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Nonreciprocity detector arrays for high-efficiency detection of itinerant microwave photons
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Microwave single-photon detection is one of the critical tasks for the implementation of the desired microwave
quantum information processing. Given the detection efficiency of the demonstrated microwave single-photon
detector is still very limited, here, we propose a nonreciprocity detector array to implement high-efficiency
detection of a single itinerant microwave photon, transported along a one-dimensional waveguide. We show
that different from the reciprocity array with more than 20 atomic detectors [Romero et al., Phys. Rev. Lett.
102, 173602 (2009)] for ideal detection, the nonreciprocity array with just three atomic detectors is sufficient to
achieve deterministic detection (i.e., the achievable probability approaches 100%) of a single itinerant microwave
photon. Specifically, we design an array with a few current-biased Josephson junctions individually coupled to a
common microwave transmission line and then discuss its feasibility.
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I. INTRODUCTION

It is well known that single-photon detection plays a
central role in optical quantum computing, quantum sens-
ing, quantum communication [1–4], etc. In fact, a series of
single-photon detectors, such as avalanche diodes [5], super-
conducting nanowires [6], kinetic inductance detectors [7],
and superconducting transition edge sensors [8], has been well
developed, with excellent performance, for various quantum
information processes in the optical-frequency band. How-
ever, although the energy of a single microwave photon is
significantly low, i.e., 4–5 orders of magnitude lower than
that of an optical photon, the detection of a single microwave
photon is still a great challenge [9]. Traditionally, weak
microwave signals have been received by using a photocon-
ductive antenna and thermoelectric detectors. However, to
detect single microwave photons at a single-quantum level,
single-detector atoms, whose excited eigenfrequencies are in
the microwave frequency band, basically must be engineered
for resonant absorption implementations of single microwave
photons [9].

Benefitting from experimentally demonstrated artificial
atoms (such as superconducting Josephson-junction circuits,
semiconducting quantum dots, NV centers, and Rydberg
atoms), in recent years, the detection of a single microwave
photon has become a feasible and hot topic, specifically
because of its central applications in microwave quantum
information processing fields [10–12]. Indeed, a series of
experiments using the strong interaction between standing-
wave photons and artificial atoms [13] demonstrated the
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high-efficiency detection of standing-wave photons stored in
high-quality microwave cavities or resonators. Nevertheless,
these approaches cannot be applied directly to detect the
itinerant microwave photons due to their delocalizations. In
fact, it has been shown [14] that, due to the very weak inter-
action and impedance mismatch between the traveling-wave
microwave photons and the atomic detector, the theoretical
upper limit of the detection efficiency is just 50% for a single
itinerant microwave photon being detected by a bare atomic
detector.

Physically, certain composite systems can be utilized
to beat such a 50% detection efficiency limit. For exam-
ple, cavity- and resonator-atom systems can be constructed
to improve the detection probability by overcoming the
impedance-mismatch problem between the traveling-wave
microwave photon and the atomic detectors [15–25]. More
simply, a series of atomic detectors can be arranged as a peri-
odic array to enhance the chance of the photon being detected
by one of the detectors [14,26–29]. As shown in [14,26], a
single itinerant microwave photon (transported along a one-
dimensional waveguide) can be detected with the probability
tending to 100% if more than 20 atomic detectors are arranged
periodically as an array. Certainly, this is not economical for
practical application.

In the present work, we propose a more effective method
to utilize the ideal detection of a single itinerant microwave
photon by alternatively using a nonreciprocal atomic-detector
array that contains just a few atomic detectors. Here, the
nonreciprocity means that the electromagnetic waves propa-
gating along opposite directions reveal different losses and
phase shifts [30–32]. In fact, such a novel feature was uti-
lized to generate a series of novel electromagnetic devices,
including novel optical isolators, circulators, and directional
amplifiers [33]. Different from the usual method to realize the
electromagnetic nonreciprocity by using the magnetic field,
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FIG. 1. Schematic diagram of the waveguide photons being scat-
tered by three-level atoms (single-photon detector) located at x1.
Here, V represents the coupling strength between the atom and
waveguide photon. ω0 is the transition frequency between ground
state |0〉 and excited state |1〉, and � is the dissipation rate from the
excited state |1〉 to the final steady state |g〉.

spatiotemporal modulations, and nonlinearity [30], here, the
electromagnetic nonreciprocity is simply realized by using
the asymmetric couplings between the atomic detectors and
the traveling-wave photons, the different dissipation rates of
the atomic detectors, and also the aperiodic arrangement of the
detectors. Benefitting from such nonreciprocity, the transmit-
ted and reflected probabilities of the itinerant photons incident
from the different directions can be engineered well to realize
the ideal impedance match. As a consequence, the itinerant
microwave photons can be deterministically detected, at least
theoretically.

This paper is organized as follows. In Sec. II, we briefly
review why the detection efficiency cannot surpass 50% for
a single traveling-wave microwave being detected by either a
single three-level atomic detector or a detector generated by
two interacting three-level atoms. Focusing on the difficulty
the reciprocity array has with economically improving the
detection of a single microwave photon, in Sec. III we demon-
strate how a nonreciprocity array containing just three atomic
detectors can achieve the deterministic detection of a single
itinerant microwave photon. Possible physical implementa-
tions of the proposal are demonstrated in Sec. IV. Finally, in
Sec. V we summarize our work.

II. DETECTION EFFICIENCY LIMIT OF A SINGLE
MICROWAVE PHOTON BEING DETECTED BY A SINGLE

ATOMIC-TYPE DETECTOR

In this section, we first review the basic model of single
itinerant photons and demonstrate that its detection efficiency
cannot surpass 50% theoretically with a single atomic-type
detector, generated by either a single three-level atom or two
interacting ones.

A. Single-photon detection with a single
three-level atomic detector

The simplest traveling-wave photon detector can be de-
scribed by the configuration shown in Fig. 1, where a
three-level atom can be resonantly excited by the incident
traveling-wave photon (which is expected to be detected) from
the initial state |0〉 into state |1〉. The photon detection is then
implemented by probing the population of the atomic state
|1〉 by measuring its decay (with the rate being �) into state

|g〉. The Hamiltonian describing such a simplest model in real
space can be written as (h̄ = 1) [34–37]

H1 =
∫

dxa†
R(x)

(
−iv

∂

∂x

)
aR(x) +

∫
dxa†

L(x)

(
iv

∂

∂x

)
× aL(x) +

∫
dxV δ(x − x0)[aR(x)σ+ + a†

R(x)σ−]

+
∫

dxV δ(x − x0)[aL(x)σ+ + a†
L(x)σ−]

+ (ω0 − i�)σ+σ−. (1)

Here, a†
L/R(x) and aL/R(x) represent the creation and annihi-

lation operators of single photons propagating along the left
and right directions, respectively. v is the group velocity of the
traveling-wave photon, and V is the coupling strength between
the photon and the atom. The raising (lowering) operator σ+
(σ−) reads σ+ = |1〉〈0| (σ− = |0〉〈1|). ω0 represents the tran-
sition frequency between the atomic state |0〉 and the excited
one |1〉, and � is the rate of state |1〉 decaying into the readout
state |g〉 for the measurement of the population of the atomic
state |1〉.

Assuming that the atom is initially in state |0〉 and the
traveling-wave photon is input from the left side of the waveg-
uide and output at the right one, the generic wave function of
the system can be expressed as [36]

|ψ1(x, t )〉 =
∫

dx[φR,1(x)a†
R(x) + φL,1(x)a†

L(x)]|∅〉

+ Aeσ
+|∅〉, (2)

where |∅〉 is the ground state of the system, i.e., the atom
stays in state |0〉 and there is no photon in the waveguide.
φL,1/R,1(x) and Ae denote the probabilistic amplitudes of a
photon propagating along the left and right directions in the
waveguide and excitation of the atom, respectively. Substi-
tuting this generic wave function into the time-dependent
Schrödinger equation i∂t |ψ1(x, t )〉 = H1|ψ1(x, t )〉, we can get
the time-independent Schrödinger equation

H1|ψ1(x)〉 = ω|ψ1(x)〉. (3)

The probabilistic amplitudes of a photon propagating along
the right and left directions can be further expressed as [37]

φR,1(x) = eikx[θ (−x + x1) + t1θ (x + x1)],
φL,1(x) = e−ikxr1θ (−x + x1),

(4)

where t1 and r1 represent the transmitted and reflected prob-
ability amplitudes of the photon, respectively. k is the wave
vector of the photon, and θ (x) is a step function. Without loss
of generality, we set x1 = 0. Substituting Eq. (4) into Eq. (3),
we get

t1 = 
 + i�


 + i(γ + �)
, r1 = −iγ


 + i(γ + �)
, (5)
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FIG. 2. The efficiency (absorption efficiency) η1 (of a traveling-
wave photon detected by a single three-level quantum detector)
versus the effective detector-photon coupling strength γ and the
decay rate � of the detector for (a) 
 = 0 and (b) 
 = 0.01ω0.

where 
 = ω − ω0 and γ = V 2/v are the detuning and the
effective coupling strength between the incident photon and
the atom. Obviously, due to the existence of the decay � of
the excited state |1〉, the detection efficiency of the photon can
be expressed as [34]

η1 = 1 − |t1|2 − |r1|2 = 2γ�


2 + (γ + �)2
. (6)

Equation (6) indicates that η1 is related to the controllable
parameters 
, γ , and �. However, as shown in Fig. 2, the
maximal efficiency of the photon being detected by such an
atomic detector is 50%, no matter how we adjust the relevant
parameters [14,26]. This refers to the so-called photon absorp-
tion saturation of a single atom due to the natural impedance
mismatch.

B. Single-photon detection with two interacting atoms

Given that the detection efficiency obtained using a single
atomic detector cannot surpass 50%, we now discuss whether
certain composite systems can be utilized to surpass such a
limit. First, let us consider the detector configuration shown
in Fig. 3, where two interacting three-level atoms serve as
a single-photon detector. As the distance between the two
neighboring interacting atoms is still significantly less than the
wavelength of the microwave photon, two three-level atoms
can still be regarded as a detector system located at x1 = 0.
Under the rotating-wave approximation, the Hamiltonian for

FIG. 3. Schematic diagram of a waveguide single photon scat-
tered by single detectors located at x1 consisting of two atoms with
an interaction strength of g.

the present configuration can be expressed as [38,39]

H2 =
∫

dxa†
R(x)

(
−iv

∂

∂x

)
aR(x) +

∫
dxa†

L(x)

(
iv

∂

∂x

)
× aL(x) +

∑
j=1,2

∫
dxVjδ(x){[σ+

j cR(x) + H.c.]

+ [σ+
j cR(x) + H.c.]} +

2∑
j=1

(ωi − i� j )|1〉 j〈1| j

+ g(σ+
1 σ−

2 + H.c.). (7)

Here, σ+
j = |1〉 j〈0| j and σ−

j = |0〉 j〈1| j are the jth atomic
raising and lowering ladder operators. ω j is the jth atomic
transition frequency between states |0 j〉 and |1 j〉, and � j is the
decay rate of state |1 j〉. Vj is the coupling strength between the
photon and the jth atom. g is the coupling strength between
the two atoms.

Similarly, we assume that the atoms are initially prepared
at state |00〉 and the microwave photon (with frequency ω) is
input from the left. The generic wave function of the present
system can be expressed as [39]

|ψc(x, t )〉 =
∫

dx
[
φR,c(x)a†

R(x) + φL,c(x)a†
L(x)

]|∅〉

+
2∑

j=1

Ae, jσ
+
j |∅〉,

(8)

where Ae, j stands for the probabilistic amplitudes of the jth
atom being excited into state |1 j〉 and φL,c/R,c(x) are the prob-
abilistic amplitudes of the photon propagating along the left
and right directions, respectively. Substituting Eqs. (7) and
(8) into the time-independent Schrödinger equation (3) with
the Hamiltonian H1 replaced by the Hamiltonian H2, we can
obtain

−iv
∂φR,c(x)

∂x
+ V1A1δ(x) + V2A2δ(x)

= ωφR,c(x), (9a)

iv
∂φL,c(x)

∂x
+ V1A1δ(x) + V2A2δ(x)

= ωφL,c(x), (9b)

(ω1 − i�1)Ae,1 + V1[φL,c(x) + φR,c(x)] + gAe,2

= ωAe,1, (9c)

(ω2 − i�2)Ae,2 + V2[φL,c(x) + φR,c(x)] + gAe,1

= ωAe,2. (9d)

Again, the probability amplitude of the photon transported
along the left and right directions can be expressed as

φR,c(x) = eikx[θ (−x + x1) + t2θ (x + x1)],

φL,c(x) = e−ikxr2θ (−x + x1). (10)
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Substituting Eq. (10) into Eq. (9), we have

t2 = 1 − i[γ1(ω − ω2 + i�2) + γ2(ω − ω1 + i�1) + 2g
√

γ1γ2]

(ω − ω1 + i�1 + iγ1)(ω − ω2 + i�2 + iγ2) − (g − i
√

γ1γ2)2
, (11a)

r2 = −i[γ1(ω − ω2 + i�2) + γ2(ω − ω1 + i�1) + 2g
√

γ1γ2]

(ω − ω1 + i�1 + iγ1)(ω − ω2 + i�2 + iγ2) − (g − i
√

γ1γ2)2
, (11b)

with 
1,2 = ω − ω1,2 and γ1,2 = V 2
1,2/v, respectively. As a

consequence, the efficiency of a traveling-wave photon being
detected by such a two-atom detector can be calculated as
ηc = 1 − |t2|2 − |r2|2.

Figure 4(a) shows how the detection efficiency ηc depends
on the coupling strength g between the two atoms for the typ-
ical parameters γ1 = γ2 = 0.005ω0 and �1 = �2 = 0.01ω0.
It is seen that, with the increase of the coupling strength g,
the maximum detection efficiency point (corresponding to the
resonance absorption of the photon) is shifted to the right.
Moreover, Fig. 4(b) shows how the asymmetric features of the
two atoms interacting with the photon expand the parameter
regime to achieve the limit detection probability for the given
coupling strength between the atoms. Although the upper
limit of 50% detection efficiency still cannot be surpassed for
two-interacting-atom detectors, the numerical results imply
that the asymmetry of the atomic detectors could be utilized
to change the detection efficiency of a single traveling-wave
photon.

III. NONRECIPROCITY-ORGANIZED ATOMIC
DETECTORS FOR HIGH-EFFICIENCY

SINGLE-PHOTON DETECTION

Now, we discuss how to realize high-efficiency single-
photon detection by using asymmetric atomic detectors.
Simply, these asymmetries can be generated by using a se-
ries of individual atomic detectors with different parameters,
including the detuning, the decay rates of the atomic excited
states, and the distance between two detectors. Physically,
these asymmetries lead to the nonreciprocity of the photon
traveling along different directions through the detector array,

FIG. 4. The detection efficiency ηc (absorption efficiency) of a
traveling-wave photon versus (a) the coupling strength g between
the two detectors and frequency ω of the incident photon for γ1 =
γ2 = 0.005ω0 and �1 = �2 = 0.01ω0 and (b) the ratio of the effec-
tive coupling strength γ2/γ1 and the ratio of the decay rate �2/�1

of the detectors for g = 0.001ω0, 
1 = 
2 = 0, γ1 = 0.005ω0, and
�1 = 0.01ω0.

and thus, the relevant transmitted and reflected probabilities of
the itinerant photon are dependent on its incident directions.
To investigate the transport property of a single microwave
photon scattered by a series of atomic detectors, we introduce
the relevant scattering matrix as follows. As illustrated in
Fig. 5, when a single photon in the waveguide is scattered
by a single two-level atom located at x j , the left region of
the atom exhibits both incident and reflected waves, while the
right side of the atom has just the transmitted wave. Therefore,
the scattering matrix M j of the jth atomic detector can be
defined as (

t j

0

)
= M j

(
1
r j

)
,

(
r j

1

)
= M j

(
0
t j

)
.

According to Eq. (5), we get the scattering matrix

M j =
(

t2
j −r2

j

t j

r j

t j

− r j

t j

1
t j

)
=

(

 j−iγ j


 j

−iγ j


 j
iγ j


 j


 j+iγ j


 j

)
(12)

for the jth atomic detector, where

t j = 
 j + i� j


 j + i(γ j + � j )
, r j = −iγ j


 j + i(γ j + � j )
, (13)

and 
 j = ω − ω j . Consequently, after sequential scatterings
of N noninteracting atomic detectors, the probability ampli-
tudes of the single-photon transmission and reflection can be
written as [40–42](̃

tN
0

)
=

(
e−i[φ1(x)+φ2(x)+···φN−1(x)] 0

0 1

)
M̃N

(
1
r̃N

)
, (14)

with

M̃N = M1ϕ(x2 − x1)M2ϕ(x3 − x2) · · · MN . (15)

FIG. 5. Detector array for single-photon detection, where the
green dot array (in the dotted box) refers to symmetrically arranged
detectors (with the same excited frequency ω0 and decay rate � of
the atoms and also the same photon-atom coupling γ ) and the gold
dot array (in the solid box) is the nonreciprocity-organized atomic
detectors (with different excited frequencies ω j and decay rates γ j

of the atoms and also different photon-atom coupling strengths � j).
x1, x2, . . . , xN and x̄1, x̄2, . . . , x̄N are the locations of the individual
detectors.
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FIG. 6. The detection efficiency η2 implemented by using two
detectors arranged symmetrically versus (a) the detector-photon ef-
fective coupling strength γ and the decay rate � of the excited state
of the detector for 
 = 0 and D = λ0/4 and (b) the ratio D/λ0

and frequency ω of the incident photon for γ1 = γ2 = 0.007ω0 and
�1 = �2 = 0.01ω0.

Here,

ϕ(x j+1 − x j ) =
(

eiφ j (x) 0
0 e−iφ j (x)

)
(16)

is the matrix of the free transport through distance Dj =
x j+1 − x j (between two nearest-neighbor detectors), and thus,

φ j (x) = kn(x j+1 − x j ) = 2πnDj/λ (17)

is the relevant phase shift acquired by the free transport of the
traveling-wave photon through distance Dj . Above, n is the
refractive index (which is here set to n = 1 for simplicity) of
the waveguide, and λ is the wavelength of the traveling-wave
photon. Therefore, the efficiency of the traveling-wave photon
detected successively by an N-detector array can be calculated
as [14]

ηN = 1 − |̃tN |2 − |̃rN |2. (18)

This implies that the detection efficiency of the photon can
be engineered by properly arranging the detectors to generate
certain arrays with as few individual detectors as possible.
It is seen that ideal detection refers to complete impedance
matching without any reflection and transmission.

A. Efficiency of the photon detected sequentially
by the symmetrically-arranged detectors

First, let us discuss how many symmetrically arranged
detectors are sufficient to realize the deterministic detection
of a traveling-wave photon. Here, the symmetric arrangement
of the detectors means that the N individual atomic detectors
generate a periodic array in which each of the detectors pos-
sesses the same physical parameters, i.e., ω j = ω0, γ j = γ ,
φ j = φ, and � j = �.

Simply, if the array contains two detectors, we have

t̃2 = β2

(β + 1) − e2iφ
, (19a)

r̃2 = β + 1 + (β − 1)e2iφ

e2iφ − (β + 1)2
, (19b)

with β = [i� + (ω − ω0)]/iγ . The corresponding detection
efficiencies are shown in Fig. 6 for γ = 0.007ω0 and � =
0.01ω0. Figure 6(a) shows that the efficiency η2 of the pho-
ton being detected by the symmetrically arranged array with

N = 2 identical detectors can be maximized to ∼82.8% for

 = 0 and D = λ0/4. Figure 6(b) shows that the detection
efficiency η2 can be enhanced by adjusting the distance D
between the two detectors. In particular, the detection ef-
ficiency maximizes to ∼82.8% for D = (2m + 1)λ0/4(m =
0, 1, 2, . . . ).

One can easily check that the detection efficiency of the
photon cannot be linearly increased by adding to the number
of detectors in such a symmetrically arranged array. For ex-
ample, if the array contains N = 3 detectors, we get

t̃3 = β3

(β + 1)3 − 2(β + 1)e2iφ − (β − 1)e4iφ
, (20a)

r̃3 = (1 − e2iφ )2 + 2β(e4iφ − 1) − β2(1 + e2iφ + e4iφ )

3β2 + β3 + (e2iφ − 1)2 + β(3 − 2e2iφ − e4iφ )
.

(20b)

We can easily check that the maximized detection effi-
ciency η3 can reach only ∼87.82%, which is not a major
improvement compared with that realized by using two iden-
tical detectors. Roughly, for detection efficiency tending to
100%, the number of identical detectors in such a symmet-
ric array is estimated to be ∼20 [14]. Therefore, enhancing
the probability of the photon being detected sequentially by
adding to the number of identical detectors in such a symmet-
ric array is practically undesirable.

B. Two nonreciprocity-organized detectors for high-efficiency
single-photon detection

Below, we discuss how to significantly enhance the detec-
tion efficiency of a single itinerant photon by alternatively
organizing a few atomic detectors as an asymmetric ar-
ray with controllable nonreciprocity. We show that, even
with the simplest nonreciprocity-organized array with two
atomic detectors, the detection efficiency of the photon can
be significantly improved compared with those obtained by
either coupling them as a composite system (as discussed in
Sec. II B) or arranging them in a symmetric array (as demon-
strated in Sec. III A).

In fact, for an array with just two atomic detectors arranged
asymmetrically with an interval D1 = x̄2 − x̄1, the transmitted
and reflected probabilistic amplitudes can be calculated as

t̄ L→R
2 = β1β2

(β1 + 1)(β2 + 1) − e2iφ1(x)
, (21a)

r̄L→R
2 = β1 + 1 + (β2 − 1)e2iφ1(x)

e2iφ1(x) − (β1 + 1)(β2 + 1)
(21b)

if the traveling-wave photons are input from the left side and
transmit through the detector array, where β j = [i� j + (ω −
ω j )]/iγ j . In this case, the detection efficiency of such a right-
traveling photon can be expressed as [14]

η̄L→R
2 = 1 − ∣∣t̄ L→R

2

∣∣2 − ∣∣r̄L→R
2

∣∣2
. (22)

Obviously, the asymmetry of such a simple array can
be generated if the condition γ1 �= γ2 or �1 �= �2 is sat-
isfied. Specifically, as shown in Fig. 7, the reachable
detection efficiency η̄L→R

2 is maximized to ∼99.18% by
optimizing the asymmetric parameters, such as γ2/γ1 for
�1 = �2 = 0.01ω0, γ1 = 0.05ω0, and D1 = λ0/4; �2/�1 for
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FIG. 7. Efficiency of a single photon detected by an asymmetri-
cally arranged array with two detectors versus (a) γ2/γ1, with �1 =
�2 = 0.01ω0, γ1 = 0.05ω0, and D1 = λ0/4; (b) �2/�1, with γ1 =
γ2 = 0.05ω0, �1 = 0.01ω0, and D1 = λ0/4; (c) the distance between
two detectors D1/λ0, with γ1 = 0.05ω0, γ2 = 0.093γ1, �1 = �2 =
0.01ω0, and ω1 = ω2 = ω0; and (d) ω2/ω1, with D1 = λ0/4, γ1 =
0.05ω0, γ2 = 0.093γ1, and �1 = �2 = 0.01ω0.

γ1 = γ2 = 0.05ω0, �1 = 0.01ω0, and D1 = λ0/4; and also
the distance D1 between the two detectors for γ1 =
0.05ω0, γ2 = 0.093γ1, �1 = �2 = 0.01ω0, and ω1 = ω2 =
ω0, etc. Obviously, compared with the symmetrically ar-
ranged array with two single-photon detectors, the maximal
detection efficiency of the photon can be significantly en-
hanced. Certainly, these asymmetries originate from the
difference in at least one of the physical parameters of the
detectors, typically the decay rate � j of the excited state or
the photon-detector coupling strength γ j . Furthermore, the
distance D1 between two detectors influences the relevant
quantum interference effect of the photon and thus its detec-
tion efficiency.

The significantly enhanced detection efficiency demon-
strated above benefits from the asymmetry organization of
the detectors. Physically, such asymmetry implies that the

relevant array is a nonreciprocal device; i.e., the transmitted
probability of the traveling-wave photon being scattered by
the device is dependent on its transporting directions, although
it transports along the same waveguide. To check this prop-
erty, let us calculate the transmitted or reflected probability of
the traveling-wave photon being scattered by such an asym-
metric array. Obviously, replacing β1,2 by β2,1 in Eq. (21),
we get

t̄ R→L
2 = β1β2

(β1 + 1)(β2 + 1) − e−2iφ1(x)
, (23a)

r̄R→L
2 = β2 + 1 + (β1 − 1)e−2iφ1(x)

e−2iφ1(x) − (β1 + 1)(β2 + 1)
(23b)

for the transmitted or reflected probabilistic amplitude of
the photon transported from the right to left being scattered
by such an asymmetric two-detector array.

As shown in Fig. 8, when waveguide photons trans-
mit in two opposite directions through two asymmetrically
organized detectors, they exhibit different transmission char-
acteristics. Especially at the resonance frequency point ω0, the
transmission probabilities of photons transmitted in opposite
directions are the same (i.e., |t̄ L→R

2 |2 = |t̄ R→L
2 |2 ≈ 0.0081),

and the reflection probabilities are different (i.e., |r̄L→R
2 |2 ≈

0.0001, |r̄R→L
2 |2 ≈ 0.6829). Here, time-reversal symmetry is

broken by adjusting the photon-detector coupling strength
γ j or the dissipation rate � j of the atoms in the detector
array [30]. Correspondingly, the efficiency of the left-traveling
photon being detected by such an asymmetrically organized
two-detector array can be presented as

η̄R→L
2 = 1 − ∣∣t̄ R→L

2

∣∣2 − ∣∣r̄R→L
2

∣∣2
. (24)

Phenomenologically, one can introduce a nonreciprocal coef-
ficient

κ2 =
∣∣∣∣∣
∣∣r̄L→R

2

∣∣2 − ∣∣r̄R→L
2

∣∣2∣∣r̄L→R
2

∣∣2 + ∣∣r̄R→L
2

∣∣2

∣∣∣∣∣, (25)

to describe the asymmetry effect; i.e., κ = 0 and κ = 1
refer to the reciprocity and the maximal nonreciprocity, re-
spectively. Figure 9 shows that the stronger nonreciprocity
corresponds to the maximal detection efficiency. Typically,

FIG. 8. The transmission probability |t̄ L→R
2 |2(|t̄ R→L

2 |2) and the reflection probability |r̄L→R
2 |2(|r̄R→L

2 |2) for the left- and right-traveling
photons scattered by two asymmetrically organized detectors. (a) The effective coupling strengths of the two atoms are set as γ2 = 0.093γ1 and
�1 = �2. (b) The dissipation rates of two atoms in the detector arrays are set as �2 = 10�1 and γ1 = γ2. Here, the other relevant parameters
are set as D1 = λ0/4, �1 = 0.01ω0, γ1 = 0.05ω0, and ω1 = ω2 = ω0.
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FIG. 9. The detection efficiency of a single photon η̄L→R
2 and the nonreciprocal coefficient κ2 versus (a) the ratio γ2/γ1 of the effective

coupling strength, with �1 = �2 = 0.01ω0 and γ1 = 0.05ω0, and (b) the ratio γ2/γ1 of the decay rate, with γ1 = γ2 = 0.05ω0 and �1 = 0.01ω0.
The relevant parameters are chosen as D1 = λ0/4 and ω1 = ω2 = ω = ω0.

the maximal detection efficiency can reach 99.18% if the
nonreciprocal coefficient is κ2 = 1.

C. Ideal single-photon detection with a nonreciprocal array
by the complete impedance matching

In the above investigation, the detection efficiency of pho-
tons in the two-detector nonreciprocally arranged array is
significantly enhanced compared to the reciprocal arrange-
ment. However, the detection efficiency of waveguide photons
still cannot approach 100%. Inspired by the fact that pho-
ton detection efficiency can be improved by increasing the

number of symmetrically arranged detectors [14,26], we dis-
cuss specifically the idea that photon detection efficiency can
be further improved by adjusting the relevant parameters in a
nonreciprocal array with three nonidentical detectors and then
argue that detection efficiency approaching 100% could be
achieved if the number of detectors could be further increased.

According to Eq. (14), the transmission and reflection
probability amplitudes of traveling wave photons prop-
agating from left to right through three asymmetrically
arranged detectors with intervals of D1 and D2 can be
calculated as

t̄ L→R
3 = β1β2β3

−e2iφ2(x)[β1 + 1 + e2iφ1(x)(β2 − 1)] + (β3 + 1)[(β1 + 1)(β2 + 1) − e2iφ1(x)]
, (26a)

r̄L→R
3 = (β1 + 1)(β2 + 1) − e2iφ1(x) + e2iφ2(x)(β3 − 1)[β1 + 1 + e2iφ1(x)(β2 − 1)]

e2iφ2(x)[β1 + 1 + e2iφ1(x)(β2 − 1)] + (β3 + 1)[e2iφ1(x) − (β1 + 1)(β2 + 1)]
. (26b)

In this case, the detection efficiency of such a right-
traveling photon can be expressed as [14]

η̄L→R
3 = 1 − ∣∣t̄ L→R

3

∣∣2 − ∣∣r̄L→R
3

∣∣2
. (27)

Above, we discussed the influence of the detector pa-
rameters, γ , �, and D1/λ0, on the detection efficiency of
a two-detector nonreciprocal array. Below, we investigate in
particular how the distances D1 and D2 influence the detection
efficiency in such an asymmetrically arranged three-detector
array. Figure 10 shows the achievable high-efficiency de-
tection (e.g., η̄L→R

3 > 99.9%, inside the white dotted lines)
of a photon with frequency ω0 versus the distance D2 =
(2m + 1)λ0/4(m = 0, 1, 2, . . . ). Here, the other parameters
are set as D1 = λ0/4, γ1 = γ2 = 0.05ω0, γ3 = 0.093γ1, �1 =
�2 = �3 = 0.01ω0, and ω1 = ω2 = ω3 = ω0. It is seen that
the detection efficiency can reach 99.97% for D1 = D2 =
(2m + 1)λ0/4(m = 0, 1, 2, . . . ).

As shown in Fig. 11, for the asymmetrically organized
three-detector array, different transmission characteristics can
be observed if the photons are input from opposite directions.
This implies that the array is really nonreciprocal [30]. Cor-
respondingly, the nonreciprocal coefficient can be calculated

as

κ3 =
∣∣∣∣∣
∣∣r̄L→R

3

∣∣2 − ∣∣r̄R→L
3

∣∣2∣∣r̄L→R
3

∣∣2 + ∣∣r̄R→L
3

∣∣2

∣∣∣∣∣, (28)

where the definition of r̄L→R
3 is shown in the Appendix.

Indeed, impedance matching is an important technique to
minimize reflections and thus maximize the power transfer
by adjusting the input and output impedances of electrical
components and circuits [43]. Physically, the ideal impedance
match refers to the reflected coefficient of the incident waves
approaching zero. This technique has already been utilized to
implement microwave photon detection using qubit-resonator
coupling [17,18]. In the present work, we have shown alter-
natively that, by employing the nonuniform parameters of the
artificial atoms, the reflected probability of the incident single-
photon microwave signal can be significantly lowered, thereby
achieving the desired impedance matching. Furthermore, if
the transmission probability of the incident single-photon mi-
crowave also approaches zero, then perfect absorption can be
achieved. This can be clearly verified in Fig. 11, where both
the transmission and reflection coefficients of the microwave
photon approach zero and thus the incident photon is perfectly
absorbed.
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FIG. 10. The detection efficiency η̄L→R
3 of the photon with a

frequency of ω0 versus the distances D1 and D2. The relevant pa-
rameters are chosen as �1 = �2 = �3 = 0.01ω0, γ1 = γ2 = 0.05ω0,
γ3 = 0.093γ1, and ω1 = ω2 = ω3 = ω0.

Phenomenologically, nonreciprocity of the wave propa-
gation arises basically from the breaking of time-reversal
symmetry, disrupting the equivalence of forward and back-
ward wave transmissions [30]. In the present work, we have
shown that the nonreciprocity cannot be realized by using a
single atomic detector, and thus, the desired impedance match
cannot be achieved. However, if a few atomic detectors with
nonuniform parameters form a detector array (and thus break
the time-reversal symmetry), the nonreciprocity can be ob-
tained (see Fig. 11). As a consequence, the desired impedance
match without the reflection of the single-photon microwave
can be realized.

Specifically, we can see from Fig. 12 that the trends of
the single-photon detection efficiency η̄L→R

3 and nonrecipro-
cal coefficient κ3 are consistent; i.e., stronger nonreciprocity
corresponds to higher detection efficiency. In particular,
Fig. 12(a) verifies again that, when the distance D2 = λ0/4
is fixed, highly efficient single-photon detection for a photon
with frequency ω0 is sufficiently robust for the selection of the
distance D1. Therefore, with the choice of appropriate param-
eters, such as D1 = D2 = λ0/4, the transmission probability
and reflection probability of photons propagating from left to
right are both zero. As a consequence, the detection efficiency
of single photons can reach 99.97%. The perfect distances of
the nonreciprocities, shown in Fig. 12, imply that quantum
interference is also one of the origins of the nonreciprocity.

Interestingly, with such a nonreciprocal three-detector
array, high-efficiency detection of single itinerant photons
with other frequencies can still be achieved. As shown in
Fig. 13, when the transition frequencies of the atoms are set
as ω′ = 0.9ω0, 1.1ω0, 1.2ω0, the achievable values of η̄L→R

3
are 99.38%, 99.38%, and 97.58%, respectively. The corre-
sponding nonreciprocal coefficients κ3 are 0.982, 0.982, and
0.931 for �1 = �2 = �3 = 0.01ω0, γ1 = γ2 = 0.05ω0, γ3 =
0.093γ1, and D1 = D2 = λ0/4.

Given that the detection efficiencies of the nonreciprocal
arrays with two and three nonidentical detectors demon-
strated above have approached 100%, we argue that the

implementation of ideal detection of a single photon is
desirable once the number of detectors can be further
increased.

IV. A FEASIBLE NONRECIPROCAL DETECTOR ARRAY
TO IMPLEMENT HIGH-EFFICIENCY DETECTION OF A

SINGLE MICROWAVE ITINERANT PHOTON

Experimentally, various solid-state qubits, such as su-
perconducting transmon and Xmon qubits [44,45], and
semiconductor quantum-dot qubits [46] can be utilized to
generate the proposed nonreciprocal atomic detector array
to implement the desired high-efficiency detection of a sin-
gle itinerant microwave photon. Without loss of generality,
Fig. 14 shows a feasible configuration by specifically us-
ing current-biased Josephson-junction (CBJJ) detectors [47].
Here, each of the artificial three-level atomic detectors is de-
signed by capacitively. Here, each of the artificial three-level
atomic detectors is capacitively coupled to the itinerant mi-
crowave photon, which is transported along a superconducting
transmission line.

Initially, the CBJJ-based atomic detector is prepared in
its zero-voltage state |0〉, i.e., the ground state of a “parti-
cle” trapped in a potential [14,26] Uj (δ) = −Ic, j�0(cos δ +
Ib, jδ/Ic, j )/(2π ). Here, �0 = π h̄/(2e) is the flux quanta, δ =
2π�/�0 is the gauge-invariant phase across the junction,
and Ic is the critical current of the junction. The incident
microwave photon (with frequency ∼ω0) excites the CBJJ
into state |1〉, which is very unstable and thus will quickly
tunnel into the voltage state |g〉. Therefore, if we probe the
voltage response of the CBJJ detector, corresponding to state
|g〉, the itinerant microwave photon can be detected. In fact,
the rate of state |1〉 tunneling into state |g〉 is significantly
larger than that of state |0〉, typically �|1〉/�|0〉 ∼ 1000 [26].
Therefore, we can confirm that the voltage state is due to
the tunneling from state |1〉, rather than state |0〉. Importantly,
given that the detection efficiency of a single CBJJ detector is
very limited, three CBJJ detectors with controllable physical
parameters, i.e., the eigenfrequencies, dissipation, effective
detector-photon coupling strengths, and the interdetector
distances, are arranged asymmetrically as a nonreciprocal de-
tector array. The three detectors are connected to a common
voltmeter for the readout of the response from any one of the
detectors.

Certainly, the physical parameters of each of the CBJJ-
based detectors can be properly set, and thus, the three
detectors can be asymmetrically arranged as a nonreciprocal
array. For example, the transition frequency ω0 between states
|0〉 and |1〉 can be controlled by properly setting the Joseph-
son capacitance CJ , critical current Ic, biased dc current Ib,
and thus the eigenfrequency of the bound states of the CBJJ
Hamiltonian: HCBJJ, j = (2e)2

2CJ, j
+ Uj (δ). For example, if Ic =

0.98 μA, CJ = 0.9 pF, and Ib = 0.96Ic [16], then CBJJs exist
in two bound states, |0〉 and |1〉, with ω0 = 2π × 4.84 GHz
[48]. The coupling strength Vj between the superconducting
transmission line and the jth CBJJ can be determined as
[26] h̄Vj = Cg, j

CJ, j+Cg, j

e
α

√
h̄ω0, j

c , where Cg, j is the coupling capac-

itance and α2
j = Ec, j/h̄ω0, j is experimentally designed. Here,

Ec, j = (2e)2/2CJ, j is the junction charging energy, and c is
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FIG. 11. The transmission probability |t̄ L→R
3 |2 (|t̄ R→L

3 |2) and the reflection probability |r̄L→R
3 |2 (|r̄R→L

3 |2) when the waveguide photons are
transmitted from left to right (right to left) through the three asymmetrically organized detectors. (a) The effective coupling strengths for
the first and third atoms are different in the detector arrays, where γ1 = γ2, γ3 = 0.093γ1, and �1 = �2 = �3. (b) The decay rates of the
first and third atoms are different in the detector arrays, where �1 = �2, �3 = 10�1, and γ1 = γ2 = γ3. The other parameters are chosen as
ω1 = ω2 = ω3 = ω0, D1 = D2 = λ0/4, γ1 = 0.01ω0, �1 = 0.05ω0.

the capacitance per unit length of the transmission line. As a
consequence, the effective coupling strength

γ j = V 2
j

v
=

(
Cg, j

Cg, j + CJ, j

)2
ω01, je2Z0

h̄α2
j

(29)

between the jth CBJJ-based detector and the photon, where
v = 1/

√
lc = 1/(cZ0), with l being the inductance per unit

length of the transmission line and Z0 being the characteristic
impedance of transmission line, is also designable. Further-
more, the dissipation rate [15]

� j = ω0, jπ [432
Uj/(h̄ω0, j )]3/2

√
π

exp

[
−36
Uj

5h̄ω0, j

]
(30)

is really controllable, as the barrier height 
Uj =
4Ic, j�0/3

√
2π (1 − Ib, j/Ic, j )3/2 of the jth CBJJ is still

adjustable. These controllable physical parameters of
each of the CBJJ-based detectors suggest that the desired
nonreciprocal array can be constructed by using three
CBJJ-based detectors.

Specifically, in order to realize the detection of the
microwave single photon at the frequency ω01 = 2π ×
4.84 GHz, with the high-efficiency detection approaching
100%, the relevant parameters can be designated as �1 =
�2 = �3 = 0.01ω01, γ1 = γ2 = 0.05ω01, γ3 = 0.093γ1, and
D1 = D2 = λ01/4 by properly setting the capacitance

parameters as Cg,1 = Cg,2 = 1.9 pF and Cg,3 = 0.23 pF.
Therefore, the desired nonreciprocal detector array generated
by a few CBJJs for high-efficiency detection of a single
microwave itinerant photon is feasible by engineering the
relevant parameters of the detectors.

V. CONCLUSION

In summary, we demonstrated theoretically that a nonre-
ciprocity array with a few detectors can be constructed to
implement high-efficiency detection of a single microwave
itinerant photon. Different from the reciprocity detector ar-
ray, which usually requires more than 20 identical detectors
arranged symmetrically to implement ∼100% detection ef-
ficiency, two or three detectors are sufficient to achieve the
desired high-efficiency (approaching 100%) detection of a
single microwave itinerant photon. The nonreciprocity can
be achieved by properly adjusting the physical parameters
of the detectors. The induced nonreciprocity of the array
can be verified by measuring the transmitted and reflected
probabilities of a photon incident from different directions.
Physically, ideal detection efficiency practically refers to com-
plete impedance matching, leading to the zero probability of
the transmission and reflection of the incident photon.

It is noteworthy that, if the physical parameters of the
detectors, such as the coupling strength between the detector

FIG. 12. The influence of the distances (D1 and D2) between two nearest-neighbor detectors on the photon with a frequency ω0, detection
efficiency η̄L→R

3 , and nonreciprocal coefficient κ3, where (a) D2 = λ0/4 and (b) D1 = λ0/4. The other relevant parameters are chosen as
�1 = �2 = �3 = 0.01ω0, γ1 = γ2 = 0.05ω0, γ3 = 0.093γ1, and ω1 = ω2 = ω3 = ω0.
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FIG. 13. Detection efficiency η̄L→R
3 versus the detector eigenfre-

quency ω1 = ω2 = ω3 = ω′ and the frequency ω of the incident mi-
crowave photon. The relevant parameters are set as �1 = �2 = �3 =
0.01ω0, γ1 = γ2 = 0.05ω0, γ3 = 0.093γ1, and D1 = D2 = λ0/4.

and the photon, the decay rate of the excited state of the
detector, and the transition frequency between the ground
and excited states of the detector, are properly designed, the
detection efficiency of a single microwave itinerant photon
can be significantly improved. The feasibility of the proposal
was demonstrated by the designing of a nonreciprocity array
containing two or three CBJJ-based detectors. Because the
techniques to fabricate these devices are well developed, we
believe that the implementation of the detection of a single
microwave itinerant photon with sufficiently high efficiency
is feasible, in principle. Probably, a potential challenge of
the proposal is that the experimental detection efficiency of
a single atomic detector is still limited due to its practical
imperfect absorptions; i.e., the signal cannot be detected even
if the photon is absorbed. Therefore, if a single microwave
photon is imperfectly absorbed by the former detector, it has
no chance of being detected by the latter detectors. There-
fore, the robustness of the present scheme is based on the
higher detection efficiency of a single detector. With the
higher detection efficiency of a single detector, a smaller
number of detectors are required for the construction of a

FIG. 14. (a) A nonreciprocal CBJJ-based array containing three
asymmetrically arranged detectors for the high-efficiency detection
of a single itinerant microwave photon transported along the capaci-
tively coupled superconducting transmission line. Here, Cg, j and Ib, j

( j = 1, 2, 3) denote the capacitance and the biased dc current of the
jth CBJJ, respectively. Ṽ represents the voltmeter for the readout of
the voltage response from any one of the detectors. (b) Detection
principle of a single microwave photon using a CBJJ detector which
is initially prepared at state |0〉 and can be excited to state |1〉 by
the coupled microwave photon. State |1〉 will quickly tunnel into
the voltage state |g〉 for the implementation of the single-photon
detection.

nonreciprocity detector array for ideal detection of a single
microwave photon.
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APPENDIX

In this Appendix, we provide the transmission parameters
for the traveling-wave photons incident from the right side of
the detector array. Similarly, if the photon is incident from the
right and then is sequentially scattered by N asymmetrically
arranged detectors, we have(

t̄ R→L
N

0

)
=

(
ei[φ1(x)+φ2(x)+···+φN−1(x)] 0

0 1

)
M′

N

(
1

r̄R→L
N

)
(A1)

and S′
N = MNϕ(xN−1 − xN )MN−1ϕ(xN−2 − xN−1) · · · ϕ(x1 −

x2)M1. Here, the phase shift matrix reads

ϕ(x j−1 − x j ) =
(

e−iφ j (x) 0
0 eiφ j (x)

)
.

Specifically, for N = 3, we can easily get

t̄ R→L
3 = β1β2β3

−e−2iφ2 (x)[β1 + 1 + e−2iφ1(x)(β2 − 1)] + (β3 + 1)[(β1 + 1)(β2 + 1) − e−2iφ1(x)]
, (A1a)

r̄R→L
3 = (β1 − 1)(1 − β2)e−2i[φ1(x)+φ2(x)] + e−2iφ2(x) − (β3 + 1)[β2 + 1 + e−2iφ1(x)(β1 − 1)]

e−2iφ2(x)[β1 + 1 + e−2iφ1(x)(β2 − 1)] + (β3 + 1)[e−2iφ1(x) − (β1 + 1)(β2 + 1)]
. (A1b)
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