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Quantum Fisher information maximization in an unbalanced lossy interferometer
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In this work we address the problem of quantum Fisher information (QFI) maximization in an unbalanced
lossy Mach-Zehnder interferometer. We implement the scheme from Escher et al. [Nat. Phys. 7, 406 (2011)]
allowing us to obtain in closed form the lossy QFI for all involved scenarios. Then, mirroring the lossless case
Ataman [Phys. Rev. A 105, 012604 (2022)], by optimizing the transmission coefficient of the first beam splitter,
we maximize each QFI in question. We consider this problem for both single- and two-parameter QFI, i.e., for
the scenarios with or without access to an external phase reference. Contrary to the lossless case, calculations
are much more involved, however, we are able to put forward a large number of results in closed form. We also
introduce two concepts, the balanced penalty and the QFI loss rate. Finally, we thoroughly discuss our results
through a number of examples, including both Gaussian and non-Gaussian input states.
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I. INTRODUCTION

Interferometry is a mature scientific field that provides
measurement precision limited by the so-called shot-noise
limit (SNL). Quantum interferometry [1,2] goes beyond the
SNL and is able to reach the much more favorable Heisen-
berg limit (HL). As part of the emerging field of quantum
sensing [3,4], interferometric quantum metrology is now both
an active theoretical field of research as well as an applied
technology allowing, for example, the detection of more grav-
itational wave events [5–9] or to enhance biological imaging
[10–12].

Many workers in the field addressed the phase sensitiv-
ity of an interferometer [13–16] and the results are usually
based on the error propagation formula. This phase sensitiv-
ity is detection scheme dependent and possibly suboptimal.
One thus needs a tool to provide the theoretical optimal
phase sensitivity. It turns out that the solution comes in the
form of a lower bound based on the theoretical concept of
Fisher information (FI) [17]. Indeed, the FI (denoted Fcl)
proved to be a theoretical tool of paramount importance in
interferometric phase estimation [18–21] due to its connec-
tion to the Cramér-Rao bound (CRB), �ϕCRB = 1/

√
NFcl,

where N denotes the number of repeated measurements
[22–24]. Its quantum counterpart, the quantum Fisher infor-
mation (QFI) [19,25,26], F , proved to be the perfect tool to
evaluate the absolute best interferometric performance, opti-
mized over all possible detection schemes [27]. Indeed, one
can show that F � Fcl, hence the implied quantum Cramér-
Rao bound (QCRB) �ϕQCRB = 1/

√
NF [25,26] obeys

�ϕQCRB � �ϕCRB. Readers interested in reviews on this topic
can consult Refs. [27,28].

*stefan.ataman@eli-np.ro

When considering a single phase shift (ϕ) inside the in-
terferometer and boldly applying the QFI (denoted in this
case F (i)), one gets a too optimistic result in terms of QCRB
when compared to the actual achievable phase sensitivity for
detection schemes not having access to an external phase ref-
erence (e.g., parity, difference intensity detection). This issue
has been resolved in [29]. The authors pointed out that if the
detection scheme does not have access to an external phase
reference, the extra resources stemming from this availability
have to be discounted. One is thus compelled to either average
out the input state in respect with a common phase or use
the two-parameter QFI (denoted here F (2p)) relevant for a
difference-difference phase sensitivity. We will employ the
latter option in this work. The same authors also considered
the scenario with an external phase reference available and
two antipodal internal phase shifts (±ϕ/2), the resulting QFI
being denoted by F (ii). We will discuss all three scenarios in
this work.

One can thus ask the question if a balanced interferometer
always maximizes the QFI in question. It turns out that if one
is considering the two-parameter QFI F (2p), then the answer
is almost always positive [29–31]. However, if one considers
scenarios where an external phase reference is available, then
the opposite is true [31–33].

In the lossless case, balanced interferometers are common-
place in the literature, a fact often due to the use of detection
schemes not having access to an external phase reference.
In the lossy case, however, phase sensitivity optimization al-
most always goes via unbalancing, even for detection schemes
not having access to an external phase reference, as al-
ready recognized by early papers dealing with this topic
[34,35].

Although results have been reported in the literature for
the lossy scenario [35–44], they are specifically optimized for
a specific QFI setup (e.g., the two-parameter QFI) and a given
input state (e.g., coherent plus squeezed vacuum). Indeed,

2469-9926/2024/109(6)/062605(21) 062605-1 ©2024 American Physical Society

https://orcid.org/0000-0003-2423-578X
https://orcid.org/0009-0005-7170-2426
https://ror.org/048m5jb39
https://ror.org/00d3pnh21
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.062605&domain=pdf&date_stamp=2024-06-11
https://doi.org/10.1038/nphys1958
https://doi.org/10.1103/PhysRevA.105.012604
https://doi.org/10.1103/PhysRevA.109.062605


STEFAN ATAMAN AND KARUNESH K. MISHRA PHYSICAL REVIEW A 109, 062605 (2024)

results have been reported for input states featuring a fixed
number of input photons (e.g., Fock/NOON) [35–38]. The
popular coherent plus squeezed vacuum [39,40,45] as well
as the two-mode squeezed vacuum (TMSV) [39–41] input
states have also been discussed in the literature. A special
category of input states are the ones featuring one input port
in the vacuum state [42,46,47]. Among them, we mention
the results from [46] relative to a single squeezed vacuum
input and the ones from Ref. [42] discussing a single coherent
input.

Many authors considered unbalanced interferometers in
the lossy case [34,37,42,45,46], thus providing the ultimate
attainable precision in terms of phase sensitivity for their
particular setup. However, other authors insisted on keeping
the interferometer balanced [39,40,48,49]. As we will show
in the following, this choice prevented them to obtain the true
optimal QFI. A notable exception is the TMSV input state,
where a balanced interferometer remains optimal in the lossy
case, too [40,41,44]

A general scheme able to discuss QFI maximization in a
lossy interferometer and with a generic input state, to the best
of our knowledge, has not been put forward in the literature.
The purpose of this work is to fill in this gap.

We employ the lossy QFI computation scheme introduced
in [50] and obtain in closed form the lossy QFI for each
scenario as well as the implied QCRB. Then, applying the
same principles from the lossless case [31,32] and employing
an unbalanced interferometer we optimize the transmission
coefficient of the first beam splitter (denoted BS1) in order
to maximize each QFI in question.

As we will detail later, the single-parameter QFI F (i) does
not take into account losses in the arm not containing the
phase shift. Thus, for a meaningful comparison of all involved
schemes we only assume losses in the arm containing the
phase shift, although for some specific cases we also give the
results including losses in both arms.

This paper is organized as follows. In Sec. II the inter-
ferometric schemes we consider are put forward and some
notation conventions are made. A very brief discussion of the
QFI scenarios in the lossless case is done in Sec. III. The lossy
QFI in each of the three considered scenarios is introduced
and discussed in Sec. IV. The optimization of the transmission
coefficient of BS1 in the sense of maximizing each QFI in
question is addressed in Sec. V. The discussed optimizations
are applied to a number of Gaussian and non-Gaussian input
states in Sec. VI. The conclusions from Sec. VII close the
paper.

II. INTERFEROMETRIC SCHEME

In Fig. 1 we depict the interferometer scheme we consider.
The Mach-Zehnder interferometer (MZI) comprises two beam
splitters (BSi with i = 1, 2) and the losses inside it are mod-
eled via the fictitious beam spitters BSl2 (BSl3) inserted in the
upper (lower) arm featuring a transmission coefficient

√
η1

(
√

η2). For each interferometer arm, the lossless (total loss)
case assumes η j = 1 (η j = 0), with j = 2, 3. The first beam
splitter (BS1) is assumed to be unbalanced and we model it via
the unitary operator ÛBS(ϑ ) = eiϑ Ĵx [16] where the Schwinger
pseudoangular momentum operators are defined as usual

FIG. 1. The unbalanced MZI is composed of two beam splitters
(BS1 and BS2) and two phase shifts (ϕ1 and ϕ2). Losses are modeled
via the beam splitters BSl2 (BSl3) in the upper (lower) arms having
transmission coefficients

√
η1 (

√
η2).

by [51]

Ĵx = â†
0â1 + â0â†

1

2
, Ĵy = â†

0â1 − â0â†
1

2i
,

Ĵz = â†
0â0 − â†

1â1

2
(1)

and the number operator for the input state is

N̂ = â†
0â0 + â†

1â1 = n̂0 + n̂1. (2)

In the previous equations âm (â†
m) denote the usual annihila-

tion (creation) operator and n̂m denotes the photon number
operator for mode m [52]. The abstract angle ϑ ∈ [0, π ]
is connected to the beam-splitter transmission coefficient T
via the relation ϑ = 2 arccos T and we consider a purely
imaginary reflection coefficient R = i sin(ϑ/2). Throughout
this work, we will call a BS “balanced” if T = 1/

√
2 (i.e.,

ϑ = π/2) and “degenerate” whenever we have T = 0 or 1.
The variance of an operator Â is defined as usual by �2Â =
〈Â2〉 − 〈A〉2, the covariance of two operators Â and B̂ is de-
fined via Cov(Â, B̂) = 〈ÂB̂〉 − 〈Â〉〈B̂〉 while the symmetrized
covariance of two noncommuting operators is

Ĉov(Â, B̂) = 〈ÂB̂〉 + 〈B̂Â〉
2

− 〈Â〉〈B̂〉. (3)

For future convenience, we also introduce Mandel’s Q factor
defined as [52]

Ql = �2n̂l − 〈n̂l〉
〈n̂l〉 , (4)

where l denotes the mode in question. Expressing the field
operators after BS1 in respect with the input ones yields⎧⎪⎪⎨⎪⎪⎩

â2 = cos
ϑ

2
â0 + i sin

ϑ

2
â1 = T â0 + Râ1,

â3 = i sin
ϑ

2
â0 + cos

ϑ

2
â1 = Râ0 + T â1

(5)
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FIG. 2. The QFI schemes employed. For the two-parameter QFI
evaluation, two independent phase shifts are assumed, as depicted
in the upper drawing and also in lower drawing, case (a). For the
asymmetric single-parameter QFI F (i) the unitary operator modeling
the phase shift is given by case (b). Finally, for the symmetric single-
parameter QFI F (ii), the unitary operator modeling the phase shift is
given by case (c).

and from the previous equation we get the averages{
〈n̂2〉 = 1

2 〈N̂〉 − sin ϑ〈Ĵy〉 + cos ϑ〈Ĵz〉,
〈n̂3〉 = 1

2 〈N̂〉 + sin ϑ〈Ĵy〉 − cos ϑ〈Ĵz〉,
(6)

as well as the variances �2n̂2, �2n̂3 and the covariance
Cov(n̂2, n̂3), given in Appendix A. We will employ in our
calculations the relation

�2n̂2 + �2n̂3 + 2 Cov(n̂2, n̂3) = �2N̂, (7)

easily provable from the field operator transformations men-
tioned previously.

III. QFI IN THE LOSSLESS CASE
AND ITS OPTIMIZATION

In this section we briefly discuss the lossless QFI case
since these results will be needed when considering losses in
Sec. IV. The second BS plays no role in the QFI calculation
[21,32], hence we employ the simplified scheme from Fig. 2.
In order to compute the QFI scenarios needed in this work
[29,31,53], we first assume two independent phase shifts (ϕ1

and ϕ2, see Fig. 2) and perform the convenient variable change
towards the sum and difference phases{

ϕs = ϕ1 + ϕ2,

ϕd = ϕ1 − ϕ2.
(8)

Introducing the generators Ĝs = (n̂2 + n̂3)/2 and Ĝd =
(n̂2 − n̂3)/2 [29,32,53] allows us to write the wave vector
after the phase shifts as |ψ〉 = Ûϕ (ϕs, ϕd )|ψ23〉 where |ψ23〉 =
ÛBS (ϑ )|ψin〉 and the unitary operator modeling the phase
shifts is

Ûϕ (ϕs, ϕd ) = e−iϕsĜs e−iϕd Ĝd . (9)

We apply the usual formula for the Fisher matrix elements
[29,53]

Fi j = 4(〈ĜiĜ j〉 − 〈Ĝi〉〈Ĝ j〉), (10)

where i, j ∈ {s, d} and we denoted 〈Ô〉 = 〈ψ |Ô|ψ〉. One ends
up with the expressions⎧⎪⎪⎨⎪⎪⎩

Fss = 4�2Ĝs = �2n̂2 + �2n̂3 + 2 Cov(n̂2, n̂3),

Fdd = 4�2Ĝd = �2n̂2 + �2n̂3 − 2 Cov(n̂2, n̂3),

Fsd = 4 Cov(Ĝs, Ĝd ) = �2n̂2 − �2n̂3.

(11)

When considering the scenario with a single internal phase
shift [see Fig. 2(b)] we employ{

ϕ1 = 0,

ϕ2 = ϕ
(12)

while when we employ the ±ϕ/2 convention [see Fig. 2(c)]
we assume {

ϕ1 = ϕ

2 ,

ϕ2 = − ϕ

2

. (13)

As discussed previously [29,31,32], all QFI scenarios consid-
ered in this work can be constructed from the Fisher matrix
elements given by Eq. (10). Thus, the two-parameter QFI,
F (2p), can be expressed as

F (2p) = Fdd − F2
sd

Fss
(14)

valid when Fss �= 0 and F (2p) = Fdd when Fss = 0. This QFI
implies the difference-difference QCRB,

�ϕ
(2p)
QCRB = 1√

NF (2p)
, (15)

representing the “true” optimal interferometric phase sensitiv-
ity for a MZI with a detection scheme not having access to an
external phase reference [29,31,32].

When an external phase reference is available and the
convention (12) is assumed, the meaningful QFI is the asym-
metric single-parameter QFI [31,32]

F (i) = Fss + Fdd − 2Fsd = 4�2n̂3 (16)

and it implies the single-parameter QCRB [29]

�ϕ
(i)
QCRB = 1√

NF (i)
. (17)

Finally, when an external phase reference is available and the
convention (13) is assumed the relevant QFI is the symmetric
single-parameter QFI,

F (ii) = 4�2Ĝd = Fdd . (18)

In respect with the input fields, the QFI from Eq. (14) can be
written as

F (2p) = C0 + C1
sin2 ϑ

4
+ C2

sin 2ϑ

4
(19)

and the C coefficients are given in Appendix B. The single-
parameter asymmetric QFI given by Eq. (16) can be rewritten
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as

F (i) = C′
0 + sin2 ϑ

4
C′

1 + sin 2ϑ

4
C′

2

+ cos ϑC′
3 + sin ϑ

2
C′

4, (20)

where the C′ coefficients are given in Appendix C. Finally,
the single-parameter symmetric QFI from Eq. (18) can be
expressed as

F (ii) = C′′
0 + C′′

1
sin2 ϑ

4
+ C′′

2
sin 2ϑ

4
, (21)

where the coefficients are given by⎧⎪⎨⎪⎩
C′′

0 = 4�2Ĵz,

C′′
1 = 16(�2Ĵy − �2Ĵz ),

C′′
2 = Ĉov(Ĵy, Ĵz ).

(22)

Details on the optimization of each QFI in question by adapt-
ing the BS1 transmission coefficient T = cos ϑ/2 are found in
[32] (see also the Supplemental Material [54]).

IV. QFI IN THE LOSSY CASE

We employ the general scheme of the lossy MZI sce-
nario developed in Refs. [50,55] and details are given in
Appendix D. Losses are modeled via fictitious beam split-
ters (see Fig. 1) with transmission (reflection) coefficients
Tl2 = √

η1 (Rl2 = √
1 − η1) in the upper arm and Tl3 = √

η2

(Rl3 = √
1 − η3) in the lower one.

A. Fisher matrix elements

Following the same arguments employed in the lossless
case (see Fig. 2 and Appendix D), we introduce the Fisher
matrix elements:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Css = V2�
2n̂2 + V3�

2n̂3 + A2〈n̂2〉 + A3〈n̂3〉
+VcovCov(n̂2, n̂3),

Cdd = V2�
2n̂2 + V3�

2n̂3 + A2〈n̂2〉 + A3〈n̂3〉
−VcovCov(n̂2, n̂3),

Csd = V2�
2n̂2 − V3�

2n̂3 + A2〈n̂2〉 − A3〈n̂3〉,

(23)

where the coefficients are given by Eq. (E1), expressions that
can be obtained from Eq. (D4), and by employing the Kraus
operators (D6).

However, as we will point out in Sec. IV C, the single-
parameter QFI has no dependence on η1. In order to have a
meaningful comparison among the single- and two-parameter
QFI, in the following sections, starting from this point (un-
less otherwise specified) we will simplify our scheme so that
we consider losses in the lower arm only (i.e., η1 = 1). The
coefficients from Eq. (E1) thus simplify to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A2 = 0,

A3 = (γ2 + 1)2(1 − η2)η2,

V2 = 1,

V3 = [1 − (γ2 + 1)(1 − η2)]2,

Vcov = 2[1 − (γ2 + 1)(1 − η2)].

(24)

B. The scenario with no external phase reference available

Similar to the lossless case [31,32] (see also the Sup-
plemental Material [54]) we define the difference-difference
two-parameter QFI

C (2p) = Cdd − C2
sd

Css
(25)

valid for Css �= 0 and C (2p) = Cdd for Css = 0, where the coef-
ficients have been defined in Eq. (23). Since we employ the
simplified scenario with losses in the lower arm only (i.e.,
η1 = 1), by employing the coefficients from Eq. (24) we arrive
at closed-form expression of the two-parameter QFI given in
Appendix E, Eq. (E2). As pointed out in [50,55], the QFI
C (2p) is overoptimistic and the “true” lossy QFI is actually
G (2p) = minγ2 {C (2p)}. One finds the optimum γ2 value

γ
opt
2 = 1

1 − η2 + η2〈n̂3〉(�2 n̂2+Cov(n̂2,n̂3 ))
�2 n̂2�2 n̂3−[Cov(n̂2,n̂3 )]2

− 1 (26)

that minimizes C (2p) leading to the lossy two-parameter QFI,

G (2p) = η2
η2

F (2p) + 1−η2

4〈n̂3〉
. (27)

From Eq. (27) one can immediately see the evolution of the
lossy two-parameter QFI. Indeed, as η2 → 1 we have G (2p) →
F (2p) while for the high-loss regime (i.e., η2 	 1 − η2) the
previous equation can be approximated to

G (2p) ≈ 4η2

1 − η2
〈n̂3〉. (28)

Finally, for total loss (i.e., η2 → 0) we have G (2p) → 0.
Employing the QCRB �ϕ

(2p)
QCRB from the lossless case given

by Eq. (15) and the lossy QFI from Eq. (27) allows us to write
the implied lossy QCRB as

�ϕ
(2p)
QCRB

∣∣
lossy =

√[
�ϕ

(2p)
QCRB

]2 + 1 − η2

η2
[�ϕSNL]2, (29)

where we defined the SNL-limited phase sensitivity �ϕSNL =
1/

√
4N 〈n̂3〉. Thus, for η2 close to 1 the first term from

Eq. (29) dominates and we can approximate the QCRB with
the lossless result from Eq. (15). As η2 moves away from 1
the second term starts to be relevant and in the high-loss limit
(i.e., η2 	 1 − η2), the QFI can be approximated by Eq. (28)
and we have

�ϕ
(2p)
QCRB

∣∣
lossy ≈

√
1 − η2

η2
�ϕSNL. (30)

C. The scenario with one phase shift and external phase
reference available

Equation (16) remains valid in the lossy case, we thus have

C (i) = Css + Cdd − 2Csd (31)

and considering losses in both arms, i.e., employing the co-
efficients from Eqs. (23) and (E1), we get the result (see also
[50])

C (i) = 4(V3�
2n̂3 + A3〈n̂3〉) (32)
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and we have the important insight that the losses in the upper
arm (i.e., in the arm without the phase shift) are irrelevant for
the asymmetric single-parameter QFI, C (i). Expanding the A3

and V3 coefficients yields

C (i) = 4[1 − (γ2 + 1)(1 − η2)]2�2n̂3

+ 4(γ2 + 1)2(1 − η2)η2〈n̂3〉 (33)

and the next step is to to minimize C (i) in order to get the “true”
QFI, i.e., G (i) = minγ2 {C (i)}. One finds [55]

γ
opt
2 = �2n̂3

(1 − η2)�2n̂3 + η2〈n̂3〉 − 1 (34)

and replacing this result in the single-parameter QFI expres-
sion from Eq. (33) yields the asymmetric single-parameter
lossy QFI [50],

G (i) = 4η2〈n̂3〉�2n̂3

η2〈n̂3〉 + �2n̂3(1 − η2)
. (35)

We can write the previous expression by employing the loss-
less QFI from Eq. (16) yielding the compact expression

G (i) = η2
η2

F (i) + 1−η2

4〈n̂3〉
. (36)

Similar to Eq. (27), in the high-loss regime we find the scaling
from Eq. (28) and for total loss we have G (i) → 0.

Equally similar to the discussion from the previous section,
we can write the lossy QCRB as

�ϕ
(i)
QCRB

∣∣
lossy =

√[
�ϕ

(i)
QCRB

]2 + 1 − η2

η2
[�ϕSNL]2, (37)

where the lossless QCRB �ϕ
(i)
QCRB is given by Eq. (17). It is

noteworthy to point out that in this case, too, the QCRB in the
high-loss regime is given by Eq. (30).

D. The scenario with two internal antisymmetrical phase shifts
and external phase reference available

This scenario is depicted in Fig. 2(c) and the minimized
symmetric single-parameter QFI is given in Appendix F.
Since in the main text we assume losses in the lower arm only
we impose η1 = 1, thus, from Eqs. (F1) and (F3) we get the
minimized symmetric single-parameter QFI

G (ii) = (1 − η2){�2n̂2�
2n̂3 − [Cov(n̂2, n̂3)]2}

(1 − η2)�2n̂3 + η2〈n̂3〉

+ η2[�2n̂2 + �2n̂3 − 2Cov(n̂2, n̂3)]〈n̂3〉
(1 − η2)�2n̂3 + η2〈n̂3〉 . (38)

Contrary to the QFI in the other two scenarios, as η2 → 0 we
arrive at a potentially non-null value,

G (ii)(0) = �2n̂2 − [Cov(n̂2, n̂3)]2

�2n̂3
. (39)

This result can be explained by the fact that this time we have
a phase shift in the upper arm, too, and since we assume losses
in the lower one only, even for η2 → 0, information about ϕ

can still be retrieved. Of course, assuming losses in both arms
[see Eq. (F4) in Appendix F] and taking {η1, η2} → 0 leads to
G (ii) → 0.

We can have a more compact form for the symmetric
single-parameter QFI, namely,

G (ii) = (1 − η2)G (ii)(0)

(1 − η2) + η2〈n̂3〉
�2 n̂3

+ η2F (ii)

η2 + (1−η2 )�2 n̂3

〈n̂3〉
, (40)

where the lossless QFI F (ii) is given by Eq. (18) and we
assumed {〈n̂3〉,�2n̂3} �= 0. This expression has also the ad-
vantage of making the limits η2 → {0, 1} obvious.

In the case of a nonentangled BS1 output [i.e.,
Cov(n̂2, n̂3) = 0] we have the much simpler expression

G (ii) = �2N̂ − (1 − η2)(�2n̂3)2

(1 − η2)�2n̂3 + η2〈n̂3〉 . (41)

V. QFI MAXIMIZATION VIA BS1 TRANSMISSION
COEFFICIENT OPTIMIZATION IN THE LOSSY CASE

In this section we will derive the optimum transmission
coefficients (denoted T (2p)

opt , T (i)
opt , and, respectively, T (ii)

opt ) in the
sense that they maximize each QFI in question (G (2p), G (i),
and, respectively, G (ii)). Since from this point on η1 = 1, we
will call η2 the “loss coefficient” and the quantity 1 − η2 the
“loss rate.”

A. Metrics quantifying the balanced and unbalanced
interferometer performance

In order to quantify the effect of keeping the interferometer
balanced (even if unbalancing it could yield an advantage),
we introduce a metric applying to all three considered scenar-
ios, which we call balanced QFI penalty or simply balanced
penalty, defined via

P (η2) = �ϕQCRB|ϑ= π
2

�ϕQCRB|ϑ=ϑopt

=
√
G(η2)|ϑ=ϑopt

G(η2)|ϑ= π
2

, (42)

where

G(η2)|ϑ=ϑopt = Gmax(η2) = max
ϑ

{G(η2)}. (43)

Here by G (P) we understand one among G (i) (P (i)), G (ii)

(P (ii)), and G (2p) (P (2p)). The balanced penalty obeys P (η2) �
1 and can be seen as the degradation factor in terms of QCRB
when one insists in keeping the interferometer balanced, no
matter what. Having P (η2) = 1 implies that there is no inter-
est in unbalancing the interferometer at a given loss coefficient
η2.

In order to better quantify the effect of loss, too, we intro-
duce a metric for each QFI. For a given input state |ψin〉 and
at a given loss rate η2 we define the QFI loss rate by

L(η2) = maxϑ {G(η2)}
Fmax

. (44)

Here, too, by L we understand one among L(2p), L(i), and L(ii)

and correspondingly we have in Eq. (44) G (2p)(η2) and F (2p)
max ,

etc.
For η2 → 1 all QFI loss rates approach unity while for

η2 → 0 both L(i)(η2) and L(2p)(η2) approach 0. This is not
necessarily true for L(ii)(η2).
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B. The scenario when an external phase reference is unavailable

In this scenario the relevant QFI is the two-parameter one
given by Eq. (27). When maximizing this QFI in respect with
the transmission coefficient of BS1, we find the following
situations.

1. High-loss scenario

In the high-loss regime (η2 	 1 − η2), from Eq. (28) we
end up with the constraint 〈n̂3〉′ = 0, i.e.,

∂〈n̂3〉
∂ϑ

= 0. (45)

One finds the solution

T (2p)
opt =

√√√√1

2
− 〈Ĵz〉

2
√

〈Ĵy〉2 + 〈Ĵz〉2
(46)

valid if 〈Ĵz〉 �= 0 and subject to the constraint 〈Ĵy〉 > 0 (i.e., it
must be a maximum, not a minimum). In the case 〈Ĵy〉 � 0
one finds the degenerate solution

T (2p)
opt = 1 − sign〈Ĵz〉

2
(47)

and if 〈Ĵz〉 = 0 we have T (2p)
opt ∈ {0, 1}, i.e., both degenerate

values yield the same maximum QFI.

2. Special case with one input in the vacuum state

In the scenario with one input port in the vacuum state
[46] (i.e., 〈n̂0〉 = �2n̂0 = 0) one finds the optimized two-
parameter QFI

G (2p) = 2η2〈n̂1〉 sin2 ϑ

1 + η2 − (1 − η2) cos ϑ
(48)

and for η2 → 1 (i.e., in the lossless case), as expected, the pre-
vious result morphs into the lossless result F (2p) = sin2 ϑ〈n̂1〉
[32] (see also the Supplemental Material [54]). The QFI from
Eq. (48) maximizes to

G (2p)
max = 4η2〈n̂1〉

(1 + √
η2)2

(49)

by employing the optimum BS1 transmission coefficient

T (2p)
opt =

√
1

1 + √
η2

(50)

result also reported in Refs. [34,42]. The previous QFI leads
to the QCRB (assuming a single measurement)

�ϕSIL = 1 + √
η2

2
√

η2〈n̂1〉
. (51)

This result is called SIL (standard interferometric limit) and
was reported in Refs. [37,56,57].

Imposing BS1 balanced modifies the QFI from Eq. (48)
to G (2p)

bal = 2η2〈n̂1〉/(η2 + 1) and the balanced penalty from
definition (42) yields

P (2p)(η2) =
√

2(1 + η2)

1 + √
η2

. (52)

In the lossless case (i.e., η2 → 1) we find P (2p) → 1 implying
that there is no interest in unbalancing the interferometer
for this scenario, as already discussed in the literature [32,46].
On the contrary, in the high-loss scenario there is a clear
incentive to unbalance BS1 since we find P (2p) → √

2.
The QFI loss rate defined by Eq. (44) is found to be

L(2p)(η2) = 4η2

(1 + √
η2)2

. (53)

3. Case when the output of BS1 is nonentangled

In the case of a nonentangled BS1 output, the constraint
∂G (2p)/∂ϑ = 0 applied to Eq. (E3) leads us to the equation

(1 − η2)〈n̂3〉′(�2n̂2)2(�2n̂3)2

+ η2〈n̂3〉2[(�2n̂2)2 − (�2n̂3)2]�2n̂′
3 = 0. (54)

Further simplification is possible if both input states are coher-
ent leading to the simple constraint from Eq. (45) implying the
same conclusions from Sec. V B 1.

4. General case

The formal solution can be obtained from Eq. (27) by
differentiating it in respect with ϑ and we have

(1 − η2)〈n̂3〉′(�2n̂2�
2n̂3 − [Cov(n̂2, n̂3)]2)2

+ η2〈n̂3〉2(�2n̂2�
2n̂3 − [Cov(n̂2, n̂3)]2)′�2N̂ = 0. (55)

Equation (55) reexpressed in respect with the input variables
via Eqs. (6) and (A1) yields a polynomial equation in ϑ .
Among the solutions ϑ

(2p)
sol of this equation one finds the

optimum ϑ
(2p)
opt that maximizes the QFI G (2p). For a similar

calculation, see the Supplemental Material [54].

C. Scenario with a single-phase internal shift and external
phase reference available

In this scenario the relevant QFI is the asymmetric single-
parameter one given by Eq. (35). When maximizing this QFI
in respect with the transmission coefficient of BS1, we find the
following situations.

1. High-loss scenario

In the high-loss limit we find the constraint 〈n̂3〉′ = 0 and
all results from Sec. V B apply.

2. Special case with one input in the vacuum state

For the special case with one input in the vacuum state the
QFI from Eq. (35) becomes

G (i) = 4η2 cos2 ϑ
2 〈n̂1〉

(
sin2 ϑ

2 〈n̂1〉 + cos2 ϑ
2 �2n̂1

)
η2〈n̂1〉 + (1 − η2)

(
sin2 ϑ

2 〈n̂1〉 + cos2 ϑ
2 �2n̂1

) . (56)

We are ready now to find the needed optima as well as the
balanced penalties. We have the following:
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(i) if Q1 � − 1
1+√

η2
the optimal transmission coefficient is

T (i)
opt = 1, yielding the maximum QFI

G (i)
max = 4η2〈n̂1〉(Q1 + 1)

(1 − η2)Q1 + 1
(57)

and, as η2 → 1 the condition becomes Q1 � −0.5 with the
previous QFI migrating into the lossless result [32] (see also
the Supplemental Material [54]). The balanced penalty is
found to be

P (i) =
√

2(Q1 + 1)[(1 − η2)Q1 + 2]

(Q1 + 2)[(1 − η2)Q1 + 1]
. (58)

(ii) if Q1 < − 1
1+√

η2
the optimal transmission coefficient

is

T (i)
opt =

√
− 1

Q1(
√

η2 + 1)
(59)

leading to the maximum QFI

G (i)
max = − 4〈n̂1〉η2

(
√

η2 + 1)2Q1
. (60)

The limit η2 → 1 morphs G (i)
max into its lossless counterpart

F (i)
max (see the Supplemental Material [54]). This time we end

up with the balanced penalty

P (i) =
√

− 2[(1 − η2)Q1 + 2)]

(
√

η2 + 1)2Q1(Q1 + 2)
. (61)

3. Case when C′
2 = C′

4 = 0

If the input state obeys 〈â0〉 = 0 implying the constraints
C′

2 = C′
4 = 0, we find the optimum transmission coefficient of

BS1 by solving the equation

A4y4 + A3y3 + A2y2 + A1y + A0 = 0, (62)

where ϑsol = arccos y, and the A0 − A4 coefficients are given
in Appendix G. Among the solutions ϑsol of this equation we
find the value ϑ

(i)
opt that maximizes the single-parameter QFI

from Eq. (35).
Given an input state obeying the constraints C′

2 = C′
4 = 0

and yielding nondegenerate optimum ϑ
(i)
opt in the lossless case

[32] (see details also in the Supplemental Material [54]), we
can also ask the following question: What maximum losses
η2lim can be allowed, so that the implied lossy optimum from
Eq. (62) is not degenerate? One finds the answer:

η2lim � 〈Ĵz〉
〈Ĵz〉 + −2C′

1+4C′
3

(C′
0+C′

3 )2 〈n̂1〉2
. (63)

4. General case

Starting with Eq. (35) and imposing the constraint
∂G (i)/∂ϑ = 0 leads to

(1 − η2)(〈n̂3〉)′(�2n̂3)2 + η2〈n̂3〉2(�2n̂3)′ = 0, (64)

where we recall that by (. . .)′ we understand ∂ (. . .)/∂ϑ . In the
lossless limit η2 → 1, we recover the already reported results
[31,32] (see also the Supplemental Material [54]).

By employing Eqs. (6) and (A1) we are able to write the
constraint from Eq. (64) in respect with ϑ . We end up with
a 10th-degree equation and among the solutions we find ϑopt

that maximizes the asymmetric single-parameter QFI to G (i)
max.

Details are found in the Supplemental Material [54].

D. Scenario with two antisymmetric phase shifts and external
phase reference available

In this scenario the relevant QFI is the symmetric single-
parameter one given by Eq. (38). When maximizing this QFI
in respect with the transmission coefficient of BS1, we find the
following situations.

1. High-loss scenario

In the high-loss scenario (i.e., η2 	 1 − η1) from Eq. (39)
we get the formal constraint

[Cov(n̂2, n̂3)(�2n̂3)′ + �2n̂3(�2n̂2)′]

× (�2n̂3 + Cov(n̂2, n̂3)) = 0 (65)

and solutions to this equation are given in Appendix H.

2. Special case with one input in the vacuum state

With port 0 kept in the vacuum state, the expression of the
symmetric single-parameter QFI is found to be

G (ii) = 〈n̂1〉 2η2(cos2 ϑQ1 + 1)

(1 − η2)(1 + cos ϑ )Q1 + 2

+〈n̂1〉 (1 − cos ϑ )(1 − η2)(Q1 + 1)

(1 − η2)(1 + cos ϑ )Q1 + 2
. (66)

In the lossless case (η2 → 1), as expected, we stumble upon
the already reported result [32]

F (ii) = cos2 ϑ (�2n̂1 − 〈n̂1〉) + 〈n̂1〉. (67)

When optimizing the QFI G (ii) for the scenario with input port
0 left in the vacuum state we find two cases.

(i) If Q1 <
√

η2−1√
η2+1 we find the optimum transmission coef-

ficient

T (ii)
opt =

√
Q1 + 1 + √

η2(Q1 − 1)

2(η2 + √
η2)Q1

(68)

leading to the maximum symmetric single-parameter QFI

G (ii)
max = 〈n̂1〉[η2(3Q1 − 1) + (Q1 + 1)(2

√
η2 − 1)]

(
√

η2 + 1)2Q1
(69)

and we find a balanced penalty

P (ii)(η2) =
(

[2 + (1 − η2)Q1]

× (2
√

η2 − 1)(Q1 + 1) + η2(3Q1 − 1)

(
√

η2 + 1)2Q1(1 + η2 − (1 − η2)Q1)

) 1
2

.

(70)

(ii) Finally, if Q1 �
√

η2−1√
η2+1 the optimum transmission coef-

ficient is found in the degenerate case T (ii)
opt = 0 leading to the
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optimum lossy QFI G (ii)
max = �2n̂1 and we have the balanced

penalty

P (ii)(η2) =
√

2 + Q1 − 2η2

η2(1 − Q1) + Q1 + 1
. (71)

In the high-loss limit (irrespective on the value of Q1)
we find T (ii)

opt → 0 and G (ii)
max → �2n̂1, leading to a balanced

penalty

P (ii)(η2 → 0) =
√

2 + Q1 (72)

and the only situation when unbalancing the interferometer is
not interesting happens for Q1 = −1.

3. Case when the output of BS1 is unentangled

The special case when Cov(n̂2, n̂3) = 0 leads to a simpler
result, namely,

((1 − η2)�2n̂3 + 2η2〈n̂3〉)(�2n̂3)′ − η2�
2n̂3〈n̂3〉′ = 0 (73)

leading to Eq. (H4) discussed in Appendix H.

4. General case

The equation yielding the formal solution for the optimum
T (ii)

opt in the general case is found in Appendix H.

VI. RESULTS FOR A NUMBER OF GAUSSIAN
AND NON-GAUSSIAN INPUT STATES

In this section we apply the results presented up to this
point to a number of input states having a practical inter-
est. These are the double coherent input state [31,58,59] due
to its semiclassical nature and the practical interest of its
limiting case of single coherent input [42,60]; the coherent
plus squeezed vacuum input for is broad and diverse uses
[7,8,15,60]; the coherent plus Fock input for its interest in
quantum metrology [61–63], the double Fock input for fixed-
photon number metrology and NOON state interferometry
[35,64]; finally, the TMSV input state for its interest in metrol-
ogy [63,65] and optical quantum communications [66,67].

A. Double coherent input state

Let us consider the double coherent input state [58,59]

|ψin〉 = |α1β0〉 = D̂1(α)D̂0(β )|0100〉. (74)

A coherent state is obtained via the displacement or Glauber
operator [52,68,69]

D̂k (κ ) = eκ â†
k−κ∗âk (75)

with k = 1, 0 and κ = α, β. For the input port 1 (0) we thus
have α = |α|eiθα (β = |β|eiθβ ). The input PMC is given by
�θ = θα − θβ . We denote the coherent amplitude ratio by
� = |β|/|α| [59] and throughout this section we assume
α �= 0.

We start with the two-parameter QFI, G (2p). Its expres-
sion is given in Appendix I, Eq. (I1). The optimum BS1

transmission coefficient that maximizes G (2p) is found

to be

T (2p)
opt =

√√√√ 1

1 + tan2
(

ϑ
(2p)
opt

2

) , (76)

where ϑ
(2p)
opt is given in Eq. (I2).

For the scenario comprising a single internal phase shift
and an external phase reference available, Eq. (16) is relevant
in the lossless case and one finds the optimum transmission
coefficient

T (i)
opt = 1√

2

√
1 + 1 − � 2√

1 + 2� 2(2 sin2 �θ − 1) + � 4
(77)

if sin �θ > 0 and T (i)
opt = [1 − sign(� − 1)]/2 if sin �θ � 0.

The maximum QFI is found to be

F (i)
max = 2|α|2(1 + � 2 +

√
(1 − � 2)2 + 4� 2 sin2 �θ

)
.

(78)

The previous expression obviously maximizes for the input
phase matching condition (PMC) sin �θ = 1 (see the discus-
sion from Ref. [31]) yielding the maximum obtainable QFI
for a double coherent input state F (i)

max = 4(|α|2 + |β|2). For
the same scenario in the lossy case, since �2n̂3 = 〈n̂3〉, from
Eq. (35) one finds

G (i) = η2F (i) = 4η2〈n̂3〉 (79)

implying QFI loss rate
L(i) = η2. (80)

Two conclusions are immediate: (i) the optimum transmission
coefficient T (i)

opt is identical to the one found in the lossless case
[see Eq. (77)] and (ii) the losses in terms of phase sensitivity
scale as 1/

√
η2, a result expected for coherent states [57].

For the scenario with two ±ϕ/2 internal phase shifts and
external phase reference available, one finds the lossless QFI
[31]

F (ii) = |α|2 + |β|2 (81)

and this result holds irrespective on the value of the transmis-
sion coefficient of BS1. In the lossy case one finds

G (ii) = (1 − η2)�2n̂2 + η2(|α|2 + |β|2) (82)

and the same result expressed in respect with the input vari-
ables is given in Eq. (I3). An optimum transmission coefficient
T (ii)

opt maximizing this QFI can be found (see Appendix I) and
the value G (ii)

max is given in Eq. (I5). An interesting scenario
appears if we impose the input PMC sin �θ = −1. From
Eq. (I4) we get

T (ii)
opt =

√
1

2
+ |1 − � 2|sign(1 − � )

2(1 + � 2)
(83)

and the maximum QFI from Eq. (I5) becomes

G (ii) = |α|2 + |β|2 = |α|2(1 + � 2), (84)

i.e., it becomes independent of the loss coefficient η2 and
equals the lossless QFI from Eq. (81). Thus, contrary to the
QFI G (i), we now have a QFI loss rate

L(ii) = 1, (85)

i.e., total immunity to losses.
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FIG. 3. The three considered QFI scenarios versus the trans-
mission coefficient of BS1 for a double coherent input state. Their
respective maxima for η2 ∈ [0, 1] are also plotted. Parameters used:
|α| = 102, |β| = 40. The PMC �θ = − π

2 was employed for G (ii) and
G (2p) and the PMC �θ = π

2 for G (i).

In Fig. 3 we plot all three QFI scenarios versus the trans-
mission coefficient of BS1. For the scenario not having access
to an external phase reference, F (2p) (dashed blue curve) leads
to a maximum QFI (see Refs. [31,32])

F (2p)
max = |α|2 + |β|2. (86)

For the lossy case (thick solid light-blue curve) we have an
optimum T (2p)

opt derived in Appendix I and as η2 → 0 the limit

from Eq. (46) applies and we get T (2p)
opt → 1.

For the scenario having access to an external phase ref-
erence, as previously discussed in the literature [31], F (i)

maximizes for the input PMC �θ = π/2 (thick dotted red
curve) and the optimum BS1 leading to its maximum value
is given by Eq. (38) from Ref. [32]. The lossy case QFI G (i)

(pink dotted curve) is given by Eq. (79) and it maximized by
the same T (i)

opt from the lossless case.
For the scenario with two internal ±ϕ/2 phases and exter-

nal phase reference available, the QFI F (ii) (thick light-green
horizontal dashed curve) is insensitive to the transmission
coefficient of BS1. This result does not hold anymore for G (ii)

(thin solid green curve), however, as previously mentioned,
for the input PMC �θ = −π

2 , irrespective on the value of
η2, fixing T to the value T (ii)

opt given by Eq. (83) leads to the
surprising result that the maximum QFI is immune to losses,
i.e., G (ii)

max = F (ii).

B. Coherent plus squeezed vacuum input state

Let us consider now the widely used coherent plus
squeezed vacuum input state [52,60,70,71]

|ψin〉 = |α1ξ0〉, (87)

where |ξ0〉 = Ŝ0(ξ )|00〉 and the squeezing operator is

Ŝ0(ξ ) = e
1
2 [ξ∗â2

0−ξ (â†
0 )2] (88)

with ξ = reiθ . Throughout this section, we assume that the
optimum input PMC 2θα − θ = 0 is always satisfied [60,71].

In the lossless case, the two-parameter QFI is given by

F (2p) = sin2 ϑ (|α|2e2r + sinh2 r)

+ 4 cos ϑ |α|2 sinh2 2r

2|α|2 + sinh2 2r
(89)

and it maximizes in the balanced case [29,31] yielding the
well-known result F (2p)

max = |α|2e2r + sinh2 r [53,60]. From
Eq. (6) we have the average value of the number of photons,

〈n̂3〉 = |α|2(1 + cos ϑ ) + sinh2 r(1 − cos ϑ ), (90)

and inserting the previous two results into Eq. (27) yields the
lossy two-parameter QFI, G (2p). If we insist on force balancing
BS1, we end up with the result

G (2p)
bal = 2η2(|α|2e2r + sinh2 r)

2η2 + (1 − η2) |α|2e2r+sinh2 r
|α|2+sinh2 r

(91)

and, as we will discuss shortly, this QFI is not optimal (except
when η2 = 1).

In the high-coherent regime (i.e., for |α|2 � sinh2 r) we
can approximate the two-parameter lossy QFI to

G (2p) ≈ 2η2|α|2e2r sin2 ϑ (1 + cos ϑ )

2η2(1 + cos ϑ ) + (1 − η2) sin2 ϑe2r
(92)

and the optimum transmission coefficient maximizing this
QFI is found to be

T (2p)
opt ≈

√
1 +

√
η2e−r (

√
η2e−r −

√
1 − η2(1 − e−2r ))

(1 − η2)
.

(93)

Balancing BS1 brings the result from Eq. (92) to

G (2p) ≈ 2η2|α|2
1 − η2 + 2η2e−2r

. (94)

Moving on to the asymmetric single-parameter QFI, in the
lossless case it is found to be [29,31,40]

F (i) = 2 sin4 ϑ

2
sinh2 2r + 4 cos4 ϑ

2
|α|2

+ sin2 ϑ (sinh2 r + |α|2e2r ). (95)

Using this result and 〈n̂3〉 from Eq. (90), we easily obtain the
lossy single-parameter QFI via Eq. (36). In the high-coherent
regime (|α|2 � sinh2 r) we have the approximation

G (i) ≈ 4η2|α|2 cos2
(

ϑ
2

)
1 − 2η2 sinh r sin2 ( ϑ

2 )
cosh r−sinh r cos ϑ

. (96)

In this regime, an optimum BS1 transmission coefficient T (i)
opt

maximizing the previous QFI to G (i)
max can be obtained in
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FIG. 4. The three QFI scenarios versus the transmission coef-
ficient of BS1 in the lossy scenario for a coherent plus squeezed
vacuum input state. Their respective maxima for η2 ∈ [0, 1] are also
plotted. Parameters used: |α| = 102, r = 1.2, PMC 2θα − θ = 0.

closed form and these results are given in Appendix J. Bal-
ancing BS1 modifies (96) to

G (i)
bal ≈ 4η2|α|2 cosh r

cosh r − 2η2 sinh r
, (97)

a result that can be related1 to the one reported in Ref. [40].
Similar to the two-parameter QFI case, the force-balanced
asymmetric single-parameter QFI is not optimal.

The lossless symmetric single-parameter QFI is

F (ii) = sin2 ϑ (sinh2 r + |α|2e2r )

+ cos2 ϑ

(
sinh2 2r

2
+ |α|2

)
(98)

and its maximum F (ii)
max = sinh2 r + |α|2e2r is reached in the

balanced case. Using the previous result and employing
Eq. (40) yields the lossy G (ii). In the high-coherent approxi-
mation the optimum BS1 transmission coefficient is found to
be

T (ii)
opt =

√
1 + 2

√
η2e−r − (1 + η2)

√
1 − η2(1 − e−2r )

4(1 − η2)
√

η2 sinh r
(99)

valid for η2 �= 0 and r > log
√

(1 + 3η2)/4η2. Replacing T (ii)
opt

into the QFI leads to its maximum value given by Eq. (J3).
In Fig. 4 we depict the scenarios for each aforementioned

QFI in respect with the transmission coefficient of BS1. The

1By applying the high-coherent approximation to Eq. (C6) from
[40], one gets the result

G (i) ≈ 2η2|α|2 cosh r

cosh r − η2 sinh r
.
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FIG. 5. The balanced penalties for a coherent plus squeezed
vacuum input state (upper subfigure) and the corresponding
transmission coefficients (lower subfigure) versus the loss rate
1 − η2. Parameters used: |α| = 102, r = 1.2, PMC 2θα − θ = 0.

lossless two-parameter QFI F (2p) (dashed blue curve), as dis-
cussed previously [29,31], maximizes in the balanced case.
For the considered input parameters, its lossy counterpart
G (2p) (solid light-blue curve for η2 = 0.9) maximizes for val-
ues T (2p)

opt above
√

0.5 and as losses increase T (2p)
opt → 1. The

evolution of G (2p)
max (η2) as η2 goes from 1 to 0 is depicted by the

solid magenta curve.
The asymmetric single-parameter QFI F (i) (thick dotted

red curve) maximizes in the unbalanced case (T (i)
opt ≈ √

0.54
for our parameters) yielding F (i)

max ≈ 12.1×104. Its lossy
counterpart G (i) (depicted as a thick solid pink curve for
η2 = 0.9) continues this trend, e.g., for η2 = 0.9 one finds
T (i)

opt ≈ √
0.66. T (i)

opt actually reaches 1 for the limit loss value
η2lim = 0.09 as given by Eq. (63) and for any value η2 � η2lim

we have T (i)
opt = 1.

We also plot in Fig. 4 the evolution of the maximum lossy
QFI G (i)

max(η2) for each η2 from 1 down to 0 (thick dashed-
dotted orange curve). One remarks that, compared to G (2p),
G (i) is more affected by losses. More on this topic will be
discussed later.

Finally, for the scenario with ±ϕ/2 internal phase shifts
and external phase reference available the QFI F (ii) (thin solid
green curve) maximizes in the balanced case too. Its lossy
counterpart G (ii) (thick dotted light-green curve for η2 = 0.9)
at first, similarly to the other two QFI scenarios, seems to drift
its maximum towards T = 1 (dashed-dotted green curve).
However, as losses increase, the optimum T (ii)

opt drifts back

towards the balanced case eventually arriving at T (ii)
opt = 0 for

η2 = 0, yielding G (ii)(0) ≈ |α|2 as required by Eq. (39).
In Fig. 5 (upper subfigure) we depict the three balanced

penalties versus the loss rate coefficient 1 − η2. As expected,
in the lossless case, the QFI for each scenario shows no or
very small balanced penalties. However, as losses increase,
both P (2p) (solid blue curve) and especially P (i) (dotted red
curve) increase, reaching both the maximum value of

√
2 for
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η2 → 0. In the lower subfigure, the corresponding opti-
mum BS1 transmission coefficients are depicted. Finally, P (ii)

(dashed-dotted green curve) shows a more complex behavior.
As losses increase, it first increases, too, with a maximum
reached around 1 − η2 = 0.4. It then decreases back to P (ii) =
1 for 1 − η2 ≈ 0.9 only to increase again as 1 − η2 → 1.
Its corresponding optimum BS1 transmission coefficient is
plotted in the lower subfigure (dotted thick green curve).

C. Coherent plus Fock input state

We now consider the coherent plus Fock input state
[61–63]

|ψin〉 = |α1n0〉, (100)

where |n0〉 denotes a Fock state in input port 0, i.e., n̂0|n0〉 =
n|n0〉. The two-parameter QFI in the lossless limit η2 → 1 was
already reported in the literature [32],

F (2p) = sin2 ϑ[|α|2 + n(2|α|2 + 1)], (101)

and it maximizes in the balanced case to [62,63]

F (2p)
max = |α|2 + n(2|α|2 + 1). (102)

From Eq. (6) we find

〈n̂3〉 = |α|2 cos2 ϑ

2
+ n sin2 ϑ

2
(103)

and the two-parameter lossy QFI G (2p) is given in Eq. (K1).
The optimum T (2p)

opt maximizing the QFI G (2p) is given in
Appendix K. In the experimentally interesting high-coherent
regime (i.e., |α| � n) we can approximate the previous QFI
to

G (2p) ≈ 2η2|α|2(1 + 2n) sin2 ϑ (1 + cos ϑ )

(1 − η2)(1 + 2n) sin2 ϑ + 2η2(1 + cos ϑ )
, (104)

and the optimum BS1 transmission coefficient maximizing is
found to be

T (2p)
opt ≈

√√√√
1 + √

η2

√
η2√

1+2n
−
√

1 − 2η2n
1+2n

(1 − η2)
√

1 + 2n
. (105)

Setting n = 0 in the previous equation (i.e., we have a single
coherent input) allows us to recover the result from Eq. (50).

For the asymmetric single-parameter QFI, in the lossless
case we have [32]

F (i) = sin2 ϑ (2|α|2 + 1)n + 4|α|2 cos
ϑ

2
(106)

and, similar to the previous input states, via Eqs. (36) and
(103) one obtains its lossy counterpart G (i). If we assume
once again the |α|2 � n regime, the previous equation can be
approximated to

G (i) ≈ 4η2|α|2 cos2 ϑ
2

(
2 sin2 ϑ

2 n + 1
)

(1 − η2)
(
2 sin2 ϑ

2 n + 1
) + η2

(107)

leading to the optimum BS1 transmission coefficient

T (i)
opt ≈

√
1 + 1 − √

η2[1 + 2n(1 − η2)]

2n(1 − η2)
, (108)

0 0.2 0.4 0.6 0.8 1

FIG. 6. The lossy QFI in the three considered scenarios for a
coherent plus Fock input state. Each circle marks the maximum
of the corresponding curve. The maxima G (i)

max(η2), G (2p)
max (η2), and,

respectively, G (ii)
max(η2) as η2 is varied from 1 to 0 are depicted via

the solid black, the dashed-dotted green, and, respectively, the solid
magenta curves. Parameters used: |α| = 102, n = 2.

and the previous expression (being the result of an approxi-
mation) is meaningful as long as T (i)

opt � 1.
Finally, the symmetric single-parameter QFI in the lossless

scenario is [32]

F (ii) = sin2 ϑ (2|α|2 + 1)n + |α|2 (109)

and it maximizes to F (ii) = |α|2(2n + 1) + n [72] in the
balanced case. Its lossy counterpart G (ii) is obtained from
Eq. (40). Contrary to the other two QFI scenarios, as η2 → 0
we arrive at a non-null QFI value and it maximizes for T (ii)

opt →
0, yielding

G (ii)
max(0) = |α|2. (110)

In the high-coherent input approximation, one can easily find
the optimum BS1 transmission coefficient maximizing G (ii)

[see Eq. (K4) from Appendix K] and we get

T (ii)
opt ≈

√
1 + 2

√
η2 − (1 + η2)

√
1 + 2n(1 − η2)

4(1 − η2)
√

η2n
(111)

valid for n �= 0 and this T (ii)
opt leads to the maximum symmetric

single-parameter QFI given in Eq. (K5).
In Fig. 6 we depict the corresponding QFI in all three dis-

cussed scenarios versus the transmission coefficient of BS1.
The two-parameter lossless QFI, F (2p) (dashed blue curve),
as discussed in the literature [32], reaches its maximum in
the balanced case. For the chosen loss coefficient (η2 = 0.9)
its lossy counterpart G (2p) (solid light-blue curve) maximizes
for values T (2p)

opt >
√

0.5 as easily verified from Eq. (105).
This optimum slowly drifts towards 1 as losses increase, and
for η2 = 0 we have T (2p)

opt = 1. The evolution of the maxima

G (2p)
max (η2) as η2 goes from 1 to 0 (thin solid magenta curve) is

also depicted in Fig. 6.
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FIG. 7. The balanced penalties in the three considered scenarios
for a coherent plus Fock input state versus the loss rate 1 − η2 (upper
subfigure) and the corresponding optimum transmission coefficients
(lower subfigure). Parameters used: |α| = 102, n = 2.

The asymmetric single-parameter QFI F (i) (thick dotted
red curve) maximizes in the unbalanced case (T (i)

opt ≈ √
0.66

for our parameters). Its lossy counterpart G (i) (dashed pink
curve for η2 = 0.9) continues this trend (T (i)

opt ≈ √
0.69 for

η2 = 0.9) until in reaches T (i)
opt = 1 for η2lim = 0.25 as given

by Eq. (63). The maxima G (i)
max(η2) for each value η2 from 1

down to 0 are also depicted (solid black curve).
Finally, F (ii) (thin solid green curve) maximizes in the

balanced case, too. In the lossy scenario G (ii) (thick dotted
light-green curve for η2 = 0.9), as expected, no longer max-
imizes in the balanced case. Indeed, similar to the coherent
plus squeezed vacuum from Fig. 4, G (ii)

max(η2) (dashed-dotted
green curve) first drifts beyond T 2 = 0.5 and, as losses in-
crease, the optimum T (ii)

opt drifts back arriving at T (ii)
opt = 0 for

η2 = 0 yielding for G (ii)(0) the value given by Eq. (39).
In Fig. 7 we plot the balanced penalties in the three con-

sidered scenarios for a coherent plus Fock input state. While
both P (ii) and P (2p) start at a value of 1 (i.e., no penalty)
in the lossless case, for P (i) we have P (i)(1) = 0.9. As the
losses increase both P (2p) and P (i) rapidly rise, reaching the
value

√
2 for η2 → 0. The balanced penalty P (ii) has a more

complex behavior, however, it stays close to 1, this scenario
thus not benefiting much in the unbalanced case.

Finally, after having discussed the double coherent
(Sec. VI A), the coherent plus squeezed vacuum (Sec. VI B),
and the coherent plus Fock input states, we can compare their
immunity to losses via the QFI loss rates defined in Sec. V A.
In Fig. 8 we plot the QFI loss rates (i.e., L(i), L(ii), and L(2p))
versus the loss rate 1 − η2 for the three aforementioned input
states. In order to have a fair comparison, for all considered
inputs we apply a coherent state (|α| = 102) in port 1 and
the same average number of photons 〈n̂0〉 ≈ 2 in input port
0. More precisely, we considered |β| = √

2 for the double co-
herent, r = 1.15 for the coherent plus squeezed vacuum, and
n = 2 for coherent plus Fock input states. When applicable,
we also imposed the optimum input PMC.

0 0.2 0.4 0.6 0.8 1
10-2

10-1

100

FIG. 8. The QFI loss rates L(i), L(ii), and L(2p) versus the loss rate
1 − η2 for three input states (see main text for details), all featuring
a coherent state in port 1. Parameters used: |α| = 102, while in input
port 0 we have 〈n̂0〉 ≈ 2 for all three states.

As a general rule, for each input state, the most immune
to losses proves to be L(ii), its limit value as η2 → 0 reaching
a plateau, i.e., L(ii)(0) �= 0 [see Eq. (39)]. The next resilience
to losses is found for L(2p) and the least one will prove to be
L(i). This phenomenon can be explained by the fact that in
the scenario not having access to an external phase reference,
the lossless case is almost always balanced. Hence, part of the
losses are compensated by unbalancing the interferometer.

Ranking now the resilience of the different input states con-
sidered, the double coherent input defined by Eq. (74) proves
to be the most resilient state when it comes to losses, with the
QFI G (ii) being totally immune to them, as seen from Eq. (85).
This performance can be explained by the fact that this state
is both unentangled after BS1 and also does not surpass the
SNL for the lossless case (hence, there is not much “quantum
advantage” to be lost). The next best resistance to losses is
shown by the coherent plus Fock input state for the symmetric
single-parameter QFI [we find L(ii)(0) ≈ 1/(2n + 1) = 0.2]
followed by the same QFI scenario with a coherent plus
squeezed vacuum input [L(ii)(0) = e−2r ≈ 0.1].

D. Double Fock input state

The double Fock [64,73] input is a well-known profoundly
nonclassical and non-Gaussian state

|ψin〉 = (â†
0)m

√
m!

(â†
1)n

√
n!

|0001〉 = |m0n1〉. (112)

Quite remarkably, in the lossless case, for this input state all
three considered scenarios yield exactly the same QFI, namely
[32],

F = F (i) = F (ii) = F (2p) = sin2 ϑ (2mn + m + n) (113)

and they are obviously maximized in the balanced case, yield-
ing

Fmax = F (i)
max = F (ii)

max = F (2p)
max = 2mn + m + n. (114)
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FIG. 9. The QFI for a double Fock input state and a fixed number
total number of photons 〈N̂〉 = 6. Two scenarios are depicted: n = 3
(i.e., m = 3) and n = 2 (i.e., m = 4).

Equally remarkably, in the lossy case we get

G = G (i) = G (ii) = G (2p)

= η2 sin2 ϑ[m + n − (m − n) cos ϑ]
(1−η2 ) sin2 ϑ

2 + η2[m+n−(m−n) cos ϑ]
2mn+m+n

(115)

and this time the maximization does not necessarily happen in
the balanced case (see Appendix L). For the special case m =
n, i.e., we have a twin-Fock input |ψin〉 = |n1n0〉, Eq. (115)
becomes

G = 4η2n(n + 1) sin2 ϑ

(1 − η2)(n + 1) sin2 ϑ + 2η2
, (116)

and balancing BS1 (ϑopt = π/2) leads to the maximum lossy
QFI

Gmax = 4η2n(n + 1)

n(1 − η2) + 1 + η2
. (117)

We thus have the QFI loss rate(s)

L = 2η2

n(1 − η2) + 1 + η2
. (118)

It can be easily shown that given the constraint of a fixed total
number of input photons 〈N̂〉, the lossless QFI F maximizes
for n = m. This, however, as we will see shortly, is not true
any more in the lossy case.

In Fig. 9 we plot the lossy QFI G in respect with the
transmission coefficient of BS1 for a fixed number of input
photons 〈N̂〉 = 6 and two cases, namely, n = m = 3 and m =
4 (n = 2). In the lossless case the n = m case outperforms the
other one, as expected. The same remains true for low losses
(i.e., η2 = 0.9). However, for higher losses (η2 = 0.3), this is
no longer true.

Moreover, for the case n = m = 3, as previously remarked,
the QFI maximizes in the balanced case. This is no longer
true for m �= n. In Fig. 9 we plot Gmax(η2) as function of η2

(solid red curve) for m = 4 and n = 2 as well as for m = n =
3 (vertical dashed-dotted dark gray line).
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FIG. 10. The balanced penalties and the corresponding optimum
transmission coefficient for a dual Fock input state with constraint
total number of input photons 〈N̂〉 = 6 and four scenarios. Details
are given in the main text.

In Fig. 10 we plot the balanced penalty P for 〈N̂〉 = 6
and four scenarios (n = 0, 1, 2, and 3). Except the scenario
n = m, the balanced penalty increases with the loss rate. At
high losses, the maximum P = √

2 is reached for n = 0.
The corresponding optimum transmission coefficients Topt are
plotted in the lower subfigure.

One can ask the following question: for a fixed total num-
ber of input photons 〈N̂〉 = m + n, how should one distribute
them in a double Fock input so that the lossy QFI G is
maximized? As depicted in Fig. 11 (upper subfigure), the
answer depends on the loss coefficient. For very low losses,
as expected from the lossless case, the distribution n = m
yields the highest QFI. As losses increase, though, a more and
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FIG. 11. The lossy QFI G (upper subfigure) and the QFI loss rate
L (lower subfigure) for a double Fock input state versus the loss rate
1 − η2. We imposed the constraint of a fixed total number of input
photons and varied the individual photons in one input port. See main
text for details. Parameter used: 〈N̂〉 = 6.
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more uneven distribution of the photons between the two input
ports yields the maximal QFI, culminating, in the high-loss
regime η2 	 1 − η2, with m = 〈N̂〉 and n = 0 (or m = 0 and
n = 〈N̂〉).

One can also ask the same question relative to the resilience
to losses. We answer this question in Fig. 11 (lower subfigure).
It turns out that the worst resilience to losses for a double Fock
input state is found for n = m and L is given by Eq. (118).
The best resilience to losses happens either when m = 〈N̂〉
and n = 0 or when n = 〈N̂〉 and m = 0 and the QFI loss rate
is given this time by Eq. (53).

E. Two-mode squeezed vacuum input state

Finally, let us consider the two-mode squeezed vacuum
(TMSV) [41,52] input state

|ψin〉 = Ŝtm(ξ )|0001〉, (119)

where the two-mode squeezing operator is defined by [52]

Ŝtm(ξ ) = eξ∗â0 â1−ξ â†
0 â†

1 (120)

and we have the input average number of photons
〈N̂〉 = 2 sinh2 r. The QFI for all considered scenarios in
the lossless case have already been reported in the litera-
ture [32,41]. The two-parameter and the symmetric single-
parameter QFI yield the same value,

F (ii) = F (2p) = sin2 ϑ sinh2 2r, (121)

and they both maximize in the balanced case yielding

F (ii)
max = F (2p)

max = sinh2 2r = 4〈N̂〉(〈N̂〉 + 2). (122)

For the lossy two-parameter QFI one gets

G (2p) = η2 sinh2 2r sin2 ϑ

η2 + (1 − η2) cosh2 r sin2 ϑ
(123)

and this QFI maximizes in the balanced case yielding

G (2p)
max = η2 sinh2 2r

η2 + (1 − η2) cosh2 r
, (124)

a result also reported in Ref. [44].
For the asymmetric single-parameter QFI we have

F (i) = (1 + sin2 ϑ ) sinh2 2r (125)

and this value is maximized in the balanced case yielding
F (i)

max = 2 sinh2 2r [32]. We also remark the simple relation
F (i)

max = 2F (2p)
max . In the lossy case, the asymmetric single-

parameter QFI from Eq. (35) gives

G (i) = η2 sinh2 2r(1 + sin2 ϑ )

(1 − η2) cosh2 r(1 + sin2 ϑ ) + η2
(126)

which maximizes in the balanced case yielding (result also
reported in Ref. [40])

G (i)
max = 2η2 sinh2 2r

η2 + (1 − η2) cosh2 r
, (127)

and similar to the lossless case we have the relation G (i)
max =

2G (2p)
max . We thus have the QFI loss rates

L(i) = L(2p) = η2

η2 + (1 − η2) cosh2 r
. (128)
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FIG. 12. The QFI in the three lossy scenarios for a TMSV in-
put state. Regardless of the scenario and of the loss coefficient η2,
each time the QFI maximizes in the balanced case. Parameter used:
r = 1.2.

In the high-loss regime, as expected, both G (2p) and G (i) tend
to zero leading to L(i)(0) = L(2p)(0) = 0.

Finally, for the symmetric single-parameter QFI we have in
the lossless case F (ii) = sinh2 2r sin2 ϑ [32] maximizing for
ϑ = π/2 to F (ii)

max = sinh2 2r while in the lossy scenario we
have

G (ii) = sinh2 2r sin2 ϑ (cosh2 r − η2 sinh2 r)

(1 − η2) cosh2 r(1 + sin2 ϑ ) + η2
(129)

and it is maximized, too, in the balanced case leading to

G (ii)
max = sinh2 2r(cosh2 r − η2 sinh2 r)

2(1 − η2) cosh2 r + η2
. (130)

The QFI loss rate is

L(ii) = cosh2 r − η2 sinh2 r

2(1 − η2) cosh2 r + η2
, (131)

and as η2 → 0 we have

G (ii)(0) = sinh2 2r

2
, (132)

leading to the maximum QFI loss rate

L(ii)(0) = 0.5. (133)

In Fig. 12 we depict the three considered QFI scenarios in
respect with the transmission coefficient of BS1. As discussed
previously, all maximize in the balanced case. Both G (i) and
G (2p) show very low resilience to losses, and for high losses,
from Eq. (128) we have the scaling

L(i) = L(2p) ≈ η2

(1 − η2) cosh2 r
. (134)

Thus, the higher the squeezing factor, the more impacted the
QFI loss rate is. However, for the symmetric single-parameter
QFI, as seen from Fig. 12, the impact of losses is very limited,
even as η2 → 0, as proven also by Eq, (133).
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FIG. 13. The QFI loss rate L for the double Fock and TMSV
input states versus the loss rate 1 − η2. For a small loss coefficient
the double Fock (solid blue curve) outperforms all other scenarios.
However, the most resilient to losses is L(ii) for a TMSV input.
Parameters used: 〈N̂〉 = 4 and r = 1.15.

Since the QFI maximizes in the balanced case in all sce-
narios, we have unit balanced penalties, i.e.,

P (2p)(η2) = P (i)(η2) = P (ii)(η2) = 1. (135)

In Fig. 13 we compare the double Fock and TMSV input
states in terms of QFI loss rates. The TMSV input state is
outperformed by any combination of double Fock input when
it comes to L(i) and L(2p). The same is true for L(ii) for low
losses. However, as losses increase, contrary to any combina-
tion of double Fock input (where L(ii) → 0), the QFI loss rate
L(ii) for a TMSV input saturates at 0.5.

VII. CONCLUSIONS

In this paper we addressed the problem of quantum Fisher
information maximization in an unbalanced, lossy interferom-
eter. We considered three scenarios and provided closed-form
expressions for the QFI with a generic input for all of them.

We introduced a metric called balanced penalty, able to
quantify the loss in terms of optimal phase sensitivity for a
balanced interferometer in respect with an optimized, unbal-
anced one. We also introduced the QFI loss rate as a metric
to quantify the immunity of a given scheme and input state to
losses.

We also addressed the problem of QFI maximization
via the optimization of the transmission coefficient of the
first beam splitter. We discussed both the single- and two-
parameter QFI and were able to give closed-form results for
a number of scenarios. These results were applied to a num-
ber of Gaussian and non-Gaussian input states, discussing at
length their respective QFI maximization.

We conclude that in the lossy scenario, the maximum QFI
is obtained almost always in the unbalanced case. This con-
clusion applies to both the single- and two-parameter QFI
scenarios.
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APPENDIX A: BS1 INPUT-OUTPUT PHOTON-NUMBER VARIANCES AND COVARIANCES TRANSFORMATIONS

The variance of the operators n̂2 and n̂3 as well as their covariance in respect with the input fields are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�2n̂2 = �2N̂

4
+ sin2 ϑ�2Ĵy + cos2 ϑ�2Ĵz − sin 2ϑ Ĉov(Ĵy, Ĵz ) − sin ϑ Cov(Ĵy, N̂ ) + cos ϑ Cov(Ĵz, N̂ ),

�2n̂3 = �2N̂

4
+ sin2 ϑ�2Ĵy + cos2 ϑ�2Ĵz − sin 2ϑ Ĉov(Ĵy, Ĵz ) + sin ϑ Cov(N̂, Ĵy) − cos ϑ Cov(N̂, Ĵz ),

Cov(n̂2, n̂3) = �2N̂

4
− sin2 ϑ�2Ĵy − cos2 ϑ�2Ĵz + sin 2ϑ Ĉov(Ĵy, Ĵz ).

(A1)

APPENDIX B: THE C COEFFICIENTS FOR THE TWO-PARAMETER QFI

The C coefficients from Sec. III are defined by [32]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = 4

(
�2Ĵz − [Cov(Ĵz, N̂ )]2

�2N̂

)
,

C1 = 16

(
�2Ĵy − �2Ĵz − [Cov(Ĵy, N̂ )]2

�2N̂
+ [Cov(Ĵz, N̂ )]2

�2N̂

)
,

C2 = −16

(
Ĉov(Ĵy, Ĵz ) − Cov(Ĵy, N̂ )Cov(Ĵz, N̂ )

�2N̂

)
.

(B1)

If �2N̂ = 0, the above coefficients are replaced with the ones given by Eq. (22).
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APPENDIX C: THE C′ COEFFICIENTS FOR THE SINGLE-PARAMETER QFI

The result from [32], i.e., F (i) = C′
0 + |T R|2C′

1 + |T R|(|T |2 − |R|2)C′
2 + (|T |2 − |R|2)C′

3 + |T R|C′
4 can be recast in a ϑ

formulation via the equivalences |T |2 − |R|2 = cos ϑ and |T R| = sin ϑ
2 yielding the result stated by Eq. (20). The C′ coefficients

are given by ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C′
0 = 4�2Ĵz + �2N̂,

C′
1 = 16(�2Ĵy − �2Ĵz ),

C′
2 = −16 Ĉov(Ĵy, Ĵz ),

C′
3 = −4 Cov(Ĵz, N̂ ),

C′
4 = 8 Cov(Ĵy, N̂ ).

(C1)

APPENDIX D: QFI FORMALISM FOR THE LOSSY CASE

In the formalism modeling a lossy interferometer we mainly follow [50], adapting it to two internal phase shifts (see also
[55,74]). The total wave vector of the system is extended to include the environment. As discussed in Sec. II, we model the
losses via fictitious beam splitters in the upper (lower) arm and having a transmission coefficient

√
η1 (

√
η2). The input of these

beam spitters is always the vacuum state, i.e., |0v〉 = |0v20v3〉. The total system (interferometer + environment) follows a unitary
evolution ÛIE(ϕ1, ϕ2) resulting in the global wave vector (see Fig. 1),

|�t 〉 = ÛIE(ϕ1, ϕ2)|ψ23〉
∣∣0v2 0v3

〉 = ∑
m,m′

�̂m,m′ (ϕ1, ϕ2)|ψ〉∣∣mo2 m′
o3

〉
, (D1)

where |mo2〉 (|m′
o3

〉) models m (m′) photons lost in the upper (lower) arm. The Kraus operators are

�̂m,m′ (ϕ1, ϕ2) = 〈
mo2 m′

o3

∣∣ÛIE(ϕ1, ϕ2)
∣∣0v2 0v3

〉
. (D2)

Similar to the lossless case, we can perform the variable change from Eq. (8) and reexpress both Eqs. (D1) and (D2) in respect
with the sum and difference phases ϕs and ϕs. We end up with a 2×2 Fisher matrix

C =
(
Css Csd

Csd Cdd

)
. (D3)

The elements Ckl (k, l ∈ {s, d}) can be obtained in the usual manner for pure states (see [50,74]) and we have

Ckl = 4

(〈
∂�t

∂ϕk

∣∣∣∣∂�t

∂ϕl

〉2

−
〈
∂�t

∂ϕk

∣∣∣∣�t

〉〈
�t

∣∣∣∣∂�t

∂ϕl

〉)
= 4

(〈Ĥk,l〉 − 〈
ĥ(k)

k,l

〉〈
ĥ(l )

k,l

〉)
, (D4)

where we denoted

Ĥk,l =
∑
m,m′

d�̂
†
m,m′

∂ϕk

d�̂m,m′

∂ϕl
,

ĥ(k)
k,l = i

∑
m,m′

d�̂
†
m,m′

∂ϕk
�̂m,m′ ,

ĥ(l )
k,l = −i

∑
m,m′

�̂
†
m,m′

d�̂m,m′

∂ϕl
. (D5)

For losses in both arms, plausible Kraus operators can be expressed as

�̂m,m′ (ϕs, ϕd , η1, γ1, η2, γ2) =
√

(1 − η1)m

m!

√
(1 − η2)m′

m′!
eiϕd

n̂2−n̂3−γ1m+γ2m′
2 eiϕs

n̂2+n̂3−γ1m−γ2m′
2 η

n̂2
2

1 η
n̂3
2

2 âm
2 âm′

3 , (D6)

where we recall that η1 (η2) denotes the loss coefficient in the upper (lower) arm and the position of the photon loss is specified
via γ1 (γ2) in the upper (lower) arm. For a photon loss before (after) the phase shift we have γi = 0 (γi = −1) for i = 1, 2. Since
we will employ losses in the lower arm only, we have the simplified Kraus operators

�̂0,m′ (ϕs, ϕd , η2, γ2) =
√

(1 − η2)m′

m′!
eiϕd

n̂2−n̂3+γ2m′
2 eiϕs

n̂2+n̂3−γ2m′
2 η

n̂3
2

2 âm′
3 . (D7)

It is easy to see that in the lossless case (m′ → 0 and η2 → 1), the previous equation morphs into the unitary evolution from
Eq. (9) and the lossy Fisher matrix elements from (D4) equal the lossless ones from Eq. (10), as expected.
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APPENDIX E: LOSSY TWO-PARAMETER QFI

The coefficients of the Fisher matrix elements from Eq. (23) are given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A2 = (γ1 + 1)2(1 − η1)η1,

A3 = (γ2 + 1)2(1 − η2)η2,

V2 = [1 − (γ1 + 1)(1 − η1)]2,

V3 = [1 − (γ2 + 1)(1 − η2)]2,

Vcov = 2[1 − (γ1 + 1)(1 − η1)][1 − (γ2 + 1)(1 − η2)].

(E1)

The (nonminimized) lossy two-parameter QFI is found to be

C (2p) = 4(γ2 + 1)2(1 − η2)η2�
2n̂2〈n̂3〉 + 4[1 − (γ2 + 1)(1 − η2)]2(�2n̂2�

2n̂3 − [Cov(n̂2, n̂3)]2)

�2n̂2 + V3�2n̂3 + A3〈n̂3〉 + VcovCov(n̂2, n̂3)
(E2)

and applying the optimum γ2 given by Eq. (26) leads to the minimized QFI from Eq. (27). In the case of a nonentangled BS1

output [i.e., Cov(n̂2, n̂3) = 0 (see, e.g., [75] for needed conditions] the optimum γ2 from Eq. (26) simplifies to γ
opt
2 = η2Q3

Q3(1−η2 )+1
leading to the optimized two-parameter QFI in this scenario

G (2p) = 4η2〈n̂3〉�2n̂2�
2n̂3

(1 − η2)�2n̂2�2n̂3 + η2〈n̂3〉�2N̂
. (E3)

APPENDIX F: MINIMIZED SYMMETRIC SINGLE-PARAMETER QFI IN THE LOSSY CASE WITH LOSSES IN BOTH ARMS

Assuming losses in both arms (see Fig. 2) the symmetric single-parameter lossy QFI is found to be

C (ii) = (1 − η1)η1(γ1 + 1)2〈n̂2〉 + (1 − η2)η2(γ2 + 1)2〈n̂3〉 + [η1 − (1 − η1)γ1]2�2n̂2

+ [η2 − (1 − η2)γ2]2�2n̂3 − 2[η1 − (1 − η1)γ1][η2 − (1 − η2)γ2]Cov(n̂2, n̂3) (F1)

result also reported in [45]. This QFI is minimized by imposing

γ
opt
1 = −η1(1 − η2)([Cov(n̂2, n̂3)]2 + �2n̂3(〈n̂2〉 − �2n̂2)) + η2〈n̂3〉[Cov(n̂2, n̂3) + η1(〈n̂2〉 − �2n̂2)]

[η1〈n̂2〉 + (1 − η1)�2n̂2][η2〈n̂3〉 + (1 − η2)�2n̂3] − (1 − η1)(1 − η2)[Cov(n̂2, n̂3)]2 (F2)

and

γ
opt
2 = − (1 − η1)η2([Cov(n̂2, n̂3)]2 + �2n̂2(〈n̂3〉 − �2n̂3)) + η1〈n̂2〉[Cov(n̂2, n̂3) + η2(〈n̂3〉 − �2n̂3)]

[η1〈n̂2〉 + (1 − η1)�2n̂2][η2〈n̂3〉 + (1 − η2)�2n̂3] − (1 − η1)(1 − η2)[Cov(n̂2, n̂3)]2 , (F3)

leading us to the optimized symmetric single-parameter QFI

G (ii) = η1η2〈n̂2〉〈n̂3〉F (ii) + [〈n̂2〉η1(1 − η2) + 〈n̂3〉η2(1 − η1)](�2n̂2�
2n̂3 − Cov(n̂2, n̂3)2)

η1η2〈n̂2〉〈n̂3〉 + η1(1 − η2)〈n̂2〉�2n̂3 + (1 − η1)η2�2n̂2〈n̂3〉 + (1 − η1)(1 − η2)(�2n̂2�2n̂3 − Cov(n̂2, n̂3)2)
, (F4)

where F (ii) is given by Eq. (18).

APPENDIX G: THE A COEFFICIENTS FOR THE EQUATION YIELDING THE OPTIMUM TRANSMISSION COEFFICIENT
IN THE LOSSY SINGLE-PARAMETER QFI

For the input state obeying the constraint 〈â0〉 = 0 implying C′
2 = C′

4 = 0, the optimum transmission coefficient of BS1, ϑ
(i)
opt,

is obtained by solving Eq. (62), and its A coefficients are as follows:

A4 = (C′
1)2

16
(1 − η2)〈Ĵz〉,

A3 = C′
1

(
−C′

3

2
(1 − η2) + 2η2〈Ĵz〉

)
〈Ĵz〉,

A2 =
[(

C′
3

2 − C′
1

4C′
0 + C′

1

8

)
(1 − η2) − η2

C′
3

4
〈Ĵz〉 − 2C′

1η2〈N̂〉
]
〈Ĵz〉,

A1 = C′
3

4C′
0 + C′

1

2
(1 − η2)〈Ĵz〉 + C′

1

2
η2〈N̂〉2 + 4C′

3η2〈N̂〉〈Ĵz〉,

A0 = (4C′
0 + C′

1)2

16
(1 − η2)〈Ĵz〉 − C′

3η2〈N̂〉2
. (G1)
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If we impose η2 → 1 to the previous results one has A4 → 0 and Eq. (62) can be reformulated as (C′
1cos ϑ − 2C′

3)(〈Ĵz〉cos ϑ +
〈N̂〉/2)2 = 0, leading to the obvious solution cos ϑ = 2C′

3/C′
1 which is actually the result from the lossless scenario [32]

(see also the Supplemental Material [54]).

APPENDIX H: OPTIMUM TRANSMISSION COEFFICIENT FOR THE SYMMETRIC SINGLE-PARAMETER QFI

In the high-loss limit (i.e., η2 	 1 − η1) the optimum BS1 transmission coefficient is found from the solutions of Eq. (65).
Solving �2n̂3 + Cov(n̂2, n̂3) = 0 yields

t± = −
2 Cov(N̂, Ĵy) ∓

√
4([Cov(N̂, Ĵy)]2 + [Cov(N̂, Ĵz )]2) − (�2N̂ )2

�2N̂ + 2 Cov(N̂, Ĵz )
(H1)

and for t± ∈ R one gets the optimum transmission coefficients T (ii)
± =

√
[(1 − t2

±)/[2(1 + t2
±)]. Solving the equation

Cov(n̂2, n̂3)(�2n̂3)′ + �2n̂3(�2n̂2)′ = 0 in respect with the input fields results in the fourth-order equation

Act
4 + Bct

3 + Cct
2 + Dct + Ec = 0, (H2)

where the coefficients are given by

Ac = −2 Cov(N̂, Ĵz )Ĉov(Ĵy, Ĵz ) + 2 Cov(N̂, Ĵy)�2Ĵz + Cov(N̂, Ĵy )Cov(N̂, Ĵz ) − �2N̂Ĉov(Ĵy, Ĵz ),

Bc = 4 Cov(N̂, Ĵy )Ĉov(Ĵy, Ĵz ) − 4 Cov(N̂, Ĵz )�2Ĵy − 2�2N̂ (�2Ĵy − �2Ĵz ) + 2[Cov(N̂, Ĵy)]2 − 2[Cov(N̂, Ĵz )]2,

Cc = −6 Cov(N̂, Ĵy )Cov(N̂, Ĵz ) + 6�2N̂ Ĉov(Ĵy, Ĵz ),

Dc = 2�2N̂ (�2Ĵy − �2Ĵz ) − 2[Cov(N̂, Ĵy)]2 + 2[Cov(N̂, Ĵz )]2 + 4 Cov(N̂, Ĵy)Ĉov(Ĵy, Ĵz ) − 4 Cov(N̂, Ĵz )�2Ĵy,

Ec = 2 Cov(N̂, Ĵz )Ĉov(Ĵy, Ĵz ) − 2 Cov(N̂, Ĵy)�2Ĵz + Cov(N̂, Ĵy)Cov(N̂, Ĵz ) − �2N̂Ĉov(Ĵy, Ĵz ). (H3)

Equation (H2) leads to up to four solutions tsol. Selecting the real ones among them, ones gets the BS1 coefficients T (ii)
sol =√

[(1 − t2
sol )/[2(1 + t2

sol )]. Replacing T (ii)
± and T (ii)

sol in Eq. (38) allows one to select the actual solution T (ii)
opt that maximizes the

QFI.
For the simpler case when Cov(n̂2, n̂3) = 0, Eq. (73) expressed in respect with the input field operators leads to the fourth-

order equation

(Bsep − Esep)t4
sol − 2(Csep − Dsep)t3

sol + 2(2Asep − Bsep)t2
sol + 2(Csep + Dsep)tsol + Bsep + Esep = 0, (H4)

where the coefficients are given by

Asep = [(1 − η2)Cov(N̂, Ĵy) + 2η2〈Ĵy〉]Cov(N̂, Ĵz ) − η2Cov(N̂, Ĵy )〈Ĵz〉,
Bsep = −[(1 − η2)Cov(N̂, Ĵz ) + 2η2〈Ĵz〉]Cov(N̂, Ĵy) + η2Cov(N̂, Ĵz )〈Ĵy〉,
Csep = [(1 − η2)Cov(N̂, Ĵy) + η2〈Ĵy〉]Cov(N̂, Ĵy) − [(1 − η2)Cov(N̂, Ĵz ) + η2〈Ĵz〉]Cov(N̂, Ĵz ),

Dsep =
(

(1 − η2)
�2N̂

2
+ η2〈N̂〉

)
Cov(N̂, Ĵz ) − η2

�2N̂

2
〈Ĵz〉,

Esep =
(

(1 − η2)
�2N̂

2
+ η2〈N̂〉

)
Cov(N̂, Ĵy ) − η2

�2N̂

2
〈Ĵy〉. (H5)

Among the solutions ϑ
(ii)
opt = arccos tsol, one maximizes the two-parameter QFI, G (ii).

In the general case, when differentiating the symmetric single-parameter QFI from Eq, (38) in respect with ϑ we get

η2〈n̂3〉[Cov(n̂2, n̂3)′ − �2n̂′
3] + (1 − η2)(η2〈n̂3〉�2n̂3(3�2n̂′

2 + �2n̂′
3) + [�2n̂3]2[η2〈n̂3〉′ + (1 − η2)�2n̂′

2)

− 2 Cov(n̂2, n̂3)�2n̂3(η2〈n̂3〉′ + (1 − η2)Cov(n̂2, n̂3)′] + [Cov(n̂2, n̂3)]2[η2〈n̂3〉′ + (1 − η2)�2n̂′
3]) = 0 (H6)

and by employing Eqs. (6) and (A1) we are able to rewrite Eq. (H6) in respect with ϑ . Following a process similar to the one
described in the Supplemental Material [54], one is able to find the solution ϑopt that maximizes the QFI from Eq. (38).

APPENDIX I: DOUBLE COHERENT INPUT STATE

Considering a double coherent input state, for the scenario having no access to an external phase reference we find the
two-parameter QFI

G (2p) = 2η2|α|2[1 + � 2 − (� 2 − 1) cos ϑ + 2� sin ϑ sin �θ ][1 + � 2 + (� 2 − 1) cos ϑ − 2� sin ϑ sin �θ ]

(1 + η2)(� 2 + 1) + (1 − η2)(� 2 − 1) cos ϑ − 2(1 − η2)� sin ϑ sin �θ
. (I1)
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Solving Eq. (54) and taking into account that for any coherent state we have the constraint �2n̂l = 〈n̂l〉, where l denotes the
mode, we arrive at the result

ϑ
(2p)
opt = 2 arctan

(1 + √
η2)

(
� sin �θ + sign(1 − � )

√
� 2 sin2 �θ + (1−√

η2� 2 )(
√

η2−� 2 )
(1+√

η2 )2

)
1 − √

η2� 2
(I2)

and the optimum transmission coefficient is found via Eq. (76).
For the symmetric single-parameter lossy QFI the result from Eq. (82) expanded yields

G (ii) = |α|2
2

{(1 + η2)(1 + � 2) − (1 − η2)[2 sin ϑ� sin �θ + cos ϑ (1 − � 2)]} (I3)

and its maximum is reached in the degenerate case T (ii)
opt = [1 − sign(� − 1)]/2 if sin �θ � 0 and for

T (ii)
opt =

√√√√1

2
+ (1 − � 2)sign(1 − � )

2
√

4� 2 sin2 �θ + (1 − � 2)2
, (I4)

otherwise, leading to the maximum QFI

G (ii)
max = |α|2

2
((1 − η2)

√
4� 2 sin2 �θ + (1 − � 2)2 + (1 + η2)(1 + � 2)). (I5)

APPENDIX J: CALCULATIONS FOR THE COHERENT PLUS SQUEEZED VACUUM INPUT STATE

In the high-coherent regime (i.e., |α|2 � sinh2 r), one finds cos ϑ
(i)
opt ≈ 1 + e−r−

√
η2−η2

2 (1−e−2r )
(1−η2 ) sinh r from the QFI given by Eq. (96),

a result valid for η2 < 1, and it implies the optimum transmission coefficient

T (i)
opt ≈

√√√√
1 +

e−r −
√

η2 − η2
2(1 − e−2r )

2(1 − η2) sinh r
, (J1)

leading to the maximum asymmetric single-parameter QFI

G (i)
max ≈

2|α|2η2(er + η2e−r − 2η2 sinh r − 2
√

η2 + η2
2(1 − e−2r ))

sinh r(1 − η2)2
. (J2)

The single-parameter symmetric lossy QFI is maximized by employing the optimum BS1 transmission coefficient from Eq. (99),
a result valid in the high-coherent approximation. One ends up with the maximum symmetric single-parameter lossy QFI

G (ii)
max = |α|2[(1 − η2)(3η2 + 1)e2r − 4(1 + η2)(

√
η2er (er − 2η2 sinh r) − η2)]

(e2r − 1)(1 − η2)2 . (J3)

APPENDIX K: CALCULATIONS FOR THE COHERENT PLUS FOCK INPUT STATE

By employing Eqs. (27), (101), and (103) we find the optimized two-parameter QFI

G (2p) = 2η2(|α|2 + 2|α|2n + n) sin2 ϑ[|α|2 + (|α|2 − n) cos ϑ + n]

(1 − η2)(|α|2 + 2|α|2n + n) sin2 ϑ + 2η2[|α|2 + (|α|2 − n) cos ϑ + n]
. (K1)

The optimum BS1 transmission coefficient maximizing the two-parameter QFI is found among the solutions of equation

BcfCcfx
4 − 2B2

cfx
3 − 2Bcf(2Acf + Ccf)x

2 − 2A2
cfx + BcfCcf = 0, (K2)

where ϑ = arccos(x) and the coefficients of the previous equation are given by

Acf = 2η2(|α|2 + n),

Bcf = 2η2(|α|2 − n),

Ccf = (1 − η2)(|α|2 + 2|α|2n + n). (K3)

In the high-coherent approximation (|α|2 � n) the QFI G (ii) can be approximated to

G (ii) ≈ |α|2{(2n + 1)[1 − (1 − η2) cos ϑ] + (1 − 2n cos 2ϑ )η2}
2[(1 − η2)n(1 − cos ϑ ) + 1]

(K4)
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and maximizing this expression in respect with the parameter ϑ yields the optimum BS1 transmission coefficient given in
Eq. (111). Replacing this value into Eq. (K4) leads us to the maximum QFI

G (ii)
max ≈ |α|2(η2

2(1 − 6n) + 2η2(3 + 2n) − 4(1 + η2)
√

η2[1 + 2n(1 − η2)] + 2n + 1
)

2(1 − η2)2n
. (K5)

APPENDIX L: TWIN FOCK INPUT

While optimizing in respect with ϑ in Eq. (115) one gets the fourth-order equation

(1 − η2)(m + n + 2mn)y4 + 4η2(m − n)y3 − 2[(1 − η2)(m + n + 2mn) + 4η2(m + n)]y2

+ 4η2
(m + n)2

m − n
y + (1 − η2)(m + n + 2mn) = 0 (L1)

valid for m �= n and ϑ = arccos y. Among the solutions ϑsol of the previous equation, one maximizes the QFI from Eq. (115).

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330
(2004).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,
010401 (2006).

[3] J. P. Dowling and K. P. Seshadreesan, J. Lightwave Technol. 33,
2359 (2015).

[4] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys.
89, 035002 (2017).

[5] H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky,
and H. Vahlbruch, Phys. Rev. Lett. 110, 181101 (2013).

[6] R. Schnabel, Phys. Rep. 684, 1 (2017).
[7] M. Tse et al., Phys. Rev. Lett. 123, 231107 (2019).
[8] F. Acernese et al.(Virgo Collaboration), Phys. Rev. Lett. 131,

041403 (2023).
[9] D. Ganapathy et al. (LIGO O4 Detector Collaboration),

Phys. Rev. X 13, 041021 (2023).
[10] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A.

Bachor, and W. P. Bowen, Nat. Photon. 7, 229 (2013).
[11] M. A. Taylor and W. P. Bowen, Phys. Rep. 615, 1 (2016).
[12] Z. He, Y. Zhang, X. Tong, L. Li, and L. V. Wang, Nat. Commun.

14, 2441 (2023).
[13] L. Pezzé and A. Smerzi, Phys. Rev. A 73, 011801(R) (2006).
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