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We consider the impact of the unitary-averaging framework on single- and two-mode linear optical gates. We
demonstrate that this allows a trade-off between the probability of success and gate fidelity, with perfect fidelity
gates being achievable for a finite decrease in the probability of success, at least in principle. Furthermore, we
show that the encoding and decoding errors in the averaging scheme can also be suppressed up to the first
order. We also look at how unitary averaging can work in conjunction with existing error-correction schemes.
Specifically, we consider how parity encoding might be used to counter the extra loss due to the decreased
probability of success, with the aim of achieving fault tolerance. We also consider how unitary averaging might
be utilized to expand the parameter space in which fault tolerance may be achievable using standard fault-tolerant
schemes.
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I. INTRODUCTION

With noisy intermediate-scale quantum (NISQ) devices be-
coming more common, the attention is shifting to the creation
of full-scale quantum computing devices [1]. These future
devices will differ from current technology in their scale,
which necessitates the development of practical methods of
dealing with noise in quantum devices. Specifically, full-scale
quantum computation will require the used of fault-tolerant
schemes. However, these require enormous overhead in re-
sources to be implemented. Quantum computing architectures
and error-correction schemes that offer a reduction in this
overhead will be necessary for at least near future quantum
computing devices and are thus the focus of much interest.
Indeed, improvements in this space which are easily imple-
mentable would be useful both in the NISQ era and in the
longer term.

Linear optics provides a promising platform for achieving
the transition from existing technologies such as boson sam-
pling [2] to universal quantum computing realizations such as
fusion-based quantum computing [3]. The implementation of
deterministic two-qubit entangling gates with noninteracting
photons, photon loss, and the buildup of errors throughout
the quantum circuits represents a major challenge for optical
quantum computers. The first two issues can be addressed
by loss-tolerant encoding [4] to enable recovery from failed
probabilistic components. As such, loss tolerance must be a
fundamental component of any optical quantum computer, a
fact that our scheme relies on to address the limitation of its
probabilistic nature.

We explore the framework of unitary averaging (UA)
[5–7], which allows one to alleviate the effect of imperfec-
tions within the applied transformations. Unitary averaging
employs N copies of a noisy transformation circuit one wishes
to implement to passively, but probabilistically, reduce the
buildup of errors. The scheme has a simple implementation

with linear optics, and so we will use this as the example
system, although it is compatible with more than just lin-
ear optics. Unitary averaging implements a transformation
equivalent to the average of a given set of transformations.
In the limit when all the individual transformations are close
approximations of some target, their average is a good approx-
imation of the target in total variation distance. The resulting
improvement in the gate fidelity, however, comes at the cost of
success probability, as we will discuss throughout this paper.

As is the case with all error-correction schemes, encoding
errors present a challenge to their practical usefulness. An
exploration of the same is therefore considered for the UA
framework here. It is shown that errors present in any encod-
ing utilized in the UA scheme are naturally suppressed to the
first order.

Moreover, the trade-off between gate fidelity and loss may
be useful given the necessity of loss protection in any realistic
optical quantum computer due to both photon absorption and
the probabilistic nature of optical quantum computation [8,9].
We consider the loss-tolerant parity-encoding scheme and
show its compatibility with UA. Thus, in the limit of large
redundancy, UA could be employed to ensure all logical errors
are converted into heralded losses which are recoverable by
the parity encoding.

Finally, we consider how UA may be used to expand the
parameter space for which fault tolerance can be achieved,
performing a simplified analysis for a few example error
codes. Specifically, we consider some older fault-tolerant
codes (the seven-qubit Steane code and the 23-qubit Golay
code [10]) for which the benefit of UA is seen to be significant,
as well as more modern surface-code-based implementations
[3,11] for which the effect of UA is more modest.

The structure of this paper is as follows. We begin by
summarizing the known results on UA in Sec. II. Section III
explores the suppression of encoding errors in single-mode
unitary-averaged gates, while Sec. IV details the effect unitary
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averaging has on an arbitrary single-mode unitary in terms of
both the gate fidelity and probability of success. Section V dis-
cusses how two-mode gates are implemented and protected in
a similar fashion. We then introduce the loss-tolerant scheme
of parity encoding in Sec. VI before highlighting how it can be
used together with UA in Sec. VII. Section VIII then discusses
the use of UA with the threshold for fault tolerance. A brief
summary is provided in Sec. IX.

II. UNITARY AVERAGING

Given access to multiple unitaries, the unitary-averaging
framework allows one to apply an average of these unitaries
on the intended modes, with the success probability of this
transformation depending on the exact value of the unitaries.
Unitary averaging acts to apply an averaged-unitary evolution
[5,6], given by

Û = 1

N

N∑
j=1

Ûj, (1)

on a target set of M modes using N noisy copies of a target
unitary ÛT , each labeled Ûj . There is also an accompanying
(N − 1)M set of error modes which must be heralded in the
vacuum state. If each applied unitary Ûj is approximately
implementing a target unitary ÛT with an independent, iden-
tically distributed, and unbiased noise, then UA will apply an
averaged unitary Û . This itself will be a stochastic operator
which approximates the target unitary ÛT , with variance re-
duced by a factor of N when compared to each of the original
transformations Ûj . As demonstrated later, we can further
write the individual transformation in the form Ûj = ÛT + Ê j ,
where Ê j is the stochastic operator containing all of the noise
terms. Note that the use of U rather than U is to remind
the reader that the resulting transformation is nonunitary but
aims to be as close to unitary as possible. Specifically, the
target unitary can be implemented arbitrarily accurately using
a sufficiently large N , after renormalization due to heralding
each error mode in the vacuum state. The cost of this re-
duction in variation of the applied transformation is that it
is implemented probabilistically. The probability of success
Ps(N ) depends on both the variance in the individual unitaries
and number of copies used N . Detecting a photon at any of the
error heralding modes applies the transformation

Ûe = 1

N

N∑
j=1

f jÛ j, (2)

where the weights f j are phase factors such that | f j | = 1 ∀ j.
The values f j depend on the encoding and decoding used in
the averaging process. When the encoding unitary is H⊗i for
any i, as will be used throughout this paper, f j = ±1 such that
at least one f j = −1. Furthermore, depending on the nature of
the detectors used, it may destroy the state. As such, observing
a photon in the heralding modes applies an unintended trans-
formation which we treat as unrecoverable. As such, UA can
be viewed as a mapping between logical errors and heralded
loss. The probability of such a heralded loss occurring scales
proportionally to the variance of the applied unitaries Ûj and
the amount of averaging N .

Throughout this paper we are concerned only with the
success modes. As such, we consider the output state to only
be the correct modes, dropping the error heralding modes. The
output state is thus

ρ̂(N ) = Û (N )|ψ〉〈ψ |Û†(N ), (3)

which is an unnormalized state, where |ψ〉 is the initial state.
The normalization is returned though the postselection pro-
cess, which is also the source of the probabilistic nature of the
correction being applied. The probability of success Ps(N ) can
be defined by the amplitude of the unnormalized state which
can be calculated for a general input state using

Ps(N ) = |Û (N )|ψ〉|2 = 1

N2

N∑
j=1

N∑
k=1

〈ψ |Û †
j Ûk|ψ〉. (4)

Throughout this paper, we will reserve the subscripts j and
k to indicate the noisy copy of the target unitary Ûj or Ûk

or a parameter within said unitary. The (normalized) density
operator after the postselection step is then given by

ρ̂ps = [Ps(N )]−1ρ̂(N ). (5)

The other figure of merit to characterize the effect UA has
on a gate is the fidelity. The fidelity encodes how likely it is
that, upon measurement, the transformation returns the target
state. The target state in this case is |�〉 = ÛT |ψ〉, where
|ψ〉 is the initial state and ÛT is the target unitary, which
corresponds to Ûj in the instance of no noise. The gate fidelity
is then defined as

F (N ) =〈�|ρps(N )|�〉. (6)

Before we can start characterizing the effect UA has on single-
and two-qubit gates, we must also consider the encoding and
decoding steps and to what extent they impact on the output.

III. UNITARY-AVERAGING ENCODING ERRORS

The encoding and decoding can be achieved in multiple
different manners, including using Hadamard encoding [5]
or the more general W -state or quantum Fourier transform
encodings [6,7]. In this instance we consider the Hadamard
encoding, which is simple in its construction for scaling to
higher levels of encoding (N). We can then take the gates
to be encoded using only beam splitters, splitting the input
evenly between each redundant physical gate. This can then be
performed iteratively, giving N = 2n for n ∈ N. This process
is shown in Fig. 1 going from N = 2 to N = 4. This choice of
encoding is also optimal in that it maintains constant optical
depth of each interferometric path while also minimizing the
optical depth. Using this method, the optical depth for each
path increases logarithmically as 2 log2(N ) for N copies of
the unitary.

Starting with N = 2, the output of a single-qubit-averaged
gate after postselection is determined by

|ψ〉out = 〈0|εB̂(2)
1↔2(Û2 ⊗ Û1)B̂(1)

1↔2|ψ〉in. (7)

where B̂(i)
a↔b acts to evenly mix the pair of modes a and b, each

of which is then separately acted on by independent unitary
Ûa,b, and 〈0|ε represents the projection onto the vacuum for
the error modes. The superscript i serves to remind the reader
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FIG. 1. Arbitrary dual-rail single-qubit unitary with unitary av-
eraging for (a) N = 2 levels of redundancy and (b) similarly N = 4
but where each physical unitary Ûj is itself an N = 2 encoded uni-
tary. All beam splitters outside of Ûj aim to be 50:50, enacting the
operation B̂(i)

1↔2 in Eq. (8).

that each beam splitter is independent and thus has its own
unique noise associated with it. In a dual rail, this can be
written as

B̂(i)
1↔2 =

⎡
⎢⎢⎢⎣

sin(θi ) 0 cos(θi) 0

0 sin(θ ′
i ) 0 cos(θ ′

i )

cos(θi ) 0 − sin(θi ) 0

0 cos(θ ′
i ) 0 − sin(θ ′

i )

⎤
⎥⎥⎥⎦, (8)

where θ
(′)
i = π

2 + δθ
(′)
i for δθ

(′)
i 	 π

2 , allowing us to write
sin(θi ) ≈ 1√

2
+ δθ

(′)
i and cos(θi ) ≈ 1√

2
− δθ

(′)
i . For N = 4,

given the concatenated nature of the encoding choice, each
single-qubit gate Û1 and Û2 can be replaced by an N = 2
circuit B̂(2)

1↔2(Û2 ⊗ Û1)B̂(1)
1↔2 and relabeling the elements. This

process can then be further repeated for higher N = 2n, where
n ∈ N. However, care is needed when relabeling each single-
qubit unitary and beam splitter to ensure each act on the
appropriate modes.

The transformation implemented in Eq. (7) after heralding,
but before renormalization, will evolve the annihilation oper-
ators according to

âout(N = 2)

= [sin(θ1) sin(θ2)Û1 + cos(θ1) cos(θ2)Û2]âin

+ [sin(θ ′
1) sin(θ ′

2)Û1 + cos(θ ′
1) cos(θ ′

2)Û2]b̂in

= [ÛT + 1
2 (Ê1 + Ê2)](âin + b̂in ) + O(Ê2, δθ Ê , δθ2),

(9)

where we have Taylor expanded the applied single-qubit
gates, setting Ûj = ÛT + Ê j (as discussed in more detail
later). All terms linear in δθi naturally cancel. An equivalent
expression can be written for b̂out. For the details of this
calculation see Appendix A.

The N = 4 result can be calculated by replacing each
single-qubit unitary Ûi with the entire N = 2 result, with the
appropriate relabeling of the parameters giving

âout(N = 4) ≈
⎛
⎝ÛT + 1

4

4∑
j=1

Ê j

⎞
⎠(âin + b̂in ), (10)

FIG. 2. Arbitrary dual-rail single-qubit unitary.

where again the linear encoding error terms cancel one an-
other (see Appendix A for details). One can see by induction
that this pattern continues for all N = 2n, where n ∈ Z. Thus
encoding errors are naturally suppressed to the first order.
As such, it is sufficient to account for only errors within the
averaged unitaries themselves, so encoding errors will not be
considered for the remainder of this paper.

One might be tempted to view this suppression of the en-
coding errors as a result of the concatenation; however, given
the linear encoding errors for the N = 2 case [as shown in
Eq. (9)] this cannot be the full story. While the concatenation
will help further suppress noise, it is the postselection that
removes the last two terms from Eq. (9).

IV. UNITARY-AVERAGED SINGLE-QUBIT GATES

Here we consider how an arbitrary single-qubit physical
gate might be protected using UA. Specifically, we detail
how phase- and bit-flip errors are converted into heralded
loss allowing for a trade-off between fidelity and known loss.
Given the results of the preceding section, it is not necessary
to include any encoding errors and so we will consider noise
only in the linear optical unitary.

The first thing to do is build an error model for an unen-
coded gate and then consider the impact of UA on these errors.
To do this we use an overcomplete gate description so as to
allow errors to arise anywhere within the optical circuit which
implements the unitary. The circuit depth is also then the
same regardless of the path taken. The chosen optical layout
allows an arbitrary single-qubit gate to be implemented, with
specific parameters tuned such that it implements the intended
transformation. This is shown in Fig. 2. This gate Ûj will
implement the transformation

Ûj =
[

eiφ1, j eiχ1, j sin(θ j ) eiφ2, j eiχ1, j cos(θ j )

eiφ1, j eiχ2, j cos(θ j ) −eiφ2, j eiχ2, j sin(θ j )

]
. (11)

We can then take each parameter O j to be given by the in-
tended target value O and an additional noise term δOj , where
O j = O + δO j . The appropriate parameters for a number of
gates of interest are shown in Table I. We can then Taylor
expand each parameter around its target value, as shown in
Appendix B. Doing so allows us to write the applied unitary
as Ûj = ÛT + Ê j , where ÛT is the target unitary. Thus, after
employing UA, we will have implemented the transformation
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TABLE I. Arbitrary single-qubit gate parameters.

Gate θ φ1 φ2 χ1 χ2

Î π

2 0 0 0 π

X̂ 0 0 0 0 0
Ŷ 0 π

2 0 − π

2 0
Ẑα

π

2 0 0 0 α

Ĥ π

4 0 0 0 0

on the output mode

Û (N ) = 1

N

N∑
j=1

(ÛT + Ê j ) ≡ ÛT + ε̂(N )

N
, (12)

where ε̂(N ) is some stochastically varying transformation.
Note that again we are not tracking what happens to the error
modes as a success requires these to be heralded in the vacuum
state. Thus, so long as each error is unbiased and independent,
we might expect any desired gate fidelity to be achievable with
sufficiently large N . Specifically, with limN→∞ Û (N ) = ÛT ,
arbitrarily high gate fidelity may be possible with sufficient
redundancy. This will be at the cost of a decreasing probability
of success Ps(N ). We can write the state at the output modes
in general as

ρ̂(N ) = Û (N )|ψ〉〈ψ〉Û†(N )

=
(

ÛT + ε̂(N )

N

)
|ψ〉〈ψ |

(
ÛT + ε̂†(N )

N

)

= |�〉〈�| + 1

N
[ε̂(N )|ψ〉〈ψ |ÛT + ÛT |ψ〉〈ψ |ε̂†(N )]

+ 1

N2
ε̂(N )|ψ〉〈ψ |ε̂†(N ) (13)

and the density operator after postselection as

ρ̂ps = [Ps(N )]−1ρ̂(N ), (14)

with the associated probability of success as defined in Eq. (4).
The probability of success is determined by the moments

of the noise distributions, at least under the assumptions
that each noise term is independent. Throughout this pa-
per we set each noise parameter to be independent and
identically distributed, with a Gaussian noise profile. Thus,
each parameter’s noise δO j has the following properties:
〈δO j〉 = 0, 〈δO jδOk〉 = νδ j,k , 〈δO3

j 〉 = 0, 〈δO4
j 〉 = 3ν2, and

〈δO jδOk〉 = 〈δO j〉〈δOk〉 ∀ j �= k. The probability of success
for a transformation characterized by Eq. (11) will be

Ps(N ) ≈ 1 − 3ν + 3ν

N
+ 9ν2

2
− 9ν2

2N
, (15)

as shown in Fig. 3. For the details of this calculation up to
first order in ν, see Appendix B 2; the higher-order calcu-
lation was performed with the aid of Mathematica. While
we have taken the noise to be Gaussian to simplify the
result, this could be replaced by other unbiased probabil-
ity distributions without significantly impacting the results.
The postselected gate fidelity can be calculated similarly

FIG. 3. Probability of success scaling for a unitary-averaged
single-qubit gate as given by Eq. (15). The gray dashed line shows
the first-order scaling of limN→∞ Ps(N ) = 1 − 3ν.

using

F (N ) = 〈�|ρps(N )|�〉
= [Ps(N )]−1〈ψ |Û †

T Û (N )|ψ〉〈ψ |Û†(N )ÛT |ψ〉

= [Ps(N )]−1

⎛
⎝1 + 1

N

N∑
j=1

〈ψ |Û †
T Ê j |ψ〉

⎞
⎠

2

. (16)

Again, the fidelity is characterized by the moments of the
noise probability distribution with

F (N ) ≈ 1 − 3ν + 9
4ν2

1 − 3ν + ν
N + 9ν2

2 − 9ν2

2N

(17)

to the second order in the parameter variance ν. The details
of the calculation are provided in Appendix B 3. The fidelity
scaling is shown in Fig. 4.

V. TWO-QUBIT GATES

To be sufficient for arbitrary quantum computation, it is
necessary to have a corrected universal gate set. While we
have just shown it is possible to protect any single-qubit
gate, it is still necessary to provide for two-qubit gates such
as the controlled-NOT gate. Two-qubit gates under parity en-
coding (see Sec. VII) can be enacted via single-qubit gates
and reencoding using type-I and type-II fusion gates [12]. As
such, to protect against errors in two-qubit gates using unitary

FIG. 4. Postselected fidelity for a unitary-averaged single-qubit
gate as given by Eq. (17).
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FIG. 5. (a) General four-mode linear optical gate for two qubits
consisting of beam splitters between pairs of modes and phase
shifters marked by their phase φi. The type-II fusion can be imple-
mented with a reduced version of this as shown in (b) with all present
beam splitters set to 50:50.

averaging, we need to consider how to protect fusion gates.
Recent work has shown that UA can be employed to correct
fusion gates [7]; however, this study was considering the
low-N limit. A general dual-rail two-qubit linear optical gate
can be implemented by the interferometer diagram shown in
Fig. 5. The fusion gates can be implemented by a simplified
version of this system, with additional measurements on the
outputs which are taken to occur separately from the UA
protocol.

The same procedure for determining the probability of suc-
cess for the one-photon gate can be employed, only, due to the
increased problem size, Mathematica was used to simplify the
expressions. It was found that the four-mode interferometer
shown in Fig. 5, when employing UA, will implement the
target gate with a postselected fidelity of

F4-mode(N ) = Ps,4-mode(N )−1(1 − 6ν) (18)

and a success probability

Ps,4-mode(N ) = 1 − 6ν + 6ν

N
+ 18ν2 − 18ν2

N2
. (19)

These can be further improved in systems that do not require
the full generality enabled by such an interferometer. Specif-
ically, when implementing a type-II fusion gate, no phase
manipulation is required and the central column of beam
splitters can be replaced with a single physical swapping of
the second and fourth modes. With this reduced system, the
postselected fidelity becomes

FII(N ) = Ps,II(N )−1(1 − 2ν + 2ν2), (20)

with a success probability of

Ps,II(N ) = 1 − 2ν + 2ν

N
+ 2ν2 − 2ν2

N
. (21)

It appears that the gate fidelity and probability of success
scale linearly with the optical depth of the circuit, as seen by
comparing Eqs. (17), (18), and (20) and Eqs. (15), (19), and
(21). We can in general write the probability of success and
fidelity to the first order in the variance as

Ps,g(N ) = 1 − V + V
N

, (22)

Fg(N ) = Ps,g(N )−1(1 − V )

= 1 − V
N + V − NV , (23)

where V = d × ν is the characteristic noise parameter for a
circuit with an optical depth d .

With this we can achieve arbitrarily high gate fidelities
with sufficiently large N and heralded loss. This process is
considered heralded loss rather than postselection as it does
not require any postprocessing and any corrective action can
be taken straight away, potentially correcting for such loss.
An obvious hypothetical use case is then employing effec-
tively infinite averaging (N → ∞) along with loss tolerance
to achieve a regime of effective fault tolerance, by which
we mean that, within the bounds of the error model consid-
ered here, each gate implements a logical transformation with
perfect fidelity and so errors do not accumulate. However,
perfect fidelity only truly occurs for infinite averaging (N =
∞) and so may not reasonably constitute true fault tolerance.
Nonetheless, the next section presents this process, with the
behavior of UA within standard fault-tolerant protocols pre-
sented in Sec. VIII.

VI. PARITY ENCODING

Parity encoding (PE) provides a loss-tolerant encoding in
which extra physical qubits can be added throughout the com-
putation in response to the occurrence of loss [4,13]. Given
that UA turns logical errors into heralded loss and PE corrects
for photon loss, here we seek to combine the two to produce a
general error-correction scheme.

Full parity encoding employs two separate encoding steps:
parity type and redundancy type. Parity type encodes logical
states as

|0〉L =|0〉(n) = (|+〉⊗n + |−〉⊗n)/
√

2,

|1〉L =|1〉(n) = (|+〉⊗n − |−〉⊗n)/
√

2, (24)

where |±〉 = 1√
2
(|H〉 ± |V 〉) as we consider polarization-

encoded qubits in these sections. The redundancy-type
encoding uses q copies of each of these parity-encoded states.
With this, an arbitrary single-qubit state is encoded as

|�〉L = α

q⊗
|0〉(n) + β

q⊗
|1〉(n). (25)

Parity encoding in optical quantum computing has been
shown to contain a universal gate set [13] with X̂ and Ẑ
rotations implemented simply by applying the gate to a single
physical qubit or all physical qubits, respectively, while other
gates require reencoding.
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VII. PARITY-ENCODED AND UNITARY-AVERAGED
SINGLE-QUBIT GATES

In this section we explore how parity encoding can be
utilized in conjunction with unitary averaging to imple-
ment high-fidelity logical operations with a high probabil-
ity of success using noisy unitary operations. To begin,
we present the case in which J errors occur, but only
within a single redundant encoded state. Consider the initial
state

|ψ〉L = α|0〉(n)
q−1⊗

|0〉(n) + β|1〉(n)
q−1⊗

|1〉(n) (26)

on which we act a single logical qubit unitary Û = ⊗qn
i=1 ûi

which has some effect on each individual physical qubit. Note
that here we single out a single redundant copy of the parity
encoding which we consider to be the location of the J < n
errors. We take the individual unitaries to be unitary averaged
with N → ∞ and the error ports monitored such that the
resulting transformation is projected onto either the correct
target result or a heralded loss. When a heralded loss occurs
a unique stochastic phase factor is then written on to the

physical qubit. Thus, unitary averaging acts to transform each
physical qubit according to

|H〉i →ûT |H〉i +
N∑

k=2

δHi,k|εk〉i, (27)

|V 〉i →ûT |V 〉i −
N∑

k=2

δVi,k|εk〉i, (28)

where we have neglected normalization, as after projecting
on either the error or no-error result, it will not be important.
Here each δHi,k and δVi,k is a unique stochastic phase factor
and |εk〉i represents the photon in the kth error mode which is
to be measured, heralding a photon loss.

Any parity-encoded state can be expanded, using the
identity

|0〉(l+m) = 1√
2

(|0〉(l )|0〉(m) + |1〉(l )|1〉(m) ), (29)

|1〉(l+m) = 1√
2

(|0〉(l )|1〉(m) + |1〉(l )|0〉(m) ), (30)

which, in the instance of J errors occurring in only the first
redundant encoding, allows us to write

〈ε|1→J
ε 〈0|J+1→n

ε Û |ψ〉L = α√
2

( k⊗
ûT

)
(δ�|0〉(k) + δ�|1〉(k) )

q−1⊗ [( n⊗
ûT

)
|0〉(n)

]

+ β√
2

( k⊗
ûT

)
(δ�|1〉(k) + δ�|0〉(k) )

q−1⊗ [( n⊗
ûT

)
|1〉(n)

]

=α

2

( k⊗
ûT

)
[(δ� + δ�)|+〉⊗k + (δ� − δ�)|−〉⊗k]

q−1⊗ [( n⊗
ûT

)
|0〉(n)

]

+ β

2

( k⊗
ûT

)
[(δ� + δ�)|+〉⊗k − (δ� − δ�)|−〉⊗k]

q−1⊗ [( n⊗
ûT

)
|1〉(n)

]
, (31)

where J + k = n, |0〉a→b
ε corresponds to error modes a

through to b in the vacuum (no errors), and |ε〉a→b
ε corresponds

to an error occurring in modes a through to b. Also,

δ� =〈ε|1→J
ε

(
J⊗

i=1

Ûi,e

)
|0〉(J ), (32)

δ� =〈ε|1→J
ε

(
J⊗

i=1

Ûi,e

)
|1〉(J ) (33)

are stochastic C numbers whose value depends on the specific
location of the errors and the individual operations imple-
mented on the qubits. After renormalization, these factors
randomly take the values ±1.

If any one of the remaining k physical qubits of the
first redundant encoding is measured in the ûT |±〉(1) =

1√
2
ûT (|0〉(1) ± |1〉(1) ) basis, the state gains an undetectable

global phase factor which depends on the measurement result,
with (δ� + δ�) for |+〉(1) and (δ� − δ�) for |−〉(1). Also, if
|−〉(1) is returned there will also be a known sign error on the
logical |1〉L state. Given only relative phases are important,
the global phase can be ignored. Dropping the global phase

and conducting projective measurements on all error channels
produces a final state after renormalization of

|ψout(±)〉L =
( k−1⊗

ûT |±〉
)

⊗ ÛT

(
α

q−1⊗
|0〉(n) ± β

q−1⊗
|1〉(n)

)
. (34)

The component of the state with an error present is unentan-
gled from the remainder of the state which successfully has
the target unitary applied, although potentially with a known
phase error. This can be repeated for any of the remaining
q − 1 redundant copies in the parity encoding in which an
error is detected. Provided at least one entire redundant copy
is heralded as error free, the target unitary will be successfully
applied. The phase error occurs if an odd number of |−〉 states
are returned during the projective measurements. We therefore
have the following set of success criteria.

(i) At most q − 1 redundant copies of the encoding are
heralded to have encountered an error. This ensures that there
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remains a logical state on which the gate is successfully ap-
plied.

(ii) For all redundant copies of the encoding which are
heralded to have encountered an error, at least one physical
qubit must not have been heralded to be in error so that the
projected measurement can be performed.

VIII. UNITARY AVERAGING AND STANDARD
FAULT TOLERANCE

Now that we have established the action of UA on single-
and two-qubit gates and considered how it can be integrated
into existing loss-correction schemes, it is insightful to trans-
late these results into fault-tolerant error-correction schemes.
The purpose here is to explore the potential benefits of em-
ploying UA within existing error-correction schemes on the
physical qubit level. The aim is to expand the parameter space
for which fault tolerance might be achievable by exchanging
loss and noise. The analysis presented here is intended as a
guide to how UA might impact the fault-tolerant parameter
space and not a full analysis, which is beyond the scope of the
present study. However, given that certain implementations
maybe be capable of achieving low loss rates but higher than
tolerable error rates, we seek to show that these schemes
may be made compatible with certain fault-tolerant schemes
through the use of UA. Furthermore, when the gate-error rate
is at or very close to the fault-tolerant boundary, a significant
overhead is required to achieve reasonable error rates. To
this end, we consider how the fault-tolerant parameter space
changes if the operations performed on each physical qubit
are done utilizing UA. We concern ourselves with the per gate
depolarization probability ε and per qubit, per gate loss rate
γ , which with UA become

� =γ

3
[3 + 2 log2(N )] + ε

(
1 − 1

N

)
, (35)

E = ε

N + ε − Nε
. (36)

See Appendix D for more details.
In the same manner as discussed above, we can consider

UA to sit within existing algorithms and serve to reduce the
effective gate error at the cost of increasing loss. We use
the above results in conjunction with existing fault-tolerant
thresholds for some example error-correction schemes. If
we take the earlier results of Dawson et al. [10] and Fujii
and Tokunaga [11], we can estimate the effect UA has on
the fault-tolerant parameter space for both the more mod-
ern fault-tolerant architectures such as fusion-based quantum
computation (FBQC) [3] and the more simple seven-qubit
Steane code. The results are shown in Fig. 6.

This suggests a potential improvement in the parameter
space at which fault tolerance can be achieved despite the
increase in effective loss due to a lossy encoding circuit and
the probabilistic nature of unitary averaging. This may enable
fault tolerance in systems with low inherent loss but higher
error rates. This improvement primarily arises due to the dif-
ference in scaling between the effective loss rate � and the
gate-error rate E , where for large N we see that loss scales
logarithmically while the error scales proportionally to 1/N .
We also see in Fig. 6(a) that this benefit is only observed for

FIG. 6. Fault-tolerant parameter space improvement estimation
when employing unitary averaging in (a) a FBQC utilizing a four-star
architecture and (b) a seven-qubit Steane code. The N = 1 data were
taken from [3,10] for the FBQC and the Steane code, respectively.
Fault tolerance is achieved within the shaded region for each value
of N . Note that, depending on the original (N = 1) parameter space,
applying UA could be either beneficial or detrimental to the parame-
ter space.

sufficiently large N ; when N � 8, the additional induced loss
eliminates any benefit of improved tolerable error rates. This
suggests that some error-correction codes require a larger N
to obtain any benefit from applying UA.

It is worth highlighting that the results in Fig. 6 are depen-
dent on some significant assumptions, specifically that each
component that goes into implementing these encodings and
optical circuits can be implemented using UA and that UA has
the same effect on their output as seen above. For example,
implementing a measurement-based quantum computer will
likely require many components not considered above such
as quantum memories and detectors. It seems reasonable that
memories will be compatible with UA. However, destructive
measurements clearly cannot be treated as unitaries that can
be averaged; thus these results will likely apply only to the
preparation stages of such a device. This also captures only
the first-order effect of UA, where encoding errors cancel.
We are here treating all loss as due to the photon absorption
situation and so are overestimating the additional loss induced
with the increased optical depth of UA. This has the effect of
underestimating the tolerable loss to maintain fault tolerance.
We are also neglecting all effects due to the larger level of
encoding, such as longer range gates. As such, these results
need to be viewed as approximate scaling.
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IX. CONCLUSION

This paper has explored the use of UA within the context
of applying arbitrary one- and two-qubit gate transformations.
We have shown that UA can be implemented in such a way as
to avoid encoding errors while also introducing only a loga-
rithmic number of optical elements to the path depth. Unitary
averaging may enable arbitrary high gate fidelity at the cost
of a reduced probability of success. This cost, however, is
linear in the initial parameter variance within a single unitary.
We have also demonstrated that this loss can be mitigated
by employing existing techniques for loss protection which
will already be necessary in any large-scale system. Further-
more, we have suggested how UA can be used within existing
fault-tolerant schemes to modify and potentially improve the
parameter space for which error tolerance is achieved. We
have done so considering both early fault-tolerant schemes,
which can greatly benefit from the use of UA, and more
modern surface-code-based schemes for which the benefit of
applying UA appears to be more modest.
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APPENDIX A: ENCODING-ERROR CALCULATION

The following gives a detailed analysis of encoded-error
propagation through a UA system. Starting with N = 2, the
output of a single-qubit-averaged gate after postselection is

given by

|ψ〉out = 〈0|εB̂(2)
1↔2(Û2 ⊗ Û1)B̂(1)

1↔2|ψ〉in, (A1)

where B̂( j)
a↔b acts to evenly mix the pair of modes a and b,

each of which is then separately acted on by the independent
unitaries Ûa and Ûb respectively, and 〈0|ε represents the pro-
jection onto the vacuum for the error modes. The superscript
j serves as a reminder that each beam splitter is independent
and thus has its own unique noise associated with it. In a dual
rail, this can be written as

B̂( j)
1↔2 =

⎡
⎢⎢⎣

sin(θ j ) 0 cos(θ j ) 0
0 sin(θ ′

j ) 0 cos(θ ′
j )

cos(θ j ) 0 − sin(θ j ) 0
0 cos(θ ′

j ) 0 − sin(θ ′
j )

⎤
⎥⎥⎦,

(A2)

where θ
(′)
j = π

2 + δθ
(′)
j for δθ

(′)
j 	 π

2 , allowing us to write

sin(θ j ) ≈ 1√
2

+ δθ
(′)
j and cos(θ j ) ≈ 1√

2
− δθ

(′)
j . For N = 4,

given the concatenated nature of the encoding choice, each
single-qubit gate Û1 and Û2 can be replaced by an N = 2
circuit B̂(2)

1↔2(Û2 ⊗ Û1)B̂(1)
1↔2 and relabeling the elements. This

process can then be further repeated for higher N = 2 j , where
j ∈ N. Care is needed when relabeling each single-qubit uni-
tary and beam splitter to ensure each acts on the appropriate
modes. We will also assume that the implemented transforma-
tions Ûj are in some sense close to the target transformation
ÛT such that we can write Ûj ≈ ÛT + Ê j , where Ê j is the error
in Ûj and Ê2

j is negligible.
The transformation implemented in Eq. (A1) after herald-

ing but before renormalization on no error detection gives the
following mode operator transformation:

âout(N = 2) =[sin(θ1) sin(θ2)Û1 + cos(θ1) cos(θ2)Û2]âin + [sin(θ ′
1) sin(θ ′

2)Û1 + cos(θ ′
1) cos(θ ′

2)Û2]b̂in

= 1
2 [(1 + δθ1)(1 + δθ2)(ÛT + Ê1) + (1 − δθ1)(1 − δθ2)(ÛT + Ê2)]âin

+ 1
2 [(1 + δθ ′

1)(1 + δθ ′
2)(ÛT + Ê1) + (1 − δθ ′

1)(1 − δθ ′
2)(ÛT + Ê2)]b̂in + O(δθ2, Ê2)

=[ÛT + 1
2 (Ê1 + Ê2)](âin + b̂in ) + 1

2 (Ê1 − Ê2)[(δθ1 + δθ2)âin + (δθ ′
1 + δθ ′

2)b̂in]

=[ÛT + 1
2 (Ê1 + Ê2)](âin + b̂in ) + O(Ê2, δθ Ê , δθ2). (A3)

Note that all terms linear in δθ j cancel. An equivalent expression can be written for b̂out. Similarly, the N = 4 result can
be calculated by replacing each single-qubit unitary Ûi with the entire N = 2 result, with the appropriate relabeling of the
parameters. For compactness, only the âin terms are expanded to improve legibility, giving

âout(N = 4) =(sin(θ1) sin(θ2){[sin(θ3) sin(θ4)Û1 + cos(θ3) cos(θ4)Û2]} + cos(θ1) cos(θ2){[sin(θ5) sin(θ6)Û3

+ cos(θ5) cos(θ6)Û4]})âin(sin(θ ′
1) sin(θ ′

2){[sin(θ ′
3) sin(θ ′

4)Û1 + cos(θ ′
3) cos(θ ′

4)Û2]}

+ cos(θ ′
1) cos(θ ′

2){[sin(θ ′
5) sin(θ ′

6)Û3 + cos(θ ′
5) cos(θ ′

6)Û4]})b̂in

≈ 1
4 ((1 + δθ1)(1 + δθ2){[(1 + δθ3)(1 + δθ4)(ÛT + Ê1) + (1 − δθ3)(1 − δθ4)(ÛT + Ê2)]}

+ (1 − δθ1)(1 − δθ2){[(1 + δθ5)(1 + δθ6)(ÛT + Ê3) + (1 − δθ5)(1 − δθ6)(ÛT + Ê4)]})âin

+ (· · · )b̂in + O(δθ2, Ê2)

= 1
4 [(1 + δθ1 + δθ2 + δθ3 + δθ4)(ÛT + Ê1) + (1 + δθ1 + δθ2 − δθ3 − δθ4)(ÛT + Ê2)
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+ (1 − δθ1 − δθ2 + δθ5 + δθ6)(ÛT + Ê3) + (1 − δθ1 − δθ2 − δθ5 − δθ6)(ÛT + Ê4)]âin

+ (· · · )b̂in + O(δθ2, Ê2)

=
⎛
⎝ÛT + 1

4

4∑
j=1

Ê j

⎞
⎠(âin + b̂in ) + O(δθ2, δθ Ê , Ê2), (A4)

where again the linear encoding-error terms cancel one another. Proceeding similarly, we can write

âout(N = 2n) ≈
⎛
⎝ÛT + 1

N

N∑
j=1

Ê j

⎞
⎠(âin + b̂in ). (A5)

APPENDIX B: SINGLE-QUBIT GATE-ERROR CALCULATION

Here we present the details of so solving for the expectation values used to calculate the probability of success when error
averaging a single-qubit gate. Throughout we will assume that each noisy parameter is independent and identically distributed,
with a Gaussian noise profile. Thus we can take 〈δO〉 = 0, 〈δO jδOk〉 = νδ j,k , 〈δO3〉 = 0, 〈δO4〉 = 3ν2 for all noise terms δO.

1. Single-qubit gate error

Here we consider each physical gate to be averaged Ûj . Taylor expanding each parameter and keeping only the terms that are
bilinear or quadratic in the error terms gives

Ûj =
[

eiφ1, j eiχ1, j sin(θ j ) eiφ2, j eiχ1, j cos(θ j )

eiφ1, j eiχ2, j cos(θ j ) −eiφ2, j eiχ2, j sin(θ j )

]
=

[
a j b j

c j d j

]
, (B1)

where

a j = eiφ1 eiχ1 sin(θ ) +
[

eiφ1 eiχ1 sin(θ )

(
iδφ1, j + iδχ1, j − δφ1, jδχ1 − δφ2

1, j

2
− δχ2

1, j

2
− δθ2

j

2

)

+ eiφ1 eiχ1 cos(θ )δθ j (1 + iδφ1, j + iδχ1, j )

]
≡ a + [δa j], (B2)

bj = eiφ2 eiχ1 cos(θ ) +
[

eiφ2 eiχ1 cos(θ )

(
iδφ2, j + iδχ1, j − δφ2, jδχ1, j − δφ2

2, j

2
− δχ2

1, j

2
− δθ2

j

2

)

− eiφ2 eiχ1 sin(θ )δθ j (1 + iδφ2, j + iδχ1, j )

]
≡ b + [δb j], (B3)

c j = eiφ1 eiχ2 cos(θ ) +
[

eiφ1 eiχ2 cos(θ )

(
iδφ1, j + iδχ2, j − δφ1, jδχ2, j − δφ2

1, j

2
− δχ2

2, j

2
− δθ2

j

2

)

− eiφ1 eiχ2 sin(θ )δθ j (1 + iδφ1, j + iδχ2, j )

]
≡ c + [δc j], (B4)

dj = − eiφ2 eiχ2 sin(θ ) +
[

− eiφ2 eiχ2 sin(θ )

(
iδφ2, j + iδχ2, j − δφ2, jδχ2, j − δφ2

2, j

2
− δχ2

2, j

2
− δθ2

j

2

)

− eiφ2 eiχ2 cos(θ )δθ j (1 + iδφ2, j + iδχ2, j )

]
≡ d + [δd j]. (B5)

Each term within the square brackets represents the noise term unique to each physical copy of the unitary, while the preceding
term is the intended value of each matrix element. Thus we can write

Ûj =
[

a b
c d

]
+

[
δa j δb j

δc j δd j

]
= ÛT + Ê j . (B6)

2. Solving for probability of success

To solve for the probability of success Ps(N ) we assume each noise term is independent, with 〈δO〉 = 0 and 〈δO2〉 = ν for all
terms δO, and use the Taylor expanded form of the applied transformations as given above. We also consider the general input
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state

|ψ〉 =
[
α

β

]
. (B7)

The probability of success is then given by

Ps(N ) =〈ψ |Û†(N )Û (N )|ψ〉 = 1

N2

N∑
j=1

N∑
k=1

〈ψ |Û †
j Ûk|ψ〉

= 1

N2

N∑
j=1

N∑
k=1

(|α|2〈a∗
j ak + c∗

j ck〉 + |β|2〈b∗
jbk + d∗

j dk〉 + α∗β〈a∗
j bk + c∗

j dk〉 + αβ∗〈b∗
jak + d∗

j ck〉). (B8)

Going term by term through this gives

1

N2

N∑
j=1

N∑
k=1

〈a∗
j ak〉 = 1

N2

N∑
j=1

N∑
k=1

{
sin2(θ )

[
〈1 − 1

2

(
δφ2

1, j + δχ1, j + δθ2
1, j

) − 1

2

(
δφ2

1,k + δχ1,k + δθ2
1,k

)〉

+
〈

1

4

(
δφ2

1, j + δχ2
1, j + δθ2

1, j

)(
δφ2

1,k + δχ2
1,k + δθ2

1,k

)〉 + δ j,k
〈
δφ2

1, j + δχ2
1, j + δφ2

j δχ
2
1, j

〉]

+ cos2(θ )δ j,k
〈
θ2

j

〉〈
1 + δφ2

j + δχ2
j

〉}

= sin2(θ )

(
1 − 3ν + 9

4
ν2 + 2ν + ν2

N

)
+ cos2(θ )

ν + 2ν2

N
= 1

N2

N∑
j=1

N∑
k=1

〈d∗
j dk〉, (B9)

1

N2

N∑
j=1

N∑
k=1

〈b∗
jbk〉 = 1

N2

N∑
j=1

N∑
k=1

〈c∗
j ck〉 = cos2(θ )

(
1 − 3ν + 9

4
ν2 + 2ν + ν2

N

)
+ sin2(θ )

ν + 2ν2

N
, (B10)

and

1

N2

N∑
j=1

N∑
k=1

〈a∗
j bk〉 =ei(φ2−φ1 )

N2

N∑
j=1

N∑
k=1

{
sin(θ ) cos(θ )

[〈
1 − 1

2

(
δφ2

1, j + δχ1, j + δθ2
1, j

) − 1

2

(
δφ2

1,k + δχ1,k + δθ2
1,k

)〉

+
〈

1

4

(
δφ2

1, j + δχ2
1, j + δθ2

1, j

)(
δφ2

1,k + δχ2
1,k + δθ2

1,k

)〉 + δ j,k
〈
δφ2

1, j + δχ2
1, j + δφ2

j δχ
2
1, j

〉]

− sin(θ ) cos(θ )δ j,k
〈
θ2

j

〉〈
1 + δφ2

j + δχ2
j

〉}

⇒ 1

N2

N∑
j=1

N∑
k=1

α∗β〈a∗
j bk〉 + αβ∗〈a jb

∗
k〉 = 2|α||β| cos(γ ) sin(θ ) cos(θ )

(
1 − 3ν + 9

4
ν2 + ν − ν2

N

)
, (B11)

where γ = φ1 − φ2 − θα + θβ for α = |α|eiθα and β = |β|eiθβ . Similarly,

1

N2

N∑
j=1

N∑
k=1

〈c∗
j dk〉 = − ei(φ2−φ1 )

N2

N∑
j=1

N∑
k=1

{
sin(θ ) cos(θ )

[〈
1 − 1

2

(
δφ2

1, j + δχ1, j + δθ2
1, j

) − 1

2

(
δφ2

1,k + δχ1,k + δθ2
1,k

)〉

+
〈

1

4

(
δφ2

1, j + δχ2
1, j + δθ2

1, j

)(
δφ2

1,k + δχ2
1,k + δθ2

1,k

)〉 + δ j,k
〈
δφ2

1, j + δχ2
1, j + δφ2

j δχ
2
1, j

〉]

− sin(θ ) cos(θ )δ j,k
〈
θ2

j

〉〈
1 + δφ2

j + δχ2
j

〉}

⇒ 1

N2

N∑
j=1

N∑
k=1

α∗β〈c∗
j dk〉 + αβ∗〈d jc

∗
k 〉 = −2|α||β| cos(γ ) sin(θ ) cos(θ )

(
1 − 3ν + 9

4
ν2 + ν − ν2

N

)
. (B12)
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Putting this all together yields

Ps(N ) = 1 − 3ν + 3ν

N
+ 9ν2

4
+ 3ν2

N
. (B13)

Note that this function is only accurate up to O(ν) as ν2 terms can arise due to 〈O(δx4)O(δx0)〉 which have not been included.
For this reason a calculation including fourth order in δx was completed as above to yield

Ps(N ) ≈1 − 3ν + 3ν

N
+ 4ν2 − 4ν2

N
− 21ν3

8
+ ν3

12N
+ 49ν4

64
+ 13ν4

6N
, (B14)

which is similarly only complete up to O(ν2). This is the cause of the erroneous behavior where Ps(N = 1) < 0 for ν > 0.

3. Solving for fidelity

Solving for the fidelity can be done in much the same manner, particularly as after renormalization the corrected state will be
pure. As such we can write the corrected state fidelity as

F (N ) =〈�|ρ̂ps(N )|�〉 = [Ps(N )]−1

⎛
⎝1 + 1

N

N∑
j=1

〈ψ |Û †
T Ê j |ψ〉

⎞
⎠

2

=[Ps(N )]−1

(
1 + N

N

N∑
j=1

(|α|2〈a∗δa j + c∗δc j〉 + |β|2〈b∗δb j + d∗δd j〉 + α∗β〈a∗δb j + c∗δd j〉 + αβ∗〈b∗δa j + d∗δc j〉)

)
.

(B15)

So once again going term by term and here expanding δaj , δb j , δc j , and δd j up to fourth order in the error terms gives

1

N

N∑
j=1

〈a∗δa j〉 = 1

N

N∑
j=1

〈d∗δd j〉 = sin2(θ )

(
−3ν

2
+ 7ν2

8

)
, (B16)

1

N

N∑
j=1

〈b∗δb j〉 = 1

N

N∑
j=1

〈c∗δc j〉 = cos2(θ )

(
−3ν

2
+ 7ν2

8

)
, (B17)

and

1

N

N∑
j=1

α∗β〈a∗δb j〉 + αβ∗〈b∗δa j〉 =2|α||β| cos(γ ) sin(θ ) cos(θ )

(
−3ν

2
+ 7ν2

8

)
, (B18)

where γ = φ1 − φ2 − θα + θβ for α = |α|eiθα and β = |β|eiθβ . Similarly,

1

N

N∑
j=1

α∗β〈c∗δd j〉 + αβ∗〈d∗δc j〉 = − 2|α||β| cos(γ ) sin(θ ) cos(θ )

(
−3ν

2
+ 7ν2

8

)
. (B19)

Putting this all together yields

F (N ) ≈ [Ps(N )]−1

(
1 − 3ν

2
+ 7ν2

8

)2

≈
(

1 − 3ν + 3ν

N
+ 4ν2 − 4ν2

N

)−1

(1 − 3ν + 4ν2). (B20)

APPENDIX C: FUSION GATES

The type-II gate is implemented by the transformation

FII =

⎡
⎢⎢⎣

sin(θ3) cos(θ3) 0 0
cos(θ3) − sin(θ3) 0 0

0 0 sin(θ4) cos(θ4)
0 0 cos(θ4) − sin(θ4)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

sin(θ1) cos(θ1) 0 0
cos(θ1) − sin(θ1) 0 0

0 0 sin(θ2) cos(θ2)
0 0 cos(θ2) − sin(θ2)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

sin(θ1) sin(θ3) cos(θ1) sin(θ3) cos(θ2) cos(θ3) − sin(θ2) cos(θ3)
sin(θ1) cos(θ3) cos(θ1) cos(θ3) − cos(θ2) sin(θ3) sin(θ2) sin(θ3)
cos(θ1) cos(θ4) − sin(θ1) cos(θ4) sin(θ2) sin(θ4) cos(θ2) sin(θ4)

− cos(θ1) sin(θ4) sin(θ1) sin(θ4) sin(θ2) cos(θ4) cos(θ2) cos(θ4)

⎤
⎥⎥⎥⎦. (C1)
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FIG. 7. Fault-tolerant parameter space improvement estimation when employing unitary averaging in (a) a FBQC utilizing a six-ring
architecture and (b) the 23-qubit Golay code. The N = 1 data were taken from [3] for the FBQC code and from [10] for the Golay code. Fault
tolerance is achieved within the shaded region for each value of N .

Proceeding as before but with the aid of Mathematica, we can
see, for a general two-photon input state, that the probability
of success is given by

Ps,II(N ) = 1 − 2ν + 2ν

N
+ 5ν2

3
− 5ν2

3N
(C2)

and the postselected fidelity

FII(N ) = Ps,II(N )−1

(
1 − 2ν + 5ν2

3

)
, (C3)

where once again each parameter is taken to have an equal
but independent noise spectrum with the parameters O =
OT + δO, 〈O〉 = OT , 〈δO〉 = 0, 〈δO2〉 = ν, 〈δO3〉 = 0, and
〈δO4〉 = 3ν2.

APPENDIX D: UNITARY AVERAGING
AND STANDARD FAULT TOLERANCE

Here we consider how the fault-tolerant parameter space
changes if the operations performed on each physical qubit
utilize UA. We concern ourselves with the per gate depolar-
ization probability ε and per qubit, per gate loss rate γ .

The easiest consideration is the loss rate. This is because
the UA scheme does nothing to correct for losses but does
increase the optical depth due to the encoding and decoding
circuits. As discussed earlier, it will increase the optical depth
per gate by 2 log2(N ). Furthermore, the heralded error can be
treated as loss. Here we will not seek to use the located nature
of this loss to our advantage and treat it similarly to all other
optical losses. As such, the UA scheme acts to increase the
effective loss rate depending on the depth of encoding and
decoding steps and the probability of success. If the original
loss rate was γ per qubit per gate, we can estimate the new
effective loss rate for a gate as � = γ

3 [3 + 2 log2(N )] + [1 −
Ps(N )] per qubit per gate. We have assumed all gates to have

an optical depth of a single-qubit gate (3) and that encoding
and decoding steps are as lossy as each individual component
within the gate. Given some gates are likely to be much deeper
than this, we are over estimating the relative loss introduced
by the additional encoding.

We next turn our attention to the error rates. Consider that
the gate fidelity relates to the probability that the qubit(s) it
acts on would be measured in the incorrect state. After the
gate is applied, with probability F (N ) = 1 − ε, the correct
transformation is applied, and thus with probability ε any
syndrome measurement will herald an error. This suggests an
equivalence between our characteristic noise parameter V and
the typical noise parameter considered in fault tolerance ε (the
per qubit, per gate depolarization rate). This typical noise pa-
rameter corresponds to the more general depolarization errors
occurring, which are not present in this model. However, if
we take the depolarization effects as sourced by these same
stochastic noises, we can indeed treat these two noise terms
as equivalent. Comparing to the probability of success and
fidelity shown in Eqs. (22) and (23), we have effective gate
error E and loss � rates of

E = ε

N + ε − Nε
, (D1)

� =γ

3
[3 + 2 log2(N )] + ε

(
1 − 1

N

)
. (D2)

We can use these equations in conjunction with known
fault-tolerant thresholds to gain insight into how the fault-
tolerant parameter space may change when utilizing UA. If
we take the earlier results of Dawson et al. [10] and Fujii
and Tokunaga [11], we can estimate the effect UA has on the
fault-tolerant parameter space for a 23-qubit Golay code. We
can also consider its effect on a more modern fault-tolerant
architecture such as fusion-based quantum computation [3].
The results are shown in Fig. 7.
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