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Quantum computers promise to solve problems that are intractable for classical computers, but qubits are
vulnerable to many sources of error, limiting the depth of the circuits that can be reliably executed on today’s
quantum hardware. Quantum error correction has been proposed as a solution to this problem, whereby
quantum information is protected by encoding it into a quantum error-correcting code. But protecting quantum
information is not enough, we must also process the information using logic gates that are robust to faults
that occur during their execution. One method for processing information fault-tolerantly is to use quantum
error-correcting codes that have logical gates with a tensor product structure (transversal gates), making them
naturally fault-tolerant. Here, we test the performance of a code with such transversal gates, the [[8,3,2]] color
code, using trapped-ion and superconducting hardware. We observe improved performance (compared to no
encoding) for encoded circuits implementing non-Clifford gates, a class of gates that are essential for achieving
universal quantum computing. In particular, we find improved performance for an encoded circuit implementing
the controlled-controlled-Z gate, a key gate in Shor’s algorithm. Our results illustrate the potential of using codes
with transversal gates to implement nontrivial algorithms on near-term quantum hardware.
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I. INTRODUCTION

Quantum error correction (QEC) promises to unlock the
full potential of quantum computing, by protecting fragile
qubits from the effects of decoherence [1–3]. But it is not
enough to merely preserve the quantum information stored
in a qubit register, we also need to perform a universal set
of logical gates in a fault-tolerant manner [4]. Logical gates
in the Clifford group (the unitaries that map Pauli operators
to Pauli operators) are often relatively straightforward to im-
plement fault-tolerantly in a given QEC code, however they
are not universal. In fact, no QEC code can have a transversal
and universal set of logical gates [5]. To obtain a universal
gate set we need an additional non-Clifford gate [6], but
implementing gates from this class fault-tolerantly is often
difficult, usually requiring complex procedures such as magic
state distillation [7,8].

Certain QEC codes with special structure have transversal
non-Clifford gates, where a transversal gate is a gate that acts
as a tensor product unitaries that do not entangle different
qubits in the same QEC code block. Examples of such gates
include the transversal controlled-NOT (CNOT) available in all
CSS codes, and any gate acting as a tensor product of single-
qubit unitaries. Transversal gates are naturally fault-tolerant
as they do not spread errors within a code block.

There exists a family of codes known as triorthog-
onal codes [9] with transversal non-Clifford gates, im-
plemented by tensor products of T = diag[1, exp(iπ/4)].
Certain (generalized) triorthogonal codes have transver-
sal entangling non-Clifford gates, the smallest of which
(to our knowledge) is the [[8,3,2]] color code [10,11],
which has a transversal controlled-controlled-Z gate, CCZ =

diag(1, 1, 1, 1, 1, 1, 1,−1). From a fault-tolerance perspec-
tive, it is particularly desirable to implement complex
entangling gates using single-qubit gates, as single-qubit gates
are often an order of magnitude less noisy than entangling
gates in many hardware platforms [12–17]. Using small codes
to demonstrate fault-tolerant Clifford and non-Clifford oper-
ations has previously been suggested [18] and implemented
in NMR [19,20], trapped-ion [21–24], and superconducting
hardware [25–27].

Here, we investigate the performance of the encoded gates
of the [[8,3,2]] code on superconducting and trapped-ion hard-
ware platforms. We compare the performance of the encoded
gates with the same gates executed with no encoding, finding
that the encoded gates perform better than their bare (nonen-
coded) counterparts in every case where the encoded gate is
non-Clifford, even though the encoded circuits contain more
entangling gates than the bare circuits. Notably, we observe
improved performance for the CCZ gate, which is the domi-
nant gate in circuits such as adders [28,29] and the modular
exponentiation used in Shor’s algorithm [30,31].

The remainder of this paper is structured as follows. In
Sec. II, we review the definition of the [[8,3,2]] code and its
transversal logical gates. In Sec. III, we give fault-tolerant
circuits for preparing encoded states of the [[8,3,2]] code
and for logical measurements. In Sec. IV, we describe our
demonstrations on quantum hardware and their results, and
we conclude with Sec. V.

II. THE [[8,3,2]] color code

The [[8,3,2]] color code is a stabilizer code [32], encod-
ing 3 logical qubits into 8 physical qubits with distance 2
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FIG. 1. Geometric representation of the [[8,3,2]] code. (a) The
physical qubits reside at the vertices of the cube. (b) Z-type stabi-
lizers are associated with faces, for example, the blue face has an
associated stabilizer Z0Z1Z2Z3. (c) The X -type stabilizer acts on all
the qubits.

(meaning that it can detect any single-qubit error). It is con-
venient to define the code using a geometric representation,
where the physical qubits reside at the vertices of a cube, as
shown in Fig. 1. The stabilizer group is generated by an X -
type operator acting on all the qubits, and by Z-type operators
associated with the faces of the cube. Concretely, using the
qubit indices in Fig. 1, the stabilizer group is

S = 〈X ⊗8, Z0Z1Z2Z3, Z4Z5Z6Z7, Z0Z1Z4Z5, Z0Z2Z4Z6〉, (1)

where Zi denotes a Pauli Z operator acting on qubit i, etc.
We note that the stabilizer generators in Eq. (1) are either
X type or Z type, meaning that the [[8,3,2]] code is a CSS
code [33,34].

The logical operators of the [[8,3,2]] code also have a geo-
metric interpretation. Logical X operators are associated with
the faces of the cube, and logical Z operators with the edges of
the cube. We can choose the following basis of logical Pauli
operators,

X 1 = X0X1X2X3, Z1 = Z0Z4,

X 2 = X0X1X4X5, Z2 = Z0Z2,

X 3 = X0X2X4X6, Z3 = Z0Z1, (2)

where we use overlines to distinguish operators acting on the
logical qubits from operators acting on the physical qubits.

The [[8,3,2]] code is notable for having a non-Clifford
transversal gate, CCZ implemented by T and T † gates.
Specifically,

CCZ = T0T †
1 T †

2 T3T †
4 T5T6T †

7 . (3)

This gate again has a geometric interpretation: vertices and
edges of the cube form a bipartite graph and CCZ is im-
plemented by applying T to (the qubits on) one set of the
vertices and T † to the other. The transversality of CCZ and
Pauli X imply that the [[8,3,2]] code also has transversal
CZ = diag(1, 1, 1,−1) gates, as follows,

CZ12 = S0S†
2S†

4S6,

CZ13 = S0S†
1S†

4S5,

CZ23 = S0S†
1S†

2S3, (4)

where S = T 2 and CZi j acts on logical qubits i and j.

FIG. 2. Fault-tolerant circuit for preparing the |GHZ〉 state in the
[[8,3,2]] code.

III. FAULT-TOLERANT CIRCUITS

For an error-detecting code such as the [[8,3,2]] code, we
say that a circuit is fault-tolerant if any single-qubit error
on the input state or an error at any single location in the
circuit can at worst lead to a detectable error on the output
state. A circuit location can be a state preparation, gate, or
measurement. We need only consider Pauli errors due to error
discretization [35]. And we note that as the [[8,3,2]] code
is a CSS code, it is sufficient to analyze X and Z errors
independently. We remark that the logical CCZ and CZ gates
discussed in Sec. II are transversal and are therefore trivially
fault-tolerant. We also need fault-tolerant circuits for logical
measurement and logical state preparation, and we now dis-
cuss each of these in turn.

As the [[8,3,2]] code is a CSS code, we can do a fault-
tolerant measurement of the logical qubits in the X or Z basis
by measuring all of the physical qubits in the X or Z basis, re-
spectively, and processing the classical outcomes [35]. In the
case of an error-detecting code such as the [[8,3,2]] code, the
classical processing is especially simple: We simply discard
any measurement result that corresponds to a state that is not
a +1 eigenvalue of the stabilizers. For example, when measur-
ing in the X basis we accept any result whose parity is even,
i.e., a +1 eigenstate of X ⊗8. This is fault-tolerant because
single-qubit errors before the measurements are detectable by
definition, and any single measurement error is equivalent to
a single-qubit error before the measurement.

A. GHZ state preparation

First we consider a fault-tolerant circuit for preparing the
logical Greenberger-Horne-Zeilinger (GHZ) state, |GHZ〉 =
(|000〉 + |111〉)/

√
2. Our circuit (shown in Fig. 2) factor-

izes into two independent and identical sub-circuits acting on
qubits 0, 3, 5, 6, and qubits 1, 2, 4, 7 (the two bipartite sets
discussed in Sec. II). The [[8,3,2]] code can detect any weight
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FIG. 3. Fault-tolerant circuit for preparing the state |+ + +〉 in the [[8,3,2]] code. The qubits a1, a2, and a3 are flag qubits whose purpose
is to detect certain Z errors that could cause logical errors. If we measure the three flag qubits to be in the |0〉 state, then we accept the output.

�3 X error and so we only need to consider the four-qubit
errors X0X3X5X6 and X1X2X4X7. However, each of these errors
is in fact a logical X 1X 2X 3 operator and so leaves the target
|GHZ〉 state invariant. The only possible Z errors are weight
one (detectable) and weight two (nondetectable). However,
one can verify that all the nondetectable errors have trivial
action on the target |GHZ〉 state. For example, the first CNOT

could fail giving a Z1Z2 error, but this implements a logical
Z2Z3 operator [see Eq. (2)] and hence leaves the target |GHZ〉
state invariant.

B. |+ + +〉 state preparation

Next, we provide a fault-tolerant circuit for preparing the
|+ + +〉 state, shown in Fig. 3. In this circuit, the potentially
problematic errors are those that can propagate through the
CNOT gates. Consider, for example, the CNOT gates with qubit
0 as the control. The possible multiqubit X errors that can arise
from these gates are

X0X3 (detectable),

X0X2X3 (detectable),

X0X1X2X3 (X 1), (5)

where the only nondetectable error has trivial action on the
target encoded state. The same is true for the other groups
of CNOT gates with the same target. Certain Z errors can
also propagate through CNOT gates. For example, consider the
CNOT gates with qubit 1 as the target. The possible multiqubit
Z errors that can arise from these gates are

Z1Za0 (detectable),

Z1Z7Za0 (detectable),

Z1Z6Z7 (detectable),

Z1Z6Z7Za0 (detectable),

Z0Z1Z6Z7 (stabilizer). (6)

The purpose of the flag qubit [36] a0 is to make the error
Z1Z7 = Z1Z2 detectable. Similarly, the flag qubits a1 and a2

catch the errors Z2Z7, Z3Z6, and Z4Z6.

IV. DEMONSTRATION RESULTS

We investigate the performance of circuits comprised of
three parts: state preparation, a transversal logical gate, and
logical measurement.

For the state preparation part, we consider either |GHZ〉
or |+ + +〉 state preparation, using the circuits described in
Sec. III. For the logical gate part, we consider each of the
distinct products of the transversal logical CCZ, CZ12, CZ02,
and CZ01 gates available in the [[8,3,2]] code, along with the
logical identity gate implemented as a “no operation.” For the
logical measurement part, we consider transversal Z basis and
X basis measurements. In the encoded case, the fault-tolerant
measurement involves postselection and we provide the posts-
election rates for each of the demonstrations in Appendix A 2.

We test these circuits on two quantum computers:
ibmq_mumbai, a 27-qubit device developed by IBM [37],
and ionq − 11q, an 11-qubit device developed by IonQ [13].
The IonQ device has all-to-all qubit connectivity, whereas the
IBM device has “heavy-hexagon” qubit connectivity [38]; see
Appendix B for more details on the devices and their charac-
teristics at the time of the demonstrations. We only consider
|GHZ〉 state preparation on the IBM device, as our circuit
for preparing logical |+ + +〉 states (Fig. 3) does not respect
the connectivity constraints of the IBM device and would
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FIG. 4. Performance of bare (nonencoded) and encoded versions of circuits for preparing states of the form g |GHZ〉, where g is a
transversal gate of the [[8,3,2]] code. In each case, we measure the qubits in the X basis and we plot the statistical distance of the observed
measurement distribution from the ideal distribution. The upper two plots show the data for ionq − 11q, where we ran 1024 shots for each
circuit, and the lower two plots show the data for ibmq_mumbai where we ran 10 000 shots for each circuit. In both cases, the error bars are
calculated using bootstrap resampling.

therefore require SWAP gates to implement, meaning that our
error analysis is no longer valid. We leave open the possibility
of finding a fault-tolerant circuit for preparing logical |+ + +〉
states on the IBM device. We compare the performance of
the encoded circuits against the performance of the bare (no
encoding) circuits, using the statistical distance of the output
distribution from the ideal output distribution as our metric.
The data and analysis code are available at Ref. [39].

We show the results for |GHZ〉 state preparation and X
basis measurement in Fig. 4. For both devices and for every

transversal gate, we observe improved performance of the
encoded version of the circuit. The results for Z basis mea-
surement are qualitatively similar; see Appendix A 1.

We show the results for |+ + +〉 state preparation and X
basis measurement in Fig. 5. The bare version of the circuit
performs better for transversal Clifford gates, whereas the
encoded version performs better for transversal non-Clifford
gates. Notably, we observe lower statistical distances for the
preparation of the encoded magic state CCZ |+ + +〉. We can
attribute the difference between the results for Clifford and
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FIG. 5. Performance of bare (nonencoded) and encoded versions of circuits for preparing states of the form g |+ + +〉, where g is a
transversal gate of the [[8,3,2]] code. In each case, we measure the qubits in the X basis and we plot the statistical distance of the observed
measurement distribution from the ideal distribution. Each data point represents 1024 shots of the circuit performed on ionq − 11q, and we
use bootstrap resampling to calculate the error bars.

non-Clifford gates to the compilation of the three-qubit CCZ

gate into a circuit involving multiple two-qubit gates on the
IonQ device [40]. And the discrepancy between the results
for |+ + +〉 and |GHZ〉 state preparation is expected, given
that the bare circuit for preparing the former requires only
single-qubit gates and the latter requires two entangling gates.
We again relegate the results for Z basis measurement to
Appendix A 1, as they are qualitatively similar to the results
for X basis measurement.

V. DISCUSSION

We have shown that using the [[8,3,2]] code allows us to
prepare certain (encoded) states more accurately (as measured
by the statistical distance) than using the native gates to pre-
pare the same (nonencoded) states. We observe this advantage
across a range of circuits on two different hardware platforms:
IBM’s superconducting qubits and IonQ’s trapped-ion qubits.
The all-to-all connectivity of the IonQ device that we used en-
abled us to run more circuits fault-tolerantly than we could on
the IBM device. In particular, we were able to interrogate the
performance of the [[8,3,2]] code for preparing magic states
of the form g |+ + +〉, where g ∈ CCZ × {I, CZ12, CZ13, CZ23}.
We observe an improved performance for the encoded ver-
sion of circuits for preparing these states, illustrating the
utility of codes such as the [[8,3,2]] code, where multi-
qubit non-Clifford gates can be applied using single-qubit
operations.

The [[8,3,2]] is one example of a family of codes, known
as generalized triorthogonal codes [41–43], with transversal
multiqubit Z rotations implemented by single-qubit gates. In

the future it would be interesting to test the performance of
larger codes in this family with higher distance. For example,
Ref. [43] gives a [[64,6,4]] code with a transversal CCZ⊗2 gate
and it is possible that smaller examples could be found us-
ing the techniques of [44–46]. In addition, three-dimensional
(3D) color codes [47–49] are also generalized triorthogonal
codes and therefore our approach could be extended to to the
error-correcting regime by exchanging the [[8,3,2]] code for
a color code with larger distance (for concrete examples, see
Refs. [50,51]).

As with any stabilizer code, the transversal gates of the
[[8,3,2]] code do not form a universal set of gates. There-
fore, in order to use the [[8,3,2]] code or a similar code to
implement an actual quantum algorithm, we would need to
supplement the transversal gates with additional fault-tolerant
gates in order to obtain a universal gate set. One possibility
worth considering would be to explore the implementation of
logical gates via permutations of the physical qubits [52,53],
which can be fault-tolerant if implemented by qubit relabeling
or physically moving the qubits.

Note added. We would like to bring the reader’s attention
to a related work by Wang et al. [54].
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FIG. 6. Performance of bare (nonencoded) and encoded versions of circuits for preparing states of the form g |+ + +〉, where g is a
transversal gate of the [[8,3,2]] code. In each case, we measure the qubits in the Z basis and we plot the statistical distance of the observed
measurement distribution from the ideal distribution. Each data point represents 1024 shots of the circuit performed on ionq − 11q, and we
use bootstrap resampling to calculate the error bars.
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APPENDIX A: ADDITIONAL DEMONSTRATION RESULTS

1. Logical Z basis measurement results

For the demonstrations with |+ + +〉 state preparation
and Z basis measurement, we observe improved performance
for the encoded circuits containing a transversal non-Clifford
gate; see Fig. 6. And for the demonstrations with |GHZ〉 state
preparation and Z basis measurement, we observe improved
performance for all of the encoded circuits; see Fig. 7. We
note that in these cases the gates have no effect on the expected
output measurement distribution, as the gates commute with
the measurements.

2. Postselection rates

In this Appendix, we provide the postselection rates (pro-
portion of accepted shots) for our demonstrations. Two-qubit
gates and measurements are the noisiest operations in super-
conducting and trapped-ion devices [13,14], hence we can
approximate the error model in these devices with ideal state
preparation and one-qubit gates, but noisy two-qubit gates and
measurements (1% error rate). Suppose that any two-qubit

gate error or measurement error causes us to discard the run,
then (to first order) we would expect a postselection rate of
1 − 0.01(nm + ng), where nm is the number of measurements
and ng is the number of two-qubit gates. By counting the
relevant locations in Figs. 2 and 3, we therefore estimate
a postselection rate of 69% and 86% for the circuits with
|+ + +〉 and |GHZ〉 state preparation, respectively. These es-
timates are reasonably close to the values we observe in our
demonstrations; see Tables I–III.

APPENDIX B: ADDITIONAL HARDWARE DETAILS

1. IBM

The layout of the ibmq_mumbai device is shown in Fig. 8.
The demonstrations were carried out on 14/04/23. The 1-
qubit and 2-qubit gate characterization data provided by IBM
for this date are given in Tables IV and V. The qubit char-
acterization data provided by IBM for this date are given
in Table VI and the qubit reset time was 3612 ns for all
qubits.

2. IonQ

The ionq − 11q device has 11 qubits and all-to-all con-
nectivity. The characterization data provided by IonQ for the
dates that the demonstrations were carried out are given in
Table VII.

062438-6



IMPLEMENTING FAULT-TOLERANT NON-CLIFFORD … PHYSICAL REVIEW A 109, 062438 (2024)

I CZ12 CZ13 CZ23 CZ12CZ13 CZ12CZ23 CZ13CZ23 CZ12CZ13CZ23
Gate

0.0

0.1

0.2

0.3

S
ta

ti
st

ic
al

di
st

an
ce

ionq-11q, |GHZ〉 state preparation, Z basis measurement

bare

encoded

CCZ CZ12CCZ CZ13CCZ CZ23CCZ CZ12CZ13CCZ CZ12CZ23CCZ CZ13CZ23CCZ CZ12CZ13CZ23CCZ
Gate

0.0

0.1

0.2

0.3

S
ta

ti
st

ic
al

di
st

an
ce

bare

encoded

I CZ12 CZ13 CZ23 CZ12CZ13 CZ12CZ23 CZ13CZ23 CZ12CZ13CZ23
Gate

0.0

0.1

0.2

0.3

S
ta

ti
st

ic
al

di
st

an
ce

ibmq-mumbai, |GHZ〉 state preparation, Z basis measurement

bare

encoded

CCZ CZ12CCZ CZ13CCZ CZ23CCZ CZ12CZ13CCZ CZ12CZ23CCZ CZ13CZ23CCZ CZ12CZ13CZ23CCZ
Gate

0.0

0.1

0.2

0.3

S
ta

ti
st

ic
al

di
st

an
ce

bare

encoded

FIG. 7. Performance of bare (nonencoded) and encoded versions of circuits for preparing states of the form g |GHZ〉, where g is a
transversal gate of the [[8,3,2]] code. In each case, we measure the qubits in the Z basis and we plot the statistical distance of the observed
measurement distribution from the ideal distribution. The upper two plots show the data for ionq − 11q, where we ran 1024 shots for each
circuit, and the lower two plots show the data for ibmq_mumbai where we ran 10 000 shots for each circuit. In both cases, the error bars are
calculated using bootstrap resampling.
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TABLE I. Postselection rates for the results shown in Figs. 5 and 6, where the percentage indicates the proportion of shots that were
accepted. The average postselection rate was 75%.

State Gate Measurement Device Postselection rate

|+ + +〉 I X basis ionq − 11q 78%
|+ + +〉 CZ12 X basis ionq − 11q 78%
|+ + +〉 CZ13 X basis ionq − 11q 69%
|+ + +〉 CZ12CZ13 X basis ionq − 11q 76%
|+ + +〉 CZ23 X basis ionq − 11q 80%
|+ + +〉 CZ12CZ23 X basis ionq − 11q 77%
|+ + +〉 CZ13CZ23 X basis ionq − 11q 79%
|+ + +〉 CZ12CZ13CZ23 X basis ionq − 11q 80%
|+ + +〉 CCZ X basis ionq − 11q 75%
|+ + +〉 CZ12CCZ X basis ionq − 11q 81%
|+ + +〉 CZ13CCZ X basis ionq − 11q 74%
|+ + +〉 CZ12CZ13CCZ X basis ionq − 11q 84%
|+ + +〉 CZ23CCZ X basis ionq − 11q 75%
|+ + +〉 CZ12CZ23CCZ X basis ionq − 11q 83%
|+ + +〉 CZ13CZ23CCZ X basis ionq − 11q 77%
|+ + +〉 CZ12CZ13CZ23CCZ X basis ionq − 11q 77%
|+ + +〉 I Z basis ionq − 11q 73%
|+ + +〉 CZ12 Z basis ionq − 11q 78%
|+ + +〉 CZ13 Z basis ionq − 11q 71%
|+ + +〉 CZ12CZ13 Z basis ionq − 11q 74%
|+ + +〉 CZ23 Z basis ionq − 11q 72%
|+ + +〉 CZ12CZ23 Z basis ionq − 11q 72%
|+ + +〉 CZ13CZ23 Z basis ionq − 11q 73%
|+ + +〉 CZ12CZ13CZ23 Z basis ionq − 11q 71%
|+ + +〉 CCZ Z basis ionq − 11q 74%
|+ + +〉 CZ12CCZ Z basis ionq − 11q 74%
|+ + +〉 CZ13CCZ Z basis ionq − 11q 70%
|+ + +〉 CZ12CZ13CCZ Z basis ionq − 11q 74%
|+ + +〉 CZ23CCZ Z basis ionq − 11q 72%
|+ + +〉 CZ12CZ23CCZ Z basis ionq − 11q 73%
|+ + +〉 CZ13CZ23CCZ Z basis ionq − 11q 74%
|+ + +〉 CZ12CZ13CZ23CCZ Z basis ionq − 11q 73%
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TABLE II. Postselection rates for the results shown in Figs. 4 and 7 for the IonQ device, where the percentage indicates the proportion of
shots that were accepted. The average post-selection rate was 83%.

State Gate Measurement Device Postselection rate

|GHZ〉 I X basis ionq − 11q 90%
|GHZ〉 CZ12 X basis ionq − 11q 86%
|GHZ〉 CZ13 X basis ionq − 11q 90%
|GHZ〉 CZ12CZ13 X basis ionq − 11q 78%
|GHZ〉 CZ23 X basis ionq − 11q 83%
|GHZ〉 CZ12CZ23 X basis ionq − 11q 81%
|GHZ〉 CZ13CZ23 X basis ionq − 11q 82%
|GHZ〉 CZ12CZ13CZ23 X basis ionq − 11q 79%
|GHZ〉 CCZ X basis ionq − 11q 80%
|GHZ〉 CZ12CCZ X basis ionq − 11q 78%
|GHZ〉 CZ13CCZ X basis ionq − 11q 82%
|GHZ〉 CZ12CZ13CCZ X basis ionq − 11q 87%
|GHZ〉 CZ23CCZ X basis ionq − 11q 83%
|GHZ〉 CZ12CZ23CCZ X basis ionq − 11q 83%
|GHZ〉 CZ13CZ23CCZ X basis ionq − 11q 82%
|GHZ〉 CZ12CZ13CZ23CCZ X basis ionq − 11q 84%
|GHZ〉 I Z basis ionq − 11q 86%
|GHZ〉 CZ12 Z basis ionq − 11q 81%
|GHZ〉 CZ13 Z basis ionq − 11q 84%
|GHZ〉 CZ12CZ13 Z basis ionq − 11q 85%
|GHZ〉 CZ23 Z basis ionq − 11q 81%
|GHZ〉 CZ12CZ23 Z basis ionq − 11q 90%
|GHZ〉 CZ13CZ23 Z basis ionq − 11q 84%
|GHZ〉 CZ12CZ13CZ23 Z basis ionq − 11q 81%
|GHZ〉 CCZ Z basis ionq − 11q 86%
|GHZ〉 CZ12CCZ Z basis ionq − 11q 80%
|GHZ〉 CZ13CCZ Z basis ionq − 11q 87%
|GHZ〉 CZ12CZ13CCZ Z basis ionq − 11q 75%
|GHZ〉 CZ23CCZ Z basis ionq − 11q 74%
|GHZ〉 CZ12CZ23CCZ Z basis ionq − 11q 83%
|GHZ〉 CZ13CZ23CCZ Z basis ionq − 11q 75%
|GHZ〉 CZ12CZ13CZ23CCZ Z basis ionq − 11q 85%
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TABLE III. Postselection rates for the results shown in Figs. 4 and 7 for the IBM device, where the percentage indicates the proportion of
shots that were accepted. The average postselection rate was 75%.

State Gate Measurement Device Postselection rate

|GHZ〉 I X basis ibmq_mumbai 76%
|GHZ〉 CZ12 X basis ibmq_mumbai 69%
|GHZ〉 CZ13 X basis ibmq_mumbai 72%
|GHZ〉 CZ12CZ13 X basis ibmq_mumbai 79%
|GHZ〉 CZ23 X basis ibmq_mumbai 69%
|GHZ〉 CZ12CZ23 X basis ibmq_mumbai 76%
|GHZ〉 CZ13CZ23 X basis ibmq_mumbai 78%
|GHZ〉 CZ12CZ13CZ23 X basis ibmq_mumbai 80%
|GHZ〉 CCZ X basis ibmq_mumbai 72%
|GHZ〉 CZ12CCZ X basis ibmq_mumbai 73%
|GHZ〉 CZ13CCZ X basis ibmq_mumbai 79%
|GHZ〉 CZ12CZ13CCZ X basis ibmq_mumbai 76%
|GHZ〉 CZ23CCZ X basis ibmq_mumbai 73%
|GHZ〉 CZ12CZ23CCZ X basis ibmq_mumbai 79%
|GHZ〉 CZ13CZ23CCZ X basis ibmq_mumbai 79%
|GHZ〉 CZ12CZ13CZ23CCZ X basis ibmq_mumbai 72%
|GHZ〉 I Z basis ibmq_mumbai 74%
|GHZ〉 CZ12 Z basis ibmq_mumbai 70%
|GHZ〉 CZ13 Z basis ibmq_mumbai 74%
|GHZ〉 CZ12CZ13 Z basis ibmq_mumbai 77%
|GHZ〉 CZ23 Z basis ibmq_mumbai 71%
|GHZ〉 CZ12CZ23 Z basis ibmq_mumbai 71%
|GHZ〉 CZ13CZ23 Z basis ibmq_mumbai 75%
|GHZ〉 CZ12CZ13CZ23 Z basis ibmq_mumbai 73%
|GHZ〉 CCZ Z basis ibmq_mumbai 76%
|GHZ〉 CZ12CCZ Z basis ibmq_mumbai 78%
|GHZ〉 CZ13CCZ Z basis ibmq_mumbai 78%
|GHZ〉 CZ12CZ13CCZ Z basis ibmq_mumbai 77%
|GHZ〉 CZ23CCZ Z basis ibmq_mumbai 78%
|GHZ〉 CZ12CZ23CCZ Z basis ibmq_mumbai 77%
|GHZ〉 CZ13CZ23CCZ Z basis ibmq_mumbai 77%
|GHZ〉 CZ12CZ13CZ23CCZ Z basis ibmq_mumbai 71%

FIG. 8. Layout of the ibmq_mumbai device. Vertices represent qubits and edges represent the availability of entangling gates between
the two endpoints. The mapping from the qubits of the [[8,3,2]] code to the qubits of the device was (q0, 7), (q1, 4), (q2, 1), (q3, 10), (q4, 2),
(q5, 12), (q6, 13), (q7, 3).
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TABLE IV. One-qubit gate characterization data for
ibmq_mumbai on 14/04/23.

Qubit Gate Error Time

0 I, X,
√

X 0.0002951 35.56 ns
1 I, X,

√
X 0.0001877 35.56 ns

2 I, X,
√

X 0.0001816 35.56 ns
3 I, X,

√
X 0.0002697 35.56 ns

4 I, X,
√

X 0.0003707 35.56 ns
5 I, X,

√
X 0.0002801 35.56 ns

6 I, X,
√

X 0.000267 35.56 ns
7 I, X,

√
X 0.0001768 35.56 ns

8 I, X,
√

X 0.0001585 35.56 ns
9 I, X,

√
X 0.0003164 35.56 ns

10 I, X,
√

X 0.0002868 35.56 ns
11 I, X,

√
X 0.0002381 35.56 ns

12 I, X,
√

X 0.0001866 35.56 ns
13 I, X,

√
X 0.0001609 35.56 ns

14 I, X,
√

X 0.000182 35.56 ns
15 I, X,

√
X 0.0004084 35.56 ns

16 I, X,
√

X 0.0001818 35.56 ns
17 I, X,

√
X 0.002198 35.56 ns

18 I, X,
√

X 0.0002243 35.56 ns
19 I, X,

√
X 0.0001976 35.56 ns

20 I, X,
√

X 0.0002066 35.56 ns
21 I, X,

√
X 0.0004652 35.56 ns

22 I, X,
√

X 0.000166 35.56 ns
23 I, X,

√
X 0.0003324 35.56 ns

24 I, X,
√

X 0.0001602 35.56 ns
25 I, X,

√
X 0.0002232 35.56 ns

26 I, X,
√

X 0.0002714 35.56 ns

TABLE V. Two-qubit gate characterization data for
ibmq_mumbai on 14/04/23.

Qubits Gate Error Time

3,2 CNOT 0.008789 433.8 ns
2,3 CNOT 0.008789 469.3 ns
14,11 CNOT 0.005348 391.1 ns
11,14 CNOT 0.005348 426.7 ns
5,8 CNOT 0.01016 604.4 ns
8,5 CNOT 0.01016 640.0 ns
12,13 CNOT 0.00516 547.6 ns
13,12 CNOT 0.00516 583.1 ns
13,14 CNOT 0.004559 320.0 ns
14,13 CNOT 0.004559 355.6 ns
22,19 CNOT 0.004825 327.1 ns
19,22 CNOT 0.004825 362.7 ns
3,5 CNOT 0.01117 476.4 ns
5,3 CNOT 0.01117 512.0 ns
18,21 CNOT 0.01269 497.8 ns
21,18 CNOT 0.01269 533.3 ns
25,22 CNOT 0.005982 448.0 ns
22,25 CNOT 0.005982 483.6 ns
2,1 CNOT 0.01161 704.0 ns
1,2 CNOT 0.01161 739.6 ns
8,11 CNOT 0.01248 604.4 ns
11,8 CNOT 0.01248 640.0 ns
10,12 CNOT 0.007643 604.4 ns
12,10 CNOT 0.007643 640.0 ns
10,7 CNOT 0.007437 398.2 ns
7,10 CNOT 0.007437 433.8 ns
20,19 CNOT 0.005657 369.8 ns
19,20 CNOT 0.005657 405.3 ns
23,21 CNOT 0.008342 362.7 ns
21,23 CNOT 0.008342 398.2 ns
6,7 CNOT 0.007037 248.9 ns
7,6 CNOT 0.007037 284.4 ns
17,18 CNOT 0.01205 248.9 ns
18,17 CNOT 0.01205 284.4 ns
4,7 CNOT 0.009587 604.4 ns
7,4 CNOT 0.009587 640.0 ns
8,9 CNOT 0.008003 604.4 ns
9,8 CNOT 0.008003 640.0 ns
16,19 CNOT 0.01609 682.7 ns
19,16 CNOT 0.01609 718.2 ns
24,23 CNOT 0.01297 604.4 ns
23,24 CNOT 0.01297 640.0 ns
4,1 CNOT 0.006135 312.9 ns
1,4 CNOT 0.006135 348.4 ns
15,18 CNOT 0.006877 305.8 ns
18,15 CNOT 0.006877 341.3 ns
16,14 CNOT 0.005754 291.6 ns
14,16 CNOT 0.005754 327.1 ns
26,25 CNOT 0.006879 312.9 ns
25,26 CNOT 0.006879 348.4 ns
0,1 CNOT 0.007626 419.6 ns
1,0 CNOT 0.007626 455.1 ns
15,12 CNOT 0.006138 369.8 ns
12,15 CNOT 0.006138 405.3 ns
24,25 CNOT 0.007386 433.8 ns
25,24 CNOT 0.007386 469.3 ns
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TABLE VI. Qubit characterization data for ibmq_mumbai on 14/04/23. p(i| j) is the probability of measuring a |i〉 state, given that a | j〉
state was prepared.

Qubit T1 T2 Frequency Anharmonicity Readout error p(0|1) p(1|0) Readout time

0 100.5 µs 125.9 µs 5.071 GHz −0.3285 GHz 0.0435 0.0714 0.0156 3576 ns
1 116.4 µs 163.8 µs 4.93 GHz −0.3313 GHz 0.0401 0.0476 0.0326 3576 ns
2 94.52 µs 114.8 µs 4.67 GHz -0.3369 GHz 0.0153 0.0206 0.01 3576 ns
3 103.2 µs 168.3 µs 4.889 GHz -0.3312 GHz 0.057 0.0622 0.0518 3576 ns
4 105.9 µs 47.41 µs 5.021 GHz -0.3302 GHz 0.03 0.0424 0.0176 3576 ns
5 86.9 µs 151.6 µs 4.969 GHz -0.3298 GHz 0.1603 0.178 0.1426 3576 ns
6 122.5 µs 81.42 µs 4.966 GHz -0.3293 GHz 0.0169 0.0236 0.0102 3576 ns
7 125.2 µs 164.3 µs 4.894 GHz -0.331 GHz 0.0162 0.0232 0.0092 3576 ns
8 212.2 µs 256.6 µs 4.792 GHz -0.3326 GHz 0.018 0.0192 0.0168 3576 ns
9 149.8 µs 119.8 µs 4.955 GHz -0.3306 GHz 0.0119 0.0184 0.0054 3576 ns
10 99.87 µs 115.1 µs 4.959 GHz -0.3309 GHz 0.0211 0.0288 0.0134 3576 ns
11 148.1 µs 137.1 µs 4.666 GHz -0.3326 GHz 0.032 0.0422 0.0218 3576 ns
12 151.6 µs 249.3 µs 4.743 GHz -0.333 GHz 0.0348 0.0414 0.0282 3576 ns
13 192.4 µs 236.7 µs 4.889 GHz -0.3281 GHz 0.0124 0.0184 0.0064 3576 ns
14 156.7 µs 223.5 µs 4.78 GHz -0.3326 GHz 0.0214 0.0276 0.0152 3576 ns
15 111.2 µs 36.64 µs 4.858 GHz -0.3332 GHz 0.024 0.0364 0.0116 3576 ns
16 131.2 µs 187.7 µs 4.98 GHz -0.3299 GHz 0.0634 0.075 0.0518 3576 ns
17 63.8 µs 114.2 µs 5.003 GHz -0.3299 GHz 0.0206 0.0314 0.0098 3576 ns
18 132.7 µs 172.1 µs 4.781 GHz -0.3331 GHz 0.0787 0.0852 0.0722 3576 ns
19 169.2 µs 209.2 µs 4.81 GHz -0.3321 GHz 0.0306 0.0316 0.0296 3576 ns
20 96.24 µs 218.2 µs 5.048 GHz -0.328 GHz 0.0137 0.0226 0.0048 3576 ns
21 105.7 µs 162.3 µs 4.943 GHz -0.3313 GHz 0.0418 0.0666 0.017 3576 ns
22 161.2 µs 194.7 µs 4.911 GHz -0.3318 GHz 0.0145 0.0232 0.0058 3576 ns
23 102.2 µs 166.8 µs 4.893 GHz -0.3315 GHz 0.0471 0.0582 0.036 3576 ns
24 139.5 µs 41.14 µs 4.671 GHz -0.3359 GHz 0.0152 0.0226 0.0078 3576 ns
25 146.9 µs 182.3 µs 4.759 GHz -0.3336 GHz 0.0159 0.0184 0.0134 3576 ns
26 135.8 µs 244.6 µs 4.954 GHz −0.3295 GHz 0.018 0.0214 0.0146 3576 ns

TABLE VII. Characterization data for ionq − 11q. The demonstrations shown in Figs. 5 and 6 were conducted on 26/07/23 and the
demonstrations shown in Figs. 4 and 7 were conducted on 17/08/23 (the data for 15/08/23 shown in the table are the nearest in time to when
the relevant demonstrations were carried out). The fidelities are mean values. SPAM stands for state preparation and measurement.

Date 1q gate fidelity 2q gate fidelity SPAM fidelity T1 T2 1q gate time 2q gate time Readout time Reset time

26/07/23 0.9958 0.9652 0.99752 10000 s 0.2 s 10 µs 200 µs 130 µs 20 µs
15/08/23 0.9976 0.9906 0.99752 10000 s 0.2 s 10 µs 200 µs 130 µs 20 µs
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