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Nonadiabatic holonomic quantum computation has been proposed as a method to implement quantum logic
gates with robustness comparable to that of adiabatic holonomic gates but with shorter execution times. In this
paper, we establish an isoholonomic inequality for quantum gates, which provides a lower bound on the lengths
of cyclic transformations of the computational space that generate a specific gate. Then, as a corollary, we derive
a nonadiabatic execution time estimate for holonomic gates. In addition, we demonstrate that under certain
dimensional conditions, the isoholonomic inequality is tight in the sense that every gate on the computational
space can be implemented holonomically and unitarily in a time-optimal way. We illustrate the results by showing
that the procedures for implementing a universal set of holonomic gates proposed in a pioneering paper on
nonadiabatic holonomic quantum computation saturate the isoholonomic inequality and are thus time optimal.
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I. INTRODUCTION

Adiabatic holonomic computation has been launched as
a procedure to implement quantum gates resilient to certain
types of errors [1–4]. However, the slow parametric control
associated with adiabatic evolution makes adiabatic compu-
tations sensitive to external perturbations. To address this
issue, an alternative method for realizing quantum gates using
nonadiabatic holonomies has been proposed [5–9].1 A nona-
diabatic holonomic computation exploits the system’s internal
dynamics, which significantly shortens the execution time of
the computation compared to the adiabatic case. However,
fundamental properties of quantum mechanical systems pre-
clude arbitrarily short execution times for holonomic quantum
gates. In this paper, we derive an estimate of the time required
to execute a holonomic quantum gate unitarily. This estimate
builds upon and generalizes a corresponding estimate of the
time it takes to generate an Aharonov-Anandan geometric
phase, as reported in Ref. [12].

The main ingredient in the derivation of the execution
time estimate is the isoholonomic inequality for quantum
gates. The isoholonomic inequality establishes a minimum
length for cyclic transformations of the computational space
that holonomically generate a specific gate. This inequality,
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schemes has also been emphasized and demonstrated in the related
field of geometric quantum computation; see Refs. [10,11].
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together with the results in Ref. [13], solves the isoholonomic
problem for quantum gates formulated by Montgomery [14].

Holonomic gates are the building blocks of circuits in
holonomic quantum computation. Since holonomic gates have
a purely geometric origin, implementations of quantum gates
through parallel transport operators are predicted to be highly
robust against noise [4]. Nonadiabatic holonomic gates have
been experimentally demonstrated in various physical systems
[15–18]. We show that the scheme in the pioneering paper [6]
for the implementation of a universal set of holonomic gates
is time optimal.

The paper is organized as follows. Section II presents the
main results. Section III introduces terminology and describes
basic properties of Stiefel-Grassmann bundles. Section IV
contains derivations of the main results. In Sec. V we apply
the main results to a proposal on how to experimentally im-
plement a universal set of holonomic quantum gates. Finally,
in Sec. VI, we prove that the isoholonomic inequality is tight
in a strong sense provided the dimension of the computational
space is at most half of the dimension of the Hilbert space.
The paper concludes with a summary.

II. RESULTS

Throughout, R denotes an n-dimensional subspace of a
finite-dimensional Hilbert space H. We write PR for the
orthogonal projection onto R, and we use computational ter-
minology and call R the computational space and unitary
operators on R gates. Moreover, we assume all quantities have
units such that h̄ = 1.

When considering a one-parameter family—a curve—of
operators, vectors, or subspaces, we assume that the family
depends smoothly on the parameter and that the parameter
ranges from 0 to τ . Also, we refer to the parameter as time,
even though it may not represent actual time. We say that the
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curve is closed, cyclic, or a loop when the initial and final
members of the curve are the same.

Inspired by a question from a colleague, Montgomery [14]
formulated the isoholonomic problem for quantum gates as
follows: Find the shortest cyclic transformation of a subspace
whose holonomy is a given gate. In this paper, we provide
a partial solution to this problem by deriving a lower bound
on the length of a cyclic transformation of R in terms of its
holonomy: Assume Rt is a curve of n-dimensional subspaces
of H that starts and ends with R. Let � be the holonomy of
Rt . Then the length of Rt is bounded from below by

L(�) =
√√√√ n∑

j=1

|θ j |(2π − |θ j |), (1)

where θ1, θ2, . . . , θn are the principal arguments of the eigen-
values of �.2 We refer to the length estimate

L[Rt ] � L(�) (2)

as the isoholonomic inequality and call L(�) the isoholonomic
bound of the gate �.

The isoholonomic inequality is tight when the dimension
of R is at most half of the dimension of H: Let � be any gate
on R, and k be the number of 1s in the spectrum of �. If the
codimension of R is at least n − k, there is a parallel trans-
porting Hamiltonian that drives R in a loop with holonomy �

and length L(�).
From the isoholonomic inequality one can derive an esti-

mate of the time required to drive R unitarily in a loop with
a given holonomy. Assume Rt = Ut (R), where Ut is the time
propagator associated with a Hamiltonian Ht . The square of
the speed of Rt equals

I (Ht ;Rt ) = − 1
2 tr([Ht , Pt ]

2), (3)

where Pt is the orthogonal projection onto Rt . Write
〈〈I (Ht ;Rt )1/2〉〉 for the average speed of Rt over the evolution
time interval. The isoholonomic inequality implies that the
evolution time is not smaller than

τ [Ht ; �] = L(�)

〈〈√I (Ht ;Rt ) 〉〉 . (4)

The quantity I (Ht ;Rt ) measures the skewness of Ht rel-
ative to Rt ; see Refs. [19,20]. If the Hamiltonian is time
independent, Ht = H , the skewness is a conserved quantity,
and the evolution time is lower bounded by

τ [H ; �] = L(�)√
I (H ;R)

. (5)

We derive the isoholonomic inequality (2) and the runtime
bound (4) in Sec. IV, and we prove the tightness of the iso-
holonomic inequality in Sec. VI.

III. PARALLEL TRANSPORT AND HOLONOMIC GATES

Cyclic transformations of R correspond to curves in the
Grassmann manifold of n-dimensional subspaces of H that

2The principal argument of a nonzero complex number z is the
phase θ in the interval (−π, π ] for which z = |z|eiθ .

start and end at R. The Grassmann manifold can be identified
with the manifold of orthogonal projections on H of rank n
by identifying each n-dimensional subspace of H with the
orthogonal projection onto that subspace.3 A cyclic transfor-
mation of R is then represented by a curve of orthogonal
projections that starts and ends at PR. We will use the same
notation, G(n;H), for the space of n-dimensional subspaces
of H and the space of orthogonal projection operators of rank
n on H.

Remark 1. The elements of G(1;H) represent the pure
states of a quantum system modeled on H. In Ref. [12],
we derived time estimates for cyclic transformations of pure
states in terms of their Aharonov-Anandan geometric phase.
Here, we generalize one of these to an estimate of the time
required to execute a holonomic gate.

An n frame in H is an ordered sequence of n orthonormal
vectors in H. It will prove convenient to represent an n-frame
F as a row matrix,

F = (|u1〉 |u2〉 · · · |un〉). (6)

We will only consider frames of the unspecified but fixed
length n, and will, therefore, only write frame when referring
to an n frame.

We can act on F with an operator A defined on its span. The
result is the row matrix AF whose elements are the images of
the vectors of F under A,

AF = (A|u1〉 A|u2〉 · · · A|un〉). (7)

The matrix AF is a frame if and only if A is an isometry on
the span of F . We can also act on F from the right by an n × k
numerical matrix M = (mi j ). The result is a row matrix FM
whose elements are linear combinations of the vectors of F :

FM =
( n∑

i=1

mi1|ui〉
n∑

i=1

mi2|ui〉 · · ·
n∑

i=1

mik|ui〉
)

. (8)

If k = 1, FM is a linear combination of the vectors in F ; if
k = n and M is unitary, FM is a frame that spans the same
subspace as F .

We can also multiply frames by conjugates of frames.
Depending on how we multiply them, we get either an op-
erator or a matrix of numbers: If F1 = (|u1〉 |u2〉 · · · |un〉) and
F2 = (|v1〉 |v2〉 · · · |vn〉), then

F1F †
2 = |u1〉〈v1| + |u2〉〈v2| + · · · + |un〉〈vn| (9)

and

F †
1 F2 =

⎛
⎜⎜⎝

〈u1|v1〉 〈u1|v2〉 . . . 〈u1|vn〉
〈u2|v1〉 〈u2|v2〉 . . . 〈u2|vn〉

...
...

...

〈un|v1〉 〈un|v2〉 . . . 〈un|vn〉

⎞
⎟⎟⎠. (10)

The frames in H form the Stiefel manifold V (n;H). If F
is a frame, FF † is the orthogonal projection operator onto the
span of F . Thus, FF † belongs to G(n;H). The assignment

V (n;H) � F → FF † ∈ G(n;H) (11)

3This identification is used to induce a topology and a geom-
etry on the Grassmann manifold from the space of Hermitian
operators on H.
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is a principal fiber bundle called the Stiefel-Grassmann bun-
dle. This bundle has gauge group the group of unitary matrices
U(n), which means that frames F1 and F2 project onto the
same projection operator if and only if F2 = F1U for an n × n
unitary matrix U . We recommend the two-volume work [21]
as a reference for the theory of principal fiber bundles.

A. Parallel transport operators

Parallel transport operators parallel transport frames. To
specify what this means we need to introduce a connection
on the Stiefel manifold.

Suppose Ḟ is a tangent vector at the frame F . If we repre-
sent Ḟ as a row matrix of vectors, F †Ḟ is an element of the Lie
algebra u(n) of n × n skew-Hermitian matrices. We define A
as the u(n)-valued connection on V (n;H) sending Ḟ to F †Ḟ ,

A(Ḟ ) = F †Ḟ . (12)

Using standard terminology, we say that Ḟ is horizontal if
A(Ḟ ) = 0. We also say that a curve of frames Ft is horizontal
if all its velocity vectors are horizontal.

Consider a curve of n-dimensional subspaces Rt in H start-
ing with R. Let Pt be the corresponding curve of projection
operators. According to a fundamental result from the theory
of fiber bundles, there exists a unique one-parameter family of
isometries �t : R → Rt such that for each frame F for R, the
curve Ft = �t F is a horizontal lift of Pt , that is, a horizontal
curve of frames projecting onto Pt . The isometries �t are the
parallel transport operators associated with Rt ; see Ref. [21]
for details.

We can express the parallel transport operators in terms of
the horizontal lift Ft as �t = Ft F †. More generally, if Ft is any
curve of frames projecting onto Pt ,

�t = Ft
←
T exp

(
−

∫ t

0
A(Ḟs) ds

)
F †

0 . (13)

The symbol
←
T indicates that the exponential is forward time

ordered.

B. Holonomic gates

If Rt describes a cyclic transformation of R, the final
parallel transport operator �τ maps R isometrically onto
itself. This operator is called the holonomy of Rt . We will
henceforth write �[Rt ] for the holonomy of Rt . A holonomic
gate on R is a gate implemented as the holonomy of a cyclic
transformation of R.

The parallel transport operators �t associated with an evo-
lution Rt of R move every vector |ψ〉 in R in such a way
that, at every t , the velocity vector of the curve |ψt 〉 = �t |ψ〉
is orthogonal to Rt . Geometrically, this means that the parallel
transport operators cause no time-local rotation within R. A
holonomic gate on R is thus a consequence solely of the
translational motion of R in the Grassmann manifold. This
observation underlies the hypothetical claim that holonomic
gates should be particularly robust against noise and certain
types of implementation errors [4,9].

C. Parallel transporting Hamiltonians

We say that a Hamiltonian is parallel transporting if the
associated time propagator parallel translates frames for R.
For any Hamiltonian Ht , we can define a parallel transporting
Hamiltonian H̄t that drives R along the same path and at the
same speed as Ht : Let Pt be the curve of orthogonal projectors
generated from PR by Ht and define H̄t as

H̄t = Ht Pt + Pt Ht − 2Pt Ht Pt . (14)

Then [H̄t , Pt ] = [Ht , Pt ], which shows that H̄t propagates
R in the same way as Ht , and if F is any frame for R,
and Ft = Ūt F , where Ūt is the time propagator of H̄t , then
F †

t H̄t Ft = 0, which shows that H̄t is parallel transporting. For
a time-independent Hamiltonian H , the corresponding parallel
transporting Hamiltonian is

H̄t = e−itH (HPR + PRH − 2PRHPR)eitH . (15)

Although H is time independent, the parallel transporting
Hamiltonian need not be time independent.

D. Dynamical operators

The total phase acquired during a cyclic unitary evolution
of a pure state can be divided into a geometric part (the holon-
omy) and a dynamic part [22]. It was previously believed that
a corresponding division was generally not possible for cyclic
unitary evolutions of subspaces. However, Yu and Tong [23]
recently showed that such a division is always possible. Here,
we derive the result of Yu and Tong using the framework
presented above.

Suppose Ht drives R in a loop Rt . Let Ut be the time
propagator associated with Ht . Choose a frame F for R and
define a curve of frames as Ft = Ut F . According to Eq. (13),
the holonomy of the loop is

�[Rt ] = Uτ F
←
T exp

(
i
∫ τ

0
F †

t Ht Ft dt

)
F †. (16)

We define the dynamical operator of Ht on R as

D[Ht ] = F
→
T exp

(
− i

∫ τ

0
F †

t Ht Ft dt

)
F †, (17)

where
→
T indicates that the exponential is backward time or-

dered. By Eq. (16), the restriction of Uτ to R decomposes as

Uτ

∣∣
R = �[Rt ]D[Ht ]. (18)

IV. ISOHOLONOMIC INEQUALITY

We equip the Grassmann and Stiefel manifolds with the
Riemannian metrics

gG (Ṗ1, Ṗ2) = 1
2 tr

(
Ṗ1Ṗ2

)
, (19)

gV (Ḟ1, Ḟ2) = 1
2 tr(Ḟ †

1 Ḟ2 + Ḟ †
2 Ḟ1). (20)
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Furthermore, we define the length of a curve of orthogonal
projectors Pt and the length of a curve of frames Ft as

L[Pt ] =
∫ τ

0

√
gG (Ṗt , Ṗt ) dt, (21)

L[Ft ] =
∫ τ

0

√
gV (Ḟt , Ḟt ) dt . (22)

We also define the kinetic energies of Pt and Ft as

E[Pt ] = 1

2

∫ τ

0
gG (Ṗt , Ṗt ) dt, (23)

E[Ft ] = 1

2

∫ τ

0
gV (Ḟt , Ḟt ) dt . (24)

From the Cauchy-Schwarz inequality we get

2τE[Pt ] � L[Pt ]
2, (25)

2τE[Ft ] � L[Ft ]
2, (26)

with the inequalities being equalities if Pt and Ft have constant
speeds.

The Stiefel-Grassmann bundle projection is a Riemannian
submersion, which means that the tangent map of the projec-
tion preserves the inner product between horizontal vectors.
Consequently, the length of a curve in the Grassmannian and
the lengths of all of its horizontal lifts are the same. The same
is true for the kinetic energy.

A. Isoholonomic inequality for states

If n = 1, the Grassmannian is the projective space of den-
sity operators representing pure states of quantum systems
modeled on H, and gG is the Fubini-Study metric.

The holonomy of a closed curve of pure states ρt mul-
tiplies unit vectors over the common initial and final state
by a phase factor. The argument of the holonomy is the
Aharonov-Anandan geometric phase of ρt [22]. The isoholo-
nomic inequality for states says that the Fubini-Study length
of ρt is bounded from below as follows:

L[ρt ] � L(θ ), L(θ ) =
√

|θ |(2π − |θ |), (27)

where θ is the principal argument of the holonomy of ρt

[12,14]. Below, we extend this inequality to an estimate of the
length of a closed curve of subspaces of H of arbitrary dimen-
sion in terms of the holonomy of the curve. The derivation
uses the estimate (27). For convenience, we have included a
slightly rewritten version of the derivation of the estimate (27)
found in Ref. [12] in Appendix.

Example 1. Consider a qubit with Hamiltonian

H = ε0|0〉〈0| + ε1|1〉〈1|, ε0 < ε1. (28)

Assume the qubit is initially in the pure state ρ and evolves
unitarily as ρt = e−itHρeitH . Let |ψ〉 = a|0〉 + b|1〉 be a unit
vector such that ρ = |ψ〉〈ψ |, and let |ψt 〉 = e−itH |ψ〉. The
curve ρt is periodic with period τ = 2π/(ε1 − ε0), and ac-

cording to Eq. (13), the holonomy of ρt is

�[ρt ] = 〈ψ |ψτ 〉 exp

(
−

∫ τ

0
〈ψt |ψ̇t 〉 dt

)

= (|a|2e−iε0τ + |b|2e−iε1τ )eiτ (ε0|a|2+ε1|b|2 )

= e2π i|b|2 . (29)

Furthermore, the evolution has the speed√
1
2 tr

(
ρ̇2

t

) = (ε1 − ε0)|a||b| (30)

and, thus, the length

L[ρt ] = τ (ε1 − ε0)|a||b| = 2π |a||b|. (31)

Let θ be the principal argument of the holonomy. Then,

L[ρt ]
2 = 2π |b|2(2π − 2π |b|2) = |θ |(2π − |θ |). (32)

We conclude that a qubit with time-independent Hamiltonian
saturates the isoholonomic inequality.

B. Isoholonomic inequality for gates

In this section, we show that the length of a closed curve
in G(n;H) with holonomy � is bounded from below by L(�)
as defined in Eq. (1). Then, in Sec. VI, we show, inspired by
Ref. [13], that L(�) is a tight bound when the dimension of
H is greater than or equal to 2n − k, where k is the number
of 1s in the spectrum of �. We do this by constructing a
Hamiltonian that drives R in a loop with holonomy � and
length L(�). The question of whether L(�) is a tight bound
when the dimension of H is less than 2n − k is still open.

Assume Pt is a closed curve of rank n orthogonal projection
operators at PR having holonomy �. Since length and holon-
omy are parametrization invariant quantities, we can assume
that Pt has a constant speed and returns to PR at time τ = 1.

Let eiθ1 , eiθ2 , . . . , eiθn be the eigenvalues of �, with θ j being
the principal argument of the jth eigenvalue. Let F be a frame
consisting of eigenvectors of �,

F = (|u1〉 |u2〉 . . . |un〉), �|u j〉 = eiθ j |u j〉, (33)

and let Ft be the horizontal lift of Pt starting at F ,

Ft = (|u1;t 〉 |u2;t 〉 . . . |un;t 〉), |u j;0〉 = |u j〉. (34)

Since the Stiefel-Grassmann bundle is a Riemannian submer-
sion and Pt has a constant speed, so does Ft , and the square of
the length of Pt is

L[Pt ]
2 = 2E[Pt ] = 2E[Ft ] = 2

n∑
j=1

E (|u j;t 〉). (35)

Furthermore, since Ft is horizontal, each curve |u j;t 〉 is
Aharonov-Anandan horizontal,

〈u j;t |u̇ j;t 〉 = 〈u j |FF †
t Ḟt F

†|u j〉 = 0, (36)

and |u j;t 〉 projects onto a closed curve of pure states ρ j;t with
Aharonov-Anandan geometric phase θ j ,

|u j;1〉 = F1F †|u j〉 = �|u j〉 = eiθ j |u j〉. (37)

The curves |u j;t 〉 and ρ j;t have the same kinetic energies, and
by the isoholonomic inequality for states (27), the length of

062433-4



ESTIMATE OF THE TIME REQUIRED TO PERFORM A … PHYSICAL REVIEW A 109, 062433 (2024)

TABLE I. Isoholonomic bounds for a complete set of qubit gates:
the one-qubit Hadamard gate H , phase gate S, π/8 gate T , and the
two-qubit CNOT gate.

Gate Matrix representation Isoholonomic bound

Hadamard H = 1√
2

(
1 1
1 −1

)
L(H ) = π

phase gate S =
(

1 0
0 i

)
L(S) = π

√
3

2

π/8 gate T =
(

1 0
0 e

iπ
4

)
L(T ) = π

√
7

4

CNOT CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ L(CNOT) = π

ρ j;t is lower bounded by L(θ j ). Thus,

2E[|u j;t 〉] = 2E[ρ j;t ] � L(θ j )
2. (38)

Equations (35) and (38) imply that

L[Pt ]
2 �

n∑
j=1

L(θ j )
2 = L(�)2. (39)

This proves the isoholonomic inequality (2).
Example 2. The quantum Fourier transform

Fn|u j〉 = 1√
n

n−1∑
k=0

e2π i jk|uk〉 (40)

is used in many quantum algorithms [24]. The quantum
Fourier transform has characteristic polynomial

(x − 1)	
n+4

4 
(x + 1)	
n+2

4 
(x + i)	
n+1

4 
(x − i)	
n−1

4 
, (41)

from which we can read off the eigenvalues of the transform
and their multiplicities. We conclude that the Fourier trans-
form has isoholonomic bound

L(Fn) = π

√⌊n + 2

4

⌋
+ 3

4

(⌊n + 1

4

⌋
+

⌊n − 1

4

⌋)
. (42)

For n = 2, the Fourier transform equals the Hadamard gate H .
The Hadamard gate thus has isoholonomic bound L(H ) = π .
We have listed the isoholonomic bounds for a universal set of
qubit gates in Table I.

C. Runtime bound

The evolution time estimate τ � τ [Ht ; �] follows imme-
diately from the isoholonomic inequality for gates and the
observation that if R is transported in a loop Rt by the
Hamiltonian Ht , and Pt is the corresponding curve of pro-
jection operators, the square of the speed of Rt equals the
skewness of Ht relative to Rt ,

gG (Ṗt , Ṗt ) = 1
2 tr((−i[Ht , Pt ])

2) = I (Ht ;Rt ). (43)

If the Hamiltonian is time-independent, Ht = H , the
skewness is conserved and the speed is constant,

2I (H ;Rt ) = tr((−i[H, e−itH PReitH ])2)

= tr(e−itH (−i[H, PR])2eitH )

= 2I (H ;R). (44)

For a parallel transporting Hamiltonian, we have that

I (Ht ;Rt ) = tr
(
H2

t Pt
)
. (45)

V. TIME-OPTIMAL UNIVERSAL GATES

In the standard description of nonadiabatic holonomic
quantum computation [9,25], input states are prepared in a
space R associated with a register of qubits. The states are
then manipulated with holonomic gates implemented by par-
allel transporting Hamiltonians.

Typically, a frame of product vectors

F = (|100 · · · 0〉 |010 · · · 0〉 . . . |111 · · · 1〉) (46)

is used as a reference frame in R where, at each position, |0〉
and |1〉 are orthonormal vectors that span the marginal Hilbert
space of the corresponding qubit. The space R is referred to
as the computational space, F is the computational basis, and
states and gates are represented as matrices relative to F .

A universal set of quantum gates can approximate any
other quantum gate to any desired precision. For a compu-
tational system manipulating qubits, the one-qubit Hadamard
gate, phase gate, π/8 gate, and two-qubit CNOT gate form
a universal set [24]. The isoholonomic bounds for these are
listed in Table I.

Reference [6] by Sjöqvist et al. contains proposals for how
to holonomically implement the one-qubit gates

�1(α, β ) =
(

cos α e−iβ sin α

eiβ sin α − cos α

)
(47)

and the two-qubit gates

�2(α, β ) =

⎛
⎜⎜⎝

cos α 0 0 e−iβ sin α

0 1 0 0
0 0 1 0

eiβ sin α 0 0 − cos α

⎞
⎟⎟⎠, (48)

which together form a universal set [6,26]. We demonstrate
below that the proposals in Ref. [6] are time optimal in the
sense that the length of the trajectory of the computational
space equals the isoholonomic bound of the implemented
quantum gate.

A. One-qubit gates

Following Sjöqvist et al. [6] we consider a system with
three bare energy levels in a � configuration. We assume that
the lower, closely spaced levels are represented by |0〉 and
|1〉 and that the excited energy level, whose energy we set to
0, is represented by |e〉; see Fig. 1. Furthermore, we assume
that resonant laser pulses drive the transitions |0〉 ↔ |e〉 and
|1〉 ↔ |e〉 and that the dipole and rotating wave approxima-
tions are applicable. In the rotating frame of the laser fields,
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FIG. 1. A three-level system in a � configuration with two
closely spaced levels |0〉 and |1〉 coupled to an excited level |e〉 by
resonant pulsed laser beams with Rabi frequencies 0;t and 1;t .

the Hamiltonian can then be written

Ht = 0;t |e〉〈0| + ∗
0;t |0〉〈e| + 1;t |e〉〈1| + ∗

1;t |1〉〈e|. (49)

We take the sum of the lower energy levels as the computa-
tional space and |0〉 and |1〉 as the computational basis. If the
laser pulses have a common envelope,

 j;t = (t )ω j, |ω0|2 + |ω1|2 = 1, (50)

the Hamiltonian is parallel transporting, and if the support of
the envelope is [0, τ ] and∫ τ

0
(t ) dt = π, (51)

the Hamiltonian drives the computational space in a loop Rt

in time τ . The holonomy of the loop is

�[Rt ] =
(

|ω1|2 − |ω0|2 −2ω∗
0ω1

−2ω0ω
∗
1 |ω0|2 − |ω1|2

)
, (52)

and if we adjust the laser pulses so that ω0 = sin(α/2)eiβ/2

and ω1 = − cos(α/2)e−iβ/2, then �[Rt ] = �1(α, β ).
The gate �1(α, β ) has eigenvalues 1 and −1, and hence

the isoholonomic bound L(�1(α, β )) = π . The loop of the
computational space has the length

τ 〈〈
√

I (Ht ;Rt ) 〉〉 = τ 〈〈(t )〉〉 = π. (53)

Since the length and the isoholonomic bound agree, the im-
plementation is time optimal.

Remark 2. For α = π/4 and β = 0, the above scheme
implements the Hadamard gate time optimally. However,
it cannot generate the phase and π/8 gates. References
[27,28] contain proposals on how to generate these gates in
a � system with off-resonant driving. Strictly speaking, the
Hamiltonians in these proposals are not parallel transporting
as they give rise to (irrelevant) dynamical phases. This issue
will be addressed in a forthcoming paper.

Remark 3. For high-speed computations, the rotating wave
approximation may not be valid. Reference [8] considers the
scheme in Ref. [6] without the rotating wave approximation.
The proposals in Ref. [8] are also time optimal.

B. Two-qubit gates

To implement the two-qubit gate �2(α, β ), Sjöqvist et al.
[6] consider an array of ions, each of which exhibits an in-
ternal � structure as in Fig. 1. The laser pulses that drive the
transitions | j〉 ↔ |e〉 are controlled so that the dynamics of a
pair of ions is governed by an effective Hamiltonian of the
form Ht = (t )(H0 + H1), where

H0 = ω00|ee〉〈00| + ω11|ee〉〈11| + H.c., (54)

H1 = ω0e|e0〉〈0e| + ω1e|e1〉〈1e| + H.c. (55)

We take |00〉, |01〉, |10〉, |11〉 as the computational basis and
the span of these vectors as the computational space, and we
adjust the laser pulses so that

ω00 = sin(α/2)eiβ/2, (56)

ω11 = − cos(α/2)e−iβ/2, (57)

ω0e = sin(α/2), (58)

ω1e = − cos(α/2), (59)

and so that the envelope function satisfies∫ τ

0
(t ) dt = π. (60)

The Hamiltonian then parallel transports the computational
space in a loop, Rt , in time τ and thereby implements the
gate �2(α, β ). This gate has eigenvalues 1 of multiplicity 3
and −1 of multiplicity 1, and thus the isoholonomic bound
L(�2(α, β )) = π . Since the length of the loop of the compu-
tational space agrees with this bound,

τ 〈〈
√

I (Ht ;Rt ) 〉〉 = τ 〈〈(t )〉〉 = π, (61)

the implementation is time optimal.

VI. TIGHTNESS OF THE ISOHOLONOMIC BOUND

We can generalize the qubit example in Sec. IV to a proof
that L(�) is tight when the dimension of H is at least 2n − k,
where k is the number of 1s in the spectrum of �. To do this,
we arrange the eigenvalues of � so that

θn−k+1 = θn−k+2 = · · · = θn = 0. (62)

Let F be a frame for R of eigenvectors of � as shown
in Eq. (33), and let |v1〉, |v2〉, . . . , |vn−k〉 be n − k pairwise
orthogonal unit vectors in the orthogonal complement of R.
Within the span of |u j〉 and |v j〉 choose two orthonormal vec-
tors |0 j〉 and |1 j〉, where the latter vector satisfies the condition

2π |〈1 j |u j〉|2 = θ j mod 2π. (63)

Let ε0 < ε1, and define a Hamiltonian H as

H =
n−k∑
j=1

ε0|0 j〉〈0 j | + ε1|1 j〉〈1 j |. (64)
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Furthermore, define

Ft = (|u1;t 〉 |u2;t 〉 . . . |un;t 〉) (65)

as Ft = e−itH F and let Pt = Ft F
†

t .
For j = 1, 2, . . . , n − k, the vector |uj〉 rotates within the

span of |u j〉 and |v j〉 and returns to R for the first time at τ =
2π/(ε1 − ε0); for j = n − k + 1, n − k + 2, . . . , n, the vector
|uj〉 is held fixed. Thus, R is driven in a loop Rt with period
τ = 2π/(ε1 − ε0).

According to Eq. (13), the holonomy of Rt is represented
by the matrix

F †�[Rt ]F = F †Fτ

←
T exp

(
−

∫ τ

0
F †

t Ḟt dt

)
(66)

relative to F . Since the |u j〉s rotate in pairwise perpendicular
subspaces, F †Fτ and F †

t Ḟt are diagonal matrices,

F †Fτ = diag(〈u1|u1;τ 〉, . . . , 〈un|un;τ 〉), (67)

F †
t Ḟt = diag(〈u1;t |u̇1;t 〉, . . . , 〈un;t |u̇n;t 〉). (68)

For j = 1, 2, . . . , n − k write |uj〉 = a j |0 j〉 + b j |1 j〉. Then, as
in Eq. (29),

〈u j |u j;τ 〉 = |a j |2e−iε0τ + |b j |2e−iε1τ , (69)

〈u j;t |u̇ j;t 〉 = −i(ε0|a j |2 + ε1|b j |2). (70)

Also, 〈u j |u j;τ 〉 = 1 and 〈u j;t |u̇ j;t 〉 = 0 for j = n − k + 1, n −
k + 2, . . . , n. We conclude that

F †�[Rt ]F = diag(e2π i|b1|2 , . . . , e2π i|bn−k |2 , 1, . . . , 1) (71)

which, by assumptions (62) and (63), shows that the holon-
omy of Rt is �.

To calculate the length of Rt we write ρ j;t = |u j;t 〉〈u j;t | and
observe that the square of the speed of Rt is

1

2
tr

(
Ṗ2

t

) =
n∑

j=1

1

2
tr

(
ρ̇2

j;t

) =
n−k∑
j=1

(ε1 − ε0)2|a j |2|b j |2. (72)

Since the speed is constant, the length of Rt squared is

τ 2
n−k∑
j=1

1

2
tr

(
ρ̇2

j;t

) =
n−k∑
j=1

4π2|a j |2|b j |2 =
n−k∑
j=1

L(θ j )
2. (73)

The second identity follows from Eq. (32) and the assumption
(63). We conclude that Rt has length L(�).

Remark 4. The calculations above show that if the dimen-
sion of R is at most half the dimension of H, and every direct
sum of qubit Hamiltonians can be generated, then every gate
on R can be implemented time optimally.

Remark 5. The Hamiltonian in Eq. (64) need not be paral-
lel transporting. To define a parallel transporting Hamiltonian
H̄t that drives R along the same trajectory as H we use
Eq. (15) and define H̄t as

H̄t = e−itH (HPR + PRH − 2PRHPR)eitH . (74)

To simplify the expression for H̄t , we assume the phases of
|0 j〉 and |1 j〉 are such that a j and b j are real. Then,

H̄t = (ε1 − ε0)
n−k∑
j=1

a jb j
(
2a jb j (|1 j〉〈1 j | − |0 j〉〈0 j |)

+ (
a2

j − b2
j

)
(eit (ε1−ε0 )|0 j〉〈1 j | + eit (ε0−ε1 )|1 j〉〈0 j |)

)
.

(75)

VII. SUMMARY

We have derived an estimate, called the isoholonomic
inequality, for the length of a cyclic transformation of a
subspace of a Hilbert space with a given holonomy. The
isoholonomic inequality constitutes half of the solution to
the isoholonomic problem for holonomic quantum gates, as
formulated in Ref. [14] (see Ref. [13] for the other half).
We have also converted the isoholonomic inequality into an
estimate of the time required to execute a holonomic quantum
gate unitarily. As an illustration, we have shown that the
implementation scheme in Ref. [6] for a universal set of holo-
nomic gates is time optimal. The paper ended with a proof that
the isoholonomic inequality is tight if the dimension of the
subspace being transformed is at most half of the dimension
of the Hilbert space.
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APPENDIX: DERIVATION OF THE ISOHOLONOMIC
INEQUALITY FOR STATES

Let L(θ ) be the shortest length a closed curve of pure states
can have, given that its Aharonov-Anandan holonomy is eiθ ,
where −π < θ � π . We show that

L(θ ) =
√

|θ |(2π − |θ |). (A1)

Since there is nothing to prove if θ = 0, we assume θ = 0.
Let ρ be an arbitrary pure state, and let ρt be a closed

curve of pure states at ρ with holonomy eiθ and length L(θ ).4

Since a reparameterization of ρt does not change its length
and holonomy, we can assume that ρt has a constant speed
and returns to its initial state ρ at τ = 1.

Let |ψ〉 be a unit vector projecting onto ρ, and let |ψt 〉
be the horizontal lift of ρt starting from |ψ〉. The curve |ψt 〉
extends from |ψ〉 to eiθ |ψ〉, both of which project onto ρ.
Since the Hopf bundle is a Riemannian submersion, |ψt 〉 and
ρt have the same length. Furthermore, |ψt 〉 has the same
constant speed as ρt . Thus,

L(θ ) =
∫ 1

0

√
〈ψ̇t |ψ̇t 〉 dt =

√
〈ψ̇0|ψ̇0〉. (A2)

4L(θ ) does not depend on the choice of initial state ρ because length
and Aharonov-Anandan holonomy are unitarily invariant quantities.
Furthermore, each θ in (−π, π ] is the Aharonov-Anandan geometric
phase of a closed curve of pure states at ρ, and at least one of these
has length L(θ ) since G(1;H) is compact.
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The curve |ψt 〉 is an extremal for the augmented kinetic
energy functional

E[|φt 〉, λt ] = 1

2

∫ 1

0
(〈φ̇t |φ̇t 〉 + 2iλt 〈φt |φ̇t 〉) dt, (A3)

with λt being a Lagrange multiplier that forces horizontality.
This is because ρt is a closed curve of minimal length among
those having holonomy eiθ [14]. The kinetic energy functional
is defined on the space of curves in V (1;H) extending from
|ψ〉 to eiθ |ψ〉 over the time interval [0,1].

Each variational vector field of |ψt 〉 that fixes the endpoints
of |ψt 〉 has the form −iXt |ψt 〉, where Xt is an arbitrary curve
of Hermitian operators that vanishes for t = 0 and t = 1. A
variation of |ψt 〉 with this variation vector field is |ψε,t 〉 =
Uε,t |ψt 〉 where, for each ε in (−1, 1), Uε,t is the backward
time-ordered exponential of −iεẊt ,

Uε,t = →
T exp

(
− iε

∫ t

0
Ẋs ds

)
. (A4)

A partial integration shows that the variational derivative of
the augmented kinetic energy of the variation of |ψt 〉 is

d

dε
E[|ψε,t 〉, λt ]

∣∣∣∣
ε=0

= 1

2

∫ 1

0
tr

(
Xt

d

dt
(i|ψt 〉〈ψ̇t | − i|ψ̇t 〉〈ψt | − 2λt |ψt 〉〈ψt |)

)
dt .

(A5)

The Lagrange equation for |ψt 〉 thus reads

d

dt
(i|ψt 〉〈ψ̇t | − i|ψ̇t 〉〈ψt | − 2λt |ψt 〉〈ψt |) = 0. (A6)

From the Lagrange equation follows that

A = i|ψt 〉〈ψ̇t | − i|ψ̇t 〉〈ψt | − 2λt |ψt 〉〈ψt | (A7)

is a time-independent Hermitian operator, and from Eq. (A7)
follows that the Lagrange multiplier is time independent,
2λ̇t = 〈ψ̇t |A|ψt 〉 + 〈ψt |A|ψ̇t 〉 = 0. We write λ for the value
of the Lagrange multiplier. By Eq. (A7),

|ψ̇t 〉 = −i(A − 2λ)|ψt 〉. (A8)

Equation (A7) also tells us that the support of A is two dimen-
sional and is spanned by |ψ〉 and |ψ̇0〉. From this observation
and Eq. (A8) we can conclude that |ψ〉, and thus the entire
curve |ψt 〉, is contained in the sum of two eigenspaces of
A − 2λ. The eigenvalues are

a± = −λ ±
√

λ2 + 〈ψ̇0|ψ̇0〉. (A9)

The holonomy condition |ψ1〉 = eiθ |ψ〉 is satisfied if and only
if a+ = 2πk − θ for an integer k � 0 and a− = 2π l − θ for
an integer l � 0. Hence,

L(θ )2 = 〈ψ̇0|ψ̇0〉
= −a+a−
= −(2πk − θ )(2π l − θ )

� |θ |(2π − |θ |). (A10)

That the last inequality is an equality follows, for example,
from the observation that every cyclic evolution of a qubit
generated by a time-independent Hamiltonian saturates the
inequality, as was shown in Sec. IV.

[1] F. Wilczek and A. Zee, Appearance of gauge structure in simple
dynamical systems, Phys. Rev. Lett. 52, 2111 (1984).

[2] P. Zanardi and M. Rasetti, Holonomic quantum computation,
Phys. Lett. A 264, 94 (1999).

[3] J. Pachos, P. Zanardi, and M. Rasetti, Non-Abelian Berry con-
nections for quantum computation, Phys. Rev. A 61, 010305(R)
(1999).

[4] J. Pachos and P. Zanardi, Quantum holonomies for quantum
computing, Int. J. Mod. Phys. B 15, 1257 (2001).

[5] J. Anandan, Non-adiabatic non-abelian geometric phase, Phys.
Lett. A 133, 171 (1988).

[6] E. Sjöqvist, D. M. Tong, L. M. Andersson, B. Hessmo, M.
Johansson, and K. Singh, Non-adiabatic holonomic quantum
computation, New J. Phys. 14, 103035 (2012).

[7] G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C.
Kwek, Nonadiabatic holonomic quantum computation in
decoherence-free subspaces, Phys. Rev. Lett. 109, 170501
(2012).

[8] G. O. Alves and E. Sjöqvist, Time-optimal holonomic quantum
computation, Phys. Rev. A 106, 032406 (2022).

[9] J. Zhang, T. H. Kyaw, S. Filipp, L.-C. Kwek, E. Sjöqvist, and D.
Tong, Geometric and holonomic quantum computation, Phys.
Rep. 1027, 1 (2023).

[10] W. Xiang-Bin and M. Keiji, Nonadiabatic conditional geomet-
ric phase shift with NMR, Phys. Rev. Lett. 87, 097901 (2001).

[11] S.-L. Zhu and Z. D. Wang, Implementation of universal quan-
tum gates based on nonadiabatic geometric phases, Phys. Rev.
Lett. 89, 097902 (2002).

[12] N. Hörnedal and O. Sönnerborn, Tight lower bounds on the time
it takes to generate a geometric phase, Phys. Scr. 98, 105108
(2023).

[13] S. Tanimura, M. Nakahara, and D. Hayashi, Exact solutions of
the isoholonomic problem and the optimal control problem in
holonomic quantum computation, J. Math. Phys. 46, 022101
(2005).

[14] R. Montgomery, Isoholonomic problems and some applica-
tions, Commun. Math. Phys. 128, 565 (1990).

[15] A. A. Abdumalikov, Jr., J. M. Fink, K. Juliusson, M. Pechal,
S. Berger, A. Wallraff, and S. Filipp, Experimental realization
of non-Abelian non-adiabatic geometric gates, Nature (London)
496, 482 (2013).

[16] G. Feng, G. Xu, and G. Long, Experimental realization of
nonadiabatic holonomic quantum computation, Phys. Rev. Lett.
110, 190501 (2013).

[17] S. Arroyo-Camejo, A. Lazariev, S. W. Hell, and G.
Balasubramanian, Room temperature high-fidelity holonomic

062433-8

https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1016/S0375-9601(99)00803-8
https://doi.org/10.1103/PhysRevA.61.010305
https://doi.org/10.1142/S0217979201004836
https://doi.org/10.1016/0375-9601(88)91010-9
https://doi.org/10.1088/1367-2630/14/10/103035
https://doi.org/10.1103/PhysRevLett.109.170501
https://doi.org/10.1103/PhysRevA.106.032406
https://doi.org/10.1016/j.physrep.2023.07.004
https://doi.org/10.1103/PhysRevLett.87.097901
https://doi.org/10.1103/PhysRevLett.89.097902
https://doi.org/10.1088/1402-4896/acf8a2
https://doi.org/10.1063/1.1835545
https://doi.org/10.1007/BF02096874
https://doi.org/10.1038/nature12010
https://doi.org/10.1103/PhysRevLett.110.190501


ESTIMATE OF THE TIME REQUIRED TO PERFORM A … PHYSICAL REVIEW A 109, 062433 (2024)

single-qubit gate on a solid-state spin, Nat Commun. 5, 4870
(2014).

[18] C. Zu, W.-B. Wang, L. He, W.-G. Zhang, C.-Y. Dai, F. Wang,
and L.-M. Duan, Experimental realization of universal geomet-
ric quantum gates with solid-state spins, Nature (London) 514,
72 (2014).

[19] D. Girolami, Observable measure of quantum coherence in fi-
nite dimensional systems, Phys. Rev. Lett. 113, 170401 (2014).

[20] S. Luo and Y. Sun, Skew information revisited: Its variants and
a comparison of them, Theor. Math. Phys. 202, 104 (2020).

[21] S. Kobayashi and K. Nomizu, Foundations of Differential Ge-
ometry, Vols. I, II, Wiley Classics Library (Wiley, New York,
1996).

[22] Y. Aharonov and J. Anandan, Phase change during a cyclic
quantum evolution, Phys. Rev. Lett. 58, 1593 (1987).

[23] X.-D. Yu and D. M. Tong, Evolution operator can always be
separated into the product of holonomy and dynamic operators,
Phys. Rev. Lett. 131, 200202 (2023).

[24] M. A. Nielsen and I. L. Chuang, Quantum Compu-
tation and Quantum Information, 10th Anniversary
Edition (Cambridge University Press, New York,
2010).

[25] E. Sjöqvist, V. Azimi Mousolou, and C. M. Canali, Concep-
tual aspects of geometric quantum computation, Quantum Inf.
Process. 15, 3995 (2016).

[26] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist,
A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J.
Osborne, Practical scheme for quantum computation with
any two-qubit entangling gate, Phys. Rev. Lett. 89, 247902
(2002).

[27] E. Sjöqvist, Nonadiabatic holonomic single-qubit gates
in off-resonant � systems, Phys. Lett. A 380, 65
(2016).

[28] G. F. Xu, C. L. Liu, P. Z. Zhao, and D. M. Tong, Nonadia-
batic holonomic gates realized by a single-shot implementation,
Phys. Rev. A 92, 052302 (2015).

062433-9

https://doi.org/10.1038/ncomms5870
https://doi.org/10.1038/nature13729
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1134/S0040577920010092
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.131.200202
https://doi.org/10.1007/s11128-016-1381-1
https://doi.org/10.1103/PhysRevLett.89.247902
https://doi.org/10.1016/j.physleta.2015.10.006
https://doi.org/10.1103/PhysRevA.92.052302

