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Mode-resolved thermometry of a trapped ion with deep learning
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In a trapped-ion system, accurate thermometry of ions is crucial for precisely evaluating the system state and
performing quantum operations. However, when the motional state of a single ion is far away from the ground
state, the spatial dimensionality of the phonon state sharply increases. Then it is difficult to realize accurate and
mode-resolved thermometry with existing methods. In this work, we apply deep learning to the thermometry of
a trapped ion and propose an efficient and mode-resolved method for accurately estimating large mean phonon
numbers. We have also conducted experimental verification based on a self-developed surface trap. The result
has shown the significant accuracy and efficiency of the method for thermometry of a single ion with large mean
phonon numbers. The mode-resolved feature of our method makes it better applied to the characterization of
system parameters, such as evaluating cooling effectiveness and analyzing surface trap noise. Our trained neural
network model can be easily extended to other experimental setups and parameter ranges without modification
of the experimental setups.

DOI: 10.1103/PhysRevA.109.062434

I. INTRODUCTION

Trapped ions have emerged as one of the most promising
platforms for quantum computing, primarily attributed to their
exceptionally long coherence time [1] and the precise control-
lability of both internal and external states [2]. To thoroughly
assess the performance of ion traps and facilitate coherent
operations, it is crucial to accurately measure and control the
effective temperature of ions.

For a single trapped ion near the motional ground state,
there exist several well-established techniques for thermom-
etry, including the sideband ratio method [3], singular value
decomposition [4], etc. But these methods become imprac-
tical when the motional state is far from the ground state.
While in scenarios such as heating-rate measurement [5,6] and
dissipative-state preparation [7–9], thermometry is still neces-
sary within a broader range of the mean phonon number n̄.
To address this, alternative approaches, e.g., dark resonances
[5,10], spatial thermometry [11], and Doppler recooling [6]
have been proposed. Dark resonances and spatial thermometry
offer a measurement range from several hundred to 10 000
phonons, while Doppler recooling is specifically designed for
n̄ � 104. Nevertheless, all of these techniques suffer from
measurement complexity or inaccuracy [5,12].

More significantly, in many situations, it is necessary to
separately measure the mean phonon number of individual
vibration modes. For a single ion, different vibration modes
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mainly refer to distinct vibration frequencies from three
motional directions. The aforementioned methods can only
provide an estimation of the ensemble effective temperature
determined by all relevant modes, instead of reliable infor-
mation of a single vibration mode. In more detail, the dark
resonances method offers fast probing of velocity distribution,
which is based on the modifications of the photon scatter-
ing rate induced by the Doppler effect, resulting in vibration
modes that are indistinguishable. In 40Ca+ experiments, the
397- and 866-nm lasers need to be simultaneously controlled
to have the same detuning to the upper-energy level, which
increases experimental complexity and uncertainty. The spa-
tial thermometry method makes use of the extent of ion
position images. Therefore, the accuracy relies on the knowl-
edge of the point spread function of the imaging system.
This method also cannot provide information on each vibra-
tion frequency. Another method [13] using spin-dependent
kick provides accurate thermometry for n̄ in [0.1, 104]. The
experiment involves a near-resonance Ramsey process. It re-
quires a mode-locked laser and exact Rabi frequency, thereby
limiting its scalability. Then the method still cannot distin-
guish separate vibration modes in the direction of the wave
vector.

To tackle the challenges, we employ deep neural networks
(DNNs) to estimate the mean phonon number of each single
vibration mode of a single ion. Deep learning [14] excels in
analyzing intricate structures of high-dimensional data and
extracting meaningful features from it. In the field of nat-
ural sciences, deep learning has found diverse applications
involving processing large amounts of complex data, such
as identifying potential drug molecules [15] and analyzing
biological data [16]. Particularly, its application in physics
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[17,18] has mainly focused on particle physics [19], quantum
many-body physics [20], and cosmology [21].

In this work, we present an accurate, efficient, and mode-
resolved method based on DNNs for the thermometry of a
single ion’s motional state of n̄ up to 1500, with no need
for the precise value of coupling strength. The data to be
measured only involve excited state populations of multiple
orders of blue sidebands [22–24], determined by the Lamb-
Dicke parameter η, the mean phonon number n̄, the coupling
strength �, and the pulse duration t . Because the carrier tran-
sition which involves joint coupling with all existing vibration
modes is excluded, our method can avoid influence from other
vibration modes, thus enabling mode-resolved thermometry.

The effective regime of our method spans from tens of
phonons to over 1000 phonons. The range of the Lamb-Dicke
parameter is between 0.07 and 0.21, allowing for the tunability
of the measurable range of vibration frequency. We generated
test datasets for theoretical testing, and the average error is
less than 1% on the noise-free test set and still below 10% after
introducing binomially distributed projection noise. Further-
more, we performed experimental verification of the method.
The error of the best model using 15 blue sidebands was found
to be less than 10%. Also, the experimental operation of our
thermometry method is quite straightforward. The results can
be promptly obtained through the utilization of deep neural
networks, with no need for additional postprocessing.

II. METHOD

A. Theory and training set

For a single ion trapped in a harmonic potential, which
remains a valid assumption for the larger n̄ range concerned
here [6,13], we only consider two internal states of the ion
and the axial harmonic vibration with frequency ωz. The state
of the ion can be represented as | ↑, m〉 or | ↓, n〉, where m
and n represent phonon numbers of the Fock state. The Rabi
frequency �m,n of the transition between these two states is
given by [23,24]

�m,n = �|〈m|eiη(a+a† )|n〉|

= �e− η2

2 ηm−n

√
n!

m!
Lm−n

n (η2), (1)

where we suppose m � n, and � is the coupling strength, Lα
n is

the Laguerre polynomial, and η is the Lamb-Dicke parameter
η = cos (θ )k

√
h̄/2Mωz, which involves the ion mass M, the

wave number k, the vibration frequency ωz, and the angle θ

between the wave vector and the vibration direction.
Assuming that the ion is initially prepared in the state

| ↓, n〉, then weakly coupled to a blue-detuned laser, i.e.,
� � ωz, the population of the | ↑, m〉 state would be P|↑,m〉 =
sin2(�m,nt )e−γnt after an evolution duration t . Ulteriorly,
when the motional state of the ion is described by a density
matrix with diagonal elements being the probability pn of |n〉,
the excited state population of the qth blue sideband will be

P↑(q) =
∑

n

pn sin2(�n+q,nt )e−γnt . (2)

The relaxation effect term e−γnt could be omitted, as the pulse
duration t in our method is much shorter than the energy-level

lifetime. Then P↑(q) is rewritten as

P↑(q) =
∑

n

pn sin2(kn+q,n�t ), (3)

where �kn+q,n = �n+q,n. With the knowledge of η, pn, and
�t , the excited state populations of each blue sideband can be
obtained using Eqs. (1) and (3) straightforwardly. However,
when the mean phonon number is relatively large, it is chal-
lenging to determine the accurate value of � experimentally
by fitting the Rabi oscillating curve. Due to the exceedingly
small differences between �n+q,n and �n′+q,n′ as n̄ increases, it
is difficult to get the exact value of n̄. Furthermore, in Eq. (3),
the upper limit of n needs to be high enough to obtain reliable
accuracy. For a thermal state with n̄ = 1500, the upper limit of
n should reach 6000 to cover 98% of the whole distribution,
resulting in a quite time-consuming fitting process.

The essence of the above problem lies in the high di-
mensionality of the phonon state of large n̄. Thanks to the
capability of DNNs to process complex data, this situation
lends itself to a suitable application scenario of the deep
learning method. The initial step in constructing a DNN
model involves generating a reliable training set. Typically,
the dataset can be derived from public databases, experimental
data, or theoretical calculations. However, in this application,
due to the requirement of the precision and quantity of the
training dataset, theoretical calculation is practically feasible.
Here, we narrow our focus down to the thermal phonon state
described by the probability distribution p(m, n̄) = n̄m/(n̄ +
1)m+1. Considering our experimental configuration, we care-
fully choose discrete integer values ranging from 1 to 1500 as
the variable n̄. Furthermore, we restrict η in the range of 0.069
to 0.217, specifically tailored for the 40Ca+ ion used in our
system. This choice stems from the fact that ωz falls within the
range of 200 to 2000 kHz when the laser’s wave vector aligns
parallel to the direction of vibration. Additionally, we have
empirically determined that the interval of 0.5π to 2π for �t
can provide good pulse-time tolerance when the exact � is un-
certain in experiments. Under various combinations of these
parameters, we calculated P↑(1) to P↑(15). Each training data
point comprises input values η and P↑(1), P↑(2), . . . , P↑(Q),
and outputs n̄ and �t . To ensure successful training, we
have generated a dataset containing 1 × 106 evenly distributed
samples, encompassing diverse parameter combinations.

In practical experiments, the electronic shelving technol-
ogy allows for the identification of either a bright state or a
dark state in each independent measurement. As a result, the
measured probability Pk,N follows a binomial distribution:

Pk,N = k

N
= Ck

N Pk
↑ (1 − P↑)N−k, (4)

where N represents the total number of measurements while k
refers to the count of excited states. Smaller N brings greater
noise, so the model should exhibit robustness against such
noise for a limited N .

Figure 1 illustrates the architecture of the DNNs we em-
ployed. By training with data involving different numbers
of blue sidebands, we have developed four distinct models,
namely, M-5, M-8, M-10, and M-15, respectively involving
sideband numbers Q = 5, 8, 10, and 15. Furthermore, to
account for projection noise, we have trained an additional
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FIG. 1. DNN structure of our work. The input layer involves η

and the first to the Qth order of the blue sideband; then there are
three hidden layers each with 1024 neurons, and n̄ and �t are two
outputs.

model called ANM-5, which is based on M-5 and retrained by
a noisy training set. In this noisy training set, each probability
P↑ is transformed into Pk,N through a simulated binomial
distribution process. In this process, N is user defined and k is
derived from P↑. It is worth noting that all of these models are
trained by the same number of epochs and the same strategy.

B. Theoretical performance

To initially verify these models, we randomly generate
50 000 data items for testing, with n̄ being a decimal number
to ensure no overlap with the training set.

We first evaluated the performance of these DNN models
with the test set under different mean phonon numbers. The
results are illustrated in Fig. 2(a), where the relative error
was |	n̄|/n̄. For clarity, only 250 out of the original 50 000
points for each model are shown. When n̄ is below 8, all
models exhibit a relatively big error (�10%). This situation
is primarily attributed to the fact that the excited state pop-
ulations of some higher orders of the sideband approach 0,
resulting in insufficient effective information. When n̄ > 100,
the relative error of all models decreases to below 1%. When
n̄ approaches 1500, the relative error slightly increases. This
increase is intrinsic to the limitations of deep learning, as data
volume for training near the dataset boundary is relatively
limited. Regarding the effects of utilizing different numbers of
blue sidebands, M-15 and M-10 yield nearly identical results,
while M-8 exhibits slightly inferior performance. Notably,
there is an anomalous increase in error for M-5, which may
stem from the reduced information on higher orders of side-
bands.

Taking into account the inherent noise of the binomial
distribution, we introduce different degrees of such noise into
the test set by varying total numbers of measurements N . As
illustrated in Fig. 2(b), each data point represents the average
relative error calculated across the entire test set. Intuitively,
the errors of all models decrease as noise decreases. Simul-
taneously, the error diminishes with an increasing number of
sidebands, suggesting that employing more sidebands leads
to enhanced robustness to the noise. Notably, ANM-5, which

FIG. 2. Theoretical test results. (a) Relative error under different
mean phonon numbers. There were 50 000 points for each model,
here we only show 250 points to achieve a clearer presentation. When
n̄ is above 100, all models have an error of less than 1%, while an
increased error is observed near the dataset boundary. (b) Average
relative error on the entire test set with different total numbers of
measurements N in Eq. (4). ANM-5 is trained based on M-5 using
training data with binomial noise.

was trained using a noisy dataset, shows improved perfor-
mance. The fitting curve reveals that, as N increases, the error
initially decreases rapidly before reaching a point of dimin-
ishing returns. As N approaches infinity, the performance of
ANM-5 does not significantly surpass that of the noise-free
trained model, M-5, indicating that this training strategy still
falls behind the gains achieved by increasing the number of
sidebands.

The aforementioned analysis indicates that our method ex-
hibits effectiveness for n̄ ∈ [100, 1500]. Its accuracy primarily
depends on experimental measurement precision, since the
noise-free test shows better results. To achieve an error of
less than 5%, it would require thousands of measurements to
obtain a single value of population. To avoid this in our exper-
iment, peak fitting was utilized. The details are elaborated in
the subsequent section.
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(a) (b)
dc

rf

FIG. 3. Experimental setup. (a) Optical and electrical settings. The dashed lines represent dc and rf voltages loaded on electrodes of the
trap, and the black curve represents artificially added noise. (b) Detailed model of the surface trap.

III. EXPERIMENTAL VERIFICATION

A. Experimental setup and scheme

The experiment was conducted on a six-wire surface trap as
shown in Fig. 3, where the trap frequency could be adjusted
flexibly and the target thermal state could be prepared effi-
ciently. This trap has 15 pairs of dc electrodes, of which 7
pairs are mainly used to trap ions (Fig. 3(b)). A single 40Ca+

ion is trapped at a distance of approximately 150 µm above
the chip surface with the axial frequency ωz set to 626 kHz,
by applying a radio frequency voltage of 20.9 MHz and dc
voltages. Other dc electrodes are given appropriate voltages
to compensate for micromotion.

Two Zeeman sublevels of the 40Ca+ ion, 2S1/2(mj =
−1/2) and 2D5/2(mj = −5/2), are used as ground | ↓〉 and
excited states | ↑〉. They are generated by a magnetic field
whose direction is at an angle of 45◦ to the axial direction.
The state is manipulated by a 729-nm laser parallel to the
axial direction, whose switch and frequency are controlled
by an acousto-optic modulator (AOM). The Lamb-Dicke pa-
rameter η is approximately 0.122, which is adjustable to
change ωz by changing the dc voltages. The cooling meth-
ods include Doppler cooling and sideband cooling. The 397-
and 866-nm lasers are used for Doppler cooling, while the
729- and 854-nm lasers are subsequently used for sideband
cooling to cool the ion to about 0.3 phonons. Under the
above conditions, the measured heating rate is 0.245 ± 0.046
ms−1. Due to the relatively low heating rate, and for ex-
perimental convenience, we additionally introduced a 5 Vpp

noise signal to the 15th pair of electrodes to expedite the
heating process.

To ascertain the effectiveness of our approach, it is crucial
to accurately generate thermal states of various n̄. With a good
initial state and a constant heat rate [13], we can accurately
prepare thermal states of any n̄ we need. The experimental
verification procedure is as follows.

(i) We measured n̄ using the Rabi oscillation fitting
method under various heating durations near the motional
ground state. The fitting method was deemed accurate within
the specified range, allowing us to obtain the accurate heating

rate, and this artificial heating rate remained constant over
time [3,5,13].

(ii) Based on the determined heating rate, subject the ion
to an extended heating duration to attain the target thermal
state with a larger mean phonon number. This provides an
accurate value of n̄ for reference.

(iii) Right after the heating, the frequency of the 729-
nm laser was controlled to measure P↑ up to the 15th blue
sideband. It is worth noting that, to improve efficiency and
minimize measurement error, we do not scan such a large
frequency range in Fig. 4(a). We actually conducted a small-
frequency-range scan around each resonance point as shown

FIG. 4. (a) Excitation spectrum of motional sidebands. For
higher orders of the blue sideband whose P↑ � 0.01, it is viable
to set these values to 0. (b) Gaussian fitting curve. In the practical
experiment, there is no need to scan such a large range of frequency
in panel (a), but rather finely scan small areas around each sideband
and find the peaks with Gaussian fitting, by which frequency error
and ac-Stark shift can be ruled out.
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FIG. 5. Experiment results. (a) Heating rate measured by fitting
the Rabi oscillation. (b) DNN result in a larger phonon number scale.
(c) Comparison of M-5 and ANM-5. The black lines in panels (b) and
(c) are the extrapolated heating line in panel (a).

in Fig. 4(b) and determined the value of the population by
peak fitting using Gaussian distribution.

(iv) Upon completion of the experiment, we input the
measured population values into the DNN model and compare
the output with the reference value.

Due to the artificially introduced constant heating rate,
this experimental scheme ensures the precision for generat-
ing thermal states with different mean phonon numbers and
provides a reliable verification of our method.

B. Result

The heating rate measured by fitting the Rabi oscillation
is shown in Fig. 5(a). By adding a noise signal, the heating
rate is increased from 0.245 ± 0.046 to 182 ± 8 ms−1, and
we selected several heating duration points for verification.

Under different heating durations, thermal states of dif-
ferent n̄ were obtained, and then the populations of multiple
orders of sidebands for different thermal states were measured
as input into DNN models. The output results are illustrated
in Fig. 5(b). Within the range of mean phonon numbers span-
ning from tens of phonons to over 1000 phonons, models
employing eight or more sidebands have comparable perfor-
mance and demonstrate a commendable accordance with the
extrapolated heating line. In contrast, M-5 exhibits relatively
poor performance, largely attributed to its being unresistant to
the severe noise encountered in real-world experiments. Yet,
M-5 might yield improved results with more measurement
times, given that its theoretical performance is acceptable in
the above theoretical noise-free test.

The error bars in the figure were generated using Monte
Carlo simulation [25], where we employed the uncertain-
ties introduced during peak fitting as standard deviations in
a normal distribution. Then a series of input values gener-
ated by simulating such normal distribution were fed into
the DNN model to obtain a set of outputs whose standard
deviation was taken as the error bar. Therefore, the size of
error bars is influenced by both the accuracy of measurements
and the inherent characteristics of the neural networks. Re-
markably, an increased number of employed sidebands leads
to a reduction in the size of the error bars, signifying that a
greater number of sidebands contributes to enhanced robust-
ness, which coincides with the theoretical test presented in
the previous section. The above analysis suggests that using
more sidebands brings better performance. However, since
the difference among M-8, M-10, and M-15 is not signifi-
cant, it is feasible to use M-10 for convenience in practical
experiments.

Furthermore, ANM-5 was tested and shown in Fig. 5(c).
Overall, training under projection noise resulted in a reduc-
tion in the error bar. In the low-n̄ range, its performance
surpassed that of M-5, although there was minimal difference
in the higher range. The lack of substantial improvement,
especially at the 5000-µs point, may be attributed to inher-
ent defects in M-5 that persisted even after retraining with
noisy data.

IV. SUMMARY

In this work, we have shown the application of deep neural
networks to the thermometry of a single ion. Our method has
demonstrated remarkable performance across a wide range of
mean phonon numbers from tens of phonons to over 1000
phonons. Additionally, we explored the impact of employing
different numbers of sidebands and revealed that an increased
number of sidebands enhances both accuracy and robustness.
The model trained with noisy data exhibits certain improve-
ments in robustness but falls short of the gains achieved by
increasing the number of sidebands. For practical applications
balancing between efficiency and accuracy, ten sidebands are
deemed sufficient within the above-mentioned n̄ range.

Although this work only focused on the thermal distribu-
tion of a single ion’s phonon state, the method’s applicability
can extend to various distributions in principle. When con-
fronted with different ranges and distributions, creating
tailored training datasets will suffice. It is worth emphasizing
that the most advantageous feature of our DNN method is
its mode-resolving capability. Furthermore, it can be gener-
alized to mode-resolved thermometry of multiple ions [26].
Additionally, this method facilitates swift deployment across
different experimental setups and ion types, requiring no mod-
ifications to the optoelectronic settings. Benefiting from the
efficiency inherent in neural networks, results are available
almost immediately right after the acquisition of experimental
data.

In summary, we present an accurate, efficient, and mode-
resolved approach for estimating the mean phonon number
of a single trapped ion, particularly in the case of large n̄. In
the future, we envision extending this method to accommo-
date various scenarios such as the estimation of the phonon
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coherent state, feedback control of system setups, and more
crucially, the thermometry of multiple ions.
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APPENDIX: DESIGN OF DNNs

A typical DNN model usually consists of an input layer,
some hidden layers, and an output layer. The dimensionali-
ties of the input and output layers are determined by actual
requirements, and parameters such as the number of hidden
layers and the number of neurons in each layer are manually
tuned. The structure of the network, training strategies, and the
size and quality of the training set, all affect the effectiveness
of the model. To build the DNNs, here we use PYTORCH

[27], an open-source deep learning framework known for its
excellent flexibility and ease of use.

The neural network in this work is composed of an input
layer, three hidden layers, and an output layer. The population
values as input naturally range from 0 to 1, making it suitable
as input for the network with no need for postprocessing.
There are 1024 neurons in each hidden layer. The activation
functions are Tanh and ReLU [28].

For the large order of magnitude difference between the
two output values, which is not conducive to evaluating the
convergence effect and updating weights, the ranges of their
values are scaled to the same interval: [−10, 10]. To evaluate
the distance between the predicted value and the target value,
we use the following loss function:

loss(x, y) = |y1 − f (x)| + |y2 − g(x)|
2

, (A1)

where x represents input, f (x) and g(x) are outputs, and

y1 = n̄

75
− 10,

y2 = 15

2

(
�t

π
− 1

2

)
− 10. (A2)

Through multiple rounds of iteration, the parameters net-
works can be updated automatically by the optimizer Adam
[29], until the loss converges. For example, the loss of M-15
converged to 0.009 after 20 epochs of training.
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