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Simulation of a feedback-based algorithm for quantum optimization for a realistic neutral-atom
system with an optimized small-angle controlled-phase gate

S. X. Li,1 W. L. Mu,2 J. B. You ,3,* and X. Q. Shao 1,4,†

1Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
2Department of Physics, Beijing Normal University, Beijing 100875, China

3Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Connexis, Singapore 138632
4Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials

and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China

(Received 27 October 2023; revised 14 April 2024; accepted 16 May 2024; published 10 June 2024)

In contrast to the classical optimization process required by the quantum approximate optimization algorithm,
FALQON, a feedback-based algorithm for quantum optimization [A. B. Magann et al., Phys. Rev. Lett. 129,
250502 (2022)], enables one to obtain approximate solutions to combinatorial optimization problems without
any classical optimization effort. In this study, we leverage the specifications of a recent experimental plat-
form for the neutral-atom system [Z. Fu et al., Phys. Rev. A 105, 042430 (2022)] and present a scheme to
implement an optimally tuned small-angle controlled-phase gate. By examining the two- to four-qubit FALQON
algorithms in the MaxCut problem and considering the spontaneous emission of the neutral atomic system, we
observe that the performance of FALQON implemented with small-angle controlled-phase gates exceeds that
of FALQON utilizing controlled-Z gates. This approach has the potential to significantly simplify the logic
circuit required to simulate FALQON and effectively address the MaxCut problem, which may pave the way for
the experimental implementation of near-term noisy intermediate-scale quantum algorithms with neutral-atom
systems.
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I. INTRODUCTION

In areas such as combinatorial optimization [1] and
quantum chemistry [2], quantum computers have the poten-
tial to outweigh their classical counterparts. The logistics
and supply chain industries, as well as the pharmaceutical
and biomedical research communities, can greatly benefit
from combinatorial optimization [3]. Since it is NP-hard
to find an exact solution to broad combinatorial optimiza-
tion problems, most practical approaches focus on generating
high-quality approximations instead. Finding the ground state
of an Ising Hamiltonian Hp can be seen as an analog
to many combinatorial optimization problems when map-
ping to quantum systems [4]. Significant progress has been
made in the creation of noisy intermediate-scale quantum
machines, and there is growing interest in discovering ef-
fective algorithms meant to run on these near-term quantum
devices.

Recently, the Hp approximation ground state was proposed
and can be prepared using FALQON [5,6], a feedback-based
algorithm for quantum optimization. Unlike the quantum
approximate optimization algorithm (QAOA) [7–38], which
requires a classical optimizer to calculate quantum circuit
parameters, FALQON uses the output of qubit measurements
to constructively assign values to quantum circuit param-
eters. Consequently, FALQON overcomes the challenge of
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optimizing a large number of variational parameters, which
is a significant obstacle to QAOA scalability. However, the
downside is that this requires numerous layers in the quantum
circuit, leading to an accumulation of quantum logic gate
errors as the number of layers increases. Therefore, the focus
shifts to reducing the total number of two-qubit entangling
gates and improving their accuracy, given the successful real-
ization of high-fidelity single-qubit gates.

Two-qubit entanglement gates, such as controlled-phase
gates, play a central role in universal quantum comput-
ing [39–41]. Experimentally, the achievement of a fast and
high-fidelity controlled-phase gate has been demonstrated in
various physical systems, including nuclear magnetic reso-
nance, quantum dots, ion traps, semiconductor silicon, and
Josephson junctions [42–48]. Nevertheless, researchers have
predominantly focused on realizing controlled-Z (CZ) gates
and equivalent controlled-NOT (CNOT) gates in universal quan-
tum computing schemes, with little attention paid to the
implementation of controlled-phase gates with small angles.
In practical applications, the small-angle controlled-phase
gate is often dismissed as mathematically approximate to the
unit matrix, leading to doubts about its practical significance.
However, when combined with the insights from the literature
[49], using small-angle controlled-phase gates to decompose
the phase-separation unitary operator can significantly reduce
the number of two-qubit entangling gates and improve the
performance of FALQON. Consequently, the realization of
small-angle controlled-phase gates in real physical systems
has become a subject worth investigating in the context of
FALQON implementation.
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FIG. 1. Relevant configuration of the level for the 87Rb atom
used in Ref. [80].

Due to stable encoding in hyperfine atomic states and the
ability to manipulate and measure qubit states with laser light
[50–53], neutral atoms have emerged as a promising phys-
ical system for quantum information processing. Recently,
researchers utilized Rydberg atom arrays for quantum opti-
mization to solve the maximum-independent-set problem on
unit disk graphs [38]. However, this method lacks universality
since the researchers organically integrated the blockade of
Rydberg atoms with the characteristics of this problem, which
may not be applicable to other combinatorial optimization
problems. A more general approach would be to use Rydberg
atoms to implement quantum logic gates in quantum circuits.
The strong interaction between Rydberg atoms [54–56] led to
the theoretical proposal [57–77] and successful experimental
implementation of quantum logic gates [78–80]. Recently, our
group proposed a method to realize the continuous controlled-
phase gate set in the Rydberg blockade mechanism based on
adiabatic evolution by considering a symmetric two-photon
excitation process via the second resonance line [81]. Through
a single-temporal modulation coupling of the ground state and
the intermediate state, the logical qubit state |11〉 alone can
accumulate a dynamic phase factor for the controlled-phase
gate, adjustable from 0.08π to π by tuning the shape of the
temporal pulse. Still, some challenges remain in this scheme.
First, from an experimental standpoint, it requires a high-
power laser to couple the excitation of the intermediate state
to the Rydberg state, with a Rabi frequency of approximately
200 MHz, limiting its implementation on various neutral-atom
experimental platforms. Second, the scheme approximates the
controlled-phase gate of a small angle with a unit operator,
making it unsuitable for the implementation of the FALQON
algorithm.

In this work, we focus on exploring how to use the
experimental platform introduced in [80] to achieve robust
small-angle controlled-phase gates and utilize them to sim-
ulate the FALQON algorithm. We continue our study of a
native Rydberg two-photon excitation mechanism similar to
that described in Ref. [81], as shown in Fig. 1, where the tran-
sition from the intermediate state to the Rydberg state is driven
by a laser with a Rabi frequency of up to 50 MHz. Meanwhile,
the transition from the ground state to the intermediate state is
facilitated by a time-dependent Gaussian pulse under optimal
parameters. Unlike the model presented in Ref. [81], which
considers only the two-photon resonance, we have found in

our subsequent discussions of the fluctuation of two-photon
detuning that taking into account an appropriate two-photon
detuning δ can enhance the fidelity of small-angle controlled-
phase gates. As a result, our scheme can achieve a fast,
high-fidelity, and resilient small-angle controlled-phase gate
and enhances the performance of FALQON for a realistic
neutral-atom system.

The remainder of this paper unfolds as follows. We begin
by providing a concise overview of the FALQON princi-
ple in Sec. II. Next, in Sec. III, we elaborate on enhancing
FALQON’s performance with a realistic physical system. In
Sec. IV, we demonstrate the efficacy of FALQON using the
controlled-phase gate with a small angle by analyzing in detail
two- to four-qubit MaxCut problems. Additionally, we delve
into practical considerations such as experimental feasibility
and the impact of technical imperfections, such as fluctuations
of the external field and relevant noise. Finally, our findings
are summarized in Sec. V.

II. BRIEF REVIEW OF FALQON

Many discrete combinatorial optimization problems can
be encoded into an Ising Hamiltonian Hp (problem
Hamiltonian) [4]:

Hp =
∑

i< j

Ji jZiZ j +
n∑

i=1

hiZi, (1)

where Zi is the Pauli-Z operator for ith qubit. The problem
Hamiltonian corresponds to the objective function of the given
combinatorial optimization problem, whose minimum repre-
sents the presence of a solution. Therefore, the problem of
finding the solution that minimizes the objective function can
be converted into finding the ground state |ψ〉 of Hp [7].

The MaxCut problem is one of the most well-known op-
timization problems, attempting to partition the vertices of a
graph into two sets so that the maximum number of edges can
be cut. As a typical NP-hard problem, its problem Hamilto-
nian is Hp = 1/2

∑m
α=1(Zα1 Zα2 − 1), in which α1,2 are qubit

indices representing the vertices of the edge α. The stan-
dard approach in the quantum circuit-based QAOA to find
the ground state of Hp involves measuring the probability
distribution of the final state in the lth layer, which can
be represented as |γ β〉 = e−iβl Hd e−iγl Hp · · · e−iβ1Hd e−iγ1Hp |ψ0〉
[7]. The optimal values for all γ and β can be determined
using classical optimization techniques. In the limit as l ap-
proaches infinity, the above result can be interpreted as a
Trotterized version of the adiabatic evolution from the initial
state to the ground state of Hp.

In contrast to QAOA, FALQON does not require any
classical optimization efforts and can still help to find the ap-
proximate ground state of Hp [5,6]. Its core idea is to achieve
a monotonic decrease of 〈Hp〉 over layers. As the number of
layers increases, the lth layer of 〈Hp〉 will get closer and closer
to 〈Hp〉min, and thus, an approximate ground state is prepared.

To start with, consider a quantum system whose dynamic
is governed by

i
d

dt
|ψ (t )〉 = [Hp + Hdβ(t )]|ψ (t )〉, (2)
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where Hd is the control Hamiltonian and β(t ) is a time-
dependent control function of the system. In order to make
〈Hp〉 monotonically decrease over time, β(t ) can be set as

β(t ) = −kA(t ), (3)

where k > 0 represents the strength of the feedback signal (in
this work, we consider a fixed value of k = 2, which is enough
in practice) to make

d

dt
〈Hp〉 = A(t )β(t ) � 0, (4)

where A(t ) ≡ 〈ψ (t )|i[Hd , Hp]|ψ (t )〉.
Suppose that the time interval 2�t of the evolution of

each layer is small enough and that the continuous-time evo-
lution of the system can be approximated by Trotterization.
After evolution, the approximate ground state of an l-layer
FALQON is prepared [5,6]:

|ψl〉 = e−iβl �tHd e−i�tHp · · · e−iβ1�tHd e−i�tHp |ψ0〉, (5)

where Hd = −1/2
∑

i Xi, with X being the Pauli-X operator;
|ψ0〉 is a ground state of Hd that can easily be initialized
experimentally; and β j of the jth layer is determined by the
feedback signal of the ( j − 1)th layer without the need for an
expensive classical optimization loop, i.e.,

β j = −k〈ψ j−1|i[Hd , Hp]|ψ j−1〉. (6)

The evaluation of FALQON’s performance is achieved
using two significant metrics: the approximation ratio rA =
〈Hp〉/〈Hp〉min and the success probability φ associated with
the measurement of ground states. To optimize the efficiency
of FALQON when implementing it in a practical quantum
system, it is advantageous to consider the requisite two-qubit
entangling gates from two distinct vantage points: quantity
and quality.

III. ROUTE TO IMPROVING THE PERFORMANCE
OF FALQON

A. Quantity: Reducing the number of two-qubit
entangling gates

As the errors in quantum circuit implementation are pri-
marily attributed to two-qubit entangling gates, we assume
that all single-qubit gates are ideal and focus on reducing the
number of two-qubit entangling gates.

From an algorithm perspective, the number of two-qubit
entangling gates scales with the layers. To address this, one
possible approach is to reduce the number of layers without
compromising FALQON’s quality.

A rational increase in �t may be effective in reducing the
number of layers. Although a smaller �t can theoretically
improve the quality of the Trotterized approximation applied
to Eq. (2) and enhance the final convergent value of rA, it leads
to an increase in layers, which is detrimental to the practical
implementation of FALQON. On the other hand, as long as
the condition in Eq. (4) is satisfied, a larger �t can accelerate
the convergence of rA and potentially reduce the number of
layers while maintaining the performance of FALQON. In
most situations, the critical value of �t decreases with an in-
crease in the size of the combinatorial optimization problem,
and further details can be found in Refs. [5,6]. Therefore, the

FIG. 2. (a) Circuit diagram for three-qubit FALQON with only
the ZZ interaction term Z ⊗ Z/2 in the problem Hamiltonian
showing a single-layer cycle. (b) Decomposition of the Rzz(�t ) =
e−i�tZ⊗Z/2 interaction.

choice of rational �t plays a crucial role in enhancing the
experimental performance of FALQON.

From the implementation perspective of the quantum cir-
cuit, another possible approach to reduce the number of
two-qubit entangling gates is to rationally decompose the
unitary operator of the ZZ term in the problem Hamiltonian
from Eq. (1).

The quantum circuit used for the implementation of
FALQON is shown in Fig. 2(a), without explicitly depicting
the single-qubit operators of Hp. In implementing FALQON,
there are several approaches to decompose the unitary op-
erator of the ZZ term in Eq. (1). As shown on the left
side of Fig. 2(b), a common method is to decompose the
phase-separation unitary operators into a gate sequence con-
sisting of two CZ gates combined with several single-qubit
gates [82,83] or two CNOT gates combined with an Rz

gate. This approach requires two two-qubit entangling gates
per phase-separation unitary operator. To reduce the num-
ber of two-qubit entangling gates, it is advantageous to use
small-angle controlled-phase gates combined with several
single-qubit gates to decompose the phase-separation unitary
operators, as shown on the right side of Fig. 2(b), when im-
plementing FALQON. In this approach, only one two-qubit
entangling gate is needed per phase-separation unitary opera-
tor, thus reducing errors caused by such gates [49,81].

B. Quality: Optimizing the small-angle controlled-phase gate

To evaluate the feasibility of our approach, we will use
the experimental parameters described in Ref. [80] to assess
the effectiveness of the implemented small-angle controlled-
phase gate. The configuration of the atomic levels is depicted
in Fig. 1(a). The logic qubits are encoded into the hyper-
fine ground state of the 87Rb atom: |0〉 = |5S1/2, F = 1,

mF = 0〉 and |1〉 = |5S1/2, F = 2, mF = 0〉. Additionally,
we have introduced an uncoupled state |d〉 to represent
the leakage level outside |0〉 and |1〉 for simplicity. The
interaction between the atoms is mediated by the Ryd-
berg state |r〉 = |79D5/2, mj = 5/2〉. To coherently drive
the atoms from the ground states to the Rydberg states,
we utilize two-photon excitation lasers with counterprop-
agating σ+-polarized 780-nm and σ+-polarized 480-nm
lasers. Under the premise of considering spontaneous radi-
ation, the master equation of the system in Lindblad form
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reads

ρ̇ = −i[H (t ), ρ] + Lp[ρ] + Lr[ρ], (7)

where

H (t ) =
∑

i=a,b

1

2
�1(t )|pi〉〈1i| + 1

2
�2|ri〉〈pi| + H.c.

−�|pi〉〈pi| − δ|1i〉〈1i| + urr |rr〉〈rr| (8)

describes the coherent dynamics of the system and

Lp[ρ] =
∑

i=a,b

∑

μ=0,1,d

L(i)
μpρL(i)†

μp − 1

2

{
L(i)†

μp L(i)
μp, ρ

}
, (9)

Lr[ρ] =
∑

i=a,b

∑

ν=0,1,d,p

L(i)
νr ρL(i)†

νr − 1

2

{
L(i)†

νr L(i)
νr , ρ

}
(10)

picture the spontaneous emission from the intermediate state
|p〉 and Rydberg state |r〉 to the ground states. The jump
operator L(i)

μp(νr) = √
bμp(νr)γp(r)|μ(ν)i〉〈p(r)i|, where the

branching ratios are b0(1)p = 1/8, b0(1)p = 1/8, bd p = 3/4,
b1(0)r = 1/16, bdr = 3/8, and bpr = 1/2. At room temper-
ature (300 K), the lifetimes of states |p〉 and |r〉 are τp =
1/γp = 0.0262 μs and τr = 1/γr = 212 μs. The atomic sepa-
ration is established at a value of 3.6 µm, while the associated
Rydberg interaction strength is measured to be urr/2π =
1.855 GHz [84].

In the conducted experiment [80], it was theoretically de-
termined that the Rabi frequency �2 of 480-nm laser light
can reach a value of 91 MHz. This calculation was based
on the parameters provided with a power of 120 mW and
a beam waist of 8.3 µm. However, due to the optical route
loss experienced during the experiment, the available Rabi
frequency is limited to 50 MHz. The time-dependent Rabi
frequency �1(t ) of the 780-nm laser can be generated by com-
mercially available arbitrary wave-form generators. � and δ

represent single-photon detuning and two-photon detuning,
respectively.

The fidelity F of the gate can be defined as

F = tr[ρtρtarget], (11)

where ρt represents the state density matrix after the evolu-
tion governed by Eq. (7) from the initial state (|00〉 + |01〉 +
|10〉 + |11〉)/2 and ρtarget represents the ideal density matrix
of the target state (|00〉 + |01〉 + |10〉 + e−iθ |11〉)/2. In the
foundational literature on FALQON [5], the authors delved
into a detailed discussion of a three-qubit MaxCut instance,
specifically selecting �t = 0.2. For example, they demon-
strated that, through ideal simulation, FALQON can ensure a
consistent increase in the energy approximation ratio rA as the
number of layers increases. In this paper, we first examine the
implementation of this MaxCut instance using our approach,
and we also choose �t = 0.2. Hence, we need to implement
controlled-phase gates with a phase of θ = 2�t = 0.4 rad in
quantum circuits. First, we consider the case of a two-photon
resonance. In Fig. 1, we initially demonstrate the fidelity of
the controlled-phase gate in relation to the variational pa-
rameters (�0, �) when the system is driven by a Gaussian
pulse �0 exp[−(t − 2T )2/T 2], following the procedure to im-
plement the parameterized controlled-phase gate as outlined
in [81]. To achieve a rapid and high-fidelity logic gate, we
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FIG. 3. The fidelity of the controlled-phase gate of the Ryd-
berg atom system controlled by the Gaussian pulse �0 exp[−(t −
2T )2/T 2], which can pick up a phase θ = 2�t = 0.4 rad on |11〉, is
as a function of variational parameters (�0, �) (a) via Schrödinger-
equation simulation and (b) via master-equation simulation
(δ/2π = 0 kHz).

constrain the gate evolution time to 1 µs, which implies that
the duration of the Gaussian pulse, indicated as 4T , is set
to 1 µs. In this context, to identify the optimal parameters
for fidelity, we extensively investigated the impact of param-
eters �0 and � on fidelity across a wide range. The main
high-fidelity region, exceeding 0.98, is illustrated in Fig. 3.
When spontaneous emission is not taken into account, the
fidelity of the controlled-phase gate can exceed 0.9991 with
appropriately selected parameters. However, when account-
ing for spontaneous emission, the maximum fidelity of the
controlled-phase gate with a phase of θ = 0.4 rad is reduced
to 0.9940 (rounded to four significant figures) by configuring
{�0/2π = 24,�/2π = 160} MHz.

IV. NUMERICAL RESULTS

In our discussion, we explore the role of small-angle
controlled-phase gates in the FALQON framework to tackle
the MaxCut problem and compare it to an alternative
method to implement FALQON, which uses CZ gates on
the same quantum hardware. In Ref. [80], the authors
presented a protocol to achieve high-fidelity CZ gates, along
with detailed parameter settings. Taking into account a
graph composed of n = 2 nodes linked by a single edge,
the corresponding problem Hamiltonian is represented as
Hp = 1/2(Z1Z2 − 1). Extended to an unweighted graph
with n = 3 nodes interconnected by two edges, the problem
Hamiltonian becomes Hp = 1/2(Z1Z2 − 1) + 1/2(Z2Z3 − 1).
In implementation, we consider a 20-layer evolution for the
two-qubit FALQON and a 30-layer evolution for the three-
qubit FALQON. The approximation ratio rA of FALQON
from our numerical simulations is illustrated in Figs. 4(a) and
4(e). As shown by the blue and orange lines, the two schemes
exhibit nearly equivalent performance, and FALQON exhibits
a consistent increase in rA in the two- and three-qubit cases
examined without accounting for spontaneous emission.
When spontaneous emission is taken into account, the
performance of FALQON in both schemes decreases, as
indicated in Figs. 4(a) and 4(e). In the scheme utilizing CZ

gates, despite the high fidelity of individual CZ gates, the
number of two-qubit entangling gates required for the same
number of layers is doubled. Consequently, the impact of
spontaneous emission on the scheme implemented with CZ

gates is significantly greater, as illustrated by the purple lines
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FIG. 4. The numerical simulation results of two-qubit and three-qubit FALQON implemented by the controlled-phase gates via a Gaussian
pulse with phase θ = 0.4 rad (�t = 0.2, δ/2π = 0 kHz). The approximation ratio rA of each layer is plotted in (a) and (e). The success
probability φ is plotted in (b) and (f). The values of β are plotted in (c) and (g). The measure probabilities of logical states in the 14th and 15th
layers are plotted in (d) and (h), respectively.

in Figs. 4(a) and 4(e). Another aspect of assessing the perfor-
mance of FALQON involves the probability of success φ. The
numerical simulation results for φ are displayed in Figs. 4(b)
and 4(f). In the two-qubit instance examined, φ represents
the combined measurement probabilities of the ground states
|01〉 and |10〉. Moreover, for the three-qubit instance under
consideration, the ground states are |010〉 and |101〉. The lines
in Figs. 4(c) and 4(g) illustrate the values of β determined by
the feedback data. In the presence of spontaneous emission,
the success probability φ peaks at layer 14 for the two-qubit
FALQON and at layer 15 for the three-qubit FALQON, as
shown by the yellow lines in Figs. 4(b) and 4(f). For these
layers, the measurement probabilities for various states of
logical computational basis are depicted by the yellow bars in
Figs. 4(d) and 4(h). In contrast to the blue bars representing
simulations without spontaneous emission, these results
underscore the challenges posed by spontaneous emission for
these problem instances. Excluding single-qubit gates, the
total evolution times for circuits adopting CZ gates are 80 µs
(n = 2) and 240 µs (n = 3), whereas for circuits employing
small-angle controlled-phase gates, the overall evolution
times are reduced to 20 µs (n = 2) and 60 µs (n = 3). For
more complex systems, the need for additional layers to
approach the solution increases, leading to an accumulation
of two-qubit gate errors. This underscores the advantages
of the FALQON scheme using small-angle controlled-phase
gates: it not only enhances algorithm performance when
accounting for spontaneous emission but also reduces
execution time.

Now, we study the influence of �t on the performance of
FALQON in the physical system considered. By judiciously

increasing the value of �t without violating the condition
in Eq. (4), the performance of FALQON can be somewhat
improved, especially when we account for spontaneous
emission. As shown in Fig. 5, rational selection of a larger
�t can accelerate the convergence of rA. When we ignore
the effects of spontaneous emission and select larger layers
�t , the layers needed by FALQON to achieve the same
performance can be reduced in both schemes. This method
will continue to exhibit varying degrees of improvement for
both schemes even when we consider spontaneous emission.
Therefore, within the same combinatorial optimization
problem, a rational increase in �t can be a good way to reduce
the number of layers and improve the experimental feasibility.

When the scale of the MaxCut problem is extended to
involve more qubits, the number of different graph types also
increases correspondingly. Therefore, in this study, we scale
up the MaxCut problem to a four-qubit scenario and inves-
tigate the impact of different graph types on the FALQON
algorithm by considering three common types of graphs in
Fig. 6(a). The results of the numerical simulation of the ap-
proximation ratio rA are depicted in Fig. 6(b). It is obvious
from the outset that when expanded to encompass four qubits,
the FALQON algorithm remains effective, achieving high
levels of rA regardless of whether spontaneous emission is
considered or not. Among the considered cases, while the type
of graph does not appear to affect the final converged value
very much, it does influence the rate of convergence. Within
the same interval �t , graph type III, with the best symmetry,
converges the fastest, followed by type II, with type I showing
the slowest convergence rate. The detailed parameter β of
each layer is shown in Fig. 6(c). This may imply that when
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FIG. 5. The numerical simulation results of rA in (a) and (b) two-
qubit and (c) and (d) three-qubit FALQON when selecting different
�t . Among these, (a) and (c) are simulated using the Schrödinger
equation, and (b) and (d) are simulated using the master equation.
The solid lines represent the scheme implemented with small-angle
controlled-phase gates, and the dashed lines represent the scheme
implemented with CZ gates (δ/2π = 0 kHz).

a fixed �t is set to handle the MaxCut problem of different
types of graphs with the same number of qubits, the FALQON
algorithm may perform better on graphs with better symmetry.

In the preceding discussion, the logic gate error was con-
sidered only for spontaneous emission, which is intrinsic to
the system and impossible to avoid. When multiple fields are

FIG. 6. The numerical simulation results of four-qubit
FALQON. (a) The three different types of graphs considered
in the four-qubit MaxCut problem. (b) The approximation ratio rA of
each layer. (c) The circuit parameter β of each layer. The solid lines
are simulated using the Schrödinger equation, and the dashed lines
are simulated using the master equation (δ/2π = 0 kHz).

FIG. 7. The fidelity of the optimally tuned controlled-phase gate,
with angles (a) and (c) θ = 0.4 rad and (b) and (d) θ = 0.8 rad,
is assessed under two distinct conditions: (a) and (b) laser-intensity
fluctuation, and (c) and (d) two-photon detuning fluctuation.

applied in experiments on neutral-atom systems, the intensity
fluctuation of the laser fields and the two-photon δ fluctuation
will also have an impact on the fidelity of the logic gates.
The system Hamiltonian considering the intensity fluctuation
of the laser fields and the two-photon δ fluctuation can be
written as

H�,δ =
∑

i=a,b

1

2
(�1(t ) + δ�1)|pi〉〈1i| + 1

2
(�2 + δ�2)|ri〉〈pi|

+ H.c. − �|pi〉〈pi| − δ|1i〉〈1i| + urr |rr〉〈rr|, (12)

where δ�i represents the time-dependent fluctuation intro-
duced in the driving Rabi frequency. The numerical results
for these forms of noise that affect the fidelity of logic gates
are individually shown in Fig. 7, where �1 = ∫

�1(t )dt/4T .
This analysis of fluctuations indicates that fluctuations do
not necessarily have a negative impact on the fidelity of
logic gates. This inspired us to start with a higher value
of �2, and an appropriate value of δ in the experiment
may help to improve the fidelity of logic gates. However,
due to the constraints imposed by the experimental platform
considered, �2/2π cannot exceed 50 MHz, but δ can be
achieved considering the two-photon detuning in the model.
Figure 8 represents the results for the numerical simulation
of rA with an appropriate δ, indicating that choosing an ap-
propriate detuning parameter δ also contributes to improving
the algorithm performance. Compared to the results for the
two-photon resonance (δ/2π = 0 kHz), the performance of
FALQON is improved to some extent in Fig. 8. Further-
more, we anticipate that, on experimental platforms that allow
�2/2π to exceed 50 MHz, the fidelity of controlled-phase
gates at small angles will increase, thus further enhancing the
performance of FALQON.
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FIG. 8. The numerical master-equation simulation results of rA

for (a) two-qubit FALQON and (b) three-qubit FALQON (�t = 0.2)
under δ/2π = −5.6 kHz (red lines) and δ/2π = 0 kHz (blue lines)
implemented with small-angle controlled-phase gates.

Unlike the fluctuations discussed earlier, the laser phase
noise can have only a negative effect on the optimally tuned
controlled-phase gates. Laser phase noise can be expressed
as �i(t ) = �i exp[iφi(t )], where φi(t ) is a stochastic process
associated with power spectral density φi(t ) characterized by
the phase-modulated Fourier frequency f . However, directly
quantifying laser phase noise is challenging, as Sφ ( f ) is based
on specific experimental test results [85,86]. Fortunately, the
average effect of laser phase noise leads to Rabi oscillation
dephasing [87,88], and it can be described in the form of
Lindblad operators as

Lln[ρ] =
∑

i=a,b

L(i)
ln ρL(i)†

ln − 1

2

{
L(i)†

ln L(i)
ln , ρ

}
, (13)

where Ll1 =
√

γ 1
d p(|p〉〈p| − |1〉〈1|) and Ll2 =

√
γ 2

d p(|r〉〈r| −
|p〉〈p|) describe the dephasing between |p〉 and |1〉 and be-
tween |r〉 and |p〉 caused by the phase noise of �1(t ) and
�2, respectively. The numerical results in Fig. 9 show the
negative effect of two dephasing rates of γ

1(2)
d p ∈ [0, 20] kHz

on gate fidelity, and the dephasing between |p〉 and |1〉 is more
influential. We expect that as quantum devices advance, the
adverse effects of laser phase noise will diminish, paving the
way for high-fidelity small-angle controlled-phase gates.
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FIG. 9. The optimally tuned controlled-phase gates of (a) phase
θ = 0.4 rad (δ/2π = −5.6 kHz) and (b) θ = 0.8 rad (δ/2π =
−6.0 kHz) fidelity with laser phase noise governed by Eqs. (7)
and (13).

V. CONCLUSION

In conclusion, we evaluated an approach for the deploy-
ment of a high-fidelity and resilient small-angle controlled-
phase gate of Rydberg atoms using an experimental platform
based on 87Rb [80]. Following that, we investigated its
application to combinatorial optimization problems using
FALQON. The FALQON algorithm is characterized by its in-
dependence from expensive classical optimization resources.
However, it requires deeper computational depth to achieve
convergence, making it more susceptible to errors, which
are mainly introduced by two-qubit entanglement gates. To
address this challenge, we proposed an improved implementa-
tion scheme for FALQON. This scheme not only significantly
reduces the required number of two-qubit entanglement gates
but also enhances the quality of individual two-qubit entan-
glement gates. We investigated the benefits of this method in
the case of MaxCut issues involving two to four qubits. Our
results show that our technique improves FALQON’s perfor-
mance, allowing it to outperform the scheme implemented
with CZ gates and maintain good convergence performance
for different types of graphs even when spontaneous emission
is taken into account. We also discussed the resistance of
the logic gate to laser-intensity fluctuation, detuning fluctu-
ation, and laser phase noise. Therefore, our research holds
considerable significance for the implementation and realiza-
tion of the quantum advantage of FALQON.

While our research primarily focuses on FALQON, the im-
plications of our findings extend to other quantum algorithms
reliant on small-angle controlled-phase gates in quantum cir-
cuit implementations, such as the quantum Fourier transform
and the QAOA. Specifically, executing a quantum Fourier
transform with a larger number n of qubits requires controlled-
phase gates with smaller angles, represented as θ = 2π/2n.
Furthermore, the utilization of small-angle controlled-phase
gates becomes increasingly probable in the context of the
QAOA when more intricate combinatorial optimization prob-
lems are tackled, as optimal parameters at small angles are
more likely to emerge during optimization. Additionally,
small-angle controlled-phase gates find application in com-
posite controlled-phase gates, which serve to compensate for
errors in the phase of a single gate [89]. Moreover, our model
can be extended to various combinatorial optimization issues,
including exact-cover problems. We anticipate that our find-
ings will significantly contribute to the practical realization
of quantum computers and quantum algorithms in near-term
neutral-atom systems.
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