finally impose

Dirichlet boundary conditions in time, such that the initial and
final fields are approximately zero, θ x,y (0) = θ x,y (M ) = 0.

To perform the classical simulation and optimization of the
parametrized channels, we perform first-order gradient based
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TABLE IV. Optimization hyperparameters. All settings are selected from manual parameter searches, and are only heuristically shown to
reasonably guarantee optimization convergence across all system settings.

Hyperparameter Description Value

Optimizer Optimizer routine Conjugate gradient
Line search Line search routine Wolf conditions
Conjugate search Conjugate search routine Hestenes-Stiefel
pθ̃ Initial parameters distribution Uniform/Cubic Smoothing
pU,ρ Objectives distribution Haar
pσ Initial state distribution Haar
S Number of sample objectives 50
L Maximum number of optimization iterations 500
L< Minimum number of optimization iterations 50
Lα Maximum number of line search iterations per iteration 2500
εL Minimum objective stopping condition 10−16

ε�L Minimum absolute difference in objective per iteration stopping condition 0
εδL Maximum relative increase in objective per iteration stopping condition 10−3

ε∂L Minimum gradient norm stopping condition 0
ε�∂L Minimum absolute difference in gradient norm per iteration stopping condition 0
εδ∂L Maximum relative increase in gradient norm per iteration stopping condition ∞
α Initial parameter learning rate 10−4

β Initial search learning rate 10−4

α≶ Bounds on parameter learning rate before reset to α [0, ∞]
β≶ Bounds on search learning rate before reset to β [10−10, 1010]
c1 Wolf objective parameter 10−5–10−4

c2 Wolf gradient parameter 10−1–9 × 10−1

optimization routines to minimize the objectives Lθγ with
respect to the variable parameters θ . We may then compute
gradients of objectives ζ = ∂Lθ .

Due to the high dimensionality of the problem, more effec-
tive variants of classical gradient descent must be performed.
Here we choose a variant of the first-order conjugate gradient
scheme, where the search direction ξ is updated iteratively
[50] at iteration 0 � l � L:

θ (l+1) = θ (l ) + α(l )ξ (l ), (F2)

ξ (l+1) = − ζ (l+1) + β (l )ξ (l ), (F3)

given initial conditions of θ (0) and ξ (0) = −ζ (0).
The learning rates α, β must be chosen to satisfy the Wolfe

convergence conditions [50], which guarantee the parameters
and search directions are updated such that the objective is
monotonically decreasing.

For the parameter learning rate α, a line search is con-
ducted that involves at most Lα objective calls per iteration
l , and it ensures the objective maximally decreases. For the

search learning rate β, rates that obey

|β| � β̄ = ζ (l+1) · ζ (l+1)

ζ (l ) · ζ (l )
(F4)

ensure convergence [50]. Various forms for this parameter in-
clude the standard Fletcher-Reeves rate β

(l )
FR = β̄ (l ). However,

for the range of problems in this work, we find that it and many
definitions lead to the optimizer immediately getting stuck in
local minima. We find the Hestenes-Stiefel rate, however, to
be quite effective,

β
(l )
HS = ζ (l+1) · (ζ (l+1) − ζ (l ) )

ξ (l ) · (ζ (l+1) − ζ (l ) )
. (F5)

The hyperparameters are chosen after heuristic manual
searches that indicated stability and adequately fast conver-
gence for noisy and noiseless state preparation and unitary
compilation tasks. Additional heuristic stopping conditions
are also implemented to avoid unnecessary iterations.
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