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Variational protocols for emulating digital gates using analog control with always-on interactions
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We design variational pulse sequences tailored for neutral atom quantum simulators and show that we can
engineer layers of single-qubit and multiqubit gates. As an application, we discuss how the proposed method can
be used to perform refocusing algorithms, SWAP networks, and ultimately quantum chemistry simulations. While
the theoretical protocol we develop still has experimental limitations, it paves the way, with further optimization,
for the use of analog quantum processors for variational quantum algorithms, including those not previously
considered compatible with analog mode.

DOI: 10.1103/PhysRevA.109.062604

I. INTRODUCTION

Quantum computers present an exciting alternative ap-
proach to their classical analogs. By leveraging special-
purpose compute elements, which exhibit quantum properties,
such as qubits, it has the potential to give exponential speed
ups to very specific problems such as the simulation of quan-
tum systems [1] and breaking cryptographic codes [2]. The
most common approach to quantum computing is digital, in
which a set of one-qubit and two-qubits gates are used to build
a theoretically universal quantum computer. There have been
attempts to build such a universal device with various tech-
nologies, for example, superconducting circuits [3], trapped
ions [4,5], neutral atoms [6,7], and photonic devices [8].

Currently, a fully fault-tolerant quantum computer remains
out of reach, but the last decade has seen much progress
towards this goal. Quantum error correction protocols have
been proposed to remove these errors, but, before they can
be implemented at a meaningful scale, the number of qubits
in noisy intermediate-scale quantum (NISQ) devices and the
noise level must be improved by many orders of magnitude
[9]. As the quantum circuits that are promised to solve real-
world problems require large numbers of qubits and deep
circuits, for example, due to Trotterization [10], these devices
are not yet practically useful. Despite these issues, there have
been impressive results in recent years, for example, solving
classically intractable sampling problems [11,12], and accu-
rate quantum simulation of a spin system using more than 100
qubits [13], albeit for a classically tractable problem [14–16].
As a result of these successes, quantum computers have gath-
ered much interest from researchers in fields such as quantum
chemistry [17,18], the financial sector [19], pharmaceuticals
[20], and artificial intelligence [21–24].

Analog quantum processors are an alternative avenue for
solving complex problems. By carefully isolating a given
register of particles and understanding the underlying physics
that governs the interactions between these particles we have
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access to and control over a resource Hamiltonian which we
can use to encode and solve problems of interest. In an attempt
to build analog devices, technologies such as trapped ions
[25], cold atoms [26], and photonics [27] have been used.
However, in this work we focus our attention on neutral atoms
as the particles in use [6,28]. While analog devices are not
universal, and are thus more limited in their potential use
cases, they have lower error rates than current digital quantum
computers and therefore are likely to show the first industry-
relevant quantum advantage [29,30].

Naturally, as analog devices are closely related to quantum
experimental setups, applications for quantum simulation are
the most promising contender for early quantum advantage. In
fact, there have been experimental results published that chal-
lenge state-of-the-art classical simulation methods [26,31,32].
Generalizing the use of an analog system to problems out-
side the realm of quantum simulation is tough. One issue is
that of always-on interactions; typically in physical systems,
interactions between particles scale with their separation.
While the exact scaling is defined by the type of particles
in use, the consequence is the same, for a fixed register of
atoms the interactions are fixed. As a result, performing quan-
tum operations that act on an isolated part of the quantum
system is difficult. This greatly limits the potential applica-
tions for analog quantum devices.

A third regime of interest is digital-analog quantum com-
puting (DAQC). Here a quantum device has access to both
analog pulses alongside single-qubit gates. NMR setups are
known to work within this regime [33], and proposals have
considered realizing a DAQC device in superconducting
qubits [34–36] with some early stage experimental results
[37]. In fact, under the right conditions, this type of quan-
tum computing can be universal [38,39]. There are many
proposed applications for such a device, for example, quan-
tum chemistry [40], implementing the quantum approximate
optimization and Harrow-Hassidim-Lloyd algorithms [41,42],
and computing the quantum Fourier transformation [43].
However, in order to realize single-qubit gates previous work
has assumed either that interactions can be turned off, external
laser strengths much larger than these interactions (regimes
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FIG. 1. Schematic showing how to use an analog pulse sequence
to approximate a variety of one- and two-qubit gates on neutral atom
hardware. (a) We variationally prepare pulse sequences to achieve
global π/2 rotations through tuning global Rabi frequencies, detun-
ings, and phases of external lasers. (b) These global rotations along
side single-qubit Rz gates and analog pulses of Eq. (1) lead to a
general set of gates available in a purely analog fashion.

that are difficult to realize for many technologies), or the
availability of analog pulses with lengths that are below ex-
perimental feasibility.

Many works consider quantum devices at the pulse level
and propose methods to reach either the DAQC or digital
regime, for example, in superconducting hardware [44,45]
and neutral atoms devices [46]. Given a simple black box of
such pulse sequences, generic quantum circuits can be real-
ized through compilation methods. A common choice is the
refocusing algorithm [47–50]. However, a promising method
recently developed considers the use of Walsh sequences; see
Ref. [51]. We aim to develop such a compilation method with
a neutral atom device in mind, with minimal experimental
requirements.

In this work we show how to realize a general set of
single-qubit gates for a device that has always-on interactions
in the regime where the external laser fields and pulse lengths
are on the same order as the interactions between qubits.
In particular, we show how a surprisingly simple variational
protocol requiring just access to single-qubit addressability
in a given field of the governing Hamiltonian, as well as
relying on some theoretical simplifications to the true physics
of a neutral atom device, highlights a potential solution of
this long-known problem. Furthermore, we present how this
method alongside the refocusing algorithm allows for approx-
imating a wide variety of two-qubit gates in a purely analog
fashion. Figure 1 shows a schematic of the process outlined
in this article. While additional steps are required in order for

the methods we develop to be directly ready for experimental
implementation, this work acts as the first step to bridge the
gap between analog and digital quantum computing and po-
tentially allows purely digital algorithms to be implemented
in an analog quantum device.

This paper is structured as follows: In Sec. II we introduce
the Hamiltonian that governs an analog neutral atom device.
In Sec. III we outline the main result of this work, i.e., a
method to approximate layers of single-qubit gates using only
global pulses and single-qubit addressibility in a single field.
In Sec. IV we show, given the access to layers of single-qubit
gates, how to perform a refocusing algorithm and thus ap-
proximate two-qubit gates. In Secs. V and VI we exemplify
the use of these methods through preparing an approximate
SWAP gate network and solving simple chemistry problems. In
Sec. VII we detail further the experimental considerations that
need to be taken into account to realize this protocol. Finally,
in Sec. VIII we summarize the work presented in this report
and outline open questions for future work.

II. RYDBERG ATOMS IN TWEEZERS

In this article we concentrate on the analog capabilities
of neutral atom devices. Such systems have attracted much
interest for research purposes in many-body physics and more
recently for potential applications in industrially relevant use
cases. It has been shown that the Maximum Independent Set
problem can be solved directly through a mapping to neutral
atoms [52,53]; Many machine learning schemes have been
proposed that utilize neutral atoms [54–57]; A blueprint for
VQE protocols taking advantage of the freedom of lattice
geometry in registers of neural atoms was recently published
[58], and recently, it was also shown how neutral atoms can
be used for drug discovery [59].

In neutral atom devices a qubit is encoded into two elec-
tronic states of an atom. Typical choices for atomic species
are rubidium or strontium atoms, in which two energy levels
can be chosen to represent the two-level system of a qubit.
Since the number of electronic states for a given atom is large,
the various possible choices of 0 and 1 can lead to different
interaction landscapes. Throughout this work we will consider
encoding 0 in a low-lying energy level and encoding 1 in a
Rydberg state; the resultant Hamiltonian of the system with
this choice is of Ising type [6],

H(t ) = h̄
∑

j

�(t )

2

{
cos[�(t )]σ̂ x

j − sin[�(t )]σ̂ y
j

}

− h̄
∑

j

δ j (t )

2
σ̂ z

j +
∑
i> j

C6

r6
i j

n̂in̂ j, (1)

where σ̂
x,y,z
i are the Pauli x, y, and z matrices acting on the

ith qubit, n̂i = 1−σ̂ z
i

2 is the number operator, ri j is the distance
between the qubits i and j, φ is the phase, � is the Rabi fre-
quency, and δ is the detuning of the external laser that couples
the qubit ground and Rydberg states. These can be seen as
an effective magnetic field, with transverse and longitudinal
components ∝ �(t ) and ∝ δ(t ), respectively. In this work we
allow for the detuning to be site dependent. Each field can be
varied by changing the intensity and frequency of the laser
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field. The third term in Eq. (1) relates to the interactions
between individual atoms. More specifically, it corresponds
to an energy penalty that two qubits experience if they are
both in the Rydberg state at the same time—this leads to the
well-known Rydberg blockade [60]. This coupling between
two atoms depends on the coefficient C6, which is defined by
the choice of Rydberg state, n.

III. REALIZING ANALOG SINGLE-QUBIT GATES

In this section we propose a method to engineer layers of
single-qubit gates on a purely analog neutral atom device, i.e.,
in the presence of always-on interactions described by Eq. (1).
Given the local addressibility of detunings in Eq. (1) coupled
with the fact that the effect of detuning in the Hamiltonian
commutes with the qubit interactions, the implementation of
a single-qubit Rz gate is quite natural. We first show how these
can be routinely realized.

In order to create pulse sequences (sequences of time evo-
lution under the Rydberg Hamiltonian with different values of
� and δ) that are equivalent to single-qubit Rx and Ry gates,
we turn to global π/2 rotations that allow us to change freely
between the X , Y , and Z basis. Given that the strength of
the Rabi frequency and detuning are on the same order as
the interaction strength between atoms, the protocols that will
achieve this are nontrivial. However, in the following we show
how a surprisingly simple setup can be used to variationally
prepare experimental pulse sequences that approximate these
rotations with high accuracy.

Once these global rotations are obtained, they can be com-
bined with local Rz gates to implement layers of Rx, Ry gates;
see Fig. 2(a). For example,

Rx
(�θ) ≡ RY

(π

2

)
⊗ Rz

(�θ) ⊗ RY
(
−π

2

)
, (2)

Ry
(�θ) ≡ RX

(π

2

)
⊗ Rz

(�θ) ⊗ RX
(
−π

2

)
, (3)

where �θ is a vector of angles in which each qubit will rotate.
Thus, the combination of these rotations and Rz gates allows
one to then perform very general single-qubit gates. Note
that in the above and throughout this work we will use the
notation RX for a global rotation and Rx for a local rotation
(and equivalently for y and z rotations).

A. Choice of the geometry

While the procedure we outline in the following sec-
tion method can be adapted for more general lattice geome-
tries, as a first example we consider a linear chain of N
qubits with nearest-neighbor (NN) separation r and periodic
boundary conditions (PBCs). Furthermore, we neglect next-
nearest interactions because they are 64 times smaller than
the NN interactions. As a result, the interaction term in our
Hamiltonian simplifies to

J
∑

i

n̂in̂i+1, (4)

where J = C6
r6 . However, in Sec. VII we consider the effect of

the full long-range tail of the qubit interactions on the fidelities
of the pulse sequences we variationally prepare in the NN
setting.

FIG. 2. Results of procedure to find a global π/2 rotation using
a neutral atom setup. (a) Schematic showing how these global pulses
can be combined with local Z gates to perform local X or Y gates.
(b) The precise pulse sequences found to implement global rotations,
here dt ∼ 1.6/J .

B. Local Rz gates

A direct consequence of the NN approximation is that we
can easily realize any Rz rotation through the single-qubit
addressibility in detuning. For � = 0, the evolution operator
is given by

U (t, �δ) ≡ e−iH(�δ)t , (5)

where

H(�δ) = J
∑

i

n̂in̂i+1 − h̄
∑

i

δi

2
σ̂ z

j . (6)

Given that the longitudinal field induced by the laser de-
tuning commutes with the qubit interactions, the effect of
these interactions in the Hamiltonian evolution can be re-
moved by carefully choosing the evolution time t such
that tJ = 2π , and thus the effect of exp(−itJ

∑
i n̂in̂i+1) ≡

exp(−i2π
∑

i n̂in̂i+1) is equivalent to the identity. Thus, we
are left with U (2π/J, �δ) = exp(i 2π

J h̄
∑

i

δi
2 σ̂ z

i ), and, by choos-

ing δi = θi
t , this can be tuned to act as Rz gates acting on each

qubit with angles θi.

C. Global RX/RY gates

As shown in Eqs. (2) and (3), the combination of lo-
cal Rz rotations with global π/2 rotations allows for the
realization of single-qubit Rx and Ry rotations. In the follow-
ing we present the procedure to variationally prepare these
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global rotation gates, {RX ( π
2 ), RX (−π

2 ), RY ( π
2 ), RY (−π

2 )},
in an analog setting.

1. Problem setup

We would like to find a pulse sequence that approxi-
mates a global R( π

2 ) by optimizing a global Rabi frequency,
global phase, and global detuning of each pulse, within the
constraints h̄� < J and h̄|δ| < 2J to ensure experimental fea-
sibility [6,61], to minimize a well-chosen loss function. In the
following we consider a four-qubit periodic system with NN
interactions. We consider the loss function as the infidelity,
L = 1 − F , such that

F = 1

dim(G)

∣∣∣∣∣∣tr
⎡
⎣G†

2p∏
j=1

exp

(
−i

	t

h̄
H (� j )

)⎤
⎦

∣∣∣∣∣∣, (7)

where G is the desired unitary operation acting on N qubits,
in our case G = R( π

2 ), 2p is the number of pulses considered,
	t = T/2p in which T is the time length of the full pulse
sequence, � j = (�1,�1, δ1, . . . , �2p,�2p, δ2p ), and H is the
Ising Hamiltonian described by Eq. (1) restricted to NN inter-
actions and strictly global pulses. Note that L = 0 implies that
the pulse sequence found is correct up to a global phase shift.

2. Optimization

We begin by minimizing the loss function L for a single
pulse, p = 0, of length T using an L-BFGS-B optimizer. We
then use the parameters found with this first optimization
process as an input to a second round of optimization with
two pulses, both of length T/2. The effect of this is to in-
crease the expressibility of the pulse sequence. We repeat this,
effectively halving each pulse in the sequence split into two
individual pulses at each step, until we reach a pulse length
dt for each pulse; a predetermined minimum pulse length is
set by experimental considerations. The full algorithm used is
given in Algorithm 1.

Note that given each global rotation can be transformed
into any other via a constant shift in the values found for φ,
this procedure needs to be performed only once.

ALGORITHM 1. Global rotation pulse.

pmax, dt ← initialized by user
T ← 2pmax dt
thresh ← threshold initialized by user
L ← initialized to a value > thresh
while L > thresh do

�(0) ← initialized to random values
t ← T
for p in 0 : pmax do

L, �(p+1) ← min�(p) (L)
t ← T/(2p)

end for
end while

3. Results

We show the results of the procedure outlined above in
Fig. 2(b); here we present the exact pulse sequences found
through this procedure that realize all ±π/2 rotations with

TABLE I. Fidelities of the global analog qubit rotations for a NN
interacting linear chain with PBCs and OBCs.

nqubits NN PBC NN OBC

4 99.92% 99.97%
5 99.90% 99.94%
6 99.87% 99.92%
7 99.85% 99.90%
8 99.83% 99.88%

>99.9% fidelity for a chain with PBC. The fidelities found
for the implementation of these pulses on different qubit sys-
tems are presented in Table I. While this optimization was
performed on a small system, as we consider global pulses
and work in the limit of negligible next-NN interactions,
these pulses generalize well to larger chains. We clearly see
that using this measure of fidelity we obtain very accurate
results even when doubling the number of qubits in the chain
with respect to the number in which the optimization proce-
dure was implemented on. Counterintuitively, even on such
small systems the fidelities of these pulses are even higher
when we switch from PBCs to open boundary conditions
(OBCs).

IV. REALIZING ANALOG TWO-QUBIT GATES

Building on the previous section, we now discuss how
to realize two-qubit gates with the help of analog rotations.
To this end, we first discuss how to “turn off” interac-
tions between qubits with a refocusing algorithm to realize
some two-qubit gates [47–50]. The fundamental idea be-
hind the refocusing algorithm is, by evolving a system under
a given pulse, followed by a second pulse of the same
length in which the sign of the unwanted interactions is re-
versed, the resultant effect of this entire pulse sequence is
only that of the desired interactions throughout the whole
evolution [62].

In general reversing the interaction strength of a given
quantum system is not physical, but this can be effectively
achieved for an Ising-type Hamiltonian by using single-qubit
X gates,

Xie
tσ z

i σ z
j Xi = e−t (σ z

i σ z
j ), (8)

which relies on temporarily flipping the computational basis
from {0, 1} to {1, 0}: in that basis the Pauli-Z operator acquires
a sign flip [38].

Given the close relationship between Rydberg interactions
and Ising interactions, and given that layers of X gates can be
engineered through the pulse sequences outlined in the previ-
ous sections, we are able to realize an analog implementation
of the refocusing algorithm. Effectively, this idea will allow us
to entangle subsections of the qubit register in a controllable
manner.

A. From NN interaction to CZ gates

As the most natural example for an analog neutral atom
device we will present the procedure to perform different
layers of effective CZ gates in an analog operation. A CZ gate
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FIG. 3. The pulse sequence required to perform a CZ(0, 1)CZ(2, 3) gate (a) and CZ(0, 1)CZ(1, 2) gate (b) on a four-qubit NN linear chain
with PBCs. The pulse sequence required to perform a CZ(0, 1) gate (c) and a CZ(1, 2) gate (d) on a four-qubit NN linear chain with OBCs.

acting on two qubits, i and j, may be defined as

CZ = exp(iπ n̂in̂ j ). (9)

From this definition we can directly recognize the evolution
of the NN neutral atom device on an N-qubit linear chain with
PBCs and no external laser fields as

U (t, �0) = CZ(0, 1)CZ(1, 2) · · · CZ(N, 0), (10)

providing t = π/J . Once this equivalence has been estab-
lished we can consider using the refocusing algorithm to
remove the unwanted CZ gates from Eq. (10). More explicitly,
given that the effect of X gates surrounding such a pulse is

Xje
t
∑

i n̂i n̂i+1 Xj = et(
∑

i �= j, j−1 n̂i n̂i+1−n̂ j n̂ j+1−n̂ j−1n̂ j+n̂ j−1+n̂ j+1 ). (11)

By combining these two results and utilizing single-qubit
detuning to compensate for the linear term in the exponent
of Eq. (11), we are able to produce layers of CZ gates between
desired qubits. Note that to “turn off” the interaction between
qubits i and j, we surround the second pulse in the sequence
by X gates acting on one of the two qubits involved in the
interaction we wish to turn off. When no X gates act on the
qubit pair or an X gate acts on both qubits, the interaction
will not be affected. For example, to remove the CZ(0, 1) and
CZ(2, 3) from Eq.(10) we can perform the pulse sequence

CZ(1, 2)CZ(3, 4)CZ(4, 5) · · · CZ(N, 0)

= X1X2 ⊗ U
(

t
2 , �0) ⊗ X1X2 ⊗ U

(
t
2 , �δ∗), (12)

where �δ∗ is chosen to account for the unwanted linear terms
accumulated by the action of each X gate.

The types of layers of CZ gates realizable through this pro-
tocol of removing given interactions depend on the geometry
and boundary conditions of the system. In the following we
will explain these explicitly for a linear chain with both PBCs
and OBCs.

B. Periodic boundary conditions: Even and odd qubit chains

Given that the action of each X gate is to remove the effect
of two distinct interactions in a system with PBCs, it becomes
clear that the number of qubits in the chain, even or odd,

defines the subset of CZ gates realizable. Explicitly, in an
even-numbered qubit chain we are able to realize layers of an
even number of CZ gates, and in an odd-numbered qubit chain
we are able to realize layers of an odd number of CZ gates.
As a result, in order to realize a single CZ gate, for example,
CZ(0, 1), we are required to work on a system containing an
odd number of qubits. However, as many applications benefit
from parallelization of two-qubit gates, this does not greatly
restrict potential use cases of our method.

As an explicit example we consider a four-qubit chain with
PBCs. The two possible types of layers of CZ gates realizable
(up to transnational symmetry) are CZ(0, 1)CZ(2, 3), by, for
example, using X gates on qubits 0 and 1 and CZ(0, 1)CZ(1, 2)
by, for example, using an X gate on qubit 3. Schematics of
these pulse sequences are given in Figs. 3(a) and 3(b), each re-
quiring pulse sequences of length 4T + 5π/J . These achieve
a fidelity of 99.6% and 99.7% respectively for a system with
NN interaction.

C. Open boundary conditions

Given a linear chain with OBC we can readily prepare a
given layer of CZ gates with no restrictions—this is a con-
sequence of the end qubits interacting with only one other
qubit. For example, we can prepare a CZ(0, 1) gate on through
the use of an X gate on qubit 2 or a CZ(1, 2) through the
use of X gates on qubits 1 and 2. Schematics of these pulse
sequences are given in Figs. 3(c) and 3(d); again each requires
pulse sequences of length 4T + 5π/J . These achieve a fidelity
of 99.7% and 99.6%, respectively, for a system with NN
interaction.

Given that the variationally generated pulse sequences for
global rotations have higher fidelity on linear chains with
OBC as well as the additional flexibilty to realize layers of CZ

gates this setting gives, we will consider such systems for the
rest of this article. In the following sections, we show how, in
theory, analog single-qubit and CZ gates can be used to build
a full SWAP network to produce all-to-all connectivity in an
analog neutral atom device. We then use this result to perform
some simple analog VQE simulations of small molecules.
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FIG. 4. (a) Decomposition of a SWAP gate as three CNOT gates.
(b) Decomposition of a Givens SWAP gate into CZ gates and single-
qubit Ry rotations; note the angles of each rotation are shown in the
schematic.

V. GENERATING A SWAP NETWORK

While some attempts have been made to build devices
with all-to-all connectivity (for instance, using trapped ions
[63], photons [64], as well as some preliminary results in
neutral atoms [7,65]) in currently available NISQ devices
based on superconducting qubits [14,66] and neutral atoms
[6] connectivity is limited. An example in which this low
connectivity can be an issue is the simulation of fermionic
systems. When simulating the physics of such systems, the
occupation number of a spin orbital is encoded in the qubit
state. Therefore, in order to allow all orbitals to interact with
each other we must apply two-qubit gates between all pairs
of qubits. Mathematically, this can be seen through the loss
of locality when applying the Jordan-Wigner transformation
on simple molecular Hamiltonians to convert between the
fermionic basis and qubit basis. Using quantum annealing
to solve certain difficult quadratic unconstrained binary op-
timization (QUBO) problems is another example in which
all-to-all connectivity is required [67]. Such connectivity al-
lows many NP-hard optimization problems to be encoded in
the ground state of an Ising model. This is thought to be a
promising direction for useful quantum computation [68].

One popular method to circumvent the issue of low con-
nectivity within a digital device is a SWAP network. Such a
network uses SWAP gates that switch the quantum information
between two given qubits. A SWAP network effectively inverts
the position of the qubits in the circuit and allows one to
act the required operations between the given qubits when
they are adjacent to each other in this cycle [69]. Clearly,
performing such a SWAP network is not native to an analog
device. Typically, in analog systems long-range entanglement
is generated through quench dynamics and is limited by a
Lieb-Robinson bound of the resource Hamiltonian [58]. How-
ever, using the protocols outlined in the Secs. III and IV, a
SWAP network can be directly imported into the analog setting.
In particular, a SWAP gate can be decomposed into three CNOT

gates as shown in Fig. 4(a). As a CNOT gate can be realized
through

CNOT(i, j) = Ry

(π

2

)
CZ(i, j) Ry

(
−π

2

)
, (13)

we conclude that with the pulse sequences given in this work,
an analog SWAP gate is, in principle, realizable.

As a simple benchmark, by using the gates found in the
previous sections to perform a SWAP network on four qubits in
a NN linear chain, we realize a long-range CNOT gate between
qubits 0 and 3. This pulse sequence achieved a fidelity of 94%
with SWAP gates that each require pulse sequences of length

3(6T + 5π/J ). In the following, we add one more layer of
complexity to this proposal by replacing SWAP gates with
Givens SWAP gates that are known to be an effective ansatz
for VQE problems [70].

VI. APPLICATION: VARIATIONAL QUANTUM
EIGENSOLVERS

As previously mentioned, one promising application of
quantum computing that strongly benefits from all-to-all con-
nectivity is the simulation of molecules. When simulating the
physics of electronic systems the typical approach is to use
Fock basis in which each basis function represents a fermionic
mode. A standard method to simplify the task of simulating
these systems as well as half the required resources is the
paired-electron approximation. Here we consider the simpli-
fication such that each molecular orbital is either occupied by
an electron singlet pair or unoccupied. Under this assumption
the Hamiltonian of a molecule is given by

Ĥ = C +
∑
p,q

h(r1)
p,q b̂†

pb̂q +
∑
p�=q

h(r2)
p,q b̂†

pb̂pb̂†
qb̂q, (14)

where b̂q are hardcore bosons representing the electron-pair
annihilation operator in mode p that satisfy the relevant
(anti-)commutation relations and h(r1)

p,q and h(r2)
p,q can be calcu-

lated from the one- and two-electron integrals [70].
To map this problem to a form that is applicable for a quan-

tum computer we can use the transformation b̂p = 1
2 (σ̂ x

p +
iσ̂ y

p ), resulting in a Hamiltonian of the form

Ĥqb ≈ C +
∑

p

h(r1)
p

2

(
Îp − σ̂ z

p

) +
∑
p�=q

h(r1)
p,q

4

(
σ̂ x

p σ̂ x
q + σ̂ y

p σ̂
y
q

)

+
∑
p�=q

h(r2)
p,q

4

(
Îp − σ̂ z

p − σ̂ z
q + σ̂ z

pσ̂
z
q

)
. (15)

This form of the Hamiltonian is now in a basis that directly
maps to qubits and allows us to find the ground-state energy
through a variational quantum eigensolver (VQE) approach.

Given the molecular Hamiltonian is number conserving,
i.e.,

∑q
p=0 b̂†

pb̂q = n where n is the number of electrons in
the system, a good choice for the initial state during a VQE
protocol is the Hartree-Fock state. This is the state in which
the n lowest energy molecular orbitals are occupied with pairs
of electrons; here n is the total number of pairs of electrons in
the system. From this initial state a Givens SWAP network has
been shown to be a promising variational ansatz to find the
ground state within the paired-electron approximation [70].
In fact, a proof of principle experiment utilizing this ansatz
was preformed on Google’s superconducting qubit quantum
computer and successfully found the ground state for some
simple molecular Hamiltonians [71]. A Givens SWAP gate is
the combination of a Givens rotation followed by a SWAP gate;
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FIG. 5. Analog VQE results for the molecules H2 in (a) and LiH
in (b), both run in Qadence [73]. We show the results for multiple
ansatzes with varying depths of Given SWAP gates as a function of
the number of qubits, n. For H2 n = 4 and LiH n = 6. We manage
to reduce the error of the VQE protocol to be on the same order of
magnitude of the chemical accuracy (the gray horizontal line).

mathematically it is defined by

GS(θ ) =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
<sc>swap</sc>

⎛
⎜⎜⎝

1 0 0 0
0 cos(θ ) − sin(θ ) 0
0 sin(θ ) cos(θ ) 0
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
G(θ )

(16)
in which θ is a variational parameter. A full digital Givens
SWAP network is equivalent to the SWAP network with each
SWAP gate replaced by a Givens SWAP gate.

We now turn our attention to the analog implementation
of such an ansatz. As a Givens SWAP network can be de-
composed into three CZ gates and layers of single-qubit gates
[see Fig. 4(b)], we can again lean on the protocols outlined
in Secs. III and IV to build an analog pulse sequence that
approximates this digital circuit.

We use such a variational architecture to find the ground
state energy of H2 and LiH using an analog Givens SWAP

network. For H2 we consider the 631g basis in which four
qubits are required in the paired-election approximation [72].
For LiH we consider the sto-3g basis in which we require six
qubits in the paired-electron approximation [72]. In Fig. 5 we
show the evolution of errors throughout the VQE protocol. We
define the error as the difference between the measured energy
and the lowest value achievable in the paired electron ap-
proach. Theoretically, the number of layers of Givens SWAPS

required to reach the ground state is equal to the number of
qubits. However, since our gates do not have a 100% fidelity,
more layers are required. We vary the depth of our network as
a function of the number of paired electrons n, i.e., n = 4 for
H2 and n = 6 for LiH. Here we used BFGS, a gradient-based
optimizer, and an a convergence criterion of ε = e−7. In Fig. 5
we see that while chemical accuracy (an error of 1.6 mHa) was
not achieved for either H2 of LiH, we were to achieve an error
on the same order of magnitude to this goal.

VII. EXPERIMENTAL CONSIDERATION

In this section we consider realistic experimental con-
straints such as atomic positions, interactions strengths, Rabi

TABLE II. Required pulse lengths of given gates using proposed
analog pulses.

(Layer of) Gate Pulse sequence length (µs)

Rz 0.4
Global π/2 rotation 0.9
Local RX /RY 2.1
CZ 4.5
CNOT 6.2
SWAP 18.7
Givens SWAP 22.1

frequencies, detunings, and coherence times. From these we
present the required coherence times to realize each gate used
throughout the results we present in this report. Furthermore,
we show the effect of the long-range nature of interactions in
a realistic qubit register on the accuracy of the pulses.

A. Pulse sequence depths

We consider a rubidium-based neutral atom device with
atoms coupled to the |60S1/2〉 Rydberg state, and include the
full 1/r6 long-range tail of the Van der Waals interactions.
Furthermore, we consider N atoms in a circular geometry
with interatomic spacing of r = 6.24 µm. This results in a NN
interaction of J ∼ 2π × 2.3 MHz. We consider dt = 108 ns
such that the time to perform a local Rz gate is 428 ns with
|δ j | = J . Our variationally prepared pulse sequences for the
global π/2 rotation gates are such that T = 864 ns, �/2π <

1.2 MHz, and |δ/2π | < 4.6 MHz. From these values we can
then calculate the required pulse lengths of each of the gates
we use in this work; see Table II. While the analog SWAP and
Givens SWAP gates may be beyond current experimental lim-
itations with the pulses presented here, given that coherence
times of up to ∼6 µs have been experimentally realized [31],
it is not unreasonable to expect a layer of analog CNOT gates
to be feasible in the near future since this coherence time can
be improved by further stabilizing some of the control com-
ponents on the hardware. Alternatively, the involved energy
scales could be increased uniformly, speeding up all of the
operations described here. Ultimately the limiting timescale
is the Rydberg lifetime, which is on the order of 100 µs for
the state chosen here. However, this too could be extended
by choosing a larger principal quantum number. Note that to
run deep quantum circuits with more than one unique layer of
qubit gates, we would require temporal control of the single-
qubit addressability in laser detunings.

B. Effect of long-range interactions

In the following section we consider the effect of the full
long-range interaction tail on the fidelities of both our pro-
posal for local Rz gates proposed in Sec. III as well as the
pulses given in Fig. 2(b). To estimate the effect of these long-
range interactions in the limit N � 1 we consider a linear spin
chain with OBCs.

While the protocol to produce a local Rz gate proposed in
Sec. III is exact for NN interactions, it is only approximate
in the presence of the full long-range interaction tail defined
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FIG. 6. Full analog simulations of both the global rotations as
well as a single-qubit X gate using the full long-range tail of the Van
der Waals interactions. (a), (b) Results for the fidelity of analog Rz

and global rotation gates, respectively, in the presence of long-range
interactions showing the effect of varying the pulse length from
the analytically predicted value using NN interactions (shown as a
vertical dashed line). By varying the pulse lengths we are able to
boast the fidelities of the analog Rz and global rotation gates to 99.6%
and 98.7% respectively. (c), (d) Resultant local magnetizations after
the analog pulses for a global RY ( π

2 ) and local X8 gates, respectively.

in Eq. (1). As a result we find that the fidelity drops to 98.9%
for a system of eight qubits. However, by deviating the pulse
length used away from the theoretically exact time for a NN
system we are able to retain a fidelity of 99.6%; see Fig. 6(a).
Furthermore, in this setting of eight qubits, the fidelity of
the global rotation pulse sequences falls by about 2%–3%.
However, by again allowing the length of the pulse sequence
to vary we can obtain a fidelity of 98.7%; see Fig. 6(b).

While these fidelities are still high and may be acceptable
for certain applications, it highlights that, given access to more
computational resources, performing the optimization proto-
col outlined above on a larger system with the full long-range
tail would generalize better to long chains.

C. Generalization to larger system sizes

In Fig. 6 we show how our protocol generalizes to large
qubit systems, N = 18 which is more than four times the chain
length the pulses were optimized over. In these simulations
we consider the full long-range tails of the Van der Waals
interactions, here we place the qubits in a linear chain with
OBC. As the fidelity given in Eq. (7) requires the calculation
of the full unitary time evolution operator for a given pulse
sequence, it is an expensive metric for chains of this length.
Thus, we use a simplified metric for fidelity: the overlap the
state prepared by acting our proposed pulse sequence on the
ground state with the exact state that is prepared via the target

gate, G:

F̃ = 〈000 · 0|G†
p∏

i=1

exp

(
−i

	t

ph̄
H (�)

)
|000 · 0〉. (17)

We find that for the pulse sequences variationally found for
global π/2 rotations retain an overlap of F̃ > 97%.

Furthermore, we ran simulations for a local X gate on a
single qubit in this experimentally inspired setup with a result-
ing overlap of F̃ ≈ 85%. However, as mentioned previously,
when introducing long-range interactions the Rz gate imple-
mentation is no longer exact. Thus, as a further investigation
we find that deviating the pulse length from the NN predicted
time to 412 ns, we are able to increase the fidelity of the
single-qubit Rx gate to F̃ > 93%. In Figs. 6(c) and 6(d) we
show the resultant local magnetizations of each qubit after the
analog pulses for both a global RY ( π

2 ) rotation and local X

gate in the bulk of the chain. Both of these results show that
our pulse sequences optimized on only four qubits with NN
interactions are still highly effective in large systems with the
full long-range tail and clearly show (up to small errors) the
desired gate effect.

D. Future directions

In order to both reduce the required coherence times to im-
plement these analog gates as well as increase the fidelities in
a more realistic experimental set up, there are many directions
that can be considered. First, by performing the optimization
with more flexible pulse sequences, for example, continuous
interpolated pulse sequences parametrized through a Fourier
basis [74] or bang-bang pulses [75] and by making use of the
CRAB algorithm [76]), we can aim to reduce T . Furthermore,
performing the optimization over a larger number of qubits in
a circular register and taking into account the full long-range
nature of interactions would push up the fidelities observed in
the experimental setup used in this section.

In order to solve the control task more efficiently, this
work could be extended using several other optimization
techniques. Classical simulation algorithms that perform
gradient-based optimization such as GRAPE [77], for in-
stance, would offer a drop-in replacement for the approach
taken here. In particular, GRAPE also discretizes the con-
trol pulses, but then optimizes based on the (approximate)
derivative of the cost function with respect to the pulse train
parameters. As a purely classical algorithm, it is restricted to
systems consisting of a small number of qubits. For larger
systems, hybrid approaches such as differentiable analog
quantum computing [78] offer an attractive alternative. Here
the (functional) derivative of the cost function with respect
to some control function is calculated on a quantum system
using a combination of parameter shift rules and Monte Carlo
integration.

Alternatively, gradient-free techniques such as Bayesian
optimization [79,80] could be helpful. The downside of such
an approach, however, is its unfriendly scaling with the di-
mension of the parameter space it has to search through.
This is especially a problem with fine-grained pulses that
have many degrees of freedom. Restricting oneself to pulses

062604-8



VARIATIONAL PROTOCOLS FOR EMULATING DIGITAL … PHYSICAL REVIEW A 109, 062604 (2024)

generated by a small set of basis functions would make such
methods attractive.

Experimentally, we did not consider varying both the
Rydberg level in use and the inter-atomic spacing. This ex-
tra freedom could be utilized to decrease dt and reduce
the required pulse length of a given quantum circuit. More
generally, experimental improvements that allow increased
coherence times, larger laser detuning and Rabi frequencies
as well as an increased maximal gradient of laser intensity as
a function of time all would give the protocols developed in
this article more flexibility and thus increase their utility.

VIII. OUTLOOK

In this work we outlined a procedure to realize a general
set of one- and two-qubit gates in the presence of always-on
interactions. In particular, we considered simulations using an
analog neutral atom device. In this setting, we showed how
local Rz rotations are realizable given local addressing on
the laser detunings. Furthermore, we presented a procedure
to variationally prepare global π/2 rotations to allow us to
change basis between the x, y, and z axis with high fidelity.
Combining these methods we are able to perform layers of
single-qubit gates. These in turn allowed us to build up a
repertoire of two-qubit gates taking advantage of a refocusing
algorithm.

While currently using the methods in this work to import a
fully digital algorithm into an analog setting is still far beyond
what is experimentally feasible, there are many short-term
uses that are highly valuable. For example, one hurdle for
analog simulation on a neutral atom device is initial state
preparation. With the analog pulses outlined above, we are
able to prepare both X and Y polarized states as well as prod-
uct states with high fidelities. By generalizing this protocol
to higher dimensions, while nontrivial, would open up the
prospect of more interesting quantum simulations in the near-
term. Furthermore, this work opens the door to measurements
in a general basis. This would allow for measurements of
new observables, for example, energy and general correlation
functions. There have been some exciting proposals on the use
of randomized measurements in the neutral atom setting [81].
A successful implementation of the above protocols outlined
in this work would open up the door for such methods to be
implemented in the near term.
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