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Matrix product states (MPSs) and matrix product operators (MPOs) have been proven to be a powerful
tool to study quantum many-body systems but are restricted to moderately entangled states as the number of
parameters scales exponentially with the entanglement entropy. While MPSs can efficiently find ground states of
one-dimensional systems, their capacities are limited when simulating their dynamics, where the entanglement
can increase ballistically with time. On the other hand, quantum devices appear as a natural platform to encode
and perform the time evolution of correlated many-body states. However, accessing the regime of long-time
dynamics is hampered by quantum noise. In this paper we use the best of worlds: the short-time dynamics is
efficiently performed by MPSs, compiled into short-depth quantum circuits, and performed further in time on a
quantum computer thanks to efficient MPO-optimized quantum circuits. We quantify the capacities of this hybrid
classical-quantum scheme in terms of fidelities taking into account a noise model. We show that using classical
knowledge in the form of tensor networks provides a way to better use limited quantum resources and lowers the
noise requirements to reach a practical quantum advantage. Finally, we successfully demonstrate our approach
with an experimental realization of the technique. Combined with efficient circuit transpilation we simulate a
ten-qubit system on an actual quantum device over a longer time scale than low-bond-dimension MPSs and

Combining matrix product states and noisy quantum computers for quantum simulation

2

2Université Paris-Saclay, Centre National de la Recherche Scientifique, Laboratoire de Physique des Solides, 91405 Orsay, France

purely quantum Trotter evolution.
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I. INTRODUCTION

Quantum computers hold the promise of solving problems
intractable for their classical counterparts [1,2]. With the ad-
vent of the noisy intermediate scale quantum (NISQ) devices
[3], the study of quantum many-body systems is believed to
be one of the first applications of quantum computers. By
manipulating superposed and entangled qubit states, quantum
devices appear as a natural platform to encode correlated
many-body states. Numerous quantum algorithms have been
proposed to solve quantum many-body systems with ap-
plications for condensed-matter physics, electronic structure
problems, or quantum chemistry. Quantum phase estimation
[4] or variational quantum eigensolvers [5] are the most
prominent algorithms proposed to determine the ground state
and the energy of a many-body Hamiltonian . Alongside the
search for ground states, the simulation of quantum dynamics
is another key challenge, where states can be brought far from
equilibrium with a high level of entanglement. Algorithms
have been proposed and tested to perform real-time simula-
tion of many-body systems on a quantum computer [2,6—13].
However, current devices still suffer from significant levels of
noise, which strongly limit their capacities.

On the other hand, numerical computational techniques
have been increasingly successful to study quantum systems.
Among them, tensor networks provide an efficient way to
represent correlated quantum states [14—16]. In one dimen-
sion, matrix product states (MPSs) allow us to find ground
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states of local gapped Hamiltonians thanks to the famous
density-matrix renormalization-group (DMRG) [17] algo-
rithm or to simulate their dynamics with, for instance, the time
evolution block decimation (TEBD) algorithm [18]. More-
over, tensor network techniques are competitive to simulate
quantum computers in the presence of noise [19-22]. More re-
cently, the interplay between quantum simulations and tensor
networks was highlighted by IBM’s kicked-Ising simulation
on a 127-qubit device [23], where tensor networks proved
to be powerful tools to verify the experiment’s results in
nontrivial regimes and provided valuable insights on the com-
putational hardness of such quantum simulations [24-27].
This indicates that quantum computer simulations with naive
approaches are not able today to outperform tensor network
simulations. On the other hand, physically relevant problems
still remain out of reach for state-of-the-art tensor network
techniques, because they fail to represent highly entangled
states. A prototypical example is the dynamics of global
quenched quantum systems, where an initial state is abruptly
driven by a Hamiltonian. Such systems typically exhibit a
ballistic growth of the entanglement with time [28], implying
that tensor network techniques can only access short-time
dynamics.

In this paper, we bridge the gap between quantum
computer and tensor network simulations. We utilize the com-
bination of MPS solutions that are tractable on a classical
computer and quantum circuits on noisy quantum devices to
study the dynamics of a paradigmatic spin chain Hamiltonian.

©2024 American Physical Society
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This paper is organized as follows. After introducing the key
concepts of MPSs and their time evolution in Sec. II, we detail
the method used to optimize quantum circuits thanks to MPSs
and matrix product operators (MPOs)—operators encoded in
MPSs [29,30]—in Sec. III. In Sec. IV, we investigate the
time evolution of a global quench in the one-dimensional (1D)
transverse field Ising model where short-time simulations are
performed by MPS techniques, leading to optimized quantum
circuits that are extended for longer time simulations on a
noisy quantum computer. To quantify our results, we use
the fidelity as a performance metric in Sec. IV B. Finally, in
Sec. V, elaborate noise mitigation techniques allow us to test
our scheme on actual quantum devices from IBM Quantum
[31]. This hybrid classical-quantum procedure is summarized
in Fig. 1.

II. MATRIX PRODUCT STATES
AND THEIR TIME EVOLUTION

In this paper, we employ numerical simulations based
on MPSs, which are a class of one-dimensional many-body
quantum states that allow an efficient representation of entan-
glement. Let us first briefly introduce for completeness the key
concepts around MPSs. We consider N spins, each spin being
described by a local Hilbert space Hjo. of dimension d. Let
{|lo)} be an orthonormal basis of H,,.. A general many-body
state W) living in H = ®fv=1 Hioc can be written as

.., ON), (1)

.... ...,UN> = |01>®,...,®|O’N>.A
MPS is a class of quantum many-body states where the co-
efficients ¢,,, 4, are obtained by multiplying matrices {AJ"}
together. For an open boundary state, a MPS reads as

(W) =Y "N AlARle: AN (6105, o), ()
{on} {on}

where A"lor for 2 < n < N — 1 are complex matrices of di-
mension x,_1 X xn, where y, is called the bond dimension
between spin sites n — 1 and n. At the boundaries, the tensors
Ao and AIVIov are vectors of dimension x; and xy_;. The
bond dimension of a MPS dictates the storage cost of the state
and is a key element to understand how entangled the MPS
is. Indeed, by considering the bipartition of the state of the
Hilbert space as H = Hgr ® Hp, where Hy (H) denotes the
Hilbert space of the subsystem at the left (right) of the bond
between the spin sites n and n + 1, we can rewrite the state
|W) as

Xn

W) = |Wh) | 9F), 3)
k=1

where |\IJ,f(R)) € Hrw and A, € R. Equation (3) is called the
Schmidt decomposition of |W). In this form, it becomes possi-
ble to quantify the amount of entanglement between the sub-
system L and R by calculating the entanglement or von Neu-
mann entropy. Starting from the density matrix p=|W¥)(¥]|,
we define the reduced density matrices prs)=Trsr)p.
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FIG. 1. (a) The classical MPS of dimension xyps can only access
short-time dynamics. The maximum simulated time M5 is defined
as the time where the MPS’s entanglement entropy Syn reaches
log, xmps. (b) The quantum circuit corresponding to the TEBD al-
gorithm. The time-evolved state at time ¢ < tMPS can be classically
represented by a MPS, and can be efficiently represented by a circuit
(c) of depth NMPS. The time evolution can be carried further on
the quantum computer, thanks to quantum circuits of depth NMFO

optimized by MPOs.

The von Neumann entropy is then calculated as
Sy = —Trrlprlog, (pr)] “)
= —Tr[prlog, (pr)]. 4)

Using the Schmidt decomposition of |W) as in Eq. (3), we
directly obtain Syn as

Xn
Sw == ilog,}. (6)
k=1

The entanglement entropy is maximal when all the Schmidt
values {A;} are all equal, i.e., Vk, Ay =1/ /X, (as |W) is
normalized). Therefore the maximal amount of entanglement
entropy between L and R is equal to log, x,. This highlights
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that the amount of entanglement in a MPS is directly related to
the dimensions of its tensors and therefore to its storage cost.

In this paper, we aim at benchmarking the capabilities of
quantum computers compared to standard MPS techniques
for time evolution [32]. To do so, we study the simulation of
global quantum quenches where we consider an initial state
W) that is suddenly driven under a Hamiltonian at ¢ > O.
The time-evolved state reads as

W) = e ' W) (7

As an example, we consider here the paradigmatic one-
dimensional spin-1/2 Ising model with a transverse field. The
corresponding Hamiltonian is defined as

L—1 L
H=-]Y XXia—hY Z (8)
i=1 i=1

where L is the number of spin sites on the chain, J is the
interaction strength between neighboring spins, and # is the
transverse field value. The spin operators X; and Z; are equals
to ((1) (])) and ((]) _Ol) respectively.

The initial state is chosen to be a Néel state defined as
[t 14 ...). This global quantum quench brings the state far
from equilibrium, whose dynamics are characterized by a
ballistic growth of the entanglement with time [28]. As a
consequence, only short-time dynamics are accessible to MPS
simulations, as they can handle only weakly entangled states.
The simulations of such physical systems provide relevant and
interesting benchmarking problems for quantum computers,
as demonstrated on IBM’s experiment of a transverse field
Ising system on a 127-qubit quantum processor [23].

To simulate time evolution with MPSs, we use the so-called
TEBD algorithm or Trotter decomposition method [18]. We
first formulate the Hamiltonian H = vaz_ll h;iiy1 as a sum of
local Hamiltonians defined as

hiiv1 = —JXiXip1 — g(zi +Z ) Vie2,L-2], (9
hia=—IX\Xo — h(Z; +12), (10)

hi-11 = —JIXp1 X — h(3Zp-1 + Z1). (11)

Then, we approximate the time propagator U (t) = e 'H! by

performing time steps of duration dr thanks to the standard
first-order Trotter-Suzuki formula as

t/dt
vy =[] e ™ []e ™ (12)
n=11ieven Jj odd

At each time step, we apply local unitary transformations
e~hiin1d! between two neighboring sites, which leads to an
update of the corresponding tensors. This leads to an increase
in the bond dimensions as the state will get more entangled.
However, when bounding the bond dimension to a maximal
value ymax, we need to truncate the state by only keeping the
Xmax largest Schmidt values of the specific bond. By doing
so, we limit the entanglement entropy carried by the MPS. To
illustrate this, Fig. 2 shows the entanglement entropy at the

Jt

FIG. 2. The von Neumann entropy S,y at half chain as a func-
tion of time from MPS states with different bond dimensions x for
L = 10 spin sites under a global quench. S,n grows ballistically with
time and saturates at log, x . For 12 sites, the MPS of bond dimension
26 is not truncated and therefore is exact.

middle of the chain Sflflz as a function of time for MPSs with
different bond dimensions for the critical point J/h = 1. This
parameter choice will be kept throughout the rest of this paper.
As the entanglement entropy grows with time, the MPS is not
able to efficiently represent long-time-evolved states that carry
more entanglement than it can represent.

III. OPTIMIZING QUANTUM CIRCUITS
WITH TENSOR NETWORKS

A. Quantum matrix product states

In Sec. II, we detailed the MPS formalism, how it can
be used to simulate the dynamics of quantum systems, but
most importantly its bottleneck, lying in its ability to repre-
sent states with a high degree of entanglement. On the other
hand, quantum computers do not suffer from these limitations
in principle as they naturally use entanglement but they are
limited by noise. Representing MPSs with efficient quantum
circuits is an appealing challenge as it offers a promising path-
way to extend classical methods beyond their limitations, such
as performing time evolution or preparing highly entangled
states, while optimizing the use of quantum resources.

The preparation of MPS states with qubits was first
presented in Ref. [33]. Later, techniques were developed
to generate quantum circuits approximating a given MPS
[34-38], or alternatively optimize quantum circuits using a
MPS representation [39]. Among potential applications, it
has been proposed to initialize parametrized quantum circuits
with classically optimized tensor network states [40—43]. Ten-
sor networks have also inspired classes of variational quantum
circuits [13,44-50] and have been experimentally realized on
quantum devices [51-54]. Embedding tensor networks into
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FIG. 3. (a) A state generated by a sequential quantum circuit of depth NMPS can be exactly represented by a MPS of bond dimension

2M™  (b) Similarly, a sequential quantum circuit, of depth NMPO, without specifying any input state, can be exactly represented by a MPO

. . MPO
of bond dimension 4"z

. (c) In order to optimize the unitaries comprising a QMPS or QMPSO in order to maximize its overlap with a MPS

state or a MPO representation of a quantum circuit of interest, we calculate the environment tensor of each unitary, which is updated from the

environment tensor’s SVD.

quantum algorithms has also been explored in the context of
DMFT calculations [55].

In this section, we use an approach similar to the algorithm
defined in Ref. [39]. The goal here is to classically optimize a
quantum circuit thanks to MPS techniques to prepare a state
approximating the time-evolved state |W(z)) = e~H" |Wy). To
do so, we use a circuit ansatz built from staircase layers of
two-qubit gates, as shown with Fig. 3(a). With this specific
ansatz, a quantum circuit of depth NMP S generates a state
that can be exactly represented with a MPS of bond dimen-
sion xmps = N The resulting state will be referred to
as a “quantum matrix product state” (QMPS), and can be
written as

[Womes (1)) = [ ] U(®) 1W0) (13)
k

where Uy (t) are unitary gates that compose the circuit acting
on the initial state |\W(). To approximate the state at time ¢,
we classically optimize the unitaries {Ui(f)} to maximize the
overlap with |®yps(?)), obtained from a TEBD simulation
with a MPS of bond dimension xyps = M To do SO, we
iteratively optimize each unitary Uy to maximize the overlap
F, between the target state | Pvps) and [Womps) = [, Uk |Wo)
as

Fe = <<I>Mps|(]_[U,-)Uk]"[U,- |Wo) (14)

i>k Jj<k
= (Dp11| Uk |Wi—1) (15)
= Tr(E Uy), (16)

where the environment tensor E is defined as

E = Trg(|Wi—1) (Prq1 ). a7)

Here Trz(.) operates the trace over all qubits but the qubits
acted on by the unitary Uj. Graphically, Ej is calculated
by contracting all qubit indices between the ones involved
in the unitary operation U;. By forming a singular value
decomposition (SVD) of Ey, we rewrite Ej as

E, = XSy, . (18)

From Eq. (17) the unitary Uy is then updated according to
[56] by

Ui < VX, . (19)

This optimization step is performed for each unitary Uy
consecutively. The procedure is sketched in Fig. 3(c). The
whole process is repeated until either a convergence criterion
or a maximum number of sweeps is reached. In practice, to
obtain the state |Womps (f + dt)), we optimize the overlap with
|®ymps(f + dt)) using the unitaries {Ug(7)} as a starting point.

In Fig. 4, we show the performance obtained from the
optimized QMPS |Wqmps(?)). We take exact time-evolved
states with a time step df = 0.01 (in 1/J units, as it will be
implicitly assumed throughout the rest of the paper) as a ref-
erence solution |W¢(¢)). In Fig. 4(a), we evaluate the quality
of the QMPS states of different layers with the infidelity per
site calculated as 1 — F1/L, where F = [ (Wrer ()| Womps (7)) 2.
With Fig. 4(b), we observe the same behavior as in Fig. 2
in terms of entanglement entropy. As expected, at a fixed
time ¢, the quality of the result increases when the depth
(and the bond dimension) increases. Moreover, when ¢ in-
creases, the state becomes more entangled and the fidelity
decreases. Most importantly, both QMPS and MPS fail at
the same simulation time, when the entanglement entropy
reaches its maximum with respect to Niv[PS and xmps. In
this example, QMPS states demonstrate similar strengths (and
weaknesses) to MPSs while being implementable on a quan-
tum computer. This method provides a powerful way to find
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FIG. 4. The infidelity per site (a) and the entanglement entropy
(b) as a function of time for classically optimized quantum circuits
of different numbers of layers NMPS using the MPS of corresponding
bond dimension y = oM PS, for the L = 12 system.

entanglement-efficient circuits for time evolution that exploits
a DMRG-like optimization, as opposed to the usual Trotter-
Suzuki circuits that are particularly inefficient in terms of
entanglement per added gate.

B. Quantum matrix product operators

In the previous section, we have shown that we can encode
time-evolved MPSs as quantum circuits. We want now to
reach longer simulation time by time evolving QMPSs on a
quantum computer. Despite having reached the classical limit
(set by the bond dimension) for the time-evolved state, it
remains possible to further classically manipulate and opti-
mize parts of the quantum circuit that will be appended to
the QMPS circuit. In this section, we propose to find better

quantum circuits for the Trotter time evolution by leveraging
MPOs, a one-dimensional tensor network, similar to MPSs,
encoding operators acting on quantum states. Similarly to a
MPS, a MPO is also characterized by its bond dimension,
which relates the classical cost to store and manipulate the
operator. To exactly represent a general L-qubit operator, we
need a MPO of bond dimension 4-/? = 2L, However, quantum
circuits that generate a moderate amount of entanglement can
be efficiently encoded as MPOs of moderate bond dimension.
In this section, we compress Trotter quantum circuits into
short-depth quantum circuits. We use the same approach as
the one used for the optimization of QMPSs. First, as shown
in Fig. 3(a), that sequential quantum circuit of depth NMPO
can be represented exactly as a MPO of bond dimension
4N"™ These circuits will also be our ansatz to encode Trotter
circuits. A MPO representation of the Trotter circuits can be
obtained by performing the TEBD algorithm on the identity
MPO defined as the tensor product of the single-qubit identity
operators ®%_, 1;, whose MPO pictorial representation is sim-
ply L parallel lines. Then, the gates are applied sequentially
onto pairs of local tensors, which are then split by an SVD,
in the same fashion as the MPS algorithm. By doing so for n
Trotter steps, we obtain the MPO approximation for the time-
evolution operator at time ndt. We fix the bond dimension to
4™ which limits the simulation time or circuit depth that
we can efficiently encode as a MPO. Here we use again Trotter
circuits with dr = 0.01 as our reference circuits.

To evaluate the fidelity Fy, between two unitaries U and V
acting on L qubits, we define an operator fidelity as

Tr(UV) ] 0)

Fup = Re [ L

Calculating Tr(U V) where two U and V are MPOs of
bond dimension xmpo with local physical dimension d (= 2
in case of qubits) can be done by contracting the tensor net-
work shown in Fig. 3(c), whose computational cost scales
as O[L(d*xwmpo)’]. It is important to note that if the MPS
simulations and QMPS optimizations are performed with
bond dimension xmps, With a computational cost scaling
as O[L(d x3ps)], the maximum MPO bond dimension xmpo
must be set accordingly as ymps/d (xmps/2 for qubits). We
also emphasize that exact MPS simulations can be done with
a bond dimension 2%/2. Therefore, the maximum relevant
MPO bond dimension is bounded by 2£/2/2 = 2L/~ which
leads to a maximum number of layers equal to [log,(2L/271)]
(L.] designates the floor function).

In the same fashion as for QMPSs, we want to maxi-
mize the overlap between the quantum circuit ansatz from
Fig. 3(a)—that we will call the quantum matrix product
operator (QMPO)—and the MPO approximation of the time-
evolution operator Ur,. To optimize a given unitary U, from
the QMPO, we calculate the environment tensor of U; by
removing the gate from the overlap tensor contraction. The
gate Uy is then updated from the SVD of the environment
tensor, as shown in Fig. 3(c). Note that similar approaches
[57,58] proposed to optimize quantum circuits for quantum
simulation with MPOs by minimizing variational parameters
of a given quantum circuit ansatz with an optimizer, while
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FIG. 5. The operator infidelity per site for the QMPO solutions
for different numbers of layers NMPO against time for L = 12 sites.
We compare the QMPO circuits (full line) with first-order Trotter cir-
cuits of the same depth (and therefore the same number of quantum
gates) with a corresponding time step d¢ = t/NMPO (dashed line).

here the optimization is performed by a purely tensor network
technique.!

In Fig. 5, we show the operator infidelity per site for a chain
of L = 12 sites for NMPO = 1 and 2 as a function of time =
ndt, where dt = 0.01. We perform optimization sweeps with
a maximum number of sweeps set t0 ngyeep = 100. The con-
vergence is reached when performing an optimization sweep
does not improve the fidelity more than 10~8. We observe as
expected that the short-time evolution is efficiently captured
by the QMPOs, but degrades over time as the fixed number
of layers bounds the entanglement entropy that is carried
by the quantum circuits. We compare the performances of
the QMPOs with first-order Trotter circuits employing the
same number of layers (i.e., same number of gates) with a
time step dt = t/NMFO. While the QMPO errors are coming
from the optimization process and the choice of the ansatz,
the Trotter circuits suffer from errors inherent to the Trotter
approximation. However, as shown in Fig. 5, the optimized
QMPOs offer better operator fidelities than the Trotter circuits
at a constant number of gates. Note that higher order of the
Trotter approximation can be used to lower the errors. While
using higher-order Trotter circuits only increases the overhead
of the QMPO optimization procedure, it results in the use of

! Recently, we came to be aware of two related works. Reference
[59] proposes the use of MPOs to compress circuits for adiabatic
evolution using the method from Ref. [58]. Reference [60] proposes a
similar tensor network optimization scheme to ours for quantum cir-
cuits using MPOs, providing technical details as well as benchmarks
on different models. Our paper is complementary as it combines both
MPS and MPO with a focus on the performances on noisy quantum
computers.

more quantum resources and therefore more noise when run
on an actual device.

IV. COMBINING MPS AND MPO WITH A NOISY
QUANTUM COMPUTER

In Sec. III, we displayed the capacity of QMPSs to effi-
ciently represent tensor network states as quantum circuits.
This opens the possibility to extend classical simulations to-
ward regimes where high levels of entanglement are required.
By implementing QMPSs on quantum computers, it becomes
possible to manipulate these states and generate more entan-
glement. With the example of quantum dynamics, this offers
the possibility to carry a simulation further in time by breaking
the classical entanglement barrier.

In this section, we propose a way to combine tensor net-
work techniques with noisy quantum computers. We use the
best of both worlds: short-time dynamics is efficiently per-
formed by MPSs, compiled into short-depth circuits, and then
propagated toward longer simulation time on a quantum de-
vice thanks to MPO-compressed circuits. In this framework,
tensor networks assist the quantum simulation by providing
all the ingredients (i.e., the initial state and the quantum
circuits) to perform time evolution with fewer quantum re-
sources. Again, this hybrid classical-quantum procedure is
summarized in Fig. 1. Our goal here is to investigate whether
a MPS of a given bond dimension can be outperformed by a
noisy quantum simulation with compressed circuits obtained
with MPSs or MPOs using the same bond dimension.

A. Noisy QMPSO states

To set our quantum simulations using QMPS and QMPO,
that we will call “QMPSO” simulations, we define a max-

imum simulation for the QMPS as tMPS as well as for the

QMPO tMPO_To reach a simulation time ¢ > tMPS| we decom-

_MPS
pose ¢ as t = tMPS 4 M x (MPO + A, where M = Lttné",;?; 1.

By denoting quantum circuits for the QMPS and QMP6 by
Uqgmps (t) and Ugmpo(?), the time-evolved state is given by

M
[Waompso(?)) = Ugmpo (Af)Uqmpo (111:1/;1;0)
x U ques (tnme) 1Wo) -

In order to model noisy quantum computers, we employ
a global depolarizing noise model. This phenomenological
description defines the density matrix of the noisy state
p as a mixture of the noiseless pure state density matrix
po = |W)(¥| and a maximally mixed state 1 /2" as

21

p=aopy+ (- oz)zlLL, a € [0, 1], (22)
which is an approximation of a noisy state under a local
depolarizing noise applied after each two-qubit gate. We use
o = e~N: where € is the two-qubit error rate and N, the num-
ber of gates used in the circuit [61-63]. This transformation
models the gate errors with an incoherent stochastic noise.
Although it does not capture all noise phenomena happen-
ing in a real quantum device, it describes one of the most
prominent error sources of NISQ devices. Moreover, coherent
noise can be converted into depolarizing noise with techniques
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FIG. 6. The infidelity per site for the QMPSO scheme for different error rates against the MPS solution for (a) xmps = 2°, Ni\’“)s =3,
tMPS — 2.2, NMPO = 1, and tMPO = 0.2 and (b) ymps = 2°, NMPS = 5,¢MPS — 3.8, NMPO = 2, and tMPO = 0.6. The dotted lines correspond to
the MPS simulations, and the dashed and full lines correspond respectively to noisy Trotter and QMPSO simulations. (c), (d) Advantage as a
function of time and error rate. The domains are defined as follows: dark green, no advantage over the MPS; green, advantage with the QMPSO
circuits; and light green, advantage with the Trotter evolution on a noisy quantum computer.

like randomized compiling [64]. Therefore simulating noisy
quantum computers under such a model gives interesting and
physically relevant insights into their performances.

B. Fidelity

To evaluate the quality of the states |\W(#)) or p(¢) obtained
from the MPS techniques and noisy quantum computers, we
calculate their overlap with a reference solution |W,.(7)). As
in Sec. III, we choose this reference solution to be an ex-
act solution time evolved with a small time step df = 0.01.
For a noisy state p(t), the fidelity is calculated as F =
(Wret (D) p ()| Wier (1)) = N[ (Wreg(1)| W(1)) |?, according to
Eq. (21).

We compare the fidelities of noisy QMPSO states with
noisy Trotter circuits and MPS simulations with Fig. 6. In
order to compare systems of different sizes, we again use
the infidelity per site defined as 1 — F'/ (see Appendix A
for system size comparison). We focus on a L = 12 spin
system, with a MPS bond dimension yyps = 23 (2°), which
corresponds to NMPS = 3/NMPO — | (NMPS — 5/NMPO — 2)
with Figs. 6(a) and 6(b), with a two-qubit error rate equal to
1072,1073, and 10~ and a time step dt set to 0.01. First, we
observe that a MPS provides always much better results for
short-time dynamics, where they provide quasiexact solutions.
Second, using a QMPS as a starting point leads to better fi-
delities compared to pure Trotter quantum circuits, especially
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for short-time simulation. This is naturally expected as they
use limited quantum resources while capturing efficiently the
time evolution in this regime. Therefore, the main advantage
of QMPSO with noisy quantum computers exists for a longer
simulation time. The QMPO circuits allow one to propagate
the QMPS state further in time with much shorter circuits,
leading to fidelities orders of magnitude higher compared to
Trotter circuits. It is worth pointing out that in these results,
the time step dt has been set to 0.01, which leads to large cir-
cuit depth but reduces significantly the Trotter errors. Finally,
dedicating more classical resources, expressed here in terms
of bond dimension, allows one to manipulate more entan-
glement and therefore to provide better compressed quantum
circuits, as illustrated with Figs. 6(a) (xmps = 2%) and 6(b)
(xmps = 25)~

Figures 6(c) and 6(d) show diagrams of the advantage of
noisy quantum simulations over MPS solutions with the two
maximum bond dimensions with respect to the simulation
time and the noise level. We use the fidelity as a criterion
for practical advantage, allowing us to compare errors coming
for noisy hardware with truncation errors from MPS. It leads
to the following conclusions: first, MPSs naturally provide
better simulation for short times, but also at longer times
when the hardware errors are larger than the truncation errors.
Therefore, there only exists a quantum advantage when target-
ing long simulation with sufficiently low error rates. Trotter
circuits necessitate exceptionally low error rates, especially
when compared with MPSs of increasing bond dimension.
The use of QMPSO circuits make it possible to bridge the
domains of MPS and quantum Trotter evolution, by beating
MPS simulations with strongly reduced noise requirements.

We emphasize again that the effective noise map used here
only takes into account gate errors. Despite being predominant
in current devices, it does not capture all the relevant sources
of error. In practice, complex phenomena such as crosstalk
noise are also relevant noises occurring in quantum devices
and play a major role in their performances [65-67]. Reducing
the circuit depth becomes even more crucial, and therefore
using classical knowledge in the form of QMPSO circuits
provides a promising pathway to use quantum devices.

V. EXPERIMENTAL RESULTS

In the previous section, we have considered quantum
circuits with a depolarizing noise model. In this section,
we explore the benefits of combining tensor networks and
quantum computers on actual quantum devices from IBM
Quantum [31]. We focus on a small system size, and therefore
a small bond dimension MPS, and investigate the capacity of
our protocol to surpass the MPS simulation using QMPSO
circuits obtained with MPSs and MPOs using the same bond
dimension and current quantum hardware.

To evaluate the performance of the experimental quantum
simulations, we follow the dynamics of the transverse field
Ising model by measuring the magnetization (Z;) of each spin
1/2 in time and compare with both exact and truncated MPS
solutions. Starting from an antiferromagnetic product state of
size L = 10 we perform quantum simulations implementing
Trotter and QMPSO circuits. We use optimized QMPSO cir-
cuits with NMPS =3 and NMPO = 1 implemented as initial

states, which encode time-evolved MPS states brought to their
entanglement saturation time, here tMPS = 2.2 and MO =
0.5. The corresponding QMPS allows one to capture at most
2/3 of the maximum entanglement entropy with respect to
the system size. The time step of the Trotter steps dt was set
to 0.1.

To make the best use of the current quantum devices, we
employ several error mitigation strategies, namely dynamical
decoupling and pulse scaling as implemented in QISKIT [68]
and QISKIT-RESEARCH [69], which have been utilized in pre-
vious works [70-72]. To efficiently implement the QMPSO
circuits defined by optimized unitary matrices, we use the
pulse-efficient decomposition as suggested in Ref. [73], which
leverages native cross-resonance gates from IBM supercon-
ducting devices. Instead of using a controlled-NOT (CNOT)
based decomposition, we express our two-qubit gates as a se-
quence of Rxx, Ryy, and Rz gates (and single-qubit rotations)
thanks to Cartan’s KAK decompositions [74]. Each of these
two-qubit rotations is performed by a native cross-resonance
pulse. A native cross-resonance pulse realizes a Rzy (6) gate
in a shorter duration than a CNOT and therefore makes better
use of the limited coherence time. To implement the Trotter
circuits, we simplify the circuits by using only Rxx and Ry
gates. Similarly, the Rxy gates are also performed by a pulse-
efficient Rzx gate.

Figure 7 shows the results obtained from ibmq_kolkata for
L = 10. We compute the local magnetization from the QPU
and compare with both exact and MPS of bond dimension

NMPS .
xmps = 2t . In order to quantify the performances of the
different methods, we use the cumulated error of the local
magnetizations over time as in Ref. [72], that we define as

1 R )
ec(t) = W /%I;S dfz ; [Zi)(T) — (Zi)exact (T)]”.

" 23)

We first observe that the time evolution with Trotter circuits
allows us to recover the short-time dynamics, but, as expected,
the quality of the results degrades for longer times as the
circuit gets deeper. On the other hand, starting the simulation
from a QMPS followed by QMPOs produces better results
and beats the corresponding MPS that fails beyond tMFS | es-
pecially for local magnetizations in the bulk of the spin chain
where the entanglement entropy gets the largest. In Fig. 7(a),
we observe qualitatively the key features of the local magne-
tization for longer times than both Trotter evolution from the
quantum device and from the MPS solution. With Fig. 7(b),
the cumulated error ¢.(t) allows for more quantitative com-
parisons. The use of optimized QMPSO circuits translates
into a significant improvement in the cumulated error. Finally,
we compare the cumulated error with a maximally mixed
state 1/2%, typically obtained from a deep noisy quantum
circuit and containing no information. In our example, this
corresponds to (Z;) = 0. This allows us to understand whether
the expectation values obtained from the QMPS or Trotter
carry relevant information or are dominated by noise. While
Trotter simulations carry errors even higher than a maximally
mixed state beyond tMPS the QMPSO simulations clearly

max °
provide meaningful results despite the presence of noise. The

062437-8



COMBINING MATRIX PRODUCT STATES AND NOISY ...

PHYSICAL REVIEW A 109, 062437 (2024)

(a) exact MPS QC Trotter QMPSO 100
6.0 : ] -
0.75
5.5 — — ]
5.0 ] ] ]
5.0 L 050
451 10 ] ]
40 I ] ] - 0.25
3.5 : ]
-+~ —
~ F0.00 DN
3.0 ] ] | ] ] N
2.5 9 ] ] ] - —0.25
2.0 ] ] 177777
—05
1.5 ] ] ] 050
1.0 . : ]
~0.75
0.5 : . ]
0.0 ~1.00
0123456789 0123456789 0123456789 0123456789
position 4

®) 014
—e— ibmgq Trotter
—e— ibmq QMPSO
0.124 MPS x =38
—_— I[/ZL
0.10 1
0.08 1
/
+~
~—
W
0.06 1
0.04
0.02 1 MM//“
0.00 T T T -
3 4 5 6
Jt

FIG. 7. Evolution in time of the local magnetization in time for a L = 10 quantum Ising chain. The QMPS is described with three sequential
layers of two qubit gates, optimized via a MPS of dimension 8. (a) Color plot for exact and truncated MPS solutions as well as Trotter (“QC
Trotter”’) and QMPSO simulations run on ibmq_kolkata. (b) The cumulated error in local magnetizations over time for the MPS solution, the

QPU results, and a maximally mixed state 1/2~.

local magnetizations as a function of time are displayed in
Appendix C.

In this small instance, we demonstrate that a low-bond di-
mension MPS can be extended by a quantum computer, which
allows one to study the dynamics of a quantum system beyond
the MPS capabilities. Extending these experiments for larger
system sizes combined with MPS of larger bond dimensions
could lead to interesting insights into the capacities of current
quantum devices.

VI. CONCLUSION

In this paper, we have investigated the interplay between
classical MPS techniques and noisy quantum computers for
digital simulations of 1D spin systems. While MPSs are con-
strained by their bond dimension, which limits their capacity
to represent highly entangled states, quantum computers suf-
fer from experimental noise. Combining classically tractable
MPSs and MPOs with efficient quantum circuits is therefore
essential to get the most out of quantum devices. In order to
bridge the gap between MPS and quantum simulations, we
have used tensor network techniques to encode MPSs into
classically optimized quantum circuits (QMPSs) as well as
compressing Trotter circuits with MPOs into shorter-depth
circuits (QMPOs). We propose here to take QMPSs brought
to their maximal capacities and use noisy quantum comput-
ers to break the MPS entanglement barrier. This relay from
classical to quantum computers enables one to make efficient
use of limited quantum resources to reach a higher level of
entanglement. To illustrate this protocol, that we call QMPSO,
we have studied a global quench of the critical transverse field
Ising Hamiltonian. In this system, the entanglement entropy
exhibits a ballistic growth with time, which makes almost

impossible the simulation of the system’s dynamics over long
timescales with MPS-based approaches.

We have simulated noisy quantum circuits under a depo-
larizing noise and characterized the resulting states with their
fidelity. We have compared the ability of quantum computers
to beat MPS techniques with respect to target simulation times
and the noise level of the devices. The use of QMPSO circuits
can provide a significant improvement over the Trotter-Suzuki
time evolution as it reduces the circuit depth and reduces the
error rate requirements for practical advantage. Finally, we
tested experimentally this protocol on actual quantum devices
from IBM Quantum [31]. We observe improved results thanks
to the use of QMPSO circuits compared to Trotter simula-
tions. We also demonstrated in a small instance the ability of
current devices to beat a low-bond-dimension MPS solution.
Comparing QPU computations with MPSs with different bond
dimensions could also provide interesting insights into the
performances of quantum computers with respect to a given
classical complexity.

However, we emphasize that the MPS ansatz is particu-
larly suited for 1D spin systems with local interactions, but
becomes less efficient for two-dimensional systems or sys-
tems with long-range interactions, while a quantum computer
can be designed with the appropriate topology. Other ten-
sor network topologies and their relationships with quantum
circuits could also be considered. Moreover, time evolu-
tion with Trotter-Suzuki circuits leads to high depth D =
t/dt that is particularly inefficient in terms of noise and
entanglement production. On the other hand, the QMPS rep-
resentation shows that circuits of depth D are sufficient to
encode time-evolved states with an entanglement entropy
Syn < D. This gives hints on the optimal use of resources
quantum algorithms should aim for. Variational quantum
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FIG. 8. The infidelity per site for (a) QMPSs and (b) QMPOs optimized with different numbers of layers and system size.

algorithms [8] combined with QMPSs can offer interesting al-
ternative solutions to study the quantum dynamics with appro-
priate circuit depths with respect to the required entanglement
level.
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APPENDIX A: QMPS AND QMPO VS SYSTEM SIZE

Here we explore the performances of the QMPS and
QMPO optimization as a function of the system size. To do
s0, we optimize quantum circuits for different system sizes
and numbers of layers. We run a TEBD algorithm on MPS
and MPO with time step dt = 0.01 and optimize quantum
circuits every Ar = 0.5 for QMPS and 0.25 for QMPO. The
maximum number of sweeps was set to 2000 for QMPS and
1000 for QMPO.

Figure 8 shows the infidelity per site obtained for the
QMPS and QMPO for various system sizes. We observe no
clear dependance with respect to the length L of the system.
This indicates that the key parameter in these simulations is
the bond dimension which then sets the number of layers
of the circuits to optimize. This can be explained by the
fact that the bond dimension acts locally by restricting the
dimensions of the local tensors of a MPS or MPO. Moreover,
the noise model employed here also leads to an error per
site invariant with the system size. Indeed, a depolarizing
noise model typically decreases the noiseless fidelity by a
factor e=“Ns, where € is the two-qubit gate error rate and N,
the number of two-qubit gates. In our paper, N, is equal to
(L — 1) x D, with D the depth of the circuit, i.e., the number
of QMPS or QMPO layers or Trotter steps. When looking at
the error per site, this factor quickly becomes independent
with L as (e PE=D)/L ~ ¢=¢D for [ > 1. Together with
Fig. 8, this allows us to expect similar performances of the
QMPSO circuits when targeting higher system sizes and bond
dimension than the ones explored in this paper.

QMPO

0.75  1.00 125  1.50

Jt

025  0.50

APPENDIX B: ENTANGLEMENT PRODUCTION

The key bottleneck of tensor network techniques lies in
their limited capacity to encode entanglement, while quantum
computers naturally use entanglement. However, the noise
inherent to quantum devices prevents them from running
deep quantum circuits, and therefore they are also limited
in terms of entanglement production. After having looked
at the fidelity, another interesting quantity to consider is the
entanglement as a performance metric to compare MPS so-
lutions with noisy quantum circuits. The depolarizing noise
model used here captures the effect of noise on entangle-
ment production. Indeed, it can be understood as a process
of nondestructive local measurements, where the density gets
mixed with states with a lower entanglement level. Therefore,
after applying a two-qubit gate, there exists a competition
between the entanglement generated by the gate and the noise
occurring that reduces the quantum correlations. To quantify
the growth of quantum correlations in a noisy circuit, we
use the operator entanglement entropy of the density matrix
which was used as a benchmark metric in Refs. [21,22], in
the context of the simulation of noisy circuits with MPO
techniques. In the case of density-matrix calculations, the
operator entanglement entropy S, can be obtained thanks to
a Schmidt decomposition of the density matrix p for a cut
between subsystems A and B:

oL

p= rapl®pL, (B1)

a=1

where p2 and p? are reduced density matrices for the two sub-
systems of pure states, and {A,} are the Schmidt values. Here
Aq corresponds to the classical probability of finding the state
in pg ® p8 in the mixed state p. From this decomposition, the
operator entanglement entropy is defined as

S, > & 1 ko (B2)
= — (o) .
op = 2 hp = Y
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FIG. 9. Operator entanglement entropy in time for noisy states with L = 12 sites, (a) for Trotterized evolution with dt = 0.1 (dt = 0.01 in
the inset plot), and (b) for QMPSO simulation with NMPS = 3 and NMPS = 1. The dotted gray line corresponds to the maximum entanglement

for the corresponding MPS of bond dimension x = M,

As detailed in Ref. [21], it is important to note that although
Sop does not distinguish between quantum and classical corre-
lations, it vanishes for the maximally mixed state p = 1/2F
that is typically obtained in the deep circuit limit under a
depolarizing noise.

Taking a depolarizing noise model, we compute the opera-
tor entanglement entropy for Trotter and QMPSO simulation
with Fig. 9 using realistic noise levels. We observe that the
Trotter circuits are failing to prepare states with quantum
correlations beyond MPS capabilities (with respect to the
bond dimension), meaning that such noisy states could also
be efficiently simulable with density-matrix simulations based

1.00

on MPO [21,22] for example. On the other hand, the noisy
QMPSO circuits are capable of preparing entangled noisy
states beyond tensor network reach, which also consists of an
advantage over classical simulation.

APPENDIX C: EXPERIMENTAL DATA

Here we show the local magnetization of the quantum
simulations carried on ibmq_kolkata for each site with Fig. 10.
Trotter circuits capture the right dynamics only for short
times, while the QMPSO simulation provides a better match
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FIG. 10. Local magnetization of each site from the ten-qubit simulation performed on ibmq_kolkata.
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with exact magnetizations at times immediately following
time tnl\faf(s and captures the correct behavior over longer times.
We also observe discrepancies with respect to sites that man-

ifest the quality variability of the qubits and their couplings.
The experiments were performed on the 23th (QMPSO) and
24th (Trotter) of October 2023.
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