
PHYSICAL REVIEW A 109, 062601 (2024)

Observing algebraic variety of Lee-Yang zeros in asymmetrical systems via a quantum probe
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Lee-Yang (LY) zeros, points on the complex plane of physical parameters where the partition function goes
to zero, have found diverse applications across multiple disciplines like statistical physics, protein folding,
percolation, and complex networks. However, experimental extraction of the complete set of LY zeros for general
asymmetrical classical systems remains a crucial challenge to put those applications into practice. Here, we
propose a qubit-based method to simulate an asymmetrical classical Ising system, enabling the exploration of
LY zeros at arbitrary values of physical parameters like temperature and internal couplings. Without assuming
system symmetry, the full set of LY zeros forms an algebraic variety in a higher-dimensional complex plane.
To determine this variety, we project it into sets representing magnitudes (amoeba) and phases (coamoeba) of
LY zeros. Our approach uses a probe qubit to initialize the system and to extract LY zeros without assuming
any control over the system qubits. This is particularly important as controlling system qubits can get intractable
with the increasing complexity of the system. Initializing the system at an amoeba point, coamoeba points are
sampled by measuring probe qubit dynamics. Iterative sampling yields the entire algebraic variety. Experimental
demonstration of the protocol is achieved through a three-qubit NMR register. This paper expands the horizon of
quantum simulation to domains where identifying LY zeros in general classical systems is pivotal. Moreover, by
extracting abstract mathematical objects like amoeba and coamoeba for a given polynomial, our paper integrates
pure mathematical concepts into the realm of quantum simulations.
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I. INTRODUCTION

It is commonly understood that complex numbers merely
play the role of a calculational tool in physics, while ob-
servable quantities are represented by real numbers. In 1952,
Lee and Yang published two landmark papers [1,2] showing
the partition function of a system can become zero at certain
points on the complex plane of its physical parameters. These
zeros, now known as Lee-Yang (LY) zeros, provide a cohesive
understanding of equilibrium phase transition [3] as they cor-
respond to the nonanalyticity of free energies. However, it was
widely believed that LY zeros cannot be observed directly as
they occur at complex values of physical parameters, and only
when they approach the real axis their presence gets disclosed
as the system goes through a phase transition.

Nevertheless, this does not mean that complex LY ze-
ros have nothing to say about the physical system. In fact,
determination of LY zeros can play a key role in studying
the thermodynamic behavior of complicated many-body sys-
tems as they fully characterize the partition function. Apart
from that, recent studies [4,5] have paved the way for de-
termining universal critical exponents of phase transitions
from LY zeros, which is otherwise a computationally difficult
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problem due to critical slowdown. It was also observed that
LY zeros can be employed to understand nonequilibrium
phenomena like dynamical phase transitions [6], along with
other statistical studies [7,8] like percolation [9] or complex
networks [10,11] and even protein folding [12,13]. Profound
links between thermodynamics in the complex plane and
dynamical properties of quantum systems have also been dis-
covered [14–18] in recent years. All these discoveries have
made the determination of LY zeros for general classical sys-
tems a crucial necessity in various disciplines of physics.

In 2012, by representing a classical Ising chain with a
small number of spins, Wei and Liu showed [19] that the
complex LY zeros for such a system can be mapped to the
zeros of quantum coherence of an interacting probe. Using
this method, the experimental observation of LY zeros was
directly achieved [20].

This opens up the possibility of using quantum simulation
techniques to simulate classical systems and determine their
LY zeros with a quantum probe, as demanded in many ar-
eas of physics. However, there are two major challenges to
overcome. First of all, the method proposed in [19] and suc-
cessive experiments [4,20] reported observation of LY zeros
lying on a single complex plane C. This happens when the
partition function is expandable as a univariate polynomial,
known as the LY polynomial, in terms of the complexified
physical parameter. This condition of the LY polynomial
being univariate is based on a symmetry assumption about
the system. For example, in the case of the Ising chain, it
assumes that all the spins will experience the same local
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(complexified) magnetic field. Unfortunately, a general sys-
tem will not necessarily have this symmetry. Thus, the
partition function, in general, is to be expanded as a multi-
variate LY polynomial in terms of complexified parameters.
In the worst case, an N spin Ising chain will have an N vari-
ate LY polynomial if all the spins experience different local
fields. In such a scenario, LY zeros of the system will form
an algebraic variety [21] V ⊂ (C∗)N , where C∗ = C − {0}.
Therefore, finding a method to experimentally determine the
full algebraic variety containing LY zeros of a general asym-
metrical system is crucial. The second challenge to overcome
is that a quantum simulator of the classical system should have
ways to simulate the system at a wide range of its physical
parameters like temperature and internal couplings. This flex-
ibility in initialization is crucial to uncover the full set of LY
zeros corresponding to all physical situations. However, the
systems under study can get complicated and thus achieving
full quantum control over system qubits can get challenging.
Therefore, the desired method should not assume much ex-
perimental control over the system qubits so that it can be
extended to complex systems in the future.

In this paper, we show the direct experimental determi-
nation of the algebraic variety containing roots of a general
multivariate LY polynomial for asymmetrical Ising-type sys-
tems. Mathematical developments in the last few decades
unveil that one can project the algebraic variety to sets of
coordinatewise absolute values and arguments, called the
amoeba [22,23] and coamoeba [24–27], respectively. More
precisely, we consider in this paper a polynomial of two
complex variables, f (z1, z2). The set of values (z1, z2) which
make f (z1, z2) = 0 is what we call the algebraic variety,
which is a three-(real)-dimensional object living in (four-real-
dimensional) complex space (C∗)2. The amoeba is obtained
by taking logarithms of their absolute values (ln |z1|, ln |z2|)
of the variety, and the coamoeba is obtained by taking its
arguments (arg z1, arg z2). In this sense, the abstract variety
living in a higher-dimensional complex space is studied by
projecting into domains of lower-dimensional real spaces.

We use qubits to simulate the classical asymmetrical Ising
system which can be controlled through another qubit acting
as a probe. We highlight that, like an ideal quantum simulator,
the system can be simulated at any arbitrary point on its
amoeba at any arbitrary temperature. Even the internal cou-
pling of the Ising system can be set to a desired value ranging
from ferromagnetic to antiferromagnetic regimes. This ini-
tialization is accomplished solely by manipulating the probe
qubit, leaving the system qubits undisturbed. After effectively
initiating the system at an arbitrarily chosen point on its
amoeba, corresponding points of coamoeba can be directly
sampled from the time evolution of the probe’s coherence.
By iterating the process, one samples the coamoeba across
the amoeba to obtain the full algebraic variety. Thus both
preparation and detection are achieved through the probe
alone. We demonstrate the method experimentally via a three-
qubit NMR register by taking two of them as system and
the third one as probe. Sampling of coamoeba at different
points on amoeba is performed directly from the time domain
NMR signal without any need for extensive postprocessing of
experimental data. Apart from extending the range of quan-
tum simulations to other areas of physics where determining

LY zeros of general classical system is pivotal, our paper
also brings pure mathematical structures like amoeba and
coamoeba into the realm of quantum simulations by physi-
cally sampling them for a given LY polynomial.

The rest of the paper is organized as follows. In Sec. II,
we introduce the asymmetric Ising system and show how to
use qubits as system and probe such that the amoeba and
the coamoeba of the algebraic variety corresponding to the
LY polynomial of the system relate to the probe qubit’s co-
herence. After describing the methodology of sampling the
algebraic variety in Sec. III, we discuss how to initialize the
system qubits at any desired point on the amoeba at any
value of physical parameters like temperature and coupling
constant by operating on only the probe in Sec. IV. Finally, we
present the experimental results in Sec. V before concluding
in Sec. VI.

II. TWO-SPIN ISING MODEL AND (CO)AMOEBAS

To explain the method, we consider our system to be a
classical Ising chain consisting of only two sites, A and B,
coupled to each other with strength J . Without assuming any
symmetry, let the magnetic fields at sites A and B be hA and
hB, respectively. This classical system can be mimicked by
using two spin-1/2 systems as qubits with Hamiltonian HAB =
−Jσ A

z σ B
z − hAσ A

z − hBσ B
z , where σ X

i is the Pauli i operator of
spin X .

In a thermal bath of inverse temperature β, the partition
function of AB is

Z (β, hA, hB) = eβJ+βhA+βhB
(
1 + e−2βJ−2βhA

+ e−2βJ−2βhB + e−2βhA−2βhB
)
. (1)

We extend Z into the complex domain by letting

e−2βhA = z1, e−2βhB = z2, where (z1, z2) ∈ (C∗)2. (2)

Further, by identifying � = e−2βJ ∈ R+, the partition func-
tion becomes Z = (�z1z2)−1/2 f (z1, z2), where

f (z1, z2) = 1 + �z1 + �z2 + z1z2 (3)

is the two-spin bivariate LY polynomial. Zeros of the partition
function now correspond to the vanishing of this polyno-
mial, which defines the algebraic variety Vf = {(z1, z2) ∈
(C∗)2 | f (z1, z2) = 0}.

For any complex number (z1, z2) lying on Vf , informa-
tion about its absolute value is studied using a log map
log : (C∗)2 → R2 by taking (z1, z2) �→ (ln |z1|, ln |z2|). The
image A f = log(Vf ) is called the amoeba. On the other hand,
information about the phase is studied using the argument map
arg : (C∗)2 → S1 × S1 where (z1, z2) �→ (arg z1, arg z2). The
image coA f = arg(Vf ) is called the coamoeba. For example,
the amoeba and coamoeba for � = 1

2 in Eq. (3) are shown in
Fig. 1.

To observe these complex zeros, we adopt the procedure
of Wei and Liu [19] by introducing another spin-1/2 particle,
which acts as a quantum probe. Its states {|0〉, |1〉} (here |0〉
and |1〉 are eigenvectors of σz with eigenvalues ±1, respec-
tively) span a two-dimensional Hilbert space HP. The total
space is now Htot = HP ⊗ HAB. However, here we allow the
probe to couple asymmetrically with A and B. This is because,
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FIG. 1. The amoeba (top) and coamoeba (bottom) of the LY
polynomial f (z1, z2) = 1 + 1

2 z1 + 1
2 z2 + z1z2 [28].

in our case, hA and hB are not necessarily equal, and hence z1

and z2 must be distinct variables, necessitating the description
of Lee-Yang zeros in (C∗)2 rather than in C.

Suppose that the probe spin σ P
z couples to σ A

z and σ B
z with

coupling strengths λA and λB, respectively. This situation is
depicted in Fig. 2(a). The interaction Hamiltonian is

Hint = λAσ P
z σ A

z + λBσ P
z σ B

z . (4)

Here we used the notation σ P
z σ A

z = σ P
z ⊗ σ A

z ⊗ 1 and
σ P

z σ B
z = σ P

z ⊗ 1 ⊗ σ B
z . The full Hamiltonian now becomes

H = 1 ⊗ HAB + Hint , or

H = −Jσ A
z σ B

z − (
hA − λAσ P

z

)
σ A

z − (
hB − λBσ P

z

)
σ B

z . (5)

The full initial state at time t = 0 is taken to be

ρ(0) = |ψP〉〈ψP| ⊗ exp(−βHAB)

Z (β, hA, hB)
, (6)

FIG. 2. (a) A two-spin Ising system in a thermal bath at tempera-
ture 1/β coupled to a probe spin. (b) As the probe evolves under the
interaction with the system, its coherence is recorded by measuring
〈σ P

x 〉 and 〈σ P
y 〉 with time.

where |ψP〉 is a pure coherent quantum state in the probe’s
σz basis. Here, by a coherent state we mean that |ψP〉 has
superposition in {|0〉, |1〉} basis. It subsequently evolves under
the Hamiltonian in Eq. (5) as ρ(t ) = U (t )ρ(0)U†(t ), where
U (t ) = e−itH/h̄. As we only observe the evolution of the probe,
we trace out AB to get ρP(t ) = trABρ(t ). Under this evolution,
the coherence L of the probe at time t can be shown to take
the form

L(t ) = h̄2

4

∣∣〈σ P
x (t )

〉 + i
〈
σ P

y (t )
〉∣∣2 = C| f (z1, z2)|2, (7)

the derivation of which can be found in Appendix A. Here C
is a constant over time and f (z1, z2) is the two-spin bivariate
LY polynomial of Eq. (3), after identifying

z1 = exp (−2βhA + 4iλAt/h̄),

z2 = exp (−2βhB + 4iλBt/h̄), and

� = exp (−2βJ ). (8)

Note that the variables z1 and z2 become complex as the time
evolution introduces a complex phase. Furthermore, we note

ln |z1| = −2βhA, ln |z2| = −2βhB, and (9a)

θ1(t ) = arg z1 = 4λAt

h̄
, θ2(t ) = arg z2 = 4λBt

h̄
. (9b)

Corresponding to the set of points {(z1, z2)} for which
| f (z1, z2)|2 = 0, the set {(ln |z1|, ln |z2|)} forms the amoeba
while the set {(arg z1, arg z2)} forms the coamoeba.

III. METHOD FOR OBSERVING THE ALGEBRAIC
VARIETY

Our method for determining the algebraic variety Vf works
as follows: we first initiate the system in the state given by
Eq. (6) at arbitrary values of βhA and βhB, which according
to Eq. (9a) fix a point on the amoeba space. As we shall see
later, the preparation is achieved through the probe, assuming
no control over the system qubits. Next, we let the probe
interact with the system and observe its coherence. If the
coherence is nonzero at all finite times, we conclude that
there are no LY zeros at that value of (βhA, βhB); hence, the
chosen point does not belong to the amoeba. On the other
hand, if we find the coherence vanishing at time instants {ti},
the point (βhA, βhB) ≡ (ln |z1|, ln |z2|) belongs to the amoeba.
Moreover, by Eq. (9b), {ti} can be mapped to {(θ1(ti), θ2(ti))},
which lie on a S1 × S1 torus as the points of the coamoeba,
corresponding to the point (ln |z1|, ln |z2|) on the amoeba.
Upon multiple iterations of this procedure, one can sample
the coamoeba across the amoeba to extract the full Vf for the
multivariate LY polynomial. For more details regarding the
sampling of coamoeba, see Appendix B.

Another way of seeing the fact that complex LY zeros
leave a footprint in the real-time dynamics of the probe would
be in terms of correlation. Mutual information [29] between
the probe and the system qubits captures the total correlation
between them and is defined as

IP:AB(t ) = SP(t ) + SAB(t ) − SPAB(t ), (10)

where SX (t ) = −tr[ρX (t ) ln ρX (t )] is the von Neumann en-
tropy [29] of X at time t . By evolving the initial state of Eq. (6)
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FIG. 3. (a) The molecular structure of DBFM with labeled spins.
(b) Values of NMR Hamiltonian parameters (resonance offsets in
diagonal and coupling constants Ji j in off-diagonal elements, in Hz)
along with relaxation time constants.

under the Hamiltonian of Eq. (5), it can be seen that SAB and
SPAB do not evolve over time. Therefore, according to Eq. (10),
IP:AB becomes maximum at times only when the probe is
maximally mixed, i.e., ρP = 1/2. The reduced density matrix
of the probe can be expanded in Pauli basis as

ρP(t ) = 1

2

(
1 +

∑
i∈{x,y,z}

ci(t )σ P
i

)
, (11)

where ci(t ) = 〈σ P
i (t )〉. It can be easily seen that ∂t cz = 0

in the evolution under the Hamiltonian of Eq. (5). If the
initial state of the probe is such that cz(0) = 0, then its
reduced density matrix becomes maximally mixed at time
points where 〈σ P

x 〉 and 〈σ P
y 〉 simultaneously vanish, i.e., points

corresponding to LY zeros. Therefore, only at the time points
corresponding to LY zeros, the correlation between the probe
and the system becomes maximum.

IV. SYSTEM INITIALIZATION VIA A QUANTUM PROBE

A. NMR register

For a concrete demonstration via NMR, we use a liquid
ensemble of three spin-1/2 (three-qubit) nuclear registers of
13C-dibromofluoromethane (DBFM) [see Fig. 3(a)], dissolved
in acetone-D6, by identifying 1H as probe P and 19F and
13C as system spins A and B, respectively. In a high static
magnetic field of B0 = 11.7 T, their Larmor frequencies have
magnitudes ωi = γiB0, where γi are the gyromagnetic ra-
tios [30]. The three spins also interact mutually via scalar
coupling with strengths Ji j as tabled in Fig. 3(b). In terms
of the spin operators I i

α = σ i
α/2, the laboratory-frame NMR

Hamiltonian is of the form HNMR = HI + Hrf , with internal
part HI = −∑

i h̄ωiI i
z + 2π h̄

∑
i �= j Ji j I i

z I j
z and the probe con-

trol part Hrf = −h̄�P(t )IP
x . Here �P(t ) = γiBP(t ) represents

the control amplitude achieved through the magnetic compo-
nent BP(t ) of the applied circularly polarized rf field resonant
with the probe’s Larmor frequency. Notice, the control Hamil-
tonian contains only the probe’s component �P(t ), while we
set �A(t ) = �B(t ) = 0 to ensure that the method works with-
out assuming any experimental control over the system.

We allow the liquid ensemble register to equilibrate at an
ambient temperature of T = 300 K inside a 500-MHz Bruker
NMR spectrometer. As h̄ωi � kBT , the density operator in the
thermal state becomes ρth = exp(−βHI )/tr[exp(−βHI )] ≈
1/8 + ερ�

th , where ρ�
th = IH

z + (γF /γH )IF
z + (γC/γH )IC

z is the

deviation thermal state and the purity factor ε ≈ 10−5. From
the thermal state, preparation of the initial state in Eq. (6) at
any chosen values of {βhA, βhB} is to be achieved, subject to
the constraint that the system (19F, 13C) remains inaccessible.
From now onward the probe’s state of Eq. (6) is taken to be
|ψP〉 = (|0〉 + |1〉)/

√
2.

B. Initializing at the origin of the amoeba plane

First consider the preparation for hA = hB = 0, which cor-
responds to the origin of amoeba in accordance to Eq. (9a). We
note that the factor exp(−βHAB) of Eq. (6) can be expanded as

e−βHAB = eβJσ A
z σ B

z eβhAσ A
z eβhBσ B

z

= Ca14 + Cbσ
A
z + Ccσ

B
z + Cdσ

A
z σ B

z ,

where Ca = [cosh(βJ ) cosh(βhA) cosh(βhB)

+ sinh(βJ ) sinh(βhA) sinh(βhB)],

Cb = [cosh(βJ ) sinh(βhA) cosh(βhB)

+ sinh(βJ ) cosh(βhA) sinh(βhB)],

Cc = [cosh(βJ ) cosh(βhA) sinh(βhB)

+ sinh(βJ ) sinh(βhA) cosh(βhB)],

Cd = [cosh(βJ ) sinh(βhA) sinh(βhB)

+ sinh(βJ ) cosh(βhA) cosh(βhB)]. (12)

Substituting the above to Eq. (6) and setting
hA = hB = 0, the initial state in this case becomes
ρ(0) = 1/8 + (1/2) tanh(βJ )IA

z IB
z +[cosh(βJ )IP

x + sinh(βJ )
4IP

x IA
z IB

z ]/Z (β, 0, 0). Here the first two terms can be
suppressed as they remain invariant under time evolution
governed by HI , and also do not contribute to the probe’s
coherence in Eq. (7). Therefore, the target state for
initialization reads

ρ�(0) = [
cosh(βJ )IP

x + sinh(βJ )4IP
x IA

z IB
z

]
/Z (β, 0, 0),

(13)
where � is used as a superscript to indicate that redundant
terms are suppressed as mentioned earlier. For the same
reason we ignore the identity term of ρth and consider only the
deviation thermal state ρ�

th . We have to realize the target initial
state ρ�(0) of Eq. (13) from the deviation thermal state ρ�

th .
In other words, for initialization, the target state of Eq. (13)
is to be achieved starting from ρ�

th (0) with the constraint
that the system remains inaccessible. For this purpose,
we employ the pulse sequence shown in Fig. 4(a) which
operates on the probe spin of 1H only. Detailed derivation
of the pulse sequence is given in Appendix C 1. Here, the
delay time τ of the pulse sequence is a free parameter that
depends directly on the value of βJ ∈ R of the target state
as exp(βJ ) = cos[π (JPA + JPB)τ ]/ cos[π (JPA − JPB)τ ]. This
direct dependency allows us to initiate the system at any value
of βJ in both ferromagnetic (βJ ∈ R+) and antiferromagnetic
(βJ ∈ R−) regimes just by varying the delay τ suitably, as
discussed in detail in Appendix C 1.

C. Initialization on nonorigin points of the amoeba plane

To sample coamoeba corresponding to nonorigin points on
amoeba, we need hA and hB to take nonzero values. The state
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FIG. 4. (a) Pulse sequence for preparing the system in the state of Eq. (6) for hA = hB = 0. We set τ = 8.76 or 9.013 ms to prepare
βJ = 0.5 (ferromagnetic case) or −0.5 (antiferromagnetic case) respectively. The corresponding amoeba point is at the origin of the complex
plane as illustrated in (b). (c), (d) The real parts of FID (dashed lines) corresponding to 〈σ P

x (t )〉 are plotted along with the simulated curves
(solid lines) for (c) ferromagnetic and (d) antiferromagnetic cases respectively. As 〈σ P

y (t )〉 is identically zero in these cases, the FID null
points (solid squares) correspond to LY zeros. Theoretical and experimental values of the mutual information IP:AB between the probe and the
system are also plotted, which reach their maxima (horizontal line at 0.69) only at the LY zeros. (e), (f) Theoretically calculated (solid line)
and experimentally observed (filled squares) coamoeba on a 2-torus for (e) ferromagnetic and (f) antiferromagnetic cases respectively. (g), (h)
Corresponding planar visualizations.

of Eq. (6) can be directly computed as ρ(0) = (1/2 + IP
x ) ⊗

(e−βHAB/Z (βJ, hA, hB)), which, upon substituting the value of
e−βHAB from Eq. (12), yields

ρ�(0) = CaIP
x + Cb2IP

x IA
z + Cc2IP

x IB
z + Cd 4IP

x IA
z IB

z . (14)

Here, we have used “tilde” as before to indicate that only those
terms that contribute to the probe’s coherence are considered
whereas 1 and IA

z IB
z are suppressed. Ci of Eq. (14) are hyper-

bolic functions of βhA, βhB, and βJ as defined in Eq. (12).
Again, starting from the thermal deviation ρ�

th , target state
ρ�(0) of Eq. (14) can be prepared with only probe control
using the pulse sequence shown in Fig. 5(a). The derivation
of pulse sequence is given in Appendix D which explains how

the pulse sequence achieves the desired initialization. As there
are three variables (βJ, βhA, βhB) to fix the target state of
Eq. (14), the pulse sequence of Fig. 5(a) is also having three
free parameters θ1, θ2, and τ , which can be set suitably to
prepare any desired state. Given a specific target state, how to
obtain the correct values of three control parameters θ1, θ2,
and τ is discussed in Appendix D.

V. EXPERIMENTAL RESULTS

As explained above, LY zeros are extracted from the time
points where probe coherence vanishes, which, according to
Eq. (7), leads to simultaneous vanishing of 〈σ P

x 〉 and 〈σ P
y 〉.
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FIG. 5. (a) Pulse sequence for preparing the system in the state of Eq. (6) for nonzero values of hA and hB. (b) In particular, the initialization
is performed for two distinct points on the amoeba plane: (i) hA = hB = 0.1 and (ii) hA = −hB = 0.1, considering βJ = 0.5 in both cases.
(c), (d) The real parts (dashed thin lines) and imaginary parts (dashed thick lines) of FID corresponding to 〈σ P

x (t )〉 and 〈σ P
y (t )〉, respectively,

are plotted along with the simulated curves (solid lines, thin and thick correspondingly) for the prepared initial state of (i) in (c) and (ii) in (d).
Simultaneous null points of real (solid square) and imaginary (solid circle) parts of FID correspond to LY zeros, which exist for (ii) (stars) while
absent for (i). Theoretical and experimental curves of the mutual information IP:AB between the probe and the system are also plotted, which
reach their maxima (horizontal line at 0.69) only at the LY zeros. (e), (f) Theoretically calculated (solid line) and experimentally observed null
points of real (solid square) and imaginary (solid circle) parts of FID are plotted on the 2-torus for (i) (e) and (ii) (f). The desired coamoeba
points lie in the intersection, which can be seen in (f). (g), (h) Corresponding planar visualizations.

As the prepared state ρ�(0) evolves freely under the internal
Hamiltonian HI , we measure the probe expectation values
〈σ P

x (t )〉 and 〈σ P
y (t )〉 in a rotating frame synchronous with the

probe’s Larmor precession [30,31]. In this frame, the effective
Hamiltonian becomes

Heff = 2π h̄
(
JPAIP

z IA
z + JPBIP

z IB
z

)
, (15)

where A-B interaction is suppressed since ρ�(0) of Eq. (13)
and (14) do not evolve under it. By comparing this Hamil-
tonian with the interaction Hamiltonian Hint in Eq. (4), we
identify λA = πJPAh̄/2 and λB = πJPBh̄/2. Feeding this to
Eq. (9b), experimentally measured time points correspond-

ing to vanishing probe coherence are directly mapped to the
coamoeba torus, and thus, physical sampling of coamoeba is
achieved.

First, we sample the coamoeba corresponding to the ori-
gin [circled in Fig. 4(b)] of the amoeba’s plane. Following
Eq. (9a), we set hA = hB = 0 and accordingly prepare ρ�(0)
of Eq. (13), which subsequently evolves under Heff . As
〈σ P

y (t )〉 is identically zero in this case (see Appendix C 1
for calculation), LY zeros are determined just by measuring
〈σ P

x (t )〉 and noting the time points where it vanishes. An
essential advantage of the NMR quantum testbed is, being
an ensemble architecture, it directly gives 〈σ P

x(y)(t )〉 as the
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real (imaginary) part of the NMR signal known as the free
induction decay (FID) [32]. Hence, after performing the ini-
tialization via a probe in ferromagnetic and antiferromagnetic
regimes, we record their FIDs, whose real parts are shown in
Figs. 4(c) and 4(d), respectively. In the figure, time points cor-
responding to LY zeros are marked with solid squares, which
are readily identified as FID null points. No additional data
processing is required for this purpose. We sampled the corre-
sponding coamoeba(s) from collected FID up to 300 ms (see
Appendix C 2). However, for clarity, the time domain signals
for ferromagnetic and antiferromagnetic cases in Figs. 4(c)
and 4(d) are shown only up to 40 and 60 ms, respectively. The
mutual information IP:AB between the probe and the system is
calculated directly from experimental FID and plotted against
their simulated values in Figs. 4(c) and 4(d). It is shown that
the maximum of the mutual information occurs only at the LY
zeros as predicted by Eq. (10), thus confirming the footprint of
complex LY zeros in real-time correlation dynamics between
the system and the probe. The FID null points are mapped
to the coamoeba by Eq. (9b). The sampled coamoeba for
ferromagnetic (βJ = 0.5) and antiferromagnetic (βJ = −0.5)
regimes are shown on the 2-torus in Figs. 4(e) and 4(f) respec-
tively. Their equivalent modulo 2π planar visualizations are
shown in Figs. 4(g) and 4(h), respectively. We observe a fairly
good agreement with the theoretically computed coamoeba
within the experimental limitations.

It is worth noting that no state tomography is needed for
these experiments, and the LY zeros emerge directly from
the NMR FID without further data processing. Thus, each
experiment taking less than 1 s yields a dense set of LY zeros.

We now demonstrate the sampling of coamoeba for two
nonorigin points: (i) βhA = βhB = 0.1, which is outside
amoeba, and (ii) βhA = −βhB = 0.1, which is inside amoeba
as shown in Fig. 5(b). Again we note that 〈σ P

x (t )〉 and 〈σ P
y (t )〉

are just real and imaginary components of the probe (1H) FID.
Therefore in each case, we initialize the system considering
βJ = 0.5 and let it evolve under Heff while recording the FID
as shown in Figs. 5(c) and 5(d). We extract the time points at
which 〈σ P

x (t )〉 and 〈σ P
y (t )〉 vanish, and map them to a 2-torus

via Eq. (9b). In case (i), as shown in Figs. 5(c), 5(e), and 5(g),
the zeros of 〈σ P

x (t )〉 and 〈σ P
y (t )〉 do not intersect, indicating

the absence of L-Y zeros, thereby confirming that the point
(i) does not belong to the amoeba. However, in case (ii),
the null points of 〈σ P

x (t )〉 (real FID) and 〈σ P
y (t )〉 (imaginary

FID) intersect twice as marked by stars in Figs. 5(d), 5(f),
and 5(h), confirming the existence of two distinct coamoeba
points. The mutual information calculated from the NMR FID
is plotted along with its simulated values for case (i) [(ii)] in
Fig. 5(c) [Fig. 5(d)]. It reaches its maximum twice for case
(ii) at times corresponding to simultaneous null points of real
and imaginary components of the FID. However, as there are
no simultaneous null points of real and imaginary FID in case
(i), the mutual information never becomes maximum in this
case. These experimental observations confirm the prediction
of Eq. (10) that the correlation between the probe and the
system reaches its maximum only at points corresponding
to LY zeros. It is worth highlighting that the existence and
nonexistence of LY zeros for case (i) and (ii), respectively,
can be directly observed just by looking at quadrature NMR
FID shown in Figs. 5(c) and 5(d) without any data processing.

Again, in both cases, we see a reasonably good agreement
between the theoretical predictions and experimental values.
This method of high-throughput extraction of LY zeros can
be used for efficient sampling of coamoeba for a large set of
amoeba points, thereby determining the algebraic variety Vf

at any desired precision.

VI. CONCLUSION

For the continued advancement of quantum technologies
in the coming years, it is imperative that their applications
extend to a broader spectrum of scientific domains by ad-
dressing challenges beyond the confines of problems related
to quantum physics alone. Following the spirit, we showed
a method of using qubits to simulate asymmetrical classical
Ising systems at any arbitrary value of its temperature and
coupling constant for determining its LY zeros in a wide
range of physical situations. Most importantly, in our method,
both initialization and determination of LY zeros are achieved
through a quantum probe interacting with the system qubits
while system qubits themselves are left untouched. We believe
this feature of our protocol makes it easier to generalize for
more complex systems where controlling system qubits be-
come intractable. A lot of recent works presented a wide range
of applications of LY zeros in solving problems across areas
like statistical studies [7,8] of equilibrium (phase transition,
critical phenomena, etc. [4,5]) and nonequilibrium (dynamical
phase transitions, etc. [6]), statistical physics, percolation [9],
complex networks [10,11], and even protein folding [12,13].
Therefore a method for extracting full algebraic variety con-
taining LY zeros of a general asymmetrical classical system
has become essential to implement these studies in real situ-
ations. We believe our method of using quantum simulation
technique with control over a single qubit alone to do the task
is an important step in bringing all those different areas of
physics to the sphere of quantum simulation. Experimental
validation using a three-qubit NMR register demonstrates the
feasibility of our protocol. It is worth noting that this protocol
samples the amoeba and coamoeba for a given LY polynomial
and thereby can provoke applications of quantum simulations
in the domain of pure mathematics. Apart from applications,
this paper also uncovers the rich aesthetic structure of the
LY zeros by physically sampling the algebraic variety that
contains them.
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APPENDIX A: RELATION BETWEEN SPIN COHERENCE
AND ZEROS OF BIVARIATE LY POLYNOMIALS

The initial state of the probe and system is given in Eq. (6).
We evolve this state to get ρ(t ) = U (t )ρ(0)U†(t ), where
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FIG. 6. The sampling of a coamoeba for λA = J/4, λB = mJ/4, and β = 0.5, for (a), (b) m = 1 and (c), (d) m = 1
3 , plotted for 0 � t �

6π h̄
J . (a), (c) Plots of L(t ) vs t . (b), (d) Parametrized lines Eq. (9b), overlaid with a sketch of the coamoeba. The points when L(t ) = 0

correspond to the intersection of the lines with the boundary of the coamoeba.

U (t ) = exp (−itH/h̄) for the Hamiltonian H given in Eq. (4):

ρP(t ) = trAB(U (t ) ρ(0)U†(t ))

= 〈0|ψP〉〈ψP|0〉 + 〈1|ψP〉〈ψP|1〉
Z (β, hA, hB)

+ 〈0|ψP〉〈ψP|1〉
Z (β, hA, hB)

[
eβ(hA+hB+J )e−2i(λA+λB )t/h̄

+ eβ(hA−hB−J )e−2i(λA−λB )t/h̄

+ eβ(−hA+hB−J )e−2i(−λA+λB )t/h̄

+ eβ(−hA−hB+J )e−2i(−λA−λB )t/h̄
] + H.c.

From this we get (using the complexified variables z1, z2, and
� defined in the main text)〈

σ P
x (t )

〉 = 〈0|ψP〉〈ψP|1〉
Z (β, hA, hB)(�z1z2)

1
2

× (1 + �z1 + �z2 + z1z2) + H.c., (A1)

and
〈
σ P

y (t )
〉 = i

〈0|ψP〉〈ψP|1〉
Z (β, hA, hB)(�z1z2)

1
2

× (1 + �z1 + �z2 + z1z2) + H.c. (A2)

Therefore, we get the probe coherence L as a function of time
as

L(t ) = h̄2

4

∣∣〈σ P
x (t )

〉 + i
〈
σ P

y (t )
〉∣∣2

= h̄2|〈1|ψP〉〈ψP|0〉|2
Z2(β, hA, hB)(�z∗

1z∗
2 )

|1 + �z∗
1 + �z∗

2 + z∗
1z∗

2|2

= C| f (z1, z2)|2, (A3)

where C = h̄2|〈1|ψP〉〈ψP |0〉|2
Z2(β,hA,hB )(�z∗

1 z∗
2 ) , and f (z1, z2) = 1 + �z1 + �z2 +

z1z2 is a bivariate LY polynomial. Hence the derivation of
Eq. (7) is complete.

APPENDIX B: SAMPLING OF THE COAMOEBA:
METHODOLOGY

Since, at points where the LY polynomial | f (z1, z2)|2 =
0, the arguments of the variables represent points of the
coamoeba, Eq. (9b) results in straight lines in the coamoeba

plane, with slope λB/λA, parametrized by t . As the time t
elapses, a point traverses the coamoeba plane along a straight
line at velocity (4λA/h̄, 4λB/h̄). The spin coherence L(t ) of
Eq. (7) vanishes whenever (θ1(t ), θ2(t )) coincides with the
corresponding point(s) on the coamoeba.

As an example, we plot in Fig. 6 L(t ) vs t , along
with the parametric lines (θ1(t ), θ2(t )) for the case λA =
J/4, λB = mJ/4, β = 0.5, and hA = hB = 0, for the cases
m = 1 and 1

3 . We see that L(t ) vanishes whenever the line
(θ1(t ), θ2(t )) intersects the coamoeba boundary. For the case
m = 1 [Fig. 6(b)], the line only intersects the coamoeba
boundary twice before it repeats after a period of 2π h̄

J . For
m = 1

3 [Fig. 6(d)], the line starts from the origin as segment
A where it intersects the coamoeba once, then continues as
segment B, intersecting the coamoeba twice, and finally as
segment C, where it intersects the coamoeba one more time
before it repeats the segments A, B, and C after a period of
6π h̄

J . Thus, an experimental procedure to sample a coamoeba
can be done as follows. A two-spin system is prepared in a
heat bath of temperature 1/β, and coherence L(t ) of a quan-
tum probe coupled to the system is measured. We then record
the times when L(t ) vanishes. This gives a sequence, say,
t1, t2, t3, . . .. By Eq. (9b), this will form a collection of points
on the torus. As explained above, these mark the intersection
points of the line with the coamoeba. As long as m = λB

λA
is not

rational (which, in an experimental situation, is most likely
the case), we can eventually collect enough points to form
the shape of the coamoeba. Figure 7 demonstrates this for the
ferromagnetic case J > 0 with t running in the interval 0 �
t � 100h̄/J . The antiferromagnetic case is shown in Fig. 8,
where t is 0 � t � 500h̄/|J|. In our case, m is irrational and
equals to JPB/JPA, whose values are listed in Fig. 3(b).

APPENDIX C: EXPERIMENTS FOR hA = hB = 0

1. Preparation via probe

By setting hA = hB = 0 in Eq. (14), we get the target state

ρ�(0) = cosh(βJ )IP
x + sinh(βJ )4IP

x IA
z IB

z . (C1)

Here we have dropped the proportionality factor of
1/Z (β, 0, 0). To prepare this, we start with the NMR ther-
mal deviation state ρ�

th (0) as mentioned in the main text and
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FIG. 7. Physical sampling of a coamoeba in the ferromagnetic case, J > 0, with λA = J/4, λB = mJ/4, and β = 0.5 for various m. The
points are obtained by recording the times where L(t ) vanishes in the interval 0 � t � 100h̄/J .

proceed:

IP
z

(π/2)P
y−−−→ IP

x
τ−→ cos(πJPAτ ) cos(πJPBτ )IP

x

+ cos(πJPAτ ) sin(πJPBτ )2IP
y IB

z

+ sin(πJPAτ ) cos(πJPBτ )2IP
y IA

z

− sin(πJPAτ ) sin(πJPBτ )4IP
x IA

z IB
z

↓ (π/2)P
y − grad. − (π/2)P

−y

× cos(πJPAτ ) cos(πJPBτ )IP
x

− sin(πJPAτ ) sin(πJPBτ )4IP
x IA

z IB
z . (C2)

Thus the target state is achieved by applying pulses on the
probe alone considering the system to be inaccessible. Here,
by τ we meant free evolution under Heff (given in the main
text) and “grad.” represents a pulsed filed gradient pulse along
the z direction. In particular, the prepared state of Eq. (C2)
equals the target state of Eq. (C1) (apart from trivial propor-
tionality factors) when

cos(π (JPA + JPB)τ )

cos(π (JPA − JPB)τ )
= e2βJ . (C3)

Therefore for any value of βJ , we can find the corresponding
τ satisfying the above equation. Setting that delay time τ in
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FIG. 8. Physical sampling of a coamoeba in the antiferromag-
netic case, J < 0, where λA = −J/4, λB = −mJ/4, and β = 0.5 for
(a) m = π and (b) m = √

2. The points are obtained by recording the
times where L(t ) vanishes in the interval 0 � t � 500h̄/|J|.

the pulse sequence, the initial state can be readily prepared.
For example, we prepare the state for βJ = 1/2 by setting
τ = 8.764 648 4 ms. In this value of τ , the fidelity between
Eqs. (C1) and (C2) becomes 0.99. On the other hand, to
initiate the state for βJ = −1/2, we set τ = 9.013 671 9 ms
in which case the respective fidelity is ≈1.

2. Analysis

To sample the coamoeba we initiate the system as
mentioned above both for ferromagnetic (βJ = 1/2) and an-
tiferromagnetic (βJ = −1/2) cases. After the initiation, as
mentioned in the main text, we just need to let it evolve under
its NMR internal effective Hamiltonian Heff (the form is given
in the main text). By direct computation, we get〈

σ P
x (t )

〉 = tr
[
σ P

x e−iHeff t/h̄
(

cosh(βJ )IP
x

+ sinh(βJ )4IP
x IA

z IB
z

)
eiHeff t/h̄

]
∝ {eβJ cos[π (JPA + JPB)t]

+ e−βJ cos[π (JPA − JPB)t]}, (C4)

and
〈
σ P

y (t )
〉 = tr

[
σ P

y e−iHeff t/h̄
(

cosh(βJ )IP
x

+ sinh(βJ )4IP
x IA

z IB
z

)
eiHeff t/h̄

] = 0. (C5)

As 〈σ P
y (t )〉 is zero throughout, we just need to find the time

points where 〈σ P
x (t )〉 vanishes. In Fig. 9, we plot the real part

of direct NMR FID on top of the predicted FID by analytical
expression of Eq (C4) and observe they match really well.
(To correct the initial phase error due to electronic switching
time, etc., we have performed a zeroth-order phase correction
on the data). Experimentally observed time points, where the
coherence vanishes, are noted and mapped to the coamoeba
torus via Eq. (9b) of the main text.

APPENDIX D: EXPERIMENTS FOR
hA, hB �= 0—PREPARATION VIA PROBE

To initialize the system at any arbitrary nonzero value of
hA and hB, the full state mentioned in Eq. (14) becomes our
target. Following the sequences of pulses given in Fig. 5(a),
we achieve this preparation. Here we prove how the target
is achieved by the pulse sequence of Fig. 5(a), starting from
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FIG. 9. (a) Simulated and experimental FID for βJ = 1/2.
(b) Same for βJ = −1/2. Zeros of FID are marked with circles.

thermal equilibrium:

IP
z

θ1
y−→ cos(θ1)IP

z + sin(θ1)IP
x

θ2
−x−→ cos(θ1) cos(θ2)IP

z

+ cos(θ1) sin(θ2)IP
y + sin(θ1)IP

x

↓ τ

× cos(θ1) cos(θ2)IP
z + cos(θ1) sin(θ2)

[
cos(πJPAτ )

× cos(πJPBτ )IP
y − cos(πJPAτ ) sin(πJPBτ )2IP

x IB
z

− sin(πJPAτ ) cos(πJPBτ )2IP
x IA

z − sin(πJPAτ )

× sin(πJPBτ )4IP
y IA

z IB
z

] + sin(θ1)
[

cos(πJPAτ )

× cos(πJPBτ )IP
x + cos(πJPAτ ) sin(πJPBτ )2IP

y IB
z

+ sin(πJPAτ ) cos(πJPBτ )2IP
y IA

z − sin(πJPAτ )

× sin(πJPBτ )4IP
x IA

z IB
z

]
↓ (π/2)P

y − grad. − (π/2)P
−y

× [ sin(θ1) cos(πJPAτ ) cos(πJPBτ )]IP
x

+ [− cos(θ1) sin(θ2) sin(πJPAτ ) cos(πJPBτ )]2IP
x IA

z

× [ − cos(θ1) sin(θ2) cos(πJPAτ ) sin(πJPBτ )]2IP
x IB

z

+ [− sin(θ1) sin(πJPAτ ) sin(πJPBτ )]4IP
x IA

z IB
z . (D1)

Comparing this prepared state with the target state of Eq. (14),
we note that to prepare for a given value of {βhA, βhB, βJ},
we need to find corresponding values of free parameters
{θ1, θ2, τ } from the below four equations:

Ca = [sin(θ1) cos(πJPAτ ) cos(πJPBτ )], (D2a)

Cb = [− cos(θ1) sin(θ2) sin(πJPAτ ) cos(πJPBτ )], (D2b)

Cc = [− cos(θ1) sin(θ2) cos(πJPAτ ) sin(πJPBτ )], (D2c)

Cd = [− sin(θ1) sin(πJPAτ ) sin(πJPBτ )]. (D2d)

Therefore it boils down to a three-parameter estimation
problem, given a set of four equations. In particular, if we de-
note right-hand sides of Eqs. (D2a), (D2b), (D2c), and (D2d)
as {ca, cb, cc, cd}, respectively, then we can define the opti-
mization problem as

Optimize for {θ1, θ2, τ } such that

f = | �C − �c| =
∑

i={a,b,c,d}
|Ci − ci| is minimized. (D3)

Any available optimization algorithm can be employed to
minimize f . For example, we have used the genetic algo-
rithm. Of course, as the system gets larger the optimization
problem will become difficult unless the system possesses
some symmetry. However, our method allows us to reduce
this optimization problem into two optimization problems
with lesser complexity. To explain how that can be done we
compute 〈σ P

x (t )〉 and 〈σ P
y (t )〉 as the state of Eq. (14) evolves

under U (t ) = exp(−iHefft/h̄):

〈σ P
x (t )〉 = tr[Uρ�(0)U†σx]

= Ca cos(πJPAt ) cos(πJPBt )

−Cd sin(πJPAt ) sin(πJPBt ), (D4a)

〈σ P
y (t )〉 = tr[Uρ�(0)U†σy]

= Cb sin(πJPAt ) cos(πJPBt )

+Cc cos(πJPAt ) sin(πJPBt ). (D4b)

From Eqs. (D4a) and (D4b), we note that only ca and cd

contribute in the measurement of 〈σ P
x (t )〉 while cb and cc

terms contribute in 〈σ P
y (t )〉 measurement. This mutual exclu-

sivity can be exploited to prepare Eq. (14) via optimizing for
first and last terms alone without caring for the other two terms
and measuring 〈σ P

x (t )〉. Then, by the same logic, we optimize
only for the second and third term of Eq. (14) and measure
〈σ P

y (t )〉.
As mentioned in the main text, we perform our exper-

iments at two nonzero values of hA and hB, namely βJ =
1/2, βhA = βhB = 0.1, and βJ = 1/2, βhA = −βhB = 0.1.
For each of these cases, we perform two sets of experiments
by extracting 〈σ P

x (t )〉 and 〈σ P
y (t )〉 separately to demonstrate

the before-mentioned optimization splitting. Using the opti-
mized values, the pulse sequence of Fig. 5(b) is employed
for state initialization. After initialization is achieved, 〈σ P

x (t )〉
and 〈σ P

y (t )〉 are recorded as the NMR register evolves freely
under Heff (the form is given in the main text). After zeroth-
order phase correction on the experimental data, interpolated
signals are plotted in Figs. 5(g) and 5(h). Their zero points
(marked by circles) are then mapped to the 2-torus by
Eq. (9b).
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