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Multiparticle entanglement classification with the ergotropic gap
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The presence of quantum multipartite entanglement implies the existence of a thermodynamic quantity known
as the ergotropic gap, which is defined as the difference between the maximal global and local extractable
works from the system. We establish a direct relation between the geometric measure of entanglement and the
ergotropic gaps. We show that all the marginal ergotropic gaps form a convex polytope for each class of quantum
states that are equivalent under stochastic local operations and classical communication (SLOCC). We finally
introduce the concept of multipartite ergotropic gap indicators and use them to present a refined criterion for
classifying entanglement under SLOCC.

DOI: 10.1103/PhysRevA.109.062427

I. INTRODUCTION

Thermodynamics, a fundamental branch of physics, ex-
plores the relationships among heat, work, and energy in
physical systems. An important facet of thermodynamics
involves extracting work from isolated quantum systems
through cyclic Hamiltonian processes [1–4]. In quantum me-
chanics, the maximum work that can be extracted, known as
ergotropy, is determined by the system’s density matrix and
Hamiltonian [1,5–10]. The maximal ergotropy under global
and local cyclic Hamiltonian processes provides a new feature
to characterize thermodynamic procedures. In particular, the
ergotropic gap, which is the difference between the maxi-
mal global and local extractable works, has recently received
widespread attention [11–20].

Multipartite quantum states serve as essential resources
for various applications in quantum communication, quantum
computing, and interferometry. One key problem regarding
these states is whether they can be categorized solely based on
local information. The exploration of this marginal problem
originated in the context of the well-known Pauli exclusion
principle for fermions [21,22]. One common approach to cat-
egorizing entanglement is through stochastic local operations
and classical communication (SLOCC) [23]. For pure quan-
tum states, leveraging single-particle information alone can
serve as a means to detect multiparticle entanglement [24].
Specifically, the spectral vectors of reduced densities of indi-
vidual one-body systems collectively form an entanglement
polytope for each entanglement class under SLOCC. The
violation of these generalized polytope inequalities offers an
effective method to detect multipartite entanglement locally.
This classification of entanglement has also been realized
experimentally [25,26].

*Contact author: mxluo@swjtu.edu.cn

Work and quantum entanglement are fundamental re-
sources in thermodynamics and quantum information theory,
respectively. The theory of bipartite entanglement exhibits
deep parallels with thermodynamics. [23,27,28]. While the
importance of quantum entanglement is well established in
quantum information theory [23,28], further exploration of
the connections between work extraction and entanglement
is warranted. Recent studies have revealed strong links be-
tween entanglement and ergotropic gaps [11–13,29]. Notably,
the presence of quantum entanglement always leads to a
nonzero ergotropic gap [11]. However, the direct relationship
between entanglement classification under SLOCC and er-
gotropic gaps remains an open question that requires further
investigation.

In this paper, we delve into the interplay between entangle-
ment classification under SLOCC and ergotropic gaps. Our
investigation centers on the marginal ergotropic gaps result-
ing from the partitioning of a single-qubit and the remaining
qubits. We establish a direct link between these marginal
ergotropic gaps and the geometric measure of entanglement.
By leveraging polygonal inequalities [24], we show a cru-
cial requirement for multiqubit pure states: Each marginal
ergotropic gap must not exceed the sum of the others. Fur-
thermore, we integrate these findings with the concept of
entanglement polytopes to demonstrate that the vectors of
marginal ergotropic gaps collectively form another polytope
for each entanglement class. This ergotropic gap polytope
holds physical significance in connection to the entanglement
polytope and offers an additional criterion for identifying
SLOCC multipartite entanglement classes. To distinguish be-
tween overlapping entanglement polytopes, such as those
arising from generalized W states and Greenberger-Horne-
Zeilinger (GHZ) states, we introduce a multipartite marginal
ergotropic gap indicator. This indicator serves to identify
SLOCC entanglement classes that cannot be validated by the
entanglement polytopes [24].
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II. ERGOTROIC GAP FOR QUBIT SYSTEMS

Consider a finite-dimensional system in the state � on
Hilbert space H with a bare Hamiltonian H at a given time
period τ > 0. The average extractable energy of the system is
denoted as the expectation value of

E (�) = Tr(�H ). (1)

According to the Schrödinger dynamics, the unitary evolu-
tion U (τ ) yields the final state to be �(τ ) = U (τ )�U †(τ ). The
work extracted from the system is then given by the difference
between the initial and final energies:

We(�) = Tr(�H ) − Tr[�(τ )H (τ )]. (2)

For a specific Hamiltonian H = ∑d
i=1 εiE |εi〉〈εi| with ε1 �

· · · � εd , the maximal extractable work from the system in
the initial state �, known as ergotropy [1], is given by

We(�) = Tr(�H ) − min
U (τ )

Tr[U (τ )�U †(τ )H]

= Tr(�H ) − Tr(�pH ), (3)

where the passive state �p is the minimum energetic state and
is given by �p = ∑d

i=1 λi|εi〉〈εi|, with λ1 � · · · � λd .
For a bipartite �AB on Hilbert space HA ⊗ HB, the global

bare Hamiltonian of the joint system takes the form HAB =
HA ⊗ IB + IA ⊗ HB, where I is the identity operator, the local
Hamiltonian is HX = ∑dX −1

j=0 εX
j E |εX

j 〉〈εX
j | with eigenenergies

εX
j E satisfying ε j � ε j+1, E denotes the unit energy, and |εX

j 〉
is the associated eigenstate. The maximal extractable work or
the global ergotropy is then defined as

W G
e (�AB) = Tr(�ABHAB) − Tr

(
�

p
ABHAB

)
, (4)

where �
p
AB is the corresponding passive state of �AB. In con-

trast, the local ergotropy is defined for individual systems as

W L
e (�AB) = W A

e (�AB) + W B
e (�AB)

= Tr(�ABHAB) − Tr
(
�

p
AHA

) − Tr
(
�

p
BHB

)
. (5)

Both the global and local ergotropies allow defining the er-
gotropic gap as the extra gain given by [11]

�(�AB) = W G
e (�AB) − W L

e (�AB)

= Tr
(
�

p
AHA

) + Tr
(
�

p
BHB

) − Tr
(
�

p
ABHAB

)
. (6)

This quantity characterizes the difference between the global
and local maximum extractable works. In particular, in the
case of a bipartite pure state �AB, we have

�(�AB) = Tr
(
�

p
AHA

) + Tr
(
�

p
BHB

)
, (7)

which means that �(�AB) represents the total extractable
energy, derived from measuring the passive states of each
subsystem A and B.

It has shown that the ergotropic gap can be applied to
characterize the bipartite entanglement [11]. In what follows,
we extend to feature multipartite entanglement.

In general, an n-qubit entangled pure state on Hilbert space
H1 ⊗ · · · ⊗ Hn can be written into

|�〉 =
n∑

j=0

1∑
s j=0

αs1···sn |s1 · · · sn〉12···n, (8)

FIG. 1. Schematic polygon inequalities of MEG. (a) Three-qubit
pure states; (b) four-qubit pure state. The length of each side repre-
sents correspondingly to the value of MEG.

where αs1···sn are the coefficients satisfying the normalization
condition of

∑
s1···sn

|αs1···sn |2 = 1. Denote the reduced density
matrix of the qubit i by �i, i = 1, . . . , n. For each �i, there are
two eigenvalues {λ(i)

min, 1 − λ
(i)
min} with λ

(i)
min ∈ [0, 1

2 ]. Consider
all the marginal ergotropic gaps for an n-qubit state with
the bipartition i and i = { j �= i,∀ j}, denoted as �i. Herein,
each qubit i is assumed to be governed by the Hamilto-
nian Hi = E |1〉〈1| under local unitary operations for 1 � i �
n. The composite system is governed by the Hamiltonian
H = ∑n

i=1 Hi ⊗k∈i Ik , herein, Hi ⊗k∈i Ik = I1 · · · Ii−1 ⊗ Hi ⊗
Ii+1 · · · In. According to Eq. (7), the marginal ergotropic gap
(MEG) is then given by

�i(|�〉) = 2λ
(i)
minE = 2

(
1 − λ(i)

max

)
E , (9)

which is related to the geometric measure of bipartite en-
tanglement, i.e., the minimal eigenvalue of the state [30].
This reveals a remarkable correspondence between the ther-
modynamic quantity and the operational information for any
2 × 2n−1-dimensional isolated system.

For any n-qubit pure state |�〉 on Hilbert space H1 ⊗ · · · ⊗
Hn, it has been shown that the spectrum of the reduced density
matrices satisfies the polygon inequalities [31],

λ
(i)
min �

n∑
j �=i,∀ j=1

λ
( j)
min, (10)

where λ
(i)
min ∈ [0, 1

2 ] is the smallest eigenvalue of the reduced
density matrix �i of the ith qubit. Combined with Eq. (9), the
MEG satisfies the following polygon inequality,

�i(|�〉) �
n∑

j �=i,∀ j=1

� j (|�〉), (11)

where the local Hamiltonian is defined as Hi = E |1〉〈1| for the
ith qubit. Remarkably, the inequality (11) guarantees that the
MEGs form a closed n-side energy polygon. This allows for a
geometric representation of the inequality (11) in terms of the
MEGs as shown in Fig. 1.

Let �total(|�〉) denote the total MEG for all possible bipar-
titions of subsystems, that is,

�total(|�〉) =
n∑

j=1

� j (|�〉). (12)

062427-2



MULTIPARTICLE ENTANGLEMENT CLASSIFICATION … PHYSICAL REVIEW A 109, 062427 (2024)

From the inequality (11), the total work gap satisfies the
following inequality as

2� j (|�〉) � �total(|�〉), ∀ j = 1, . . . , n. (13)

This provides an operational relationship of the MEGs of all
bipartitions.

III. MANY-BODY ENTANGLEMENT CLASSIFICATION

The entanglement among quantum systems is highly
relevant in thermodynamics, as the system with more entan-
glement may have a higher ergotropic gap [12]. Our goal here
is to explore many-body entanglement classification using the
MEGs based on the quantum marginal problem related to the
multipartite representability problem in quantum chemistry
[24]. Especially, consider an n-qubit quantum state |�〉 on
Hilbert space ⊗n

i=1Hi. It is entangled if it cannot be written
as a product state of single-qubit states [23]. Given two states,
they are equivalent under SLOCC if and only if they can be
transformed into each other with local invertible operations.
Define a characteristic vector of the MEG as

	 = [�1(|�〉),�2(|�〉), . . . ,�n(|�〉)], (14)

where �i(|�〉) satisfies the inequality (11). Denote C = G · ρ

as the SLOCC entanglement class containing ρ, where G
denotes a local invertible action such that � = G · ρ. From
Eq. (11) all the MEGs for any state in C form a convex
polytope.

Theorem 1. For a given entangled pure state |�〉 on Hilbert
space ⊗n

i=1Hi, the MEG polytope of an entanglement class
C = G · |�〉 is given by the following convex hull,

�C = conv{(�1,�2, . . . ,�n)}. (15)

Proof. Consider a system of n qubits. Denote the marginal
reduced density matrix of the qubit i by �i. For each �i, let
λ(i)

max be the largest eigenvalue of each one-qubit density matrix
ρi. It turns out that the vectors �λ = (λ(1)

max, λ
(2)
max, . . . , λ

(n)
max)

associated with all pure states |�〉 in the closure of an orbit
under SLOCC transformations form a polytope [24]. As a
result, Theorem 1 can be proven using Theorem 2 in Ref. [24]
and the relation (9). �

Equation (9) establishes a relation between the marginal
ergotropic gap, denoted as �i, and the maximal eigenvalue
of each one-qubit density matrix. Additionally, the maximal
eigenvalues, which represent the vertices of entanglement
polytopes, can be computed from covariants within a finitely
generated algebra [24]. Consequently, the vertices of the
marginal ergotropic gap polytopes, i.e., �i, are determinable.
Furthermore, each �i can be directly detected in experi-
ments by measuring only the single-particle energy of the
corresponding passive for each qubit. This work focuses on
presenting a thermodynamic method for identifying multipar-
tite entanglement.

Theorem 1 reveals different meanings of entanglement in
terms of physical thermodynamics and provides a criterion for
entanglement classification under SLOCC. It has been shown
that two transformable multipartite states under SLOCC [32],
where the Schmidt tensor rank has been introduced, of which
the crucial idea is to find the minimal decomposition on the
product basis. However, even for the qubit case, the evaluation

of the tensor rank is an NP-hard problem. Instead, our goal
here is to present a computationally efficient method. We
only use the marginal information of mutlipartite qubit states
as �i for i = 1, 2, . . . , n. Marginal ergotropic gap polytopes
provide a simple way for identifying the global feature of
multiparticle entanglement. If the set of ergotropic gaps of the
reduced density matrices of a given pure state |ψ〉 does not fall
into the polytope �C of marginal ergotropic gaps, the given
state cannot belong to the entanglement class C: 	ψ /∈ �C ⇒
|ψ〉 /∈ C. This procedure requires linear-time complexity.

Our approach to detecting entanglement in Theorem 1 re-
mains applicable for featuring some noisy states. Especially,
consider a minimum bound 1 − ε on the purity Tr ρ2 of a
quantum state ρ, which implies a fidelity 〈ψ |ρ|ψ〉 � 1 − ε

with a pure state |ψ〉. In this case, all the local eigenvalues
of ρ are different from those of |ψ〉 by an amount δ(ε).
For an n-qubit system, the total deviation is approximately
δ(ε) ≈ Nε/2 [24]. Thus, if the measured marginal ergotropic
gap vector 	 of the state ρ is at a distance of at least 2δ(ε)
from the marginal ergotropic gap polytope �C defined in
Theorem 1, the prepared state ρ exhibits a high fidelity with
some pure state that is more entangled than the class C.

We explain the present approach with an example. Suppose
that ρ is an experimentally prepared four-qubit state with the
purity 1 − ε = 0.9. Then by the above there exists a pure
state |ψ〉 with the fidelity 〈ψ |ρ|ψ〉 � 0.9, and according to
Ref. [24], the 1-norm difference of the maximum eigenvalues
satisfies that∑

k

∣∣λ(k)
max(ρ) − λ(k)

max(|ψ〉)
∣∣ � 0.21. (16)

It has also been demonstrated that if the inequality∑4
k=1 λ(k)

max < 3 holds, then a given state |ψ〉 does not belong
to W -type entanglement. By combining the aforementioned
inequality with Eq. (9), we obtain

�1(|ψ〉) + �2(|ψ〉) + �3(|ψ〉) + �4(|ψ〉) > 2, (17)

which implies that |ψ〉 is not entangled in terms of the W type
(see more details in Example 2). This means that it is sufficient
by using Eqs. (16) and (9) to verify that the single-particle
eigenvalues of the experimentally prepared state ρ satisfy the
relation

�1(ρ) + �2(ρ) + �3(ρ) + �4(ρ) > 2.42. (18)

This provides a method to characterize the noisy quantum
states.

Example 1. For a three-qubit pure state, there exists a one-
to-one correspondence between six entanglement classes and
entanglement polytopes [24,33]. Note that the entanglement
polytopes are given by the vectors �λ = (λ(1)

max, λ
(2)
max, λ

(3)
max).

The vertices of entanglement polytopes can be computed
from so-called covariants that do not vanish identically on
the orbit [24]. Combining this fact with Eq. (9), Theorem 1
implies that the marginal ergotropic gap polytopes of all pure
states consist of a convex hull of five vertices. One vertex,
(�1,�2,�3) = (0, 0, 0), corresponds to the product states.
Three vertices, (0,1,1), (1,0,1), and (1,1,0), are for three kinds
of biseparable states, and the last (1,1,1) corresponds to the
maximally entangled GHZ state |GHZ〉 = 1√

2
(|000〉 + |111〉)
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FIG. 2. The MEG polytopes of three-qubit pure states.

[34], as shown in Fig. 2. Here, the lower pyramid represents
the generalized W states given by

|W 〉 = a1|001〉 + a1|010〉 + a2|100〉, (19)

with
∑

i |ai|2 = 1. Note the vector (λ(1)
max, λ

(2)
max, λ

(3)
max), corre-

sponding to the collection of local maximal eigenvalues, is
contained in the W -type entanglement polytope [24]. This
implies that

λ(1)
max + λ(2)

max + λ(3)
max � 2. (20)

By combining the inequality (20) and Eq. (9), the MEG vector
satisfies the following inequality,

�1 + �2 + �3 � 2E . (21)

Moreover, the entire polytope is for the generalized GHZ
states,

|GHZ〉 = cos θ |000〉 + sin θ |111〉, (22)

with θ ∈ (0, π
4 ).

Equation (21) provides a different classification scheme
under the SLOCC for three-qubit pure states in terms of the
MEG. The violation of the inequality (21) witnesses GHZ-
type entanglement. Nevertheless, a MEG vector may fail to
fully distinguish different entanglement classes. This can be
further resolved by using the following work indicators as

η(|�〉) = min
j

⎧⎨
⎩� j (|�〉) −

n∑
k �= j,k=1

�k (|�〉)

⎫⎬
⎭. (23)

The quantity η(|�〉) characterizes the genuine tripartite en-
tanglement [35,36], and a tripartite pure state |ψ〉 ∈ H1 ⊗
H2 ⊗ H3 is called biseparable if it can be written as |ψ〉 =
|ψi〉 ⊗ |ψ jk〉. If a tripartite state is not biseparable then it is
called genuinely tripartite entangled, i.e., the genuine tripartite
entanglement cannot be written as a product state in terms of
any bipartition.

Proposition 1. Suppose the bar Hamiltonian of each qubit
is Hj = E |1〉〈1|. A three-qubit pure state |�〉 is genuine tri-
partite entangled if η(|�〉) �= 0.

Proof. Assume that the quantum state |�〉 on Hilbert space
H1 ⊗ H2 ⊗ H3 is not genuine tripartite entangled, i.e., it al-
lows the following decomposition as

|�i jk〉 = |ϕi〉 ⊗ |ϕ jk〉, (24)

|�i jk〉 = |φi〉 ⊗ |φ j〉 ⊗ |φk〉, (25)

where i �= j �= k ∈ {1, 2, 3}, |ϕi〉 and |φ j〉 denote the states of
the respective system i and j, and |ϕ jk〉 denotes the state of the

joint system jk. For the case (24), from (9), we obtain �i = 0
and � j = �k from the pure state |ϕ〉 jk . Moreover, it is easy to
show that � j = �i + �k for all i �= j �= k ∈ {1, 2, 3}, where
� j denotes the ergotropic gap under the bipartition j and ik.
This implies that η(|�〉) = 0 for any j ∈ {1, 2, 3}. A similar
result holds for the case (25). �

As a complement to Theorem 1, the multipartite ergotropic
gap indicator η provides a finer criterion to classify multiqubit
pure states under the SLOCC. The present MEG-based crite-
rion on SLOCC classification can identify states better than
the conclusion from Ref. [24] (see the following examples).

Example 2. Consider a generalized n-qubit W state on
Hilbert space ⊗n

i=1Hi given by

|Wn〉 =
n∑

i=1

√
ai|�1i〉1···n, (26)

where �1i denotes all zeros except for the ith component which
is 1, and ai satisfies

∑n
i=1 ai = 1 and a1 � · · · � an. Suppose

that the bar Hamiltonian of each qubit i is Hi = E |1〉〈1| for
1 � i � n. The reduced density matrix of the subsystem i is
given by

�i = (1 − ai )|0〉〈0| + ai|1〉〈1|. (27)

According to Eq. (9), if there exists ai > 1
2 , we obtain that

�i = 2(1 − ai )E and � j = 2a jE , whereas we have �i =
2aiE for any ai < 1

2 . This further implies that

�total(|Wn〉) =
{

4(1 − ai )E < 2E , ∃i, ai > 1
2 ,

2E , ∀i, ai < 1
2 .

(28)

Hence, we obtain that �total(|Wn〉) � 2E for any n-qubit W
state. This shows that the generalized W state with ai < 1/2
for any i lies on the facet of �total(|Wn〉) = 2E .

Example 3. Consider a generalized n-qubit GHZ state on
Hilbert space ⊗n

i=1Hi given by

|GHZn〉 = cos θ |0〉⊗n + sin θ |1〉⊗n)1···n, (29)

where θ ∈ (0, π
4 ]. The bar Hamiltonian of each qubit i is

Hi = E |1〉〈1| for 1 � i � n. The reduced density matrix of the
subsystem i can be written

�i = cos2 θ |0〉〈0| + sin2 θ |1〉〈1|. (30)

According to Eq. (9), the MEG under the bipartition i and i is
given by �i(|GHZn〉) = 2 sin2 θE . This implies that

�total(|GHZn〉) = 2n sin2 θE � nE , (31)

where the maximum gap is obtained from the maximally
entangled n-qubit GHZ state, i.e., θ = π

4 . Moreover, we have

�total(|GHZn〉) > 2E (32)

for θ > arcsin
√

1/n. This means the generalized GHZ state
with θ > arcsin

√
1/n does not belong to the facet determined

by the generalized n-qubit W state in Example 2. This pro-
vides a way to distinguish two entanglement classes by using
the facet of �total = 2E .

However, for the case of θ < arcsin
√

1/n, we have

�total(|GHZn〉) < 2E . (33)
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According to Eqs. (33) and (28), the presence of overlapping
regions fails to distinguish W -type entanglement from GHZ-
type entanglement. The indicator η may be used to certify the
entanglement as

η(|Wn〉) = 0, ∃i, ai > 1
2 , (34)

η(|GHZn〉) = −2(n − 2) sin2 θE < 0, ∀i. (35)

Moveover, for the case of θ = arcsin
√

1/n, we have

η(|GHZn〉) = −2(n − 2)E

n
. (36)

Meanwhile, for the generalized W state we obtain that

η(|Wn〉) = 4aiE − 2E , ∀i, ai < 1
2 . (37)

This implies η(|GHZn〉) �= η(|Wn〉) for any one ai satisfying
ai �= 1

n . So, we have distinguished the generalized GHZ state
from all the almost generalized W states except for the maxi-
mally entangled W state beyond the recent result [24].

Example 4. Consider an n-qubit Dicke state with l excita-
tions [37] given by∣∣D(l )

n

〉
12···n = 1√(n

l

) ∑
g∈Sn

g(|0〉⊗n−l |1〉⊗l ), (38)

for 1 � l � n − 1, where the summation is over all possible
permutations g ∈ Sn of the product states with n − l number
of |0〉 and one |1〉, Sn denotes the permutation group on
n items, and

(n
l

)
denotes the combination number choosing

l items from n items. Herein, each qubit i is governed by
the Hamiltonian Hi = E |1〉〈1|. By the symmetry, the reduced
density matrix of any subsystem i is given by

�i = n − l

n
|0〉〈0| + l

n
|1〉〈1|. (39)

According to Eq. (9), it is easy to check that

�i
(∣∣D(l )

n

〉) =
{

2lE
n , l � n

2 ,

2(n−l )E
n , l > n

2 .
(40)

This implies a general polytope facet as

�total
(∣∣D(l )

n

〉) =
{

2lE , l � n
2 ,

2(n − l )E , l > n
2 .

(41)

Especially, |D(l )
n 〉 is reduced to the n-qubit W state when l = 1

and n � 3. This implies �total(|W 〉) = 2E . A further evalua-
tion shows for any generalized Dicke states that∣∣D̂(l )

n

〉 =
∑
g∈Sn

αgg(|0〉⊗n−l |1〉⊗l )12···n, (42)

where αg depending on the permutation g ∈ Sn satisfies∑(n
l )

g α2
g = 1. From the symmetry �i(|D̂(l )

n 〉) takes the max-

imum value for the case of αg = 1/

√(n
l

)
for each αg. As a

result, we obtain

�total
(∣∣D̂(l )

n

〉)
�

⎧⎪⎨
⎪⎩

2lE , l � n

2
,

2(n − l )E , l >
n

2
.

(43)

These show that the generalized Dicke states are under the
facet of �total(|D̂(l )

n 〉) < 2lE , while n-qubit Dicke states |D(l )
n 〉

are on the facet of �total(|D(l )
n 〉) = 2lE . It provides a way

to witness Dicke states with different excitations that are in-
equivalent under the SLOCC, that is, the n-qubit Dicke states
with different excitations lie on different facets.

IV. CONCLUSION

In this paper, by defining the difference between the
maximal global and local extractable works, we show the
ergotropic gap plays a significant role in certifying quantum
entanglement. This has given profound analogies between
thermodynamic quantities and entanglement. The present
criterion for SLOCC classification based on MEG can distin-
guish quantum states more accurately compared to previous
results from Ref. [24]. For an arbitrary many-body isolated
system, it shows that a nonzero ergotropic gap is a necessary
condition to guarantee the entanglement [12]. The bipartite
ergotropic gap can further capture the figure of genuineness
in multipartite entanglement, which may lead to different
genuine multipartite entanglement measures from bipartite
ergotropic gaps. Furthermore, it is still unknown whether the
set of MEG for multipartite mixed states forms a convex
polytope.
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