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Quantum illumination using non-Gaussian states with conditional measurements
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Quantum illumination is a quantum sensing protocol primarily used for object detection, which aims to detect
the presence of a target with low reflectivity in the free space using quantum light fields. Here we investigate
a quantum illumination scheme using an entangled light source by performing non-Gaussian operations on the
two-mode squeezed vacuum (TMSV) state in order to reduce the detection error probability and meanwhile
improve the signal-to-noise (SNR) ratio. We demonstrate that under the same squeezing parameter, the non-
Gaussian operations can significantly reduce the detection error rate compared with the original TMSV state.
Under the same average signal photon number, both the TMSV states with and without non-Gaussian operations
can provide smaller error rate than that of the coherent state. In addition, we consider the balanced homodyne
detection on idler and return signal photons as joint measurement and find that non-Gaussian operations can
enhance the SNR of target detection by about 6–9 dB compared with that using TMSV. These results here
demonstrate the advantage of the non-Gaussian entangled source in quantum illumination protocol and can find
potential applications in target detection in noisy environment.
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I. INTRODUCTION

Quantum entanglement, one of the most important quan-
tum resources, has found important applications in the areas
such as quantum computation [1–3], quantum communica-
tion [4–6], and quantum sensing [7–10]. Quantum target
perception and detection protocol, also known as quantum
illumination protocol (QI), as an important subset in the field
of quantum sensing, aims to accurately distinguish between
the presence and absence of target with extremely low reflec-
tivity in a distant region [11–14]. In a typical QI protocol,
we first prepare entangled light sources with one mode of
the radiation source (signal) being sent to the region where
the target may exist, while the other mode is stored locally
as an idler to perform the joint quantum measurement with
the signal light reflected by the target. In the QI protocol, the
precision limit of the joint quantum measurement is given by
the quantum Chernoff bound (QCB), which is an upper bound
of the error probability of the hypothesis test problem [15,16].
The previous studies have shown that quantum entanglement
is a critical resource for enhancing the performance of tar-
get detection, even if entanglement is disrupted by the noisy
environments [17,18].

Lloyd first proposed the QI protocol based on the discrete
variable quantum states such as the entangled single-photon
sources and showed how to identify the existence of weak
reflective target even in noisy environments [11]. In 2021, Xu
et al. experimentally demonstrated the advantage of the QI
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by using polarization-entangled photon pairs and showed that
the QI can surpass the classical limit by up to 40% [19]. The
optimal probe state for minimizing the error probability of the
QI using discrete variable quantum states has been determined
[20]. In addition to discrete variable quantum states, the QI
scheme was also extended to continuous-variable states, such
as the Gaussian state, by Tan et al. [12]. They showed that
the performance of the QI system based on the Gaussian
entangled state is better than that of the optimal classical
illumination system using a coherent state for the same trans-
mission energy in a bright noise environment. The advantages
of the QI based on the Gaussian entangled states have also
been experimentally demonstrated [21–23]. However, the QI
using Gaussian entangled states is not the optimal choice in
the continuous-variable region [24]. A number of schemes
have been proposed to further improve the performance of
the QI via enhancing the entanglement of radiation sources
[25–28]. It has been shown that by performing non-Gaussian
operations such as photon addition (PA), photon subtrac-
tion (PS), and photon catalysis (PC), the entanglement of
Gaussian entangled states can be further enhanced [29–35]
and can be used to improve the performance of continuous-
variable quantum key distribution [36,37], quantum precision
metrology [38,39], and QI [27,28]. Zhang et al. have shown
that the photon subtracted from the two-mode squeezed vac-
uum state (TMSV) has a lower error probability compared to
the original the TMSV at the same squeezing intensity [27].
Fan et al. proposed that by performing the photon addition or
the coherent superposition of photon addition and subtraction
operations on both two modes of the TMSV, the perfor-
mance of the QI can be improved [28]. In these studies, they
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FIG. 1. Schematic diagrams of QI protocol based on non-Gaussian entangled states. (a) The target can be modeled as an optical beam
splitter with the extreme low reflectivity κ � 1. The execution of the QI protocol is divided into three steps. (b) Step 1: source preparation:
performing non-Gaussian operations based on conditional measurement on the initial Gaussian entangled state that can be obtained by an
optical parametric amplifier with the pump field, resulting in non-Gaussian entangled state with enhanced entanglement. (c) Step 2: target
detection: emitting signal light to illuminate the potential region of the target, and if the target is present, the signal light can be reflected.
(d) Step 3: joint measurement: after receiving photons from the target region, a joint quantum measurement is performed on the return and the
idler lights.

mainly considered the ideal non-Gaussian operations with-
out considering their practical realizations. Additionally, what
kind of joint quantum measurement is needed to demonstrate
the advantage of the non-Gaussian quantum states is also
missing.

Considering that quantum entanglement can be enhanced
by performing non-Gaussian operation based on conditional
measurement (NGOCM) on the TMSV [40–44], in this paper
we propose a QI scheme which uses the NGOCM-TMSV
quantum light sources to improve the performance of the
target detection. The advantage of this scheme is that we can
use an optical beam splitter to simulate three different non-
Gaussian operations simultaneously, including PA, PS, and,
PC operations. The results show that a lower error probability
can be achieved by using all three non-Gaussian operations.
In addition, we implement the joint quantum measurement
for the returned and idler light using balanced homodyne
detection. The results show that the three non-Gaussian
operations can enhance the signal-to-noise ratio (SNR) of
target detection by approximately 6–9 dB. Our results here
can find applications in the target detection with noisy
environment.

The structure of the paper is as follows. In Sec. II, we
introduce the non-Gaussian entangled sources based on the
NGOCM. The performance of the QI is analyzed in Sec. III.
In Sec. III A, we analyze the error probability of the QI, and in
Sec. III B, we implement the joint quantum measurement for
the returned and idler light by using the balanced homodyne
detection, and analyzes the SNR. Our results are summarized
in Sec. IV.

II. PREPARATION OF THE NON-GAUSSIAN
ENTANGLED SOURCES

The task of QI is to discover an unknown target with
extremely low reflectivity in free space, where the thermal
noise is present, as shown in Fig. 1. In entanglement-based
QI protocols, the precise detection of the target hidden in the
background can be divided into three steps: (1) Preparation
and optimization of quantum state with large entanglement
[Fig. 1(b)]; (2) illuminating the potential region of the target
by emitting signal light [Fig. 1(c)]; (3) enforcement of joint
quantum measurement on the return and idler lights after re-
ceiving photons from the region [Fig. 1(d)]. In this section, we
investigate the preparation and optimization of entanglement
sources by using the NGOCM in the QI system.

In our scheme, we first employ an optical parametric am-
plifier with the pump field to obtain the signal and idler mode
pair [45,46], i.e., the two-mode squeezed vacuum (TMSV)
state

|ψ〉SI =
√

1 − λ2
∞∑

n=0

λn|n〉S|n〉I , (1)

where λ = tanh r with r being the squeezing parameter.
The subscripts S and I denote signal and idler modes. In
Ref. [12], the QI has been realized using the TMSV as
the entangled source, demonstrating a 6-dB advantage in
the error-probability exponent over the optimum reception
coherent-state system. The results show that entanglement is
a key quantum resource for improving the performance of
QI. Since quantum entanglement may be further enhanced by
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performing non-Gaussian operation on TMSV, here we con-
sider to use the TMSV light source with NGOCM to reduce
the error probability in the QI.

In Fig. 1(b), we first employ the NGOCM on each mode of
the TMSV, where we denote two ancillary inputs as modes
c and d . In the NGOCM, the signal light source and an
ancillary Fock state with ki photon (i = 1, 2) are injected from
two ports of the beam splitter BS (Ti ) with transmissivity
Ti = cos2 θ (i = 1, 2), and then projective measurement is
performed on the ancillary path where li photon (i = 1, 2)
Fock state is obtained with certain probability. The BS trans-
missivity Ti is an important parameter which is relevant to the
success probability of the non-Gaussian operation.

We here mainly consider three different NGOCMs with
single-photon input: single-photon subtraction (PS) with
(ki, li ) = (0, 1), single-photon addition (PA) with (ki, li ) =
(1, 0), and single-photon catalysis (PC) with (ki, li ) = (1, 1).
For the double-side NGOCMs, we can obtain

|ψ〉n−G
SI =

∞∑
n=0

cn|n〉S|n〉I , (2)

where cn is the normalized coefficient of the Schmidt decom-
position and its values for the three NGOCMs, including PA,
PS, and PC, are provided in Appendix A.

To demonstrate that a lower error probability can be ob-
tained by increasing entanglement of the emission sources, we
first discuss the entanglement properties of the non-Gaussian
entangled states by using the von Neumann entropy. For any
pure state in the Schmidt form as shown in Eq. (2), the
entanglement can be quantified by the partial von Neumann
entropy of the reduced density operator [47], i.e., E (|ψ〉SI ) =
− Tr(ρS log2 ρS) where ρS = TrI(|ψ〉SI〈ψ |). On substituting
Eq. (2), we can obtain

E
(|ψ〉n−G

SI

) = −
∞∑

n=0

c2
n log2 c2

n (3)

for the non-Gaussian entangled states. In particular, for the
TMSV, the degree of entanglement can be calculated as
E (|ψ〉SI ) = cosh2 r log2 cosh2 r − sinh2 r log2 sinh2 r, which
is the benchmark for measuring the improvement in entan-
glement using the NGOCM operations [48]. If E (|ψ〉n−G

SI ) >

E (|ψ〉SI ), the entanglement is enhanced by the NGOCM. Oth-
erwise, the entanglement is reduced by the NGOCM.

In Fig. 2, we plot the enhancement amount of the von
Neumann entropy rE = [E (|ψ〉n−G

SI ) − E (|ψ〉SI )]/E (|ψ〉SI ) as
a function of transmissivity T1 and T2. The result for the PC
operation is shown in Fig. 2(a), from which we can see that
there are actually three enhanced regions for the entanglement
compared with that of the TMSV. One enhanced region is
located in the low transmissivities of two BSs, while the other
two are located in one-small–one-large transmissivity of two
BSs. When T1, T2 → 1, the signal and idler photons are not
affected by the beam splitters and the results should be the
same as the TMSV. Indeed, the enhancement of entanglement
rE = 0 when T1 = T2 = 1 as shown in Fig. 2. On the contrary,
for PA and PS operations, the enhanced regions of the entan-
glement are the same and they are located in the region with
high transmissivities of both two BSs as shown in Fig. 2(b).
It is seen that the enhancement of quantum entanglement is

FIG. 2. The enhancement ratio of the von Neumann entropy rE as
a function of the transmissivity T1 and T2 of the NGOCM operations
for the PC operation (a) and for the PA and PS operations (b). The
red and magenta dots correspond to two points where the quantum
entanglement is enhanced, while the blue dot is not. The error proba-
bilities of target detection corresponding to these three data points are
discussed in the main text. The squeezing parameter of the incident
TMSV source is fixed to be sinh2(r) = 0.05.

the largest when T1, T2 → 1 for the PA and PS operations.
However, we should note that when T1, T2 → 1, the success
probability for the PA and PS operations vanishes because the
beam splitters become transparent and no photon addition or
subtraction can be performed. Thus, by performing NGOCM
with suitable parameters on the TMSV, we can increase the
entanglement of the light source. To investigate the relation-
ship between quantum entanglement and the error probability
of QI, we take three data points located in regions with and
without improved entanglement, as shown in Fig. 2. We will
discuss the error probability of target detection in the next
section based on these data points.

III. PERFORMANCE ANALYSIS
OF QUANTUM ILLUMINATION

A. Error probability

In this subsection, we first introduce the basic theoretical
analysis of the QI protocol, as illustrated in Fig. 1. The signal
light from the entangled source which is discussed in the
previous section is emitted into the region where the target
may exist, aiming to identify it amidst the noise background.
Here we set âS , âI , and âe as the field annihilation operators
corresponding to the signal mode, the idler mode, and the
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environment thermal noise mode, respectively. Mathemati-
cally, the target can be modeled as a beam splitter BS(κ )
with the reflectivity κ � 1 [see Fig. 1(a)]. When the target is
absent, we have κ = 0, all the environment thermal states in
noise mode e will be injected into the joint quantum measure-
ment device shown in Fig. 1(d). In this case, the final quantum
state before the joined quantum measurement is given by

ρ
(0)
SI = TrS

[
ρn−G

SI

] ⊗ ρth(Ne), (4)

where ρn−G
SI can be obtained by Eq. (2) and ρth(Ne) =∑∞

m=0
1

Ne+1 ( Ne
Ne+1 )m|m〉〈m| is the thermal noise in surrounding

region of the object with the average photon number Ne.
On the other hand, if an object is present, the signal light

may be reflected by the object and the returning light source
is a mixture of signal light and environment thermal noise.
This process can be modeled as a beam splitter BS(κ ) with a
two-mode mixing operator

BS(κ ) = exp

{
arctan

(√
κ

1 − κ

)
(âSâ†

e − â†
Sâe)

}
. (5)

In this case, the final quantum state before the joined quantum
measurement is given by

ρ
(1)
SI = Tre

[
BS(κ )ρn−G

SI ⊗ ρth(N ′
e)BS†(κ )

]
. (6)

It should be noted that, in this case, the average photon
number of thermal noise is adjusted to N ′

e = Ne/(1 − κ ) to
compensate for the loss during mixing. Finally, a joint quan-
tum measurement is performed on the returning and idler light
to distinguish between the case where the target does not exist
ρ

(0)
SI and the case where the target exists ρ

(1)
SI .

To see the the advantages of non-Gaussian entangled
states for the QI more clearly, we assume to use a positive
operator-valued measurement (POVM) as the joint quantum
measurement scheme to infer whether an object is present
or not. The precision of target recognition can be judged by
the inferred error probability, which also depends on a prior
probability. Here, we assume a prior probability of 1

2 , meaning
that the two hypotheses, whether the region contains a target
or not, are equally likely. Then, the minimal error probability
with a joint state of K-copy entanglement is given by the
Helstrom limit [11,12,49]

Perr = 1
2

(
1 − 1

2

∥∥ρ
(1)⊗K
SI − ρ

(0)⊗K
SI

∥∥)
, (7)

where the symbol ‖�‖ is the trace norm, i.e., ‖�‖ =
Tr[

√
�†�] which is the sum of the singular values of �.

Thus, larger trace distance between ρ
(0)
SI and ρ

(1)
SI will give

smaller Perr. However, as known to us, the continuous-variable
non-Gaussian state [e.g., ρn−G

SI in Eq. (4)] is actually a su-
perposition of an infinite-dimensional Fock state in Hilbert
space. In addition, to achieve quantum advantages, we will
need a very large K-copy entanglement. These undoubtedly
make it difficult for us to directly evaluate the probability of
errors Perr by using Eq. (7). At this point, the quantum Cher-
noff bound (QCB) comes to a rescue, which can help us to
solve this problem. For optimum quantum discrimination be-
tween a pair of equally likely K-copy entangled states, ρ

(0)⊗K
SI

and ρ
(1)⊗K
SI , the QCB places the following limit on the error

probability [15,16]:

Perr � 1
2

{
min

0�τ�1
Tr

[(
ρ

(0)
SI

)τ (
ρ

(1)
SI

)(1−τ )]}K
. (8)

This bound is exponentially tight. We can evaluate the per-
formance of the QI by using Eq. (8). However, notice that the
QCB involves a minimization in the variable τ , which requires
higher computational strategies and resources. Therefore, we
set τ = 1

2 , a weaker version of the Eq. (8), which is also
known as the Bhattacharyya bound [12,50]:

Perr � PB
err = 1

2

{
Tr

[(
ρ

(0)
SI

)1/2(
ρ

(1)
SI

)1/2]}K
. (9)

In the following, we compare the improvement of the QI
performance among various NGOCMs by using Eq. (9) in the
same dimension.

As is known, the TMSV is a zero-mean Gaussian state in
the quadrature representation, which can be described with
a covariance matrix in phase space [12]. Therefore, the for-
malism in Ref. [12] applies solely to a Gaussian state. When
it comes to non-Gaussian states, we cannot obtain the error
probability of target detection using the same method as for
the TMSV. Fortunately, the non-Gaussian entangled states
can be expanded with infinite-dimensional Fock states in the
Hilbert space, as shown in Eq. (2), which provides a powerful
and straightforward method for us to analyze QI in the non-
Gaussian regime.

Substituting Eqs. (4) and (6) into Eq. (9), we can im-
mediately evaluate the Bhattacharyya bound of the error
probability via numerical methods. However, we cannot run
and calculate the density operator in an infinite-dimensional
Hilbert space and need to truncate the density operator
to the quantum state with appropriate photon numbers. In
the following numerical calculation, for the convenience of
discussion and analysis, we truncate the photon numbers con-
taining all non-Gaussian entangled states (ρn−G

SI ) to nmax = 15
and neglect all the contributions of higher photon number,
which is already a very good approximation when the ini-
tial entanglement source brightness is relatively weak (Ns =
sinh2 r = 0.05 in this scheme). The Bhattacharyya bound can
then be determined directly from the truncated density op-
erators. Meanwhile, unless otherwise stated, all calculations
presented in this work assume an average photon number
of Ne = 1 for the thermal noise surrounding the target. This
assumption represents a particularly strong level of thermal
noise in free space. In addition, we choose target reflectivity
to be κ = 0.01, i.e., assuming that only 1% of the signal light
is reflected by the target to the detector. The transmissivity of
the NGOCM devices is set to T1 = T2 = T .

In Fig. 3 the Bhattacharyya bound of the error probability
PB

err is plotted as a function of number of copies K . In these
comparisons, we fix the squeezing parameter of the TMSV
before non-Gaussian operations such that sinh2(r) = 0.05 and
compare their error probabilities. For comparison, we also
plot the error probability curve using the coherent state with
the same average photon number as that of the TMSV. The
advantage afforded by the NGOCMs can be clearly observed
by showing the dependence of PB

err on the number of copies
K . For the PC operators, in Fig. 3(a), we provide the error
probability corresponding to the three data points in Fig. 2(a),
in which red (T = 0.1) and magenta (T = 0.2) data points
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FIG. 3. Error probability of the target detection as a function of number of copies K by performing the PC operations with the transmissivity
T = (0.1, 0.2, 0.3) (a), the PS operations with T = (0.8, 0.6, 0.4) (b), and the PA operations with T = (0.8, 0.6, 0.4) (c) on the initial TMSV
source. The error probability of the TMSV (black solid line) and coherent state (black dotted line) are also shown as benchmark for comparison.
The reflectivity of the target is chosen as κ = 0.01. The squeezing parameter of the incident TMSV source is fixed to be sinh2(r) = 0.05. The
thermal noise intensity is Ne = 1.

correspond to an increase in entanglement, while the blue
(T = 0.3) data point does not. From Fig. 3(a), it is not difficult
to find that performing the PC operations on each mode of the
TMSV can significantly reduce the error probability in target
detection with the same number of copies K , especially when
K is large (e.g., K � 104). This improvement can be attributed
to the enhancement of entanglement. It is worth mentioning
that the success probabilities in the enhancement regions of
entanglement are relatively low. In addition, the PC operation
maximizes entanglement at low but nonzero probability. Thus,
the success of detecting the single photon, also the key of
the PC, is determined by the perfection of the detectors. As
long as the detector is perfect enough, the single photon can
be successfully detected. With current detection technology,
it is possible to solve the issue of low detection probability.
Furthermore, even if the single photon in the auxiliary mode
is not detected, our scheme can still achieve the quantum
advantage in target detection. The main reasons are as follows:
on the one hand, to achieve quantum advantage here, we must
ensure that K � 1, which can actually compensate for the
low probability of success. That is to say, a portion of the
multicopy TMSV states are always converted to PC-TMSV,
thereby obtaining quantum advantages. On the other hand, if a
single photon is not detected in auxiliary mode but a vacuum
output is detected, then this operation actually transitions to
PA operation. On the contrary, if the photon numbers li > 1
are detected in the auxiliary mode, then this situation shifts to
PS operation. In fact, for both the PS and PA operations, by
adjusting the transmissivity T of the BS(Ti ) in the region of
entanglement enhancement, the error probability can still be
significantly reduced, as shown in Figs. 3(b) and 3(c). Even in
areas where entanglement has not improved, the error proba-
bility of target detection obtained using PC and PS operations
is still lower than that of coherent states.

In addition, for the PA operation, we are surprised to find
that even if the entanglement is not enhanced, the PA opera-
tion can still reduce the error probability for target detection,
as shown by the blue dotted line in Fig. 3(c). To explain
this phenomenon, in Fig. 4(a), we show the signal intensity
after performing the NGOCMs on TMSV, namely, the average
photon numbers 〈n〉signal in the signal mode. We can observe

that the reduction of the error probability for the PA operation
is mainly due to the fact that the PA operation can significantly
increase the average photon numbers in the signal mode. From
this, it can be seen that the reduction of error probability in
target detection can be achieved by increasing the entangle-
ment of the signal source and enhancing the signal intensity.
In Fig. 4(b), we compare the error probability using coherent
state, TMSV, PC- and PS-TMSV with the same average signal
photon number (i.e., Ns = 0.05). Since the average photon
number of PA-TMSV is larger than 1 as shown in Fig. 4(a),
its error probability is not plotted in the figure. We can see
that with the same average signal photon number, the error
probabilities using TMSV, PC- and PS-TMSV are lower than
that using the coherent state and in this case the TMSV input
has the best performance.

In order to compare the QI performance of the entangled
sources after performing different NGOCMs, in Figs. 5(a)
and 5(b), we show the typical behavior of the von Neu-
mann entropy Ev as a function of transmissivity T for the
double-side and the single-side NGOCMs, respectively. From
Fig. 5(a), we can easily find that when T = 0.125, the max-
imum entanglement EPC

v,max = 1.06 for the double-side PC
operation. While for the double-side PA and PS operations,
the maximum entanglement EPA

v,max = EPS
v,max = 0.763 when

T → 1. In fact, the transmissivity T → 1 can be used to
realize ideal PA and PS operations, i.e., |ψ〉PA → â†

Sâ†
I |ψ〉SI

and |ψ〉PS → âSâI |ψ〉SI for performing the PA and the PS
operators on each mode of the TMSV, respectively. The ideal
PA- and PS-TMSV has been compared with the TMSV for
the QI [27,28]. Besides, from Fig. 5(b), we can obtain that the
maximum entanglement EPC

v,max = 1.034 when T = 0.041 for
the single-side PC operation, which is slightly smaller than
that of the double-side operations. For the single-side PA and
PS operations, the maximum entanglement EPA

v,max = EPS
v,max =

0.483 also occurs when T → 1.
In Figs. 5(c) and 5(d), we compare the error probability

of target detection when the quantum entanglement is max-
imized for the three different NGOCMs. From Fig. 5(c), we
can see that for the case of double-side operations, the double-
side PA operation gives the lowest error probability for a
given number of copies K . This is because the double-side PA
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FIG. 4. (a) The average photon numbers of the signal source as
a function of transmissivity for performing the PC operations (red
line with circles), the PS operations (magenta line with diamonds),
and the PA operations (blue line with triangles) on the initial entan-
glement source. The signal intensity of the TMSV is also shown as a
benchmark for performance comparison (black lines). The squeezing
parameter of the incident TMSV source is fixed to be sinh2(r) =
0.05. (b) For a given Ns = 0.05, the error probability as a function
of number of copies K by performing the PC and PS operations on
the initial TMSV source. The error probability of the TMSV (black
solid line) and coherent state (black dotted line) are also shown as
benchmark for comparison. The reflectivity of the target is chosen as
κ = 0.01. The thermal noise intensity is Ne = 1.

operation increases both the entanglement and the signal
intensity of the entangled source, while the PS and PC op-
erations do not significantly enhance signal intensity in the
region where entanglement is improved (see Fig. 4). However,
we should mention that increasing the signal intensity may
also increase the exposure risk of the radar. Unlike double-
side NGOCMs, Fig. 5(d) shows that performing single-sided
PC on the entangled source at the maximum entanglement
can achieve the lowest error probability of target detection.
Therefore, for single-sided NGOCMs, PC operation on the
entangled source is preferred to reduce the error probability
of target detection.

B. Signal-to-noise ratio for the homodyne detection as receiver

In this subsection, we consider to use homodyne detection
(HD) instead of POVM for implementing the joint quantum
measurement on the return and idler lights, as shown in Fig. 6.
First, the returned and idler light are injected into the 50:50
optical beam splitter (BS1), and the input-output relationship
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FIG. 5. Upper panel: The von Neumann entropy Ev as a func-
tion of transmissivity T of the NGOCMs for (a) the double-side
NGOCMs and (b) the single-side NGOCMs. Lower panel: The error
probability of the target detection as a function of number of copies
K for (c) the double-side NGOCMs and (d) the single-side NGOCMs
by taking the points with the maximum entanglement in (a) and (b).
The reflectivity of the target is chosen as κ = 0.01. The squeezing
parameter of the incident TMSV source is fixed to be sinh2(r) = 0.05
and the thermal noise intensity is Ne = 1.

can be represented as(
b̂1

b̂2

)
= 1√

2

(
1 1

−1 1

)(̂
aR

âI

)
, (10)

where b̂1 and b̂2 correspond to the annihilation operators of the
two outputs of BS1. Then we implement the HD on each of the
two output fields, respectively. The HD can be described as an

FIG. 6. A schematic diagram of the joint quantum measurement
by homodyne detection. A return and idler beam are injected into
50:50 beam splitter (BS1), and then the HD are performed on each
output port of the beam splitter. In the mode b1, HD on the position
quadrature (θ = 0) is performed, and HD on the momentum quadra-
ture (θ = π/2) is performed in the mode b2.
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input signal and a local oscillator (LO) being injected into a
50:50 beam splitter. Then, we measure the intensity difference
between the output ports repeatedly [51]. In general, the LO
is a strong laser beam whose amplitude and phase can be
easily modulated. The measurement operator of the HD can
be defined as

X̂ j = b̂†
je

iθ j + b̂ je−iθ j

√
2

( j = 1, 2). (11)

By modulating the phase θ j of the LO, we can measure
the position quadrature in mode b1 when θ1 = 0 and the
momentum quadrature in mode b2 when θ2 = π/2. Here we
employ TMSV as a benchmark to identify the advantages of
non-Gaussian states, but the expectation value of its quadra-
ture operator is always zero. To avoid this, we use the squared
outcomes of the HD, i.e, Â = [X̂1(0)]2 + [X̂2(π/2)]2. Using
Eqs. (10) and (11), we can obtain the effective operator for
the joint quantum measurement given by

Â = âRâ†
R − â†

Râ†
I − âRâI + â†

I âI . (12)

We anticipate that the enhancement of entanglement can
result in an increase in the signal-to-noise ratio (SNR), con-
sequently reducing the error probability in target detection for
this specific detection method. By utilizing the measurement
operator in Eq. (12) to measure the return and idle light, we
can determine its expected value

Mx = Tr
(
Âρ

(x)
SI

)
, (13)

and the variance


Mx = Tr
(
Â2ρ

(x)
SI

) − [
Tr

(
Âρ

(x)
SI

)]2
, (14)

where ρ
(x)
SI denotes the density matrix without (x = 0) or with

(x = 1) target information. Direct detection of all K return-
idler copies, the SNR is given by

SNR(dB) = 10 log10

[
K (M0 − M1)2

2(
√


M0 + √

M1)2

]
(dB). (15)

Figure 7(a) shows the SNRs as a function of the target
reflectivity κ for a given K = 106 when performing the PC
operation on the TMSV. The SNR of the TMSV QI is plotted
as a benchmark (black line). We can observe an obvious
improvement in the SNR at the parameters T = 0.1 and 0.2.
Especially, when T = 0.1, the SNR can be enhanced by about
∼6.4 dB for most values of κ . As expected, when the reflectiv-
ity κ decreases to zero, the SNR also decreases to zero.

To further illustrate the advantages of non-Gaussian strate-
gies, in Fig. 7(b), we show the SNR as a function of the
number of copies K for a fixed κ = 0.01 when imple-
menting the PC operation on the TMSV. We can observe
that by performing the PC operations on the entangled
source, using fewer copies (K) can achieve similar SNR
as that of the TMSV. For instance, for obtaining about
20 dB of the SNR, the number of copies required for the
PC-TMSV source is much less than that of the TMSV
(about 
K = KTMSV − KPC−TMSV ≈ 1.3 × 106 for T = 0.1
and 
K = KTMSV − KPC−TMSV ≈ 1.05 × 106 for T = 0.2).

Finally, we compare the SNR for three different NGOCMs.
In Fig. 8 we present the SNR as a function of κ for differ-
ent double-side NGOCMs with their maximum entanglement
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FIG. 7. The SNR as a function of (a) reflectivity κ of the target
for a given K = 106 and (b) the number of copies K for a given κ =
0.01 when performing the PC operators with T = (0.1, 0.2, 0.3) on
the TMSV. The SNR of the TMSV is also shown as a benchmark
for performance comparison (black lines). The squeezing parameter
of the incident TMSV source is fixed to be sinh2(r) = 0.05 and the
thermal noise intensity is Ne = 1.

point (TPC = 0.125 for the PC operation and TPA = TPS = 1
for the PA and PS operations). For comparison, the SNR of
the TMSV scheme is also depicted (black line). It is evident
that all NGOCMs can substantially enhance the SNR of target
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FIG. 8. The SNR as a function of reflectivity κ of the target
for different double-side NGOCMs in their maximum entanglement
points. The squeezing parameter of the incident TMSV source is
fixed to be sinh2(r) = 0.05 and the thermal noise intensity is Ne = 1.
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detection compared with that of the ususal TMSV. Among the
three types of NGOCMs, the PA operation exhibits the largest
enhancement, i.e., enhancing the SNR by about 9 dB. The PS
operation can improve the SNR by about 6 dB.

IV. CONCLUSION

In summary, we propose to perform single-photon non-
Gaussian operations based on conditional measurements
(NGOCM) on the Gaussian entangled state and employ
them as radiation sources to illuminate an unknown target
concealed within background noise. We explore the enhance-
ment of quantum illumination performance achieved by these
NGOCMs, which include single-photon addition, subtraction,
and catalysis. Our research indicates that the error probability
of target detection can be significantly reduced by modulating
the initial entangled state using these NGOCMs. In addition to
the enhancement of quantum entanglement, PA operation can
further reduce the detection error probability by increasing the
signal intensity which is a classical effect. In addition, our
results show that with the same average signal photon number,
the entangled light source such as TMSV, PS- and PC-TMSV
can produce smaller error probability than that using the co-
herent state and the TMSV gives the smallest error rate.

In addition, we consider balanced homodyne detection as a
specific joint quantum measurement scheme. In this scheme,
performing the single-photon addition operation on a Gaus-
sian entangled source can increase the signal-to-noise ratio
(SNR) of target detection by 9 dB compared with that using
the TMSV as entanglement source. Although single-photon
subtraction operation has the least improvement, it can still
improve the SNR by 6 dB. Our results here can find appli-
cations in the quantum illumination and similar non-Gaussian
quantum operations may be able to achieve quantum enhance-
ment for target localization and velocity detection as well
which will be studied in the future.
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APPENDIX: DERIVATION OF THE NORMALIZED
COEFFICIENTS cn OF THE NON-GAUSSIAN

STATES IN EQ. (2)

As shown in Fig. 9, an m-photon ancillary Fock state in
mode c is incident on one of the input ports of beam splitter
with reflectivity T = cos2 θ , and then the corresponding out-
put of the interference is measured on Fock state with n photon
at one of the output ports. Mathematically, for any quantum
state |ψ〉in as another input port of the beam splitter, we can
get |ψ〉out → Ôkl |ψ〉in, where Ôkl can be expressed as

Ôkl = 〈l|B(T )|k〉, (A1)

where B(T ) = exp{arccos
√

T (c†S − cS†)} is the beam-
splitter operator. In the coherent state representation of Fock

FIG. 9. Schematic setup of the non-Gaussian operations. An in-
put state |ψ〉in and a Fock state |k〉 are present in the two input ports
of the BS. Measurement is conditioned on registering an l-photon
Fock |l〉.

state, the normally ordering form of B(T ) can be rewritten
as [52]

B(T ) =: exp{(
√

T − 1)(c†c + S†S) + (S†c − Sc†)
√

1−T },
(A2)

where the symbol : x : denotes the normal ordering
of operators. By using using the formulas |k〉 =

1√
k!

∂k

∂αk exp(αc†)|0〉|α=0 in an un-normalized coherent state
representation [53], we can obtain

Ôkl = (−√
T )k

√
k!l!

: Hk,l

(
S†

√
1 − T

T
, S

√
1 − T

T

)
: eS†S ln

√
T ,

(A3)

where Hk,l (x, y) = ∂k+l

∂uk∂vl exp[−uv + ux + vy]|u=v=0 is the
the generating function of two-variable Hermite polynomials
[54]. In particular, when k = 1 and l = 0, we can obtain the
PS operation, i.e.,

ÔPS =
√

1 − T

T
SeS†S ln

√
T . (A4)

Applying the PS operator [Eq. (A4)] to the two modes of
the TMSV state [Eq. (1)], we can obtain the PS-TMSV state
[Eq. (2)] with

cn,PS =
√

(1 − λ2T 4)3

(1 + λ2T 4)
(n + 1)λnT 2n. (A5)

It should be noted that here we set the symmetrical double-
side PS operation, i.e., the transmissivity T1 = T2 = T of the
optical beam splitters. When k = 0 and l = 1, we can get the
PA operation, i.e.,

ÔPA = −√
1 − T S†eS†S ln

√
T . (A6)

Furthermore, we can obtain the PA-TMSV state with

cn,PA =
√

(1 − λ2T 4)3

(1 + λ2T 4)
nλn−1T 2(n−1). (A7)
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When k = l = 1, we can obtain the PC operation, i.e.,

ÔPC =
√

T :
1 − T

T
S†S − 1 : eS†S ln

√
T . (A8)

Same method as obtaining Eqs. (A5) and (A6), applying the
PC operator to the two modes of the TMSV state [Eq. (1)], we
can obtain the PC-TMSV state with

cn,PC = 1√
N

λnT 2(n−1)[T 2 − n(1 − T 2)]2, (A9)

where

N−2 = 1 − λ2

(1 − λ2T 4)5
[T 4 + (1 − 8T 2 + 24T 4 − 32T 6+11T 8)

× λ2 + T 4(11 − 56T 2 + 96T 4 − 56T 6 + 11T 8)λ4

+ T 4(11 − 32T 2 + 24T 4 − 8T 6 + T 8)λ6 + T 12λ8].

(A10)
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