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Variational quantum algorithms (VQAs) have demonstrated considerable potential in solving NP-hard combi-
natorial problems in the contemporary noisy intermediate-scale quantum (NISQ) era. The quantum approximate
optimization algorithm (QAOA) is one such algorithm, used in solving the maximum cut (Max-Cut) problem
for a given graph by successive implementation of L quantum circuit layers within a corresponding Trotterized
ansatz. The challenge of exploring the cost function of VQAs arising from an exponential proliferation of local
minima with increasing circuit depth has been well documented. However, fewer studies have investigated the
impact of circuit depth on QAOA performance in finding the correct Max-Cut solution. Here we employ basin-
hopping global optimization methods to navigate the energy landscapes for QAOA ansätze for various graphs,
and analyze QAOA performance in finding the correct Max-Cut solution. The structure of the solution space is
also investigated using discrete path sampling to build databases of local minima and the transition states that
connect them, providing insightful visualizations using disconnectivity graphs. We find that the corresponding
landscapes generally have a single funnel organization, which makes it relatively straightforward to locate
low-lying minima with good Max-Cut solution probabilities. In some cases below the adiabatic limit the second
lowest local minimum may even yield a higher solution probability than the global minimum. This important
observation has motivated us to develop broader metrics in evaluating QAOA performance, based on collections
of minima obtained from basin-hopping global optimization. Hence we establish expectation thresholds in
elucidating useful solution probabilities from local minima, an approach that may provide significant gains in
elucidating reasonable solution probabilities from local minima.

DOI: 10.1103/PhysRevA.109.062602

I. INTRODUCTION

The initial setback of implementing practical quantum
algorithms utilizing the quantum phase estimation (QPE) ar-
chitecture onto current-day noisy intermediate-scale quantum
(NISQ) devices [1–3], which typically possess short deco-
herence times [4] and significant quantum noise [5], has
prompted the rapid development of variational quantum al-
gorithms (VQAs) with shorter quantum circuit depths [6–8].
VQAs typically operate within a hybrid classical-quantum
optimization framework [9], where an initial quantum state
is evolved by a parameterized circuit ansatz on a quantum
device. After the final evolved wave function is measured,
a classical optimizer evaluates the cost function from the
measurement and subsequently suggests new parameters that
are fed back into the parameterized quantum circuit. This
interface between classical and quantum computers iterates
until a suitable convergence criterion is attained. VQAs have
proved to be surprisingly robust in tackling various sources
of noise attributed to NISQ devices, such as decoherence [10]
and depolarization [11]. These properties are ascribed to the
innate variational nature acting as a parametric lever, which
can be flexibly adjusted even under noisy environments [12].
Coupled with the recent advances in error-mitigation methods

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[13–15], it is anticipated that VQAs will enable the realization
of practical quantum advantage before the advent of fault-
tolerant devices equipped with error-correction protocols [16].

The quantum approximate optimization algorithm
(QAOA) is a VQA that monotonically improves in
performance as the number of quantum circuit layers in
the ansatz increases [17]. Variational quantum eigensolver
(VQE) algorithms typically utilize the global minimization
of the cost landscape directly as the solution of interest [18].
In contrast, QAOA uses the resulting final wave function
to obtain approximate solutions based on the states in
the computational basis with the highest frequency when
measurement after circuit evolution is carried out. Hence
QAOA is a particularly attractive algorithm for solving
combinatorial optimization problems, such as Max-Cut [19],
with promising applications in portfolio optimization [20]
and chemistry [21,22].

The expansion of VQAs has also motivated the study of
their potential shortcomings in solving practical large-scale
problems from a software perspective. In particular, for vari-
ous VQA ansätze there is an exponential growth in the barren
plateau problem as the number of qubits and circuit lay-
ers required to encode a given problem increases [23–25].
Recently, more insight has also been gained into the chal-
lenges of exploring the cost landscapes of VQAs that arise
from a proliferation in the number of local minima and other
stationary points as the complexity of the problem increases
[26,27]. However, further analysis of the organization of
the global cost landscapes of VQAs, and how this structure
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impacts the quality of the solutions obtained, is needed, espe-
cially for QAOA [28,29].

Here we seek to address these gaps in understanding
using the well-established theory and associated computa-
tional methodology of molecular energy landscapes [30,31].
We characterize the cost optimization landscapes of QAOA
for various weighted and unweighted graphs in solving the
Max-Cut problem using basin-hopping global optimization
methods [32–34] to locate global minima, and discrete path
sampling [35,36] to create connected databases of minima
and the transition states that connect them. Recently, energy
landscape techniques have demonstrated considerable utility
for quantum computing in the analysis of hardware-efficient
ansätze for the VQE algorithm [37], and optimization of
electronic wave functions in a combined discrete space of
operators and continuous parameter amplitudes [38]. Our
results for QAOA show that the solution landscapes below
the adiabatic limit generally possess single-funneled struc-
tures associated with self-organizing systems where locating
the global minimum is relatively straightforward [30,39,40].
Furthermore, we find that local minima sufficiently close in
energy to the global minimum may also exhibit good solution
probabilities for the Max-Cut problem. In some instances, the
second lowest minimum has a higher solution probability than
the global minimum, highlighting the importance of studying
the VQA solution landscape globally. This observation leads
us to introduce metrics that take into account the distribution
of minima in evaluating the performance and robustness of
QAOA. We also utilize the convex hull of the solution space
in estimating expectation cutoffs for the location of local
minima with reasonable solution probabilities. We hope that
these techniques can advance the feasibility of implementing
QAOA for problems with numerous local minima in noisy
environments.

II. METHODOLOGY

Given an undirected graph G = (V, E ), with weights wi j

assigned to edges ei j ∈ E for connected vertices i, j ∈ V , the
Max-Cut problem seeks to partition V into two distinct sets
such that the sum of weights between the two sets is maxi-
mized. If wi j = 1 for all ei j , then G is said to be an unweighted
graph; otherwise G is a weighted graph. It follows that the
Max-Cut problem can be mapped to a two-spin Ising-type cost
Hamiltonian ĤC corresponding to N implementable qubits:

ĤC = 1

2

∑
ei j∈E

wi j (Zi ⊗ Zj ), (1)

where Z is the Pauli matrix Z, and the states |s〉 = {|α〉, |β〉}⊗N

encode the desired solution strings to the Max-Cut problem,
with |α〉 = |0〉 if and only if |β〉 = |1〉, and vice versa. Thus,
the aim of QAOA is to approximate the ground-state energy or
the lowest eigenvalue of ĤC via a suitable ansatz with unitary
operator Û (θ) to evolve an initial state |ψ0〉, and subsequently
use the final evolved state |�(θ)〉 = Û (θ)|ψ0〉 to approximate
|s〉. This objective can be achieved on a quantum device by
performing a certain number of shots per experiment and mea-
suring all qubits in the computational basis, taking the state
possessing the greatest number of shots to best approximate

|s〉 for that experiment. We seek to simulate this procedure
classically by considering the probability of measuring the
state |s〉 in the computational basis, p(|s〉):

p(|s〉) = |〈s|�(θ)〉|2. (2)

The objective function to be minimized by the classical com-
puter is the expectation of ĤC , 〈ĤC〉:

〈ĤC〉 = E (θ) = 〈ψ0|Û †(θ)ĤCÛ (θ)|ψ0〉. (3)

The QAOA ansatz with parameters θ = {γ, δ} can be assem-
bled as a Trotterized variational schedule, comprising a cost
circuit layer with unitary operator ÛC (γ ), followed by a mixer
circuit layer with unitary operator ÛM (δ) up to a circuit depth
L:

|�(γ, δ)〉 =
L∏

l=1

ÛM (δl )ÛC (γl )|ψ0〉, (4)

where |ψ0〉 = |+〉⊗N is the state encoding for all possible
partitions of V with equal probability. The cost layer encoding
ĤC can be compiled as a sequence of two-qubit parameterized
Rzz quantum gates for qubits qi and q j , with γ scaled based on
the weights of ei j :

ÛC (γ ) = e−iγ ĤC

=
∏

ei j∈E
Rzz(−wi jγ ).

(5)

The mixer layer performs a time evolution of the mixer Hamil-
tonian ĤM = −∑N

i=1 Xi, where X is the Pauli matrix X , of
which ĤM anticommutes with ĤC and has |ψ0〉 as an eigen-
vector. The mixer layer can be realized as a parallelization of
single-qubit parameterized Rx quantum gates:

ÛM (δ) = e−iδĤM

=
N⊗

i=1

Rx(2δ).
(6)

It has been shown that QAOA conforms to the adiabatic theo-
rem; i.e., for L → ∞ the final evolved state |�(θ)〉 converges
exactly to the ground state of ĤC and thus gives the optimal
p(|s〉) [17]. In practice, such an implementation is unfeasible
in the NISQ regime, hence we are interested in considering
Lad for a given system, defined as the minimum number of
circuit layers required to reach the adiabatic limit, assuming
that Lad can be attained. As we will demonstrate in our analy-
sis of the energy landscapes of QAOA, it is also important to
distinguish Lad from Lmin, where Lad � Lmin. Here Lmin is the
minimum number of layers needed to achieve the maximum
p(|s〉) in the corresponding global minimum. Local minima
with lower p(|s〉) may be present due to underparametrization
of the circuit ansatz, and hence a less thorough exploration of
states in the Hilbert space may be sufficient to obtain a useful
solution. We hypothesize that the exponential increase in the
number of local minima is attributable to circuit ansätze with
1 � L � Lmin layers. The behavior of local minima may vary
for Lmin < L � Lad layers if Lmin < Lad , and we observe for
various graphs that the number of local minima may increase
first before decreasing to the adiabatic limit, or instead de-
crease monotonically.
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FIG. 1. (a) (left) Weighted graph G1 encoded with four qubits.
(b) (right) Corresponding QAOA ansatz for G1

For each graph considered and L, we generate an ini-
tial set of minima via basin-hopping global optimization
[32–34] using the GMIN program [41]. The analytic gradients
of the parameterized rotation gates were calculated via the
parameter-shift rule [42] (see Appendix A for more details):

∂E (θ)

∂θi
= 1

2

[
E

(
θ + π

2
ei

)
− E

(
θ − π

2
ei

)]
, (7)

where ei is the unit vector of θi. Local minimization for
the basin-hopping steps employed a limited-memory Broyden
[43], Fletcher [44], Goldfarb [45], Shanno [46] (L-BFGS)
procedure [47,48] equipped with the Metropolis criterion for
accepting or rejecting steps [49]. The resulting minima were
then employed as the starting points for construction of a
kinetic transition network [50–52]. Discrete path sampling
[35,36] (DPS) was used via connection attempts for selected
minima pairs with final states |�(θμ)〉 and |�(θν )〉. The
doubly-nudged [53,54] elastic band [55–58] approach was
used to locate candidates for accurate transition state refine-
ment by hybrid eigenvector following [59–61]. The missing
connection algorithm [62] was used to select pairs of minima
to fill in the gaps in incomplete pathways via Dijkstra’s short-
est path algorithm [63] combined with a distance metric based
on the state overlap between local minima, Sμν :

Sμν = 1 − |〈�(θμ)|�(θν )〉|. (8)

Any new minima are added to the database along with
the transition states and connection information. The result-
ing cost landscapes can be visualized using disconnectivity
graphs, where the local minima are segregated into disjoint
sets for regular thresholds in the energy [39,64]. In these
graphs, the bottom of a branch corresponds to the energy
of a local minimum, and the branches are joined when the
corresponding minima can interconvert via a pathway below
the given threshold. Visualization of the energy landscape can
be further enhanced by coloring each minimum with the corre-
sponding probability of finding the correct Max-Cut solution;
we find this construction especially useful in comparing the
solution landscapes as L varies.

As an example, consider the weighted graph G1 with four
vertices [Fig. 1(a)], where the Max-Cut problem can be en-
coded as a four-qubit QAOA ansatz with varying L [Fig. 1(b)].
We note that although the ansatz cost circuit layer can be
compiled in numerous ways, the arrangement in Fig. 1(b)
is ideal in reducing the overall circuit depth. This order-
ing does not require swap gates to permute nonneighboring
qubits corresponding to their respective edges, which is an
important consideration when transpiling QAOA onto planar

FIG. 2. Contour plot of 〈ĤC〉 for graph G1 and its QAOA ansatz
with L = 1 against the parameters γ and δ. The solid line depicts the
minimum of each vertical slice of the contour plot, with the global
minimum (GM, green circle), local minimum (LM, red triangle), and
the transition state connecting them (TS, black cross) situated on
the pathway that is also plotted. (b) Corresponding disconnectivity
graph of the contour plot in (a), with both the GM and LM colored
(grayscaled) based on their respective probabilities of obtaining the
correct Max-Cut solution of |αβαβ〉.

superconducting processors [65]. The cost landscape of the
L = 1 circuit ansatz features a global and a local minimum
connected by a transition state [Fig. 2(a)], and the correspond-
ing disconnectivity graph is shown in Fig. 2(b), where the
branches are colored with the probabilities of finding the state
|αβαβ〉, which corresponds to the Max-Cut solution of G1.

III. RESULTS

A. Complete unweighted graphs

We begin by examining the QAOA circuit ansätze for the
complete unweighted graph series KN from N = 3 to N = 8

TABLE I. Number of minima M (top value) and the highest
correct Max-Cut probability (HCMP) (bottom value) for graphs K3 to
K8 with varying L obtained from basin-hopping global optimization.
For the case of K8 and L = 3, the HCMP is not equal to the maximum
value of 1, and the number of decimal places used for all HCMPs is
chosen to be the same as this case for ease of comparison.

Graph L = 1 L = 2 L = 3

1 1 1
K3

1.000000 1.000000 1.000000

1 1 1
K4

0.739106 1.000000 1.000000

1 4 1
K5

0.975990 1.000000 1.000000

1 23 324
K6

0.671340 0.994239 1.000000

1 37 598
K7

0.951350 0.999619 1.000000

1 46 3418
K8

0.629727 0.991483 0.999997
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FIG. 3. Disconnectivity graphs of K6, K7, and K8 for L = 2.

and from L = 1 to L = 3, where each vertex is connected
to every other vertex with unit weight. It follows that the
Max-Cut solution of KN is the set of all possible tensor prod-
uct permutations of �N/2	 number of |α〉 states and 
N/2�
number of |β〉 states: thus the total number of Max-Cut solu-
tions for odd N is 2N!/{�N/2	!
N/2�!}, and for even N it is
N!/{2(N/2)!} solutions.

Table I summarizes the number of minima M and the high-
est correct Max-Cut probability (HCMP) from the collections
of minima obtained via basin-hopping global optimization for
L = 1 to L = 3. The complete graphs with odd N generally
possess higher HCMPs than their even counterparts, mainly
due to their greater number of accepted Max-Cut solutions
that contribute to their corresponding probabilities. We also
find that although for K6 to K8 the expected exponential in-
crease in M is observed as L increases, for K5 there was a
decrease in the number of minima from L = 2 to L = 3, lead-
ing to a simplification in the energy landscape from Lmin = 2
to Lad = 3. Looking at the disconnectivity graphs of K6 to K8

for L = 2 (Fig. 3) and L = 3 (Fig. 4), we observe that the ma-
jority of the local minima generally possess very high correct

Max-Cut probabilities, particularly those closer to the global
minimum, especially as L and M increase. The well-funneled
organization of the landscape also becomes more apparent
as L increases, and this structure is expected to outweigh
the challenges associated with solving the Max-Cut problem
for higher N , particularly for K8, where local minima with
low probabilities are increasingly interspersed with other local
minima corresponding to higher probabilities.

To further evaluate the performance of QAOA ansätze for
various L based on the databases of minima and their respec-
tive Max-Cut probabilities and 〈ĤC〉 values, we introduce the
weighted average metric F :

F = 1

M|〈ĤC〉min|
M∑

m=1

|〈ĤC〉min − 〈ĤC〉m|[1 − pm(|s〉)], (9)

where 〈ĤC〉min is the 〈ĤC〉 value of the global minimum. This
formulation of F is advantageous for two reasons. First, it
distinguishes circuit ansätze with Lad and Lmin layers, since for
Lad , F = 0 because only the global minimum is present, com-
pared to Lmin where other local minima with lower Max-Cut
probabilities are present. Second, F reflects the contribution

FIG. 4. Disconnectivity graphs of K6, K7, and K8 for L = 3.
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TABLE II. The weighted average metric F for graphs K5 to K8

of varying L.

Graph L = 1 L = 2 L = 3

K5 0.002276 0.067219 0.000000
K6 0.083438 0.060651 0.007907
K7 0.005269 0.119087 0.026351
K8 0.081604 0.190701 0.038062

of minima for circuit ansätze with L < Lmin more accurately,
since it is possible for minima with lower 〈ĤC〉 values,
including the global minimum, to possess lower Max-Cut
probabilities than their counterparts with higher 〈ĤC〉 values.
As L increases, a decrease in the value of F can generally be
interpreted as an improvement in QAOA performance, since
it corresponds to an increase in the proportion of local min-
ima with better probabilities. However, the converse situation,
where F increases as L increases, may not necessarily signify
a drop in QAOA performance, as the well-funneled organi-
zation of the cost landscape and the guarantee of obtaining
a better Max-Cut probability, may outweigh the trade-off in
obtaining a lower proportion of local minima with relatively
good probabilities. Nevertheless, we propose choosing circuit
ansätze with L layers that feature sufficiently low values of
F when simulating QAOA on noisy quantum devices, as
choosing circuits with higher L may also increase the impact
of quantum gate and qubit decoherence noise.

Analyzing the F values for K5 to K8 (Table II), we ob-
serve that for K5, F = 0 for Lad = 3, differentiating it from
Lmin = 2, as expected. Interestingly, with the exception of
K6, F appears to increase for L = 2 before decreasing for
L = 3. The increase in F can mainly be attributed to the
general increase in the number of local minima for L = 2 with
lower probabilities than that of the single global minimum
for L = 1. This trend is evident in the scatter plots of the
probabilities of the correct Max-Cut solution against 〈ĤC〉 for
the databases of minima for varying L (Fig. 5). The somewhat
triangular convex hull of the solution space, Cs, seems to be-
come better defined with the transition from L = 2 to L = 3.
We also see a proliferation of local minima towards the apex
of the global minimum, which would explain the observed

FIG. 6. 3-regular unweighted graphs 6a–8e investigated in this
study.

subsequent decrease in F . Thus, a choice of L = 3 would be
adequate for solving the Max-Cut problem for graphs K5 to
K8 based on their F values.

B. 3-regular unweighted graphs

Next, we analyzed all connected 3-regular unweighted
graphs with six and eight vertices [66] from L = 1 to L = 4,
labeled 6a–8e, respectively (Fig. 6). In terms of the number
of minima obtained from basin-hopping runs, the 3-regular
graphs generally possess lower M values than the complete
graphs of K6 and K8, particularly for graphs with eight vertices
(Table III). For graph 6b, starting from L = 1 its QAOA ansatz
gives rise to more than one minimum, which subsequently
produces a more rapid increase in M compared to its coun-
terpart 6a. This phenomenon can largely be attributed to the
relatively more complex analytic expression of 〈ĤC〉 with the
L = 1 circuit ansatz [67] for 6b. Another interesting pair of
graphs is 8d and 8e, where, although their L = 1 analytic
expressions of 〈ĤC〉 are identical and thus give rise to the
same 〈ĤC〉min value [67], we find that the trends of M and
HCMPs for higher L are markedly different. Although the
3-regular series of graphs give rise to lower M for similar
L, and hence somewhat simpler energy landscapes compared
to their complete graph counterparts, their HCMPs are also
comparatively lower, hence requiring a greater L to achieve a

FIG. 5. Scatter plots of probabilities of the correct Max-Cut solutions against 〈ĤC〉 for individual minima of graphs K6, K7, and K8 for
L = 1 (black circle), L = 2 (red square), and L = 3 (green diamond).
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TABLE III. Number of minima M (top value), HCMPs (middle
value) and F (bottom value) for graphs 6a–8e of varying L obtained
from basin-hopping global optimization. HCMPs with asterisks in-
dicate that they correspond to the next highest local minimum rather
than the global minimum.

Graph L = 1 L = 2 L = 3 L = 4

1 5 23 145
6a 0.400816 0.720917 0.933445* 0.996304

0.254240 0.224891 0.167129 0.093993

3 20 191 1451
6b 0.274835 0.659823 0.915348 0.978625

0.772861 0.615867 0.510817 0.340108

1 4 16 83
8a 0.142701 0.349371 0.616672 0.748746

0.427166 0.363476 0.497637 0.428079

1 4 15 97
8b 0.232056 0.420045* 0.638057 0.767138

0.355057 0.325065 0.426828 0.380643

1 4 18 82
8c 0.077352 0.182753 0.536762 0.701246

0.516636 0.560946 0.519856 0.429701

1 6 31 151
8d 0.186302 0.520680 0.871573 0.972013

0.500506 0.360078 0.258910 0.141219

1 4 15 110
8e 0.321737 0.574918* 0.769975 0.918878*

0.286668 0.241691 0.302882 0.300042

sufficiently high HCMP. In some cases, the HCMPs were de-
rived not from the global minimum, but from the next highest
local minimum. (See Appendix B detailing the differences in
Max-Cut probabilities and 〈ĤC〉 values between the two min-
ima for these cases.) This phenomenon appears sporadically
without much predictability, most notably for graph 8e, where
the HCMP corresponds to the next highest local minimum for
L = 2 and L = 4. Overall, these observations further under-
line the importance of evaluating QAOA performance based
on the correct Max-Cut probabilities of individual minima
independently alongside their 〈ĤC〉 values.

The distributions of minima for the 3-regular graphs with
varying L differ significantly from their complete graph coun-
terparts (Fig. 7). We observe that the convex hulls of the
3-regular graphs tend to take on a more compact shape, with
greater correlation between the p(|s〉) and 〈ĤC〉 values for the
individual minima. However, for graphs 8a, 8b, and 8e there
is a notable absence of minima with intermediate p(|s〉) and
〈ĤC〉 values, particularly for higher L. This structure is also
reflected in their disconnectivity graphs (refer to Appendix C
for the disconnectivity graphs of 6a–8e). Another major dif-
ference of the 3-regular graphs is the much reduced energy
differences between minima with low proximity to the global
minimum and their connected transition states, producing
more streamlined and single-funneled disconnectivity graphs
than for K6 and K8. However, even though the energy land-
scapes of the 3-regular graphs appear less complex and easier
to navigate than their complete graph counterparts, the local

minima in their energy landscapes give rise to a larger range
of p(|s〉). Hence a greater proportion of local minima with
high energies possess low Max-Cut probabilities. This trend is
captured by comparing F values between the 3-regular graphs
and the complete graphs K6 and K8, where the former graphs
typically have much higher F values than the latter.

Comparing F values among the 3-regular graphs, we ob-
serve that graphs 6a and 6b follow a smooth downward trend
with increasing L, while the 8-vertex graphs tend to peak at
L = 2 and L = 3 before decreasing, with the exception of
8d, which follows a similar trend to the 6-vertex graphs. The
performance of the 8-vertex graphs at L = 2 and L = 3 can be
attributed to an increase in the number of local minima with
low Max-Cut probabilities that outweigh the general improve-
ment in HCMPs and low-lying minima, while for graph 8d
this effect is reversed, with an increase in HCMPs and minima
with good probabilities. At L = 4, a greater proportion of min-
ima with high p(|s〉) appear for all 3-regular graphs, and we
therefore recommend a minimum of L = 4 when employing
QAOA for these cases.

Another factor that supports the choice of L = 4 comes
from the construction of heuristic expectation thresholds that
aim to identify minima with sufficiently high p(|s〉) values.
This analysis can be carried out by finding the intercepts of
the corresponding convex hulls with a suitable probability
cutoff pop. For the 3-regular graphs we choose pop = 0.5 and
define the difference in 〈ĤC〉 values from the global mini-
mum to the two intercepts as the worst-case and best-case
expectation cutoffs, d1 and d2, respectively, where d1 < d2.
We observe that the expectation thresholds generally expand
as L increases (Table IV), with d1 and d2 attaining their highest
values at L = 4. For L � Lmin the widening and stabilizing of
expectation thresholds is significant, along with the increase
in M as L increases. We see that a greater number of minima
that possess a wider range of 〈ĤC〉 values with a sufficiently
high p(|s〉) exist within the solution landscape for the QAOA
ansatz.

C. Competing QAOA Max-Cut solutions

Finally, we explore competing Max-Cut solutions |αβαβ〉
and |ααββ〉 for a series of four-vertex weighted graphs with a
common variable weight x, where x = (0, 3, 4, 5) correspond
to the graphs (G2, G3, G4, G5), respectively (Fig. 8). These
graphs open up two modes of analysis: they allow compar-
ison between G2 with the more complex graphs G3 − G5,
particularly with G3, since both sets of graphs have |s〉 =
|αβαβ〉. Comparisons between G3 − G5 can also be carried
out, since G5 possesses a different correct Max-Cut solu-
tion of |ααββ〉, while for G4 both |αβαβ〉 and |ααββ〉 are
correct Max-Cut solutions. We will denote the alternative
Max-Cut solution for a given graph as |t〉, thus for G3, |t〉 =
|ααββ〉; for G5, |t〉 = |αβαβ〉, and G4 has no alternative
solution.

We find that implementing QAOA for the weighted graphs
G2 − G5 is more difficult than for the complete unweighted
graph K4, as their energy landscapes are much more complex
due to an increase in M and a decrease in their respective
HCMPs (Table V). The disconnectivity graphs of G2 − G5 ex-
hibit similar topological features to the 3-regular unweighted
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FIG. 7. Scatter plots of probabilities of the correct Max-Cut solutions against 〈ĤC〉 for connected minima of graphs 6a–8e for L = 1 (black
circle), L = 2 (red square), L = 3 (green diamond), and L = 4 (blue triangle).

graphs, possessing a well-funneled organization and minima
featuring a wide range of 〈ĤC〉 and Max-Cut probabilities
[see Appendix D for the disconnectivity graphs of G2 − G5

colored based on p(|s〉), and Appendix E for the discon-
nectivity graphs of G3 and G5 colored based on p(|t〉)].
Unsurprisingly, G2 has a lower M and thus a simpler land-
scape than the graphs G3 − G5, although its collection of
minima with modest Max-Cut probabilities produces a com-
paratively high F value up to L = 3. In the range G3 − G5,
it is interesting that even though G5 with a different Max-
Cut solution has a more complex energy landscape than G3,
it yields a comparatively higher HCMP, while G4 exhibits
the best QAOA performance as it has two distinct Max-Cut
solutions. The phenomenon where the HCMP arises for the
next highest local minimum rather than the global minimum
was also observed for G3 − G5, especially for G5 (refer to
Appendix B for differences in Max-Cut probabilities and 〈ĤC〉
values between the two minima for these cases). All four
graphs feature a monotonic decrease in F as L increases.
Hence, as for K5 − K8, we recommend choosing L = 3 in
solving the Max-Cut problem for G2 − G5. Finally, it is

noteworthy that for G4 and the L = 4 ansatz, the number
of minima greatly exceeds that of the Lmin = 3 ansatz, in
contrast to the behavior observed for K5, highlighting the
general unpredictability of the energy landscape complexity
after Lmin.

For graphs G3 − G5, the scatter plots of the 〈ĤC〉 values
for connected minima and Max-Cut probabilities were used
to construct both the convex hulls of the correct Max-Cut
solution Cs and the alternative solution Ct (Fig. 9). We find
that, similar to the unweighted graphs, both Cs and Ct take
on more definite shapes as they become populated with more
minima for increasing L. This trend allowed us to investigate
d1 and d2 by finding the intercepts of Cs with the horizontal
line pop, setting pop = 0.5 for G3 and G5, and pop = 0.25 for
G4 (Table VI). Additionally, one may also use the intercepts
between Cs and the left edge of Ct as expectation and threshold
cutoffs to identify higher-quality minima with a high probabil-
ity of finding |s〉 and a low probability of obtaining |t〉. (See
Appendix F for more details.) As for the 3-regular graphs, the
divergence of d1 and d2 with increasing L makes L = 3 a good
choice for graphs G3 − G5.

062602-7



CHOY BOY AND DAVID J. WALES PHYSICAL REVIEW A 109, 062602 (2024)

TABLE IV. Expectation thresholds d1 (top value) and d2 (bottom
value) for graphs 6a–8e of varying L.

Graph L = 2 L = 3 L = 4

0.313189 0.546894 0.578616
6a

0.643070 1.254700 1.342016

0.640787 1.453239 1.660319
6b

0.951659 2.160089 2.470976

— 0.215689 0.338515
8a

— 0.673507 1.251349

— 0.250008 0.408135
8b

— 0.886500 1.652028

— 0.046924 0.315151
8c

— 0.183791 1.203264

0.052613 1.580115 1.857498
8d

0.202901 2.457872 2.962362

0.096120 0.779749 0.645478
8e

0.731083 1.578323 1.977320

IV. CONCLUSION

In this work we explore the solution landscapes of QAOA
ansätze applied to a variety of weighted and unweighted
graphs by means of the energy landscapes framework, using
disconnectivity graphs to visualize their topological features.
We find that the corresponding landscapes are largely fun-
neled, suggesting that location of low-lying minima should
not be particularly difficult. Under practical conditions when
simulating QAOA on a quantum device, the optimization
regime is thus more likely to find a minimum close to
the global minimum with a good correct Max-Cut solution
probability. Even under the worst-case scenario where each
experiment finds a different local minimum, so long as the
local minimum is sufficiently close to the global minimum, a
significant proportion of the number of shots per experiment
will correspond to the Max-Cut solution. This result further
demonstrates the robustness of QAOA in solving the Max-Cut
problem.

We have also developed a weighted average metric F to
evaluate the performance of QAOA ansätze from their cor-
responding databases of minima. This parameter allows one

FIG. 8. Four-vertex weighted graph with a variable central
weight x. The graphs (G2, G3, G4, G5) correspond to x = (0, 3, 4, 5),
respectively.

TABLE V. Number of minima M (top value), HCMPs (middle
value) and F (bottom value) for graphs G2 − G5 with varying L
obtained from basin-hopping global optimization. HCMPs with as-
terisks indicate that they were obtained from the next highest local
minimum instead of the global minimum.

Graph L = 1 L = 2 L = 3

3 16 87
G2 0.477824 0.866404 0.981615

0.594432 0.338167 0.163886

7 109 1835
G3 0.370522* 0.784475 0.948704*

0.526539 0.300520 0.171897

4 36 308
G4 0.540426* 0.894074 1.000000

0.461355 0.245864 0.111340

9 183 3426
G5 0.468114* 0.881732* 0.972620*

0.498733 0.328245 0.174754

to choose a suitable number of circuit layers that balances
the likelihood of obtaining good solution probabilities from
local minima with an adequate circuit depth that minimizes
the impact from quantum noise.

Finally, we have established two ways in which expecta-
tion thresholds can be established to determine the cutoff for
minima with high p(|s〉). The solution landscapes we have
characterized suggest that QAOA is a good VQA candidate
to demonstrate practical quantum advantage. In future work
we plan to extend these results to quantum machine learning
(QML) algorithms, such as variational quantum classifiers
(VQCs), which minimize a given cost function to classify data
[68].

The GMIN, OPTIM, and PATHSAMPLE programs are
available for use under the Gnu General Public License. They
can be downloaded from the Cambridge Landscape Database
at [69].

APPENDIX A: BASIN-HOPPING GLOBAL OPTIMIZATION
WITH GMIN

For each basin-hopping optimization run, we performed
10 000 basin-hopping steps for the unweighted graphs K3 −
K8, 6a−8e, and for the weighted graphs G2 − G5, using the
GMIN program for varying L. Each local minimization had
a minimum root-mean squared (RMS) gradient convergence
criterion of 10−10 a.u., where the analytic gradients of the
parameterized rotation gates of the cost and mixer layers of
the QAOA ansatz were evaluated with the parameter-shift
rule using Eq. 7. To accept or reject basin-hopping steps
we employed a Metropolis criterion with a basin-hopping
temperature of 1.0 a.u. If the minimum at step j has an
expectation value 〈ĤC〉 j that is lower than the preceding iter-
ation, i.e., 〈ĤC〉 j < 〈ĤC〉 j−1, then the corresponding angular
coordinates θ j are accepted and used for the next step. If
〈ĤC〉 j � 〈ĤC〉 j−1, then θ j is accepted with a probability of
exp(−(〈ĤC〉 j − 〈ĤC〉 j−1)/kT ). Otherwise, the new minimum
is rejected.
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FIG. 9. Scatter plots of probabilities of competing Max-Cut solutions |αβαβ〉 (red square) and |ααββ〉 (blue circle) against 〈ĤC〉 for
connected minima of graphs G3, G4, and G5 with varying L.

Basin-hopping moves were proposed by random perturba-
tions of up to 1.0 rad for each angular coordinate in θ j . At
the end of each run, the collection of minima that differ by at
least 1.0 × 10−9 a.u in their 〈ĤC〉 values were saved to provide
a starting database for construction of the energy landscape
using the OPTIM and PATHSAMPLE programs.

APPENDIX B: DIFFERENCES IN MAX-CUT
PROBABILITY AND EXPECTATION VALUES FOR

NONGLOBAL HCMP CASES

Table VII shows the expectation differences �〈ĤC〉 =
〈ĤC〉min − 〈ĤC〉HCMP and correct Max-Cut probability differ-
ences �p(|s〉) = HCMP − pGM(|s〉) for cases where the next
highest local minimum has a Max-Cut probability greater

TABLE VI. Expectation thresholds d1 (top value) and d2 (bottom
value) for graphs G3 − G5 of varying L.

Graph L = 2 L = 3

G3 0.099242 0.433945
1.124694 2.008400

G4 0.489057 0.536238
1.447505 1.722258

G5 0.217591 0.459177
1.566966 1.896063

than the global minimum. In general, cases with a large cir-
cuit depth L tend to have lower �〈ĤC〉 and �p(|s〉) as their
HCMPs approach the optimal value of 1. As mentioned in the
main text, this phenomenon appears to occur sporadically, as
exemplified by 8e and G3, where it does not occur for the in-
termediate circuit depth of L = 3. A notable case is G5, which
features a higher Max-Cut probability in the next highest local
minimum for all sampled L. We propose to investigate this
phenomenon in future work to see if it arises systematically
for particular classes of connected graphs.

TABLE VII. Expectation differences �〈ĤC〉 and Max-Cut prob-
ability differences �p(|s〉) between the global and next highest local
minima for nonglobal HCMP cases.

Graph L �〈ĤC〉 �p(|s〉)

6a 3 0.037856 0.010121
8b 2 0.075696 0.040029
8e 2 0.046450 0.052876
8e 4 0.006337 0.009846
G3 1 0.127864 0.096306
G3 3 0.015904 0.003739
G4 1 1.142149 0.076922
G5 1 0.342188 0.231787
G5 2 0.036357 0.135824
G5 3 0.001111 0.001329
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APPENDIX C: DISCONNECTIVITY GRAPHS OF THE 3-REGULAR GRAPHS

Figures 10–16 depict the disconnectivity graphs for the 3-regular graphs 6a–8e. The 3-regular graphs generally display a
wider variation and higher correlation of p(|s〉) and 〈ĤC〉 values for individual minima as compared to the complete graphs,
along with a largely well-funneled landscape organization. For graphs 8a, 8b, and 8e (Figs. 12, 13, 16) there is a notable dearth
of minima with intermediate p(|s〉) and 〈ĤC〉 values.

FIG. 10. Disconnectivity graphs for 6a with varying circuit depth L.

FIG. 11. Disconnectivity graphs for 6b with varying circuit depth L.
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FIG. 12. Disconnectivity graphs for 8a with varying circuit depth L.

FIG. 13. Disconnectivity graphs for 8b with varying circuit depth L.
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FIG. 14. Disconnectivity graphs for 8c with varying circuit depth L.

FIG. 15. Disconnectivity graphs for 8d with varying circuit depth L.
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FIG. 16. Disconnectivity graphs for 8e with varying circuit depth L.

APPENDIX D: DISCONNECTIVITY GRAPHS OF THE CORRECT MAX-CUT SOLUTIONS FOR G2 − G5

Figures 17–20 depict the disconnectivity graphs of the 4-vertex graph series G2 − G5, with individual minima coloured based
on their respective probabilities of finding the correct Max-Cut solution. Similar to the disconnectivity graphs of the 3-regular
graphs featured in Appendix C, the disconnectivity graphs of G2 − G5 feature a broader range of 〈ĤC〉 and correct Max-Cut
probabilities.

FIG. 17. Disconnectivity graphs for G2 with varying circuit depth L. Minima are colored based on the probability of obtaining the optimal
Max-Cut state of |αβαβ〉.
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FIG. 18. Disconnectivity graphs for G3 with varying circuit depth L. Minima are colored based on the probability of obtaining the optimal
Max-Cut state of |αβαβ〉.

FIG. 19. Disconnectivity graphs for G4 with varying circuit depth L. Minima are colored based on the probability of obtaining the optimal
Max-Cut states of |αβαβ〉 and |ααββ〉.
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FIG. 20. Disconnectivity graphs for G5 with varying circuit depth L. Minima are colored based on the probability of obtaining the optimal
Max-Cut state of |ααββ〉.

APPENDIX E: DISCONNECTIVITY GRAPHS OF THE ALTERNATIVE MAX-CUT SOLUTIONS FOR G3 AND G5

Figures 21 and 22 depict the disconnectivity graphs of the 4-vertex graph series G3 and G5, with individual minima colored
based on their respective probabilities of finding the alternative Max-Cut solutions of |ααββ〉 and |αβαβ〉, respectively. In
contrast to their respective correct Max-Cut counterparts (Fig. 18 and 20), minima with the highest alternative-solution Max-Cut
probabilities possess intermediate 〈ĤC〉 values.

FIG. 21. Disconnectivity graphs for G3 with varying circuit depth L. Minima are colored based on the probability of obtaining the opposing
Max-Cut state of |ααββ〉.
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FIG. 22. Disconnectivity graphs for G5 with varying circuit depth L. Minima are colored based on the probability of obtaining the opposing
Max-Cut state of |αβαβ〉.

APPENDIX F: EXPECTATION AND PROBABILITY
THRESHOLDS FROM THE CONVEX HULL INTERCEPTS

FOR G3 AND G5

Tables VIII and IX summarize the two intercepts
(〈ĤC〉min + d3, p1) and (〈ĤC〉min + d4, p2) of Cs with the left
edge of the triangular convex hull Ct for graphs G3 and G5,
as shown in Fig. 9. This summary provides an alternative
method to establish expectation cutoffs if additional infor-
mation for alternative Max-Cut states is available. As for
the expectation thresholds d1 and d2 in Table VI, d3 and d4

also increase with increasing L, which further justifies the
choice of L = 3 in refining minima within Cs that possess both
good correct Max-Cut probabilities and low opposing Max-
Cut probabilities. The probability cutoff of pop = 0.5 used in
Table VI also appears to be situated between the probability
thresholds p1 and p2, suggesting that this choice of pop is
optimal.

TABLE VIII. Expectation thresholds d3 (top value) and d4 (bot-
tom value) for graphs G3 and G5 of varying L, where d3 < d4.

Graph L = 2 L = 3

0.111125 0.439036
G3

0.546385 0.794808

0.329259 0.476747
G5

0.856478 0.819369

TABLE IX. Max-Cut probability thresholds p1 (top value) and
p2 (bottom value) for graphs G3 and G5 of varying L, corresponding
to the expectation thresholds d3 and d4, respectively.

Graph L = 2 L = 3

0.465937 0.495366
G3

0.665681 0.799744

0.373801 0.482335
G5

0.680284 0.790380

[1] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R.
McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding
et al., Scalable quantum simulation of molecular energies, Phys.
Rev. X 6, 031007 (2016).

[2] F. Leymann and J. Barzen, The bitter truth about gate–based
quantum algorithms in the NISQ era, Quantum Sci. Technol. 5,
044007 (2020).

[3] U. Skosana and M. Tame, Demonstration of Shor’s factoring
algorithm for N = 21 on IBM quantum processors, Sci. Rep.
11, 16599 (2021).

[4] J. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M.
Kudra, P. Delsing, and J. Bylander, Decoherence benchmarking
of superconducting qubits, npj Quantum Inf. 5, 54 (2019).

[5] S. Chen, J. Cotler, H. Huang, and J. Li, The complexity of
NISQ, Nat. Commun. 14, 6001 (2023).

[6] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru–Guzik,
The theory of variational hybrid quantum–classical algorithms,
New J. Phys. 18, 023023 (2016).

[7] A. Peruzzo, J. McClean, P. Shadbolt, M. Yung, X. Zhou, P. J.
Love, A. Aspuru–Guzik, and J. L. O’Brien, A variational eigen-
value solver on a photonic quantum processor, Nat. Commun.
5, 4213 (2014).

[8] K. Bharti, A. Cervera–Lierta, T. H. Kyaw, T. Haug, S. Alperin–
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann,
T. Menke et al., Noisy intermediate–scale quantum algorithms,
Rev. Mod. Phys. 94, 015004 (2022).

062602-16

https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41534-019-0168-5
https://doi.org/10.1038/s41467-023-41217-6
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/RevModPhys.94.015004


ENERGY LANDSCAPES FOR THE QUANTUM APPROXIMATE … PHYSICAL REVIEW A 109, 062602 (2024)

[9] X. Yuan, S. Endo, Q. Zhao, Y. Li, and S. C. Benjamin, Theory
of variational quantum simulation, Quantum 3, 191 (2019).

[10] G. Ravi, K. N. Smith, P. Gokhale, A. Mari, N. Earnest,
A. Javadi-Abhari, and F. T. Chong, VAQEM: A variational
approach to quantum error mitigation, in 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture
(HPCA), Seoul, Korea, Republic of (2022), pp. 288–303.

[11] K. Ito, W. Mizukami, and K. Fujii, Universal noise–precision
relations in variational quantum algorithms, Phys. Rev. Res. 5,
023025 (2023).

[12] E. Fontana, N. Fitzpatrick, D. M. Ramo, R. Duncan, and I.
Rungger, Evaluating the noise resilience of variational quantum
algorithms, Phys. Rev. A 104, 022403 (2021).

[13] S. Halder, C. Shrikhande, and R. Maitra, Development of zero-
noise extrapolated projective quantum algorithm for accurate
evaluation of molecular energetics in noisy quantum devices,
J. Chem. Phys. 159, 114115 (2023).

[14] A. Weidinger, G. B. Mbeng, and W. Lechner, Error mitiga-
tion for quantum approximate optimization, Phys. Rev. A 108,
032408 (2023).

[15] S. Bravyi, O. Dial, J. M. Gambetta, D. Gil, and Z. Nazario,
The future of quantum computing with superconducting qubits,
J. Appl. Phys. 132, 160902 (2022).

[16] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg, S.
Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and A.
Kandala, Evidence for the utility of quantum computing before
fault tolerance, Nature (London) 618, 500 (2023).

[17] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm arXiv:1411.4028.

[18] Y. Zhang, L. Cincio, C. F. A. Negre, P. Czarnik, P. J. Colesa,
P. M. Anisimov, S. M. Mniszewski, S. Tretiak, and P. A. Dub,
Variational quantum eigensolver with reduced circuit complex-
ity, npj Quantum Inf. 8, 96 (2022).

[19] J. Wurtz and P. J. Love, Counterdiabaticity and the quan-
tum approximate optimization algorithm, Quantum 6, 635
(2022).

[20] G. Buonaiuto, F. Gargiulo, G. D. Pietro, M. Esposito, and M.
Pota, Best practices for portfolio optimization by quantum com-
puting, experimented on real quantum devices, Sci. Rep. 13,
19434 (2023).

[21] V. Kremenetski, T. Hogg, S. Hadfield, S. J. Cotton, and
N. M. Tubman, Quantum alternating operator ansatz (QAOA)
phase diagrams and applications for quantum chemistry
arXiv:2108.13056.

[22] S. Hadfield, T. Hogg, and E. G. Rieffel, Analytical frame-
work for quantum alternating operator ansätze, Quantum Sci.
Technol. 8, 015017 (2023).

[23] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio,
and P. J. Coles, Noise-induced Barren plateaus in variational
quantum algorithms, Nat. Commun. 12, 6961 (2021).

[24] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[25] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent Barren plateaus in shallow parametrized
quantum circuits, Nat. Commun. 12, 1791 (2021).

[26] D. Wierichs, C. Gogolin, and M. Kastoryano, Avoiding lo-
cal minima in variational quantum eigensolvers with the
natural gradient optimizer, Phys. Rev. Res. 2, 043246
(2020).

[27] E. R. Anschuetz and B. T. Kiani, Quantum variational al-
gorithms are swamped with traps, Nat. Commun. 13, 7760
(2022).

[28] S. H. Sack, R. A. Medina, R. Kueng, and M. Serbyn, Recursive
greedy initialization of the quantum approximate optimization
algorithm with guaranteed improvement, Phys. Rev. A 107,
062404 (2023).

[29] G. E. Crooks, Performance of the quantum approxi-
mate optimization algorithm on the maximum cut problem
arXiv:1811.08419.

[30] D. J. Wales, Energy Landscapes (Cambridge University Press,
Cambridge, 2003).

[31] D. J. Wales, Exploring energy landscapes, Annu. Rev. Phys.
Chem. 69, 401 (2018).

[32] Z. Li and H. A. Scheraga, Monte Carlo-minimization approach
to the multiple-minima problem in protein folding, Proc. Natl.
Acad. Sci. USA 84, 6611 (1987).

[33] D. J. Wales and J. P. K. Doye, Global optimization by basin-
hopping and the lowest energy structures of Lennard-Jones
clusters containing up to 110 atoms, J. Phys. Chem. A 101, 5111
(1997).

[34] D. J. Wales and H. A. Scheraga, Global optimization of clusters,
crystals and biomolecules, Science 285, 1368 (1999).

[35] D. J. Wales, Discrete path sampling, Mol. Phys. 100, 3285
(2002).

[36] D. J. Wales, Some further applications of discrete path sampling
to cluster isomerization, Mol. Phys. 102, 891 (2004).

[37] B. Choy and D. J. Wales, Molecular energy landscapes of
hardware–efficient ansätze in quantum computing, J. Chem.
Theory Comput. 19, 1197 (2023).

[38] H. G. A. Burton, D. Marti–Dafcik, D. P. Tew, and D. J. Wales,
Exact electronic states with shallow quantum circuits from
global optimisation, npj Quantum Inf. 9, 75 (2023).

[39] D. J. Wales, M. A. Miller, and T. R. Walsh, Archetypal energy
landscapes, Nature (London) 394, 758 (1998).

[40] T. V. Bogdan and D. J. Wales, New results for phase transitions
from catastrophe theory, J. Chem. Phys. 120, 11090 (2004).

[41] D. J. Wales, GMIN: A program for finding global minima and
calculating thermodynamic properties from basin-sampling,
https://www-wales.ch.cam.ac.uk/GMIN/ (2023).

[42] A. Mari, T. R. Bromley, and N. Killoran, Estimating the gra-
dient and higher-order derivatives on quantum hardware, Phys.
Rev. A 103, 012405 (2021).

[43] C. G. Broyden, The convergence of a class of double-rank min-
imization algorithms 1. General considerations, J. Inst. Math.
Appl. 6, 76 (1970).

[44] R. Fletcher, A new approach to variable metric algorithms,
Comput. J. 13, 317 (1970).

[45] D. Goldfarb, A family of variable metric updates derived by
variational means, Math. Comp. 24, 23 (1970).

[46] D. F. Shanno, Conditioning of quasi-Newton methods for func-
tion minimization, Math. Comp. 24, 647 (1970).

[47] D. C. Liu and J. Nocedal, On the limited memory BFGS
method for large scale optimization, Math. Program. 45, 503
(1989).

[48] J. Nocedal, Updating quasi-Newton matrices with limited stor-
age, Math. Comp. 35, 773 (1980).

[49] M. L. Paleico and J. Behler, A flexible and adaptive grid al-
gorithm for global optimization utilizing basin hopping Monte
Carlo, J. Chem. Phys. 152, 094109 (2020).

062602-17

https://doi.org/10.22331/q-2019-10-07-191
https://doi.org/10.1103/PhysRevResearch.5.023025
https://doi.org/10.1103/PhysRevA.104.022403
https://doi.org/10.1063/5.0166433
https://doi.org/10.1103/PhysRevA.108.032408
https://doi.org/10.1063/5.0082975
https://doi.org/10.1038/s41586-023-06096-3
https://arxiv.org/abs/1411.4028
https://doi.org/10.1038/s41534-022-00599-z
https://doi.org/10.22331/q-2022-01-27-635
https://doi.org/10.1038/s41598-023-45392-w
https://arxiv.org/abs/2108.13056
https://doi.org/10.1088/2058-9565/aca3ce
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1103/PhysRevResearch.2.043246
https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1103/PhysRevA.107.062404
https://arxiv.org/abs/1811.08419
https://doi.org/10.1146/annurev-physchem-050317-021219
https://doi.org/10.1073/pnas.84.19.6611
https://doi.org/10.1021/jp970984n
https://doi.org/10.1126/science.285.5432.1368
https://doi.org/10.1080/00268970210162691
https://doi.org/10.1080/00268970410001703363
https://doi.org/10.1021/acs.jctc.2c01057
https://doi.org/10.1038/s41534-023-00744-2
https://doi.org/10.1038/29487
https://doi.org/10.1063/1.1740756
https://www-wales.ch.cam.ac.uk/GMIN/
https://doi.org/10.1103/PhysRevA.103.012405
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.1007/BF01589116
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.1063/1.5142363


CHOY BOY AND DAVID J. WALES PHYSICAL REVIEW A 109, 062602 (2024)

[50] F. Noé and S. Fischer, Transition networks for modeling the
kinetics of conformational change in macromolecules, Curr.
Opin. Struct. Biol. 18, 154 (2008).

[51] D. Prada-Gracia, J. Gómez-Gardenes, P. Echenique, and F.
Falo, Exploring the free energy landscape: From dynamics
to networks and back, PLoS Comput. Biol. 5, e1000415
(2009).

[52] D. J. Wales, Energy landscapes: Some new horizons, Curr.
Opin. Struct. Biol. 20, 3 (2010).

[53] S. A. Trygubenko and D. J. Wales, A doubly nudged elastic
band method for finding transition states, J. Chem. Phys. 120,
2082 (2004).

[54] D. Sheppard, R. Terrell, and G. Henkelman, Optimization meth-
ods for finding minimum energy paths, J. Chem. Phys. 128,
134106 (2008).

[55] G. Mills, H. Jónsson, and G. K. Schenter, Reversible work
transition state theory: Application to dissociative adsorption of
hydrogen, Surf. Sci. 324, 305 (1995).

[56] H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged elas-
tic band method for finding minimum energy paths of
transitions, in Classical and Quantum Dynamics in Con-
densed Phase Simulations (World Scientific, Singapore, 1998),
pp. 385–404.

[57] G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climb-
ing image nudged elastic band method for finding saddle
points and minimum energy paths, J. Chem. Phys. 113, 9901
(2000).

[58] G. Henkelman and H. Jónsson, Improved tangent estimate in
the nudged elastic band method for finding minimum energy
paths and saddle points, J. Chem. Phys. 113, 9978 (2000).

[59] L. J. Munro and D. J. Wales, Defect migration in crystalline
silicon, Phys. Rev. B 59, 3969 (1999).

[60] G. Henkelman and H. Jónsson, A dimer method for finding
saddle points on high dimensional potential surfaces using only
first derivatives, J. Chem. Phys. 111, 7010 (1999).

[61] Y. Kumeda, L. J. Munro, and D. J. Wales, Transition states and
rearrangement mechanisms from hybrid eigenvector-following
and density functional theory: Application to C10 H10 and defect
migration in crystalline silicon, Chem. Phys. Lett. 341, 185
(2001).

[62] J. M. Carr, S. A. Trygubenko, and D. J. Wales, Finding path-
ways between distant local minima, J. Chem. Phys. 122, 234903
(2005).

[63] E. W. Dijkstra, A note on two problems in connexion with
graphs, Numer. Math. 1, 269 (1959).

[64] O. M. Becker and M. Karplus, The topology of multidimen-
sional potential energy surfaces: Theory and application to
peptide structure and kinetics, J. Chem. Phys. 106, 1495 (1997).

[65] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F.
Arute, K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo
et al., Quantum approximate optimization of non–planar graph
problems on a planar superconducting processor, Nat. Phys. 17,
332 (2021).

[66] G. G. Guerreschi and A. Y. Matsuura, QAOA for max–cut
requires hundreds of qubits for quantum speed–up, Sci. Rep.
9, 6903 (2019).

[67] M. Fernández–Pendás, E. F. Combarro, S. Vallecorsa, J.
Ranilla, and I. F. Rúa, A study of the performance of classical
minimizers in the Quantum Approximate Optimization Algo-
rithm, J. Comput. Appl. Math. 404, 113388 (2022).

[68] J. Jäger and R. V. Krems, Universal expressiveness of vari-
ational quantum classifiers and quantum kernels for support
vector machines, Nat. Commun. 14, 576 (2023).

[69] www-wales.ch.cam.ac.uk.

062602-18

https://doi.org/10.1016/j.sbi.2008.01.008
https://doi.org/10.1371/journal.pcbi.1000415
https://doi.org/10.1016/j.sbi.2009.12.011
https://doi.org/10.1063/1.1636455
https://doi.org/10.1063/1.2841941
https://doi.org/10.1016/0039-6028(94)00731-4
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1323224
https://doi.org/10.1103/PhysRevB.59.3969
https://doi.org/10.1063/1.480097
https://doi.org/10.1016/S0009-2614(01)00334-7
https://doi.org/10.1063/1.1931587
https://doi.org/10.1007/BF01386390
https://doi.org/10.1063/1.473299
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1016/j.cam.2021.113388
https://doi.org/10.1038/s41467-023-36144-5
http://www-wales.ch.cam.ac.uk

