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Near-threshold qudit stabilizer codes with efficient encoding circuits for magic-state distillation
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Magic-state distillation is a protocol to purify noisy quantum states using quantum stabilizer codes. In this
paper, we provide conditions for identifying magic states along with analytical expressions for computing the
noise threshold. Through quantum entropic results, we prove the convergence of the magic-state distillation
procedure. We derive analytical results to show how the noise threshold scales as a function of the minimum
distance and the number of physical qudits of the underlying quantum stabilizer code. We distill |T 〉 and |S〉
states with thresholds 0.498 (theoretical limit is 0.5) and 0.71 (theoretical limit is 0.75) over the depolarizing
channel using [[31, 1, 16]]2 quantum Bose-Chaudhuri-Hocquenghem code and [[29, 1, 15]]3 quantum qutrit
code, respectively. Finally, encoding algorithms based on quantum Calderbank-Shor-Steane (CSS) and non-CSS
qudit stabilizer codes along with circuits are proposed for magic-state distillation.
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I. INTRODUCTION

Quantum error correction (QECC) [1–3] is the foundation
for fault-tolerant quantum computing. To harness the power
of quantum advantage, the realization of fault-tolerant Clif-
ford and non-Clifford gates is essential. Such non-Clifford
gates also find applications within quantum machine-learning
architectures [4,5]. The implementation of fault-tolerant non-
Clifford gates is feasible using magic states [6]. Therefore,
magic-state distillation (MSD) using QECCs from imper-
fectly prepared noisy states is of significant importance.

The MSD protocol was originally introduced [6] for the
distillation of the eigenstates of the T gate using a five-
qubit stabilizer code. Magic states are useful in implementing
non-Clifford or rotational gates via state injection. Higher-
dimensional codes, such as those from qutrits, with better
error suppression compared to the qubit counterparts, were
recently proposed by Prakash [7]. The basic set of gates, such
as the Hadamard gate H , the S gate, and the controlled-NOT
gate [8,9], can generate the complete Clifford group. The
eigenstates of the operator from the Clifford group can be
used as magic states for implementing non-Clifford operators
towards universal fault-tolerant quantum computing.

If the discrete Wigner function over a quantum state eval-
uates to a negative value, magic states can be distilled [10]
from such a quantum state. However, not all stabilizer codes
can generate a particular distillable magic state. This opens
up the question regarding the choice of stabilizer codes for
the distillation of specific magic states, which we would like
to address in this paper.

Consider a [[n, k, d]]p qudit quantum stabilizer code Q that
encodes k qudits into n qudits, having minimum distance d .
To distill a state from Q using MSD from n noisy qudits [6],
stabilizer generators of the code Q are measured such that all
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generators give +1 measurement outcome; if not, the process
is repeated. Analytically, measurement is performed using a
projection operator constructed from the normalized addition
of the stabilizer group elements, where the stabilizer group is
generated using the stabilizer generators of Q. The purified
magic state is obtained by decoding the projected state to a
single-qudit quantum state.

Designing Clifford operators for decoding quantum codes
[11,12] can be challenging since the quantum circuit param-
eters have to be optimized based on the circuit depth, gate
complexity, and transversality requirements. Since the depth
of a quantum decoding circuit scales with the code length [12],
it is desired to maintain lower depth suitable for the decoding
step of the MSD protocol. The inverse of the decoding opera-
tor can be used for quantum encoding [13].

In this article, we formulate the MSD protocol for general
qudit stabilizer codes and provide insights into the working of
the procedure from an information-theoretic perspective. We
also construct practical codes along with efficient encoding
circuits, practically useful for MSD. Our main contributions
are summarized as follows: (1) We provide the necessary con-
dition to determine whether a quantum state is distillable using
a particular stabilizer code, useful for identifying suitable
quantum codes. We provide an explicit formula for computing
the noise threshold for the MSD process based on the qudit
stabilizer code parameters. (2) By projecting the n-qudit noisy
state onto the code space during the purification process, we
establish that this syndrome probability is a monotonically
nondecreasing function over iterations. Further, we prove that
the convergence of a noisy state to a pure state is convergent in
a quantum entropic sense, building over the simulations stud-
ies carried out in [10]. (3) We provide an analysis to show how
the minimum distance and code length influence the noise
threshold. We validate the theory by providing [[31, 1, 16]]2

code for the distillation of eigenstate |T 〉 of T gate [6] with
the noise threshold of 0.498. Also, we provide [[13, 1, 7]]3

and [[29, 1, 15]]3 codes for the distillation of the eigenstate
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FIG. 1. For a qutrit code, the green simplex spanned
by {|φ1〉, |φ2〉, |φ3〉} and the blue simplex spanned by
{|ξ0〉, |ξ1〉, . . . , |ξ3n−1〉} represent the single-qutrit code space
and the 3n-dimensional qutrit state input to the MSD, respectively.
The two simplexes intersect within the orange region in the middle
where distillable states lie.

|S〉 of the qutrit Hadamard gate with the noise thresholds of
0.425 and 0.71, where the former code can be used when
the quantum hardware has a limited number of noisy oper-
ational qutrits, and the latter code can be used to fulfill the
requirements of higher noise thresholds for noisy quantum
hardware with sufficient number of qutrits, thereby proving
that codes with larger minimum distance improves the noise
threshold while distilling the magic states. (4) Finally, we
provide algorithms to design encoding circuits for CSS as well
as hypergraph product codes, practically useful for building
qudit stabilizer codes for MSD.

The paper is organized as follows: In Sec. II, we begin
with a discussion on the geometric framework of the MSD
algorithm based on qudit stabilizer codes. We provide the
conditions for distillation and computing noise threshold. In
Sec. III, we provide analytical insights into the convergence
of the MSD algorithm based on quantum entropic changes to
the noisy state over iterations and the scaling of probability
of error with respect to the minimum distance of the code.
In Sec. IV, we provide practical codes to distill the |T 〉 and
|S〉 states [7]. We also prove that the noise threshold improves
with the minimum distance of the quantum code. In Sec. V,
we provide algorithms to encode any Calderbank-Shor-Steane
(CSS) and non-CSS qudit stabilizer codes. The latter uses
the hypergraph product code construction to create a qudit
quantum stabilizer code. This is useful to illustrate the role
of quantum decoding circuits based on qudit stabilizer codes
for MSD. We conclude the paper in Sec. VI.

II. MAGIC-STATE DISTILLATION USING QUDITS

A quantum stabilizer code with a high noise threshold for
the MSD is generally challenging to search. In a geometric
sense, the choice of a stabilizer code for a given noisy magic
quantum state depends upon the alignment of the noisy state
with the logical states spanning the subspace of the stabilizer
code. This is illustrated in Fig. 1 for the qutrit case. A single-
dimensional code is typically used [6,7,10] in MSD to avoid
any degeneracy over multiple logical states of the quantum
stabilizer code. For a p-level qudit, a general stabilizer code
[[n, 1, d]]p, with associated generators 〈s1, s2, . . . , sn−1〉, has

a qudit projection operator [10] given by

P = 1

pn−1

n−1∏
k=1

p−1∑
l=0

sl
k . (1)

If all the generators si, ∀ i, give a +1 measurement outcome
on measuring an n-qudit state, then the operator P will project
the state onto the code space spanned by the eigenvectors of P.
The spectral decomposition of the operator P can bring more
insights into the MSD protocol as follows:

P =
p∑

k=1

αk|φk〉〈φk|, (2)

where αk = 1 for a projection operator since |φ j〉’s are the
basis of the code space; therefore, all elements of the stabilizer
group will give a +1 eigenvalue for |φ j〉. The projection space
spanned by |φ j〉, ∀ j, and the common eigenvectors of si, for
all i, is the code space [1].

A. Background of MSD

Any quantum state σ over a p-level qudit can be ex-
pressed using p2 − 1 Heisenberg-Weyl basis operators [6].
Such p2 − 1 parameters of the state σ can be reduced to p − 1
by randomly applying a single-qudit Clifford unitary U . The
eigenstates of the operator U are |ξi〉 with eigenvalues αi. We
note that U m = I over σ .

One of the eigenstates of the operator U is the actual magic
state, which can be distilled through the MSD process, and
the remaining eigenstates are just noisy states. To reduce the
dimensionality of the state σ , we apply a twirling scheme as
follows:

T (σ ) = 1

m

m−1∑
i=0

U iσ (U †)i =
p−1∑
i=0

ci|ξi〉〈ξi|, (3)

where wl = 〈ξl |σ |ξl〉. From Eq. (3), we get

wl = 〈ξl | 1

m

m−1∑
i=0

U iσ (U †)i|ξl〉. (4)

Using the spectral decomposition of U , we get

wl = 1

m

m−1∑
i=0

p−1∑
j,k=0

αi
j

(
αi

k

)∗〈ξ j |σ |ξk〉〈ξl |ξ j〉〈ξk|ξl〉. (5)

Since |ξ j〉 are orthonormal, we get

wl = sl〈ξl |σ |ξl〉, where sl = 1

m

m−1∑
i=0

|αl |2i. (6)

As
∑p−1

l=0 wl = ∑p−1
l=0 〈ξl |σ |ξl〉 = 1. Therefore, m is the mini-

mum value for which sl = 1, ∀ l . As a result,

wl = 〈ξl |σ |ξl〉. (7)

We can project state σ onto the hyperplane spanned by the
eigenstates of the operator U , i.e., span(|ξ0〉, |ξ1〉, . . . , |ξp−1〉).
The hyperplane for the state σ can be parametrized and
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expressed in terms of the eigenstates of U , as follows:

T (σ ) =
⎛
⎝1 −

p−1∑
i=1

εi

⎞
⎠|ξ0〉〈ξ0| +

p−1∑
i=1

εi|ξi〉〈ξi|. (8)

First step: We prepare a state σ ′ = T (σ )⊗n, which is an
input to the MSD protocol. The state σ ′ can be expressed in
terms of eigenstates of U using Eq. (8) as follows:

σ ′ =
∑
z∈Fn

p

wz|ξz〉〈ξz|, (9)

where |ξz〉 = |ξz1〉 ⊗ · · · ⊗ |ξzn〉.
Second step: All the stabilizer generators of the code are

measured postselected on the +1 measurement1 outcome. The
projected state ρ is as follows:

ρ = Pσ ′P†

tr(σ ′P)
. (10)

Third step: A Clifford unitary D is applied on the projected
state ρ. Operator D sends the logical operators of the code to
a single-qudit operator. A single-qudit state σt [6] is obtained
by decoding the projected state ρ as follows:

DρD† = σt ⊗ |0〉〈0|⊗(n−1) (11)

where D is a decoding operator. The operator D can transform
an n-qudit state to single-qudit state and n − 1 ancillae in the
|0〉⊗(n−1) state.

B. Conditions to identify the distilllable magic states

Consider a [[n, 1, d]]p quantum stabilizer code with
transversal logical operators [6,10,14] having a projection
operator P with eigenvectors |φ0〉, |φ1〉, . . . , |φp−1〉 and eigen-
value +1. All stabilizer generators of the code and their
combinations give a measurement outcome of +1 if the state
belongs to the code space. So, |φ0〉, |φ1〉, . . . , |φp−1〉 span the
projection space of the quantum stabilizer code. After step 2 of
MSD discussed in Sec. II A, the projected state ρ in Eq. (10)
becomes

ρ =
∑

i, j∈Fp
|φi〉〈φi|σ ′|φ j〉〈φ j |

Ps

= 1

Ps

∑
i, j∈Fp

|φi〉〈φi|
⎛
⎝∑

z∈Fn
p

wz|ξz〉〈ξz|
⎞
⎠|φ j〉〈φ j |

= 1

Ps

⎡
⎢⎣∑

i∈Fp

∑
z∈Fn

p

wz|〈φi|ξz〉|2|φi〉〈φi|

+
∑

(i, j)∈F2
p :i 	= j

∑
z∈Fn

p

wz|〈φi|ξz〉〈ξz|φ j |〉|φi〉
〈
φ j

∣∣
⎤
⎥⎦, (12)

1The generators of the stabilizer code will give +1 measurement
outcome if the state σ ′ in the first step is either a codeword or belongs
to the code space.

where Ps = ∑
i∈Fp

〈φi|σ ′|φi〉. Replacing the variables wz and
〈ξz||φ j〉 with functions pi and qi, j , we get

ρ =
∑

i∈Fp
pi|φi〉〈φi|
Ps

+
∑

i, j∈Fp:i 	= j qi, j |φi〉〈φ j |
Ps

, (13)

where

pi =
∑
z∈Fn

p

wz|〈φi||ξz〉|2, (14)

qi, j =
∑
z∈Fn

p

wz|〈φi||ξz〉〈ξz||φ j〉|. (15)

Defining set W = {z : P|ξz〉 = 0}, Eqs. (14) and (15) become

pi =
∑

z∈Fn
p\W

wz|〈φi||ξz〉|2, (16)

qi,k =
∑

z∈Fn
p\W

wz|〈φi||ξz〉〈ξz||φk〉|. (17)

Since cross fidelities qi,k = 0 for all i and k using the projec-
tion equivalence equation2 [6], Eq. (13) simplifies to

ρ = 1

Ps

∑
i∈Fp

pi|φi〉〈φi|. (18)

At the output of the protocol, the probability p0

Ps
of the

state |φ0〉, which is proportional to the state |ξ0〉, should be
nonzero3 and greater than the initial syndrome probability of
the input magic state |ξ0〉.

C. Calculation of the noise threshold

In this section, we analyze the noise threshold for distilling
the nonstabilizer state, i.e., the magic state using a p-level
qudit quantum code. The noise threshold of a state is a point
beyond which the MSD protocol cannot purify the noisy state.
From Eq. (16), we infer that the fidelity functions do not alter
the decoding operations since it is simply a mapping of the
logical operators of the code to single-qudit unitary operators
[10].

Consider a single parameter η reduced from the param-
eters ω1, . . . , ωp−1 given by η = ∑p−1

i=1 ωi. This parameter
reduction can be visualized as projecting a state from the
hyperplane onto a line with ωi = η

p−1 , ∀ i.
Figure 2 shows the geometry of magic-state distillation

after twirling, i.e., postdimensionality reduction for a qutrit
Hadamard operator. A single parameter η controls the state ρ

to lie on a line. When the state lies within the noise threshold,
i.e., confined to the distillable regions, we can achieve magic-
state distillation.

2The projection [6] equation is given by

p−1∑
i=0

|φi〉〈φi| =
∑
x∈Fn

p

P|ξx〉〈ξx|P.

3The pure magic state prepared n times should not lie outside the
code space.
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FIG. 2. The vertices of the equilateral triangle represent the
eigenstates of the qutrit Hadamard operator. The state ρ lies on this
plane after the twirling scheme. The parameter δ varies the state ρ

confined to a line. The red regions (distillable regions) contain the
distillable states restricted to the noise threshold parameter τ .

We can rewrite Eq. (8) in terms η as

T (ρ) = (1 − η)|ξ0〉〈ξ0| +
(

η

p − 1

) p−1∑
i=1

|ξi〉〈ξi|, (19)

where |ξ0〉 is the distillable state and |ξ j〉, j ∈ {1, . . . , p − 1},
are the noisy states. Following the approach from [6], the
density matrix σ ′ in Eq. (9) can be rewritten as follows:

σ ′ =
∑
z∈Fn

p

(1 − η)n−H (z)

(
η

p − 1

)H (z)

|ξz〉〈ξz|, (20)

where H (z) is the Hamming weight of z. The fidelity functions
pi in Eq. (16) become

pi =
∑

z∈Fn
p\W

(1 − η)n−H (z)

(
η

p − 1

)H (z)

|〈φi||ξz〉|2, (21)

where W is the index set for which P|ξz〉 = 0. The projection
probability defined from (18) satisfies the properties of the
density matrix.

Ps = tr(σ ′P) =
∑
i∈Fp

pi. (22)

To calculate the noise threshold, we equate the probability
of error in the input and output states defined in [6]. There-
fore, we can extend the threshold calculation for the general
qudits by following a similar approach. We calculate ηth =∑p−1

i=1
pi

tr(σ ′P) . Equation (21) is rewritten as

∑
i∈S\{0},z∈Fn

p\W

(1 − ηth )n−H (z)

(
ηth

p − 1

)H (z)

|〈φi||ξz〉|2

− tr(σ ′P)ηth = 0, (23)

where S = {0, 1, . . . , p − 1}. We can expand tr(σ ′P) in terms
of pi in Eq. (23) by using Eq. (22). On further simplification,
we can calculate ηth in terms of code parameters as follows:

ηth =
∑

i∈S\{0} |〈φi||ξ0〉|2∑
i∈S |〈φi||ξ0〉|2 , (24)

where |ξ0〉 = |ξ0〉⊗ n.

Example 1. The distillation of the eigenstates of the qutrit
Hadamard gate H was proposed using a five-qutrit quantum
stabilizer code Q1 = [[5, 1, 3]]3 detailed in Table 2 of [10].
|H±1〉 are the distillable states using Q1, but the state |Hi〉 is
not distillable. Now, we check using our procedure if the state
|Hi〉 is distillable or not using the code Q1.

Consider the noisy qutrit state σ twirled as follows:

σ → 1

4

4∑
i=1

Hiσ (Hi )†. (25)

Post twirling, σ is projected from an eight-dimensional
Hilbert space to a two-dimensional space, i.e., on a Hadamard
plane as shown in Fig. 2. The distillable states lie in the red
region [10] within the threshold. σ can be written as σ = (1 −
ω1 − ω2)|Hi〉〈Hi| + ω1|H1〉〈H1| + ω2|H−1〉〈H−1|. With δ =
ω1 + ω2 and ω1 = ω2 = δ

2 , following Eq. (19), σ is confined
to a line controlled by δ given by

σ = (1 − δ)|Hi〉〈Hi| + δ

2
(|H−1〉〈H−1| + |H1〉〈H1|). (26)

The fidelity functions {pi}2
i=0 for the state |Hi〉 are

{0, 0.0144, 0.0145} for δ = 0. Therefore, using the five-qutrit
code, the state |Hi〉 is not distillable. We have simulated the
results of Sec. IV in [10] for the states |H±1〉. The |H±1〉 states
are distillable when ε1 and ε2 are less than η/2. The noise
threshold evaluated using simulation is around4 0.21 × 9

8 ≈
0.236, as shown in Fig. 3. We compute the threshold for states
|H±1〉 by Eq. (24) to be 0.237.

III. CONVERGENCE ANALYSIS
OF THE MSD PROCEDURE

Quantum entropic measure can be used to quantify the
mixedness in a quantum state. We can track the MSD process
by calculating the quantum entropy of the output state in the
subsequent iterations of the MSD process. If we are operating
within the threshold region, then every iteration of MSD leads
to the convergence of a state in the quantum entropic sense as
we approach pure states.

To prove it, we need to establish that the quantum entropy
of the output state ρ in (18) is less than the quantum entropy
of the input state σ ′ in (9) over every MSD iteration.

Theorem 1. For a p-level qudit code, the quantum en-
tropies of the input state σin and the output state σout at the
t th iteration of the MSD protocol are related as follows:

H (σ )(t )
out � 1

Ps

(
log2(Ps) + H (σ )(t )

in

)
.

We prove Theorem 1 in Appendix A.
In Example 1, we discuss the distillation of the eigenstates

of the Hadamard gate using [[5, 1, 3]]3 code. As |Hi〉 is not

4The qutrit state ρ when affected with the depolarizing noise
becomes ρ1 = (1 − p)ρ + p

3 I3. The Kraus operators for the qutrit

depolarizing channel [15] are E0,0 =
√

1 − 8
9 λ I3 and Es,t =

√
λ

3 X sZt .

The state ρ in operator-sum representation is ρ2 = ∑
r,s∈F3

Es,tρE †
s,t .

On comparing ρ1 and ρ2, we get λ = 9
8 p.
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(a) (b)

(c)

FIG. 3. (a), (b) Show output noise probabilities ε
(1)
out = f (ε1, ε2) and ε

(2)
out = f (ε1, ε2) in green surfaces as a function of the input noise

probabilities ε1 and ε2 when the MSD protocol is executed for distilling |H±〉 state using the five-qutrit code [10]. The blue plots ε
(1)
out = ε1 and

ε
(2)
out = ε2 are linear in ε1 and ε2 and intersect with the green plot at regions of threshold beyond which distillation is not possible. (c) Indicates

that the threshold is around 0.21.

distillable, its quantum entropy increases and saturates to that
of the maximally mixed case over iterations. The states |H±1〉
are distillable using five-qutrit code, so their entropy decreases
to zero. The entropic observations are shown in Fig. 4. It
is interesting to note that the probability of projecting the
noisy quantum state over the code space projection operator
is monotonically nondecreasing with the number of iterations
during the execution of the MSD procedure when the state is
distillable.

This can be proved by applying the MSD protocol itera-
tively over an n-length quantum code, satisfying the distillable
conditions described in Sec. II B. First, we consider the input
state to be distillable and prove that the probability of pro-
jection is increasing over iterations. Next, we consider the
probability of projection to be increasing over iterations and
prove that the state becomes distillable, implying the proof in
both ways. We prove this property in Theorem 2.

Theorem 2. If the MSD procedure operates below the
noise threshold to perform purification, the probability of
projection onto the code space is a monotone nondecreasing
function over iterations.

We prove Theorem 2 in Appendix A.

A. Scaling of the noise threshold based on the minimum
distance of the quantum code

Consider a quantum stabilizer code [[n, 1, d]]p for distill-
ing a state |u〉, which is an eigenstate of an operator U . The
transversal logical Clifford operators satisfying triorthogonal
conditions [16,17] are of the form Ū = U ⊗n. The stabilizer
equivalent [1] of the operator Ū is Ũ = UA ⊗ IB.5 Sets A and
B contain the qudit positions, where operators U and I are
applied on the qudits in a length-n code such that A ∪ B =
{1, 2, . . . , n}. The cardinality of the sets A and B are d and
n − d , respectively, since the distance of the quantum code is
the minimum symplectic weight among all logical operators

5The example can be the seven-qubit Steane code that has transver-
sal logical gates as X ⊗7 and Z⊗7. The stabilizer equivalent of these
gates are X̄ = I⊗4 ⊗ X ⊗3 and Z̄ = I⊗4 ⊗ Z⊗3 with symplectic op-
erator weight 3 equal to code distance. It is easy to infer that the
Clifford or non-Clifford gate should be of the form I⊗4 ⊗ U ⊗3,
and they can be represented as U{5,6,7} ⊗ I{1,2,3,4}. For example, the
logical Hadamard gate for the seven-qubit Steane code is given by
H̄ = I⊗4 ⊗ H⊗3 as H̄ X̄ H̄ † = Z̄ and H̄ Z̄H̄† = X̄ .
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FIG. 4. Quantum entropy of the output magic states (eigenstates
of the qutrit Hadamard gate), distilled through the code Q1, is plotted
against the iterations of the MSD protocol. Since the state |Hi〉 is not
distillable using Q1, therefore, the quantum entropy of the state |Hi〉
is increasing and saturated at the quantum entropy of the maximally
mixed state log2(3) ≈ 1.598 as shown in the red line. The blue line
shows the quantum entropy of the |H±1〉 states that are distillable by
the five-qutrit code. Therefore, entropies of |H±〉 are tending towards
zero with repeated application of the MSD procedure.

of the code [1]. Using an appropriate twirling scheme

1

m

[
m−1∑
i=0

U iρU i†

]
,

such that U m = I , the parameters of the state ρ can be reduced
to ε such that

ρ = (1 − ε)|u0〉〈u0| + ε

p − 1

∑
i∈Sp\{0}

|ui〉〈ui|,

where |ui〉, ∀ i ∈ Sp = {0, 1, . . . , p − 1}, are the eigenvectors
of U with eigenvalues ci.

To execute MSD an initial state ρn is prepared consisting
of n qudits such that the qudit positions qi ∈ A over state ρ are
denoted as ρA and leftover qudits whose positions q j ∈ B are
in the state |0〉 denoted as |0〉〈0|B. We represent ρn as

ρn = ρA ⊗ |0〉〈0|B, (27)

where ρA = ∑
y∈F |A|

p
(1 − ε)|A|−|y|H ( ε

p−1 )|y|H |uy〉〈uy| and

|0〉〈0|B = |0〉〈0|⊗|B| such that |uy〉 = |uy1〉 ⊗ |uy2〉 ⊗ · · · ⊗
|uy|A| 〉, for all y = (y1, y2, . . . , y|A|) ∈ F |A|

p , and |y|H denotes
the Hamming weight of y. Equation (27) can be written as

ρn =
∑

y∈F |A|
p

(1 − ε)|A|−|y|H
(

ε

p − 1

)|y|H

× |uy〉|0〉⊗|B|〈uy|〈0|⊗|B|. (28)

The projection operator of the code is given by [10]

P = 1

pn−1

n−1∏
i=1

p−1∑
j=0

gj
i ,

where g1, g2, . . . , gn−1 are stabilizer generators of the
[[n, 1, d]]p code. The next step is to project the state in
Eq. (28) onto the code space as follows:

ρc = 1

Ps

∑
y∈F |A|

p

(1 − ε)|A|−|y|H
(

ε

p − 1

)|y|H
P|wy〉〈wy|P , (29)

where Ps = tr(Pρn) is the projection probability of the state
ρn and |wy〉 = |uy〉|0〉⊗|B|. Let Ci be the set containing tuples
y ∈ F |A|

p so that P|wy〉 is proportional to eigenvector |ũi〉 of Ũ ,
∀ i ∈ Sp. Then, Eq. (29) can be written as

ρc =
∑
x∈C0

(1 − ε)|A|−|x|H
(

ε

p − 1

)|x|H a2
x

Ps
|ũ0〉〈ũ0|

+
∑

i∈Sp\{0},x∈Ci

(1 − ε)|A|−|x|H
(

ε

p − 1

)|x|H b2
i,x

Ps
|ũi〉〈ũi|,

(30)

where a2
x , and b2

i,x are probabilities of projection of P|wx〉 for
x ∈ C0 and P|wx〉 for x ∈ Ci.

Finally, the codeword state ρc is decoded using a decoding
operator Ds such that Ds|ũi〉〈ũi|D†

s = |ui〉〈ui| ⊗ |0〉〈0|⊗(N−1)

as follows:

DsρcD†
s =

∑
x∈C0

(1 − ε)|A|−|x|H
(

ε

p − 1

)|x|H a2
x

Ps

× |u0〉〈u0| ⊗ |0〉〈0|⊗(n−1)

+
∑

i∈Sp\{0},x∈Ci

(1 − ε)|A|−|x|H
(

ε

p − 1

)|x|H b2
i,x

Ps

× |ui〉〈ui| ⊗ |0〉〈0|⊗(n−1). (31)

On discarding the last n − 1 ancillae in the |0〉 state, we get a
single logical qudit state

ρout =
∑
x∈C0

(1 − ε)|A|−|x|H
(

ε

p − 1

)|x|H a2
x

Ps
|u0〉〈u0|

+
∑

i∈Sp\{0},x∈Ci

(1 − ε)|A|−|x|H
(

ε

p − 1

)|x|H b2
i,x

Ps
|ui〉〈ui|.

(32)

In general, ρout can be written as

ρout = (1 − εout )|u0〉〈u0| +
∑

i∈Sp\{0}
εi|ui〉〈ui|, (33)
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where εout = ∑
i∈Sp\{0} εi. Comparing Eqs. (32) and (33), we

get

εout = 1

Ps

∑
i∈Sp\{0}

(
ε

p − 1

)|A|
pi

+
∑

i∈Sp\{0},y∈Xi

(1 − ε)|A|−y

(
ε

p − 1

)y b̄i,y

Ps
, (34)

where b̄i,y = ∑
x:|x|H =y b2

i,x, pi = b̄i,|A|, Xi = {|x|H | x ∈
Ci\Wi}, and Wi = {x| x ∈ Ci, |x|H = |A|}. Using the projection
equation provided in Sec. II B, we get∑

i∈Sp

|ũi〉〈ũi| =
∑

y∈F |A|
p

P|uy〉|0〉⊗|B|〈uy|〈0|⊗|B|P. (35)

Since P|ux〉|0〉⊗|B| = ax|ũ0〉 for all x ∈ C0, and P|ux〉|0〉⊗|B| =
bi,x|ũi〉 for all x ∈ Ci, Eq. (35) can be simplified as∑

i∈Sp

|ũi〉〈ũi| =
∑
x∈C0

a2
x |ũ0〉〈ũ0|

+
∑

i∈Sp\{0},x∈Ci

b2
i,x|ũi〉〈ũi|. (36)

Equating the terms of Eq. (36), we have

|ũi〉〈ũi| =
∑
x∈Ci

b2
i,x|ũi〉〈ũi|, ∀ i ∈ Sp\{0}. (37)

On comparing coefficients of |ũi〉〈ũi| in Eq. (37), we get∑
y∈Xi

b̄i,y = 1 − pi, ∀ i ∈ Sp. (38)

Using Eq. (38) and the fact |A| = d , we can simplify Eq. (34)
as

εout � 1

Ps

∑
i∈Sp\{0}

(
ε

p − 1

)d

pi

+ 1

Ps

∑
i∈Sp\{0}

(1 − pi )(1 − ε)d f (i, ε), (39)

where f (i, ε) = ∑
y∈Xi

( ε
(1−ε)(p−1) )y. From Eq. (39), it is clear

that εout decreases with increasing in distance d as ( ε
p−1 ) and

1 − ε both are less than 1.
Corollary 1. The length of a [[n, 1, d]]p quantum code

scales with the noise thresholds εth of the MSD protocol as
follows:

n � 1 + 2

[
ln

(
εthPs

(p − 1 − p̃) f̃ (εth )

)
1

ln(1 − εth )
− 1

]
, (40)

where p̃ = ∑
i∈Sp\{0} pi and f̃ (εth ) = maxi f (i, εth ).

Proof. For large p and d , the term ( ε
p−1 )d → 0. Therefore,

Eq. (39) can be approximated for εout = ε = εth as follows:∑
i∈Sp\{0}

(1 − pi )(1 − εth )d f (i, εth ) � εthPs. (41)

Further simplifying Eq. (41), we get

(1 − εth )d � εthPs∑
i∈Sp\{0}(1 − pi ) f (i, εth )

. (42)

Finally, the distance d can be lower bounded as follows:

d � 1

ln(1 − εth )
ln

(
εthPs∑

i∈Sp\{0}(1 − pi ) f (i, εth )

)
. (43)

Using the quantum Singleton bound [18], we can lower bound
the code length of the [[n, 1, d]]p quantum code as

n � 1 + 2

[
ln

(
εthPs∑

i∈Sp\{0}(1 − pi ) f (i, εth )

)

× 1

ln(1 − εth )
− 1

]
. (44)

Let f̃ (εth ) = maxi f (i, εth ), then Eq. (44) becomes

n � 1 + 2

[
ln

(
εthPs

(p − 1 − p̃) f̃ (εth )

)
1

ln(1 − εth )
− 1

]
,

where p̃ = ∑
i∈Sp\{0} pi. �

From Corollary 1, we can easily calculate the scaling of
the code length from n1 to n2 with a 1% increase in the
noise threshold from ε

(1)
th to ε

(2)
th such that ε (2)

th = 1.01ε
(1)
th while

considering parameters PS , pi, and p constant. Using Eq. (40),
we get

n2 − n1 � 2

[
ln

(
1.01ε

(1)
th Ps∑

i∈Sp\{0}(1 − pi ) f
(
i, 1.01ε

(1)
th

)
)

× 1

ln
(
1 − 1.01ε

(1)
th

) − 1

ln
(
1 − ε

(1)
th

)
× ln

(
ε

(1)
th Ps∑

i∈Sp\{0}(1 − pi ) f
(
i, ε (1)

th

)
)]

. (45)

Using the fact 1
ln(1−1.01ε

(1)
th )

> 1
ln(1−ε

(1)
th )

, we get

n2 − n1>
2

ln
(
1 − ε

(1)
th

) ln

(
1.01

∑
i∈Sp\{0}(1 − pi ) f

(
i, ε (1)

th

)
∑

i∈Sp\{0}(1 − pi ) f
(
i, 1.01ε

(1)
th

)
)

.

(46)

Similarly, using Eq. (43), we can calculate the scaling of
the code distance from d1 to d2 for 1% scaling of the noise
threshold as follows:

d2 − d1>
1

ln
(
1 − ε

(1)
th

) ln

(
1.01

∑
i∈Sp\{0}(1−pi ) f

(
i, ε (1)

th

)
∑

i∈Sp\{0}(1−pi ) f
(
i, 1.01ε

(1)
th

)
)

.

(47)

IV. PRACTICAL DISTILLABLE CODES

In this section, we provide some practical distillable codes
to distill |T 〉 and |S〉 states with improved noise thresholds
as compared to the codes using 5-qubit code and 11-qutrit
Golay code [6,7]. As |T 〉 and |S〉 states defined in Sec. I
are most distant from the Wigner polytope [6,7,10,19], both
the states can be distilled with higher thresholds compared to
other states.

062426-7



SHARMA AND GARANI PHYSICAL REVIEW A 109, 062426 (2024)

A. Distillation of |T〉 state using 31-qubit quantum BCH code

Consider C = [n, k, d] classical Bose-Chaudhuri-
Hocquenghem (BCH) code over Fm

p with generator
polynomial [20,21]

g(x) =
∏

w∈WC

(x − αw ),

where α is the primitive element and WC is a union of cy-
clotomic cosets Cβ = {βpi mod (n)} for i ∈ {0, 1, . . . , m − 1}
and β ∈ Fm

p . Similarly, the generator polynomial of the dual
code of C denoted as C⊥ can be given as

h(x) =
∏

v∈WC⊥

(x − αv ),

where WC⊥ = {−w mod (n)|w ∈ {0, 1, . . . , n − 1}\WC}. To
design a quantum BCH code using CSS construction [1], the
code C should satisfy the weakly self-dual containing prop-
erty, i.e., WC⊥ ⊆ WC [20]. For example, a [31, 16]2 classical
BCH code over F32 with the design distance of 7 is a self-dual
code as the cyclotomic cosets WC = WC⊥ = C1 ∪ C3 ∪ C5.
The parity check matrix of the code is given by [20,22]

H =
⎡
⎣1 α α2 α3 α4 α5 α6 . . . α30

1 α3 α6 α9 α12 α15 α18 . . . α28

1 α5 α10 α15 α20 α25 α30 . . . α26

⎤
⎦,

(48)

where α is the primitive element with primitive polyno-
mial x5 + x2 + 1. Using the CSS construction, a [[31, 1, 16]]2

quantum BCH code can be created with stabilizer matrix
given by

HCSS =
[

H 015×31

015×31 H

]
,

where 015×31 is a zero matrix of dimension 15 × 31. By
construction, the matrix H is full rank, leading to a distance
of 16. The logical-X operator is denoted as X̄ = X ⊗31, and
logical-Z operator is Z̄ = Z⊗31. The operators X̄ and Z̄ are
transversal since the isomorphic vector (1, 1, . . . , 1) to the
operators X̄ and Z̄ does not belong to the row space but to the
null space of the matrix H in F2 [1]. As X̄ and Z̄ gates are both
transversal, logical-T operator [6] is also transversal denoted
as T̄ = T ⊗31 since T̄ X̄ T̄ † = Ȳ , T̄ Ȳ T̄ † = Z̄ , and T̄ Z̄T̄ † = X̄ ,
where T = eiπ/4√

2
[1 1

i −i]. The |T 〉 state is an eigenstate of the T

gate [6], i.e., T |T 〉 = eiπ/3|T 〉 and so ˜|T 〉 is also an eigenstate
of T such that T ˜|T 〉 = e−iπ/3 ˜|T 〉.

The basic requirement of MSD is satisfied by the 31-qubit
BCH code, which means p0 	= 0 as described in Sec. II B. As
the logical-T̄ operator and the projector operator P commute
since [T̄ , Si] = 0, ∀ i ∈ {0, 1, . . . , 30}, where Si are the sta-
bilizer generators isomorphic to the rows of the HCSS matrix,
we have

T̄ P|T 〉⊗31 = eiπ/3P|T 〉⊗31, (49)

where

P = 1

230
�30

i=1(I + Si ). (50)

To distill the state |T 〉, prepare a state ρ and then apply a
dephasing transformation provided in [6] to reduce the state

FIG. 5. The projection probability Ps increases as the noise prob-
ability δ decreases over iterations of the MSD protocol for the
[[31, 1, 16]]2 quantum BCH code.

parameters, so that the state ρ becomes

ρ = (1 − δ)|T 〉〈T | + δ ˜|T 〉 ˜〈T |. (51)

Now, the MSD procedure described in Sec. II can be applied
by preparing 31 copies of the state ρ and projecting it onto the
code space using a projection operator. The prepared 31-qubit
input state ρ⊗31 is given by

ρin =
∑

x∈F31
2

(1 − δ)(31−|x|H )δ|x|H |Tx〉〈Tx|, (52)

where |Tx〉 = |Tx1〉 ⊗ |Tx2〉 ⊗ · · · ⊗ |Tx31〉 for all x =
(x1, x2, . . . , x31) such that |T0〉 = |T 〉 and |T1〉 = ˜|T 〉, and
|x|H is the Hamming weight of x. On projecting the state ρin

onto the code space using the projection operator in Eq. (50),
we get

ρc = 1

Ps

∑
x∈F31

2

(1 − δ)(31−|x|H )δ|x|H P|Tx〉〈Tx|P, (53)

where Ps = tr(ρinP). Ps improves as the noise probability δ

decreases over iterations as shown in Fig. 5, proved in Theo-
rem 2. Now, if |Lx〉 = P|Tx〉 belongs to the code space, then
|Lx〉 should be an eigenvector of logical-T operator, i.e.,

T̄ |Lx〉 = ei π
3 (31−2|x|H )|Lx〉. (54)

From Eq. (54), it is clear that for |x|H ∈ A =
{2, 5, 8, . . . , 29}, |Lx〉 is not an eigenvector of logical-T gate;
therefore, |Lx〉 = 0. Similarly, if |x|H ∈ B = {0, 3, 6, . . . , 30},
then |Lx〉 is proportional to the |T̄0〉 eigenvector of logical-T
gate with eigenvalue eiπ/3.

Finally, if |x|H ∈ C = S31\(A ∪ B), where S31 =
{0, 1, 2, . . . , 31}, then |Lx〉 is proportional to the |T̄1〉
eigenvector of logical-T gate with eigenvalue e−iπ/3. Thus,
Eq. (53) can be simplified as

ρc = 1

Ps

∑
y∈B

(1 − δ)(31−y)δyay|T̄0〉〈T̄0|

+ 1

Ps

∑
y∈C

(1 − δ)(31−y)δyby|T̄1〉〈T̄1|, (55)
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FIG. 6. The relation between δout and δin is shown in the blue line
δout = f (δin ), and the reference line δout = δin is shown in the red line.
Both the lines intersect at a noise threshold of 0.498, below which the
noisy |T 〉 state can be distilled using the [[31, 1, 16]]2 code.

where a|x|H and b|x|H are the constants of proportionality
such that

∑
x:|x|H ∈B |Lx〉 = √

a|x|H |T̄0〉 and
∑

x:|x|H ∈C |Lx〉 =√
b|x|H |T̄1〉.
Finally, the state ρc can be decoded to obtain

ρout = (1 − δout )|T 〉〈T | + δout ˜|T 〉 ˜〈T |. (56)

The relation between δout vs δ is shown in Fig. 6, with a noise
threshold of around 0.498, which is greater than the noise
threshold of 0.173, using the [[5, 1, 3]]2 code [6].

B. 13-qutrit code distillation of |S〉 state

In this section, we discuss the distillation of state |S〉, which
is an eigenstate of the qutrit Hadamard gate

H =
⎡
⎣1 1 1

1 ω ω2

1 ω2 ω

⎤
⎦,

where ω = ei 2π
3 , with eigenvalue of i [7] using a [13, 7, 7]3

classical ternary code C3 with parity check matrix

Hw=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 2 1 2 1 2 1 2
0 1 1 1 1 1 1 2 2 1 1 2 2
0 2 2 0 0 0 2 2 1 1 2 2 1
0 0 2 2 0 0 1 1 1 2 2 2 2
0 2 0 2 0 0 2 1 2 2 1 2 1
1 1 1 1 0 1 1 2 2 2 2 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

As code C3 is self-dual since HwHT
w = 0 mod (3) so a

[[13, 1, 7]]3 quantum CSS code can be constructed using the
classical code C3 with stabilizer generator matrix given by

HCSS =
[

Hw 06×13

06×13 Hw

]
,

where 06×13 is a zero matrix of dimension 6 × 13. The
transversal logical-X and logical-Z operators of the code are

given by

X̄ = X 2 ⊗ X ⊗3 ⊗ X 2 ⊗ X 2 ⊗ X ⊗7,

Z̄ = Z2 ⊗ Z⊗3 ⊗ Z2 ⊗ Z2 ⊗ Z⊗7,

since the vector (2, 1, 1, 1, 2, 2, 1, . . . , 1) isomorphic to X̄
and Z̄ is in the null space but not in the row space of Hw in
F3. The logical-H operator is H̄ = H⊗13 since H̄ X̄ H̄ = Z̄ and
H̄ Z̄H̄ = X̄ . The eigenstates of H gate are |S〉, |H1〉, and |H−1〉
with eigenvalues i, 1, and −1. First, a state ρ is prepared and
twirling scheme is applied given in [7]

ρ1 = 1

4

3∑
i=0

HiρH−i. (57)

Again, on the state ρ1, a new twirling scheme is applied such
that the state is restricted to a single parameter α, i.e., [7]

ρ2 = 1
2 [ρ1 + H̃ρ1H̃†], (58)

where H̃ = ī|S〉〈S| + ei3π/4|H−1〉〈H1| − eiπ/4|H1〉〈H−1|.
Finally, the state becomes

ρ2 = (1 − α)|S〉〈S| + α

2
(|H1〉〈H1| + |H−1〉〈H−1|). (59)

Now, prepare 13 copies of the state ρ2 as follows:

ρ13 =
∑

x∈F13
3

(1 − α)13−|x|H
(α

2

)|x|H |Hx〉〈Hx|. (60)

After that project the state ρ13 onto the code space using a
projection operator [10]

� = 1

312

∑
x∈F12

3

gx1
1 gx2

2 . . . gx12
12 ,

where stabilizer generators g1, g2, . . . , g12 are isomorphic to
the rows of HCSS matrix [1]. The necessary condition of dis-
tillation of the state |S〉 using the 13-qutrit code is satisfied
as

H̄�|S〉⊗13 = i13�|S〉⊗13 = i�|S〉⊗13. (61)

The projected state is given by

˜ρ13 = 1

Ps

⎡
⎣ ∑

x∈F13
3

(1 − α)13−|x|H
(α

2

)|x|H
�|Hx〉〈Hx|�

⎤
⎦, (62)

where |H0〉 = |S〉, and |Hx〉 = |Hx1〉 ⊗ |Hx2〉 ⊗ · · · ⊗ |Hx13〉. If
�|Hx〉 belongs to the code space, it should be an eigenvector
of H̄ operator. We can verify that for all x having odd Ham-
ming weight, �|Hx〉 is proportional to either |H̄1〉 or |H̄−1〉
eigenvectors of H̄ operator with eigenvalues 1 and −1 since
H̄�|Hx〉 = ±�|Hx〉. For all x having even Hamming weight,
�|Hx〉 is either proportional to |S̄〉, which is eigenvector of
H̄ with eigenvalue i, or �|Hx〉 is out of the code space as
H̄�|Hx〉 = ±i�|Hx〉.

Therefore, Eq. (62) can be rewritten as

˜ρ13 = 1

Ps

∑
x∈Se

a2
x (1 − α)13−x

(α

2

)x
|S̄〉〈S̄| + 1

Ps

∑
x∈So

b2
x

× (1 − α)13−x
(α

2

)x
(|H̄1〉〈H̄1| + |H̄−1〉〈H̄−1|), (63)
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FIG. 7. The relation αout vs α is shown with the blue line αout =
f (α) for the 13-qutrit code. The red line is a reference line αout = α

shown to intersect with the blue line around 0.425, a threshold point.
The state is distillable if α is less than threshold point 0.425.

such that Se = {|x|H ≡ 0 mod (2) : x ∈ F13
3 }, So = {|x|H ≡

1 mod (2) : x ∈ F13
3 }, a2

|x|H and b2
|x|H are the sum of probabili-

ties of projection of all the states |Hx〉 with the particular Ham-
ming weight onto the state |S̄〉, |H̄1〉, and |H̄−1〉. Finally, we
decode the codeword ˜ρ13 using a decoding operator W similar
to what was done in Sec. III A, i.e., W |S̄〉〈S̄|W † = |S〉〈S| ⊗
|0〉〈0|⊗12 and W |H̄±1〉〈H̄±1|W † = |H±1〉〈H±1| ⊗ |0〉〈0|⊗12.
We obtain ρ̃ = W ˜ρ13W † = ρout ⊗ |0〉〈0|⊗12, where

ρout = (1 − αout )|S〉〈S| +
(αout

2

)
(|H1〉〈H1| + |H−1〉〈H−1|).

(64)

On simplification and discarding last 12 qutrits in state ρ̃, we
get

αout = 1

Ps

∑
y∈So

b2
y(1 − α)13−y

(α

2

)y
. (65)

From Fig. 7, we conclude that the state |S〉 is distillable using
a [[13, 1, 7]]3 qutrit code up to the noise threshold of 0.425.

C. Improvements on the code noise threshold of the |S〉 state: A
case study

In this section, we discuss improving the noise threshold
by increasing the distance of the quantum code. The upper
bound on the noise threshold of the state |S〉, after which
state |S〉 is not useful for MSD, can be calculated using the
discrete Wigner function (DWF) [7]. For a r-qudit state ρr , the
DWF, i.e., W (x, z)(r), for all x, z ∈ Zr

p, is a quasiprobability
distribution calculated using phase-point operators:

S(r)
0,0 =

∑
x,z∈Zr

p

ωx·z2−1
ZzX x,

S(r)
x,z = ZzX xS(r)

0,0(ZzX x )†,

where ZzX x = Zz1 X x1 ⊗ Zz2 X x2 ⊗ · · · Zzr X xr , so W (x, z)(r) is
given by

W (x, z)(r) = 1

p2
tr
(
ρrS(r)

x,z

)
. (66)

For the single-qutrit (r = 1) noisy state ρ in Eq. (59), the
DWF is calculated as follows:

W (x, z, α)(1) =
{− 1

3 + 4
9α, (x, z) = (0, 0)

1
6 − 1

18α, (x, z) 	= (0, 0).
(67)

The state ρ is not magic state distillable if W (x, z, α)(1)

is non-negative due to the necessity of contextuality re-
quired for MSD [7,23,24] as the classical simulability of
the Clifford operations and stabilizer generators measure-
ment is feasible beyond the upper bound of the magic state
set by contextuality, so the state has no quantum advan-
tage. W (x, z, α)(1), ∀ (x, z) ∈ Z3 × Z3, is non-negative for
α � 0.75; therefore, the noise threshold of the state |S〉 is
upper bounded by 0.75.

Below, we prove that the noise threshold over the depo-
larizing channel increases monotonically with the minimum
distance. This can be proved by considering two differ-
ent quantum distillable codes Q1 = [[n1, 1, d1]]p and Q2 =
[[n2, 1, d2]]p such that d2 > d1 for some magic state |u〉. Us-
ing Eq. (39) for Q1 and Q2, we show that the noise threshold
of Q2, i.e., ε2 is greater than the noise threshold of Q1, i.e., ε1

over the depolarizing channel.
Theorem 3. The depolarizing noise threshold of the magic

state distilled using MSD increases monotonically with the
distance of the quantum stabilizer code.

We prove Theorem 3 in Appendix A.
From Theorem 3, it is clear that the upper bound on the

noise threshold of the code is achievable if the large-distance
qutrit quantum codes are used to distill the state |S〉. An
example of such a code is given below.

Example 2. In this example, we design a [[29, 1, 15]]3

qutrit stabilizer code similar to the code described in
Sec. IV B, but with improved code distance. Figure 8 shows
the dual-containing code parity check matrix, which is dis-
tance 15 code. The distillation procedure of this code is similar
to the procedure defined in Sec. IV B. Using the CSS for-
malism, a [[29, 1, 15]]3 stabilizer code can be generated. The
logical operators of the code are given as

X̄ = X 2 ⊗ X ⊗2 ⊗ X 2 ⊗ X ⊗2 ⊗ X 2 ⊗ X ⊗6 ⊗ X 2 ⊗ X

⊗ (X 2)⊗2 ⊗ I ⊗ X ⊗ I ⊗ X ⊗ (X 2)⊗2 ⊗ I ⊗ (X 2)⊗3

⊗ X ⊗ I, (68)

Z̄ = Z2 ⊗ Z⊗2 ⊗ Z2 ⊗ Z⊗2 ⊗ Z2 ⊗ Z⊗6 ⊗ Z2 ⊗ Z

⊗ (Z2)⊗2 ⊗ I ⊗ Z ⊗ I ⊗ Z ⊗ (Z2)⊗2 ⊗ I ⊗ (Z2)⊗3

⊗ Z ⊗ I (69)

for the same reason given for [[13, 1, 7]]3 code such
that X̄ Z̄ = ωZ̄X̄ , where ω = ei2π/3. Therefore, the logical
Hadamard gate is H̄ = H⊗29 as H̄X̄ H̄† = Z̄ and H̄ Z̄H̄† = X̄ .
The necessary condition for the distillation of |S〉 state can be
checked as follows:

H̄�|S〉⊗29 = i29�|S〉⊗29 = i�|S〉⊗29.
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FIG. 8. The parity check matrix of the [29, 15]3 ternary self-dual code.

Hence, a similar process is repeated for the distillation of |S〉
state as mentioned in Sec. IV B.

The computation of the noise threshold for the
[[29, 1, 15]]3 code is computationally expensive, but using
Eq. (39), we can calculate the lower bound on the noise
threshold for such a code as εout = ε, P1 = 4.43e−9,
P2 = 2.44e−9, and Ps = 0.44e−13. The distance of the
code [[29, 1, 15]]3 is 15. Therefore, the lower bound on the
code threshold can be calculated as

F (ε) = (ε/2)15(P1 + P2) + (2 − P1 − P2)(1 − ε)15

×
∑

i∈{0,2,4,...,14}

(
ε

2(1 − ε)

)i

− εPs

2
� 0.

From Fig. 9, it is clear that the lower bound on the noise
threshold ε∗ is around 0.71, which is the value of ε for which
F (ε) is minimum and positive. Clearly, the noise threshold
of 0.71 obtained from [[29, 1, 15]]3 is greater than the noise
threshold of 0.387 achieved using the [[11, 1, 5]]3 Golay code
[7].

From Example 2, it is clear that the upper bound of 0.75
on the noise threshold of the state |S〉 is very close to achiev-
ing. However, it requires large length quantum codes. Using
Eq. (40), we can calculate the lower bound on the code length

FIG. 9. The function F (ε) is plotted against the noise probability
ε. The plot shows that F (ε) attains a minimum value when ε is
around 0.71.

for f (i, 0.75) = ∑
y∈Xi

( 3
2 )y = 1.5(� D

2 �+1)−1
1.25 as

n�1 + 2

[
ln

(
0.937Ps

(2 − p1 − p2)(1.5(� D
2 �+1)−1)

)
1

ln(0.25)
−1

]
.

(70)

Further simplification will get us

n � 1 + 2

[
ln

(
1.06(2 − p1 − p2)(1.5(� D

2 �+1) − 1)

Ps

)

× 1

ln(4)
− 1

]
, (71)

where Xi = {0, 2, . . . , 2�D
2 �}, ∀ i ∈ {1, 2}.

In Table I, we summarize the results of this section and
provide the comparisons of the noise thresholds with our
proposed codes of the |T 〉 in [6] and |S〉 in [7] states. Although
the code parameters listed in Table I are specific examples, the
reader must note that Corollary 1 shows how the code length
and minimum distance scale to achieve noise thresholds arbi-
trary close to the computed theoretical limits.

So far we have provided Q1 = [[31, 1, 16]]2 qubit and
Q2 = [[29, 1, 15]]3 qutrit codes for distilling the |T 〉 and |S〉
states. We have so far not discussed the implementation of
the decoders required in third step for MSD, described in
Sec. II. In the next section, we provide the decoders (reverse
of encoders) for any general [[n, k, d]]p-qudit stabilizer code.
The reader must note that although Q1 and Q2 encode only a
single-qudit state, the construction of general decoders can be
useful for new MSD techniques utilizing multiqudit codes to
distill k magic states, k = 1 being a special case.

V. EFFICIENT ENCODING CIRCUITS OF A GENERAL
QUANTUM CSS CODE FOR MSD

In this section, we provide algorithms to generate efficient
encoding circuits for the quantum CSS and hypergraph prod-
uct codes useful for the decoding step6 of the MSD procedure.
First, we briefly review the quantum CSS and hypergraph
product codes and further provide a procedure to encode them.

A. Qudit quantum CSS codes

Consider two classical codes C1 = [n, k1, d1]p and C2 =
[n, k2, d2]p over Fp such that C⊥

1 ⊆ C2. This translates to the

6The reverse of an encoding circuit is a decoding circuit of a
quantum code.
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TABLE I. Comparison of noise thresholds for the proposed codes against the theoretical upper bound and previously proposed quantum
codes for distilling the |T 〉 state in [6] and |S〉 state in [7].

Comparison of noise thresholds for distilling |T 〉 and |S〉 states over the depolarizing channel

Magic states
Theoretical threshold limit over

the depolarizing channel
Proposed quantum

codes Threshold
State-of-the-art
quantum codes Threshold

|T 〉 0.5 [[31, 1, 16]]2 0.498 [[5, 1, 3]]2 0.173
|S〉 0.75 [[13, 1, 7]]3 and

[[29, 1, 15]]3

0.425 and
0.71

[[11, 1, 5]]3 0.387

condition H1HT
2 = 0 mod (p), where H1 and H2 are the parity

check matrices of the classical codes C1 and C2, respectively.
A [[n, k1 + k2 − n, d � min(d1, d2)]]p qudit quantum sta-

bilizer code Q1 can be prepared from dual-containing classical
codes C1 and C2 using the CSS construction [1] with stabilizer
generator matrix given as

HCSS =
[

H1 0(n−k1 )×n

0(n−k2 )×n H2

]
, (72)

where 0(n−k1 )×n and 0(n−k2 )×n are zero matrices. From Eq. (72),
the total number of stabilizer generators in the quantum CSS
code is 2n − k1 − k2.

Let us consider first w = k1 + k2 − n qudits state |�〉 to
be encoded using an encoding map E and a = 2n − k1 − k2

ancilla qudits in state |0〉 such that E |�〉|0〉⊗a = |�〉, where
|�〉 is a quantum codeword. Since state |0〉 is stabilized by the
Z gate and state |�〉 is an unknown state stabilized by I⊗w

only, therefore, the n qudit state |�〉|0〉⊗a is stabilized by the
stabilizers of the form H̃ = [0(n−w)×n|0(n−w)×wS(n−w)×(n−w)],
where S is any general matrix containing elements from Fp.
These are the only stabilizer generators for the initial n qudit
state [12].

To obtain an encoding operator, first, we apply Gaussian
elimination with row operations and column swappings to
simplify the stabilizer matrix HCSS into row echelon form as
H̃CSS = [H(x) 01

02 H(z)], where 01 and 02 are the zero matrices,

H(x) =[
I(x)
ρ1

∣∣A(x)
ρ1×ρ2

∣∣B(x)
ρ1×(k1+k2−n)

]
, (73)

H(z) =[
I(z)
ρ2

∣∣A(z)
ρ2×ρ1

∣∣B(z)
ρ2×(k1+k2−n)

]
, (74)

ρ1 = n − k1, and ρ2 = n − k2.
We know that, for CSS code, the (i, j)th entry of the matrix

S such that S = H(x)H(z)T
is given by7

Si, j = I(x)
i,∗ I(z)

∗, j + A(x)
i,∗A(z)

∗, j + B(x)
i,∗B(z)

∗, j,

= δi, j +
∑
k∈Sp

k M (i, j)
k ≡ 0 mod (p) , (75)

where Sp = {1, 2, . . . , p − 1} and

M (i, j)
k =

∑
l:A(x)

i,l =k

A(z)
j,l +

∑
l:B(x)

i,l =k

B(z)
j,l .

7For p = 3, the value of Si, j for H(x)
i,∗ = [1 2 0 2 1] and

H(z)
j,∗ = [2 2 1 2 2] is given by Si, j = [1 2 0 2 1][2 2 1 2 2]T =

1M (i, j)
1 + 2M (i, j)

2 ≡ 0 mod (p), where M (i, j)
1 = M (i, j)

2 = 4.

On solving Eq. (75), we obtain

∑
k∈Sp

k M (i, j)
k =

{
(p − 1) mod (p), i = j
0 mod (p), i 	= j.

(76)

The objective is to remove all the X stabilizers to obtain H̃
from H̃CSS. Therefore, on iterating over the rows of H(x),
we can make all the nonzero elements of the submatrices
A(x), B(x) zero using multiplication (MUL) and ADD gates.

For an ith row ri of H(x), the elements of the submatri-
ces A(x) and B(x) are converted to p − 1 using M ( j)

γ j gates
such that γ −1

j H(x)
i, j = p − 1, ∀ j ∈ V = {ρ1 + 1, . . . , n}. Next,

on applying ADD(i, j)
p , ∀ j ∈ V gates, the elements of the ri

row become zero for all columns j ∈ V of H(x) as element
1 present at the (i, i) index in I(x) will be added to all the
columns indexed in V where elements are p − 1 due to MUL
gates used [12]. We store the MUL and ADD gates used for
the ith row in Ui.

The effect of Ui on the H(z) matrix will make (i, i)th ele-
ment of I(z) submatrix zero. The MUL gates used in Ui will
multiply γ j to the columns present in V of H(z)

i,∗ such that

γ j ≡ H(x)
i, j (p − 1) mod (p), ∀ j ∈ V, (77)

as given in Table II.
Since ADD gates affect the control qudits in Z stabilizers as

shown in Table II, ADD gates in Ui will change the elements
of I(z) submatrix, i.e., the columns of the identity submatrix
I(z), which are the control qudits columns will be subtracted
from8

Wi, j =
∑
k∈Sp

γkM (i, j)
k . (78)

Using Eq. (77), we get γk = k(p − 1), ∀ k ∈ Sp, and then
Eq. (78) becomes

Wi, j = (p − 1)
∑
k∈Sp

kM (i, j)
k . (79)

8For example, consider two orthogonal rows hx = [1 0 1 1 2] and
hz = [1 0 1 2 1] such that hxhT

z ≡ 0 mod (p), for p = 3. First, we
apply U1 = M (3)

2 M (4)
2 gate that will make hx = [1 0 2 2 2] and hz =

[1 0 2 1 1] and then apply U = ADD(1,5)
3 ADD(1,4)

3 ADD(1,3)
3 gate such

that hx = [1 0 0 0 0] and the effect of U on hz will subtract W = 4 ≡
1 mod (p), which is the sum of last three entries of hz after application
of U1 will change hz as hz = [0 0 2 1 1].
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TABLE II. Description of basic Clifford gates and transformation of the vectors isomorphic to the Pauli group. For example, [S T |U V ] ∼=
X SZU ⊗ X T ZV .

Basic Clifford gates

Gate Symbol Operation Transformation of vector

ADD gate ADD(i, j)
p

∑
a,b∈Fp

|a〉〈a|i ⊗ |a + b〉〈b| j [S T |U V ] → [S T + S|U − V V ]
Multiplication gate M(i)

α

∑
b∈Fp

|b〉〈α−1b|i for α ∈ Fp\{0} [S |T ] → [α−1S |αT ]
DFT gate DFT(i)

p
1√
p

∑
a,b∈Fp

ωab|a〉〈b|i [S |T ] → [T | − S]

Using Eq. (76), we get

Wi, j =
{

(p − 1)2 ≡ 1 mod (p), i = j
0 mod (p), i 	= j.

(80)

As Wi, j is 1 for i = j so it will make (i, i)th element of I(z)

zero when ith column of I(z) is a control column. Therefore,
the ith column of I(z) will become zero due to ADD gates
of Ui. Hence, for CSS codes, if the operator Ui is making
elements of the H(x) matrix zero using MUL and ADD gates,
then the elements of the H(z) matrix will become zero, where
elements of the H(x) and H(z) matrices are at the target and
control positions of the ADD gates used. On repeating this
process sequentially for all ρ1 rows of H(x), we make subma-
trices A(x) and B(x) zero, and also first ρ1 columns of the H(z)

matrix zero. We store all the gates used in U1 = ∏ρ1
i=1 Ui.

As we have positioned w logical qudits towards the end in
the quantum code Q1, the submatrix B(z)

ρ2×w is made zero to
get only I operators on the logical qudits as B(x) submatrix is
already zero. To do this, we solve a linear equation A(z)X =
B(z) to obtain matrix Xa×w, where a = n − w − ρ2. The MUL
and ADD gates can be placed according to the columns of the
matrix X as follows:

For every column x of Xa×w,
M ( j+ρ2 )

γ −1 ADD(i+n−w, j+ρ2 )
p M ( j+ρ2 )

γ gate, where i + n − w

are the positions of the columns of B(z) and j + ρ2 are the
positions of the columns of A(z) for i ∈ {1, 2, . . . ,w} and
j ∈ {1, 2, . . . , a}, is applied for the nonzero element γ at the
jth index of the column x to get the same column as of the
submatrix B(z), using the linear combination of the columns
of submatrix A(z). As the control qudits of the ADD gates
are the columns of B(z), due to the property of ADD gate as
shown in Table II, every column of the B(z) submatrix can
be made zero. U2 is the product of MUL and ADD gates
generated from the matrix X .

Finally, to obtain an encoding operator E , we apply T gate,
which is the product of DFT gates, i.e., T = ∏ρ1

i=1 DFT(i)
p .

The T gate is applied on first ρ1 qudits to interchange the
I(x)
ρ1

submatrix with the first ρ1 zero columns of 01 matrix
(zero matrix representing Z stabilizers in the first ρ1 rows
of the H̃CSS matrix) to make H(x) matrix zero. The decoding
operator U is given by U = TU2U1 and the encoding operator
is E = U †.

We now summarize the procedure to obtain the encoding
operator in Algorithm 1. The depth of the quantum encoding
operator obtained is O[ρ1 + a(n − ρ1 − ρ2)] = O(ρ1 + aw)
as in step 2 only ρ1 number of MUL and ADD gates are
applied and in step 4 MUL and ADD gates are applied up
to the dimension of the matrix X .

We compare our encoding procedure with [11] in terms
of complexity of the encoder. In step 2 of the encoding
process, we apply ADD gates to make [A(x)|B(x)] matrix
zero, having a size ρ1 × k1, so, ρ1k1 number of ADD gates
are required. In step 3 of the encoding process, we make
B(z)

ρ2×w matrix zero, requiring w ADD gates targeted to the

ρ1 columns of the A(z)
ρ2×ρ1

matrix, so, wρ1 two-qudit ADD
gates are required. The total number of two-qudit ADD gates
in our encoder is ρ1(k1 + w), which is less compared to the
k1n − (k1+1

2

) + (k2 − k1)ρ2
9 in [11]. The reader must note that

the efficient encoding procedures described in [12] are appli-
cable for generic qudit non-CSS entanglement unassisted and
entanglement assisted quantum codes. Since we can exploit
the structure of the CSS construction, the proposed encoders
in this section are compared to the work in [11].

The reader must note that the depth of the quantum en-
coding operator increases with increasing number of logical
qudits of the code, i.e., w, and does not depend on the

ALGORITHM 1. Algorithm to obtain an encoding circuit of
quantum CSS code.

Input: Stabilizer check matrix HCSS.
Output: Encoding operator U .
Outline of the steps:
(1) Apply Gaussian elimination on the matrix HCSS to convert to

row echelon form H̃CSS = [H(x) 0
0 H(z)].

(2) For each nonzero row i of H(x) do
For each column j = rank(H(x) ) + 1 to n do

If H(x)
i, j is nonzero then do

Find an operator M ( j)
γ such that γ −1H(x)

i, j = p − 1.
Store U1 ← ADD(i, j)

p M ( j)
γ and T ← DFT(i)

p to make
H(x) matrix zero.

(3) Solve for the matrix X using equation A(z)X = B(z).
(4) For each nonzero column i of X do

For each row j of X check
If Xj,i is nonzero then do

Store U2 ← M (ρ2+ j)

X−1
j,i

ADD(i+n−w, j+ρ2 )
p M (ρ2+ j)

Xj,i
to make

B(z) matrix zero.
(5) Assign U ← TU2U1

(6) return U †

9Proposition 1 in [11] has only k1n − (k1+1
2

)
number of ADD gates.

However, there are extra (k2 − k1)ρ2 ADD gates that were not con-
sidered, but clearly indicated in the example of Sec. 4 in [11] with 16
ADD gates.
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FIG. 10. The transformation of stabilizer matrices H(x) and H(z) is shown along the steps of Algorithm 2. (a), (b) Show the transformation
during step 2 of the Algorithm 2, where MUL and ADD gates are applied with respect to H(x) matrix to make the second and third submatrices
of H(x) zero, and the corresponding effect on H(z) matrix is also shown. (b), (c) Show the transformation during step 3 of Algorithm 2, where
MUL and ADD gates are applied to the block matrix A to make it zero in the second submatrix of H(z), and the second submatrix of H(x) matrix
is already zero.

length n of the quantum CSS code. We provide an example
of [[8, 4, 3]]3 CSS code encoder using Algorithm 1 in Ap-
pendix B.

B. Encoding of nondual containing codes using hypergraph
product codes

Consider two classical codes C1 and C2 with parame-
ters [n1, k1, d1]p and [n2, k2, d2]p with parity check matrices
Hρ1×n1 and H̃T

ρ2×n2
, respectively, such that HH̃T 	= 0 mod (p).

This implies C†
1 � C2 or C†

2 � C1. Therefore, with CSS con-
struction, quantum code using C1 and C2 cannot be generated.
The hypergraph construction [13] can be used to generate a
[[nh, kh, dh]]p, where nh = n1n2 + ρ1ρ2, kh = k1k2, and dh =
min(d1, d2, d̃1, d̃2) quantum code using two nondual contain-
ing classical codes, where d̃1 and d̃2 are the code distances of
the transposed codes CT

1 and CT
2 with parity check matrices

HT and H̃T.
The stabilizer generator matrix of the hypergraph product

codes is in the CSS form as in Eq. (72):

HCSS =
[

H(x) 01

02 H(z)

]
, (81)

where

H(x) = [
H ⊗ In2

∣∣ − Iρ1 ⊗ H̃T], (82)

H(z) = [
In1 ⊗ H̃

∣∣HT ⊗ Iρ2

]
, (83)

and 01, 02 are zero matrices of dimension ρ1n2 × nh and
ρ2n1 × nh such that H(x)H(z)T ≡ 0 mod (p) [13]. The encoding
procedure resembles the procedure discussed in Sec. IV C.
However, the number of gates increases because hypergraph
construction has n1n2 + ρ1ρ2 number of physical qudits. Al-
though hypergraph construction provides quantum codes with
large code length and has short cycles on the Tanner graph, it
can retain the sparseness of the classical LDPC codes, which
is not in the case of generalized Shor code [13]. The reader
must note that entanglement assisted (EA) codes [12] can gen-
erate quantum codes from two nondual containing classical
codes and the code is devoid of short cycles. However, EA
codes have to maintain noise-free entangled states, which is
not required in the case of hypergraph construction.

To obtain an encoding operator, first, we apply Gaussian
elimination on the matrices H and H̃ and obtain matrices in
row echelon form as Hρ1×n1 = [Iρ1 |A1ρ1×(n1−ρ1 ) ] and H̃ρ2×n2 =
[Iρ2 |A2ρ2×(n2−ρ2 ) ]. The corresponding stabilizer matrices H(x)

and H(z) in Eqs. (82) and (83) become

H(x) = [
Iρ1 ⊗ In2

∣∣A1 ⊗ In2

∣∣ − Iρ1 ⊗ H̃T], (84)

H(z) =
[

In1 ⊗ H̃
Iρ1 ⊗ Iρ2

At ⊗ Iρ2

]
, (85)

where At = AT
1 . Equations (84) and (85) in expanded form are

shown in Fig. 10(a).
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ALGORITHM 2. Algorithm to obtain an encoding circuit of
quantum hypergraph code.

Input: Classical parity check matrices H and H̃.
Output: Encoding operator U .
Outline of the steps:
(1) Apply Gaussian elimination on the matrices H and H̃ to
convert the matrices into row echelon form to generate stabilizer
matrices H(x) and H(z) using Eqs. (82) and (83).
(2) For each nonzero row i of H(x) do

For each column j from rank(H(x) ) + 1 to nh do
If H(x)

i, j is nonzero then do
Find an operator M ( j)

γ such that γ −1H(x)
i, j = p − 1,

Store W1 ← ADD(i, j)
p M ( j)

γ to make the first
submatrix of H(x) zero.

(3) For each row i of H(z) from ρ1ρ2 + 1 to n1ρ2 do
Assign u ← � i−ρ1ρ2

ρ2
�.

For each column j of H(z) from n2ρ1 + ρ2 + un2 to
n1ρ2 + (u + 1)n2

If H(z)
i, j is nonzero then

Find an operator M ( j)
γ such that γ H(z)

i, j = p − 1,
Store W2 ← ADD(n2ρ1+uk2+i−ρ1ρ2, j)

p M ( j)
γ to make the

middle submatrix of H(z) zero.
(4) Assign U ← TW2W1. The operator T ← ∏ρ1n2

i=1 DFT(i)
p

interchanges the first submatrix of H(x)

with the first zero submatrix of H(z).
(5) return U †.

To make H(x) matrix zero, we apply MUL and ADD gates
in accordance with the [A1 ⊗ In2 | − Iρ1 ⊗ H̃T] submatrix and
make it zero. These gates will also make the first n2ρ1 columns
of the H(z) matrix zero since H(x)H(z)T ≡ 0 mod (p). Applica-
tion of MUL and ADD gates will make target columns of
the H(x) matrix zero as well as control columns of the H(z)

matrix zero as shown in Fig. 10(b). This is similar to how
the reduction operations are done for dual containing codes in
Sec. V A. We store the MUL and ADD gates in U1.

Now, we will make any kh = k1k2 nonzero columns of the
H(z) matrix zero for the logical qudits, similar to the procedure
in Sec. V A. The middle submatrix of H(z) has first ρ1ρ2 rows
zero, and the rest ρ2k1 rows have H̃ = [Iρ2 |A2] in the diagonal
of the middle submatrix of H(z) as shown in Fig. 10(a). The
A2 submatrix of every block-diagonal matrix (BDM) H̃ can
be made zero using MUL and ADD gates controlled from the
columns of the Iρ2 submatrix of each H̃, as shown in Fig. 10(c).
As there are k1 BDMs in the middle submatrix of H(z) and
A2 submatrix of every H̃ has k2 number of columns, so total
number of generated zero columns in the middle submatrix
of H(z) are k1k2 = kh. We store the MUL and ADD gates for
making kh columns of H(z) zero in U2.

Finally, to make nonzero submatrix [Iρ1 ⊗ In2 ] of H(x) zero,
we apply T = ∏ρ1n2

i=1 DFT(i)
p gate to interchange the submatrix

[Iρ1 ⊗ In2 ] of H(x) with the first ρ1n2 columns of zero matrix
01, where 01 is a zero matrix as given in Eq. (81). We get
the decoding operator for hypergraph product code as D =
T U2 U1. The encoding operator is simply E = U †.

In Algorithm 2, we provide an algorithmic framework
to obtain an encoding operator of the hypergraph product
code. The depth of the quantum encoding operator obtained

is O(ρ1n2 + k1ρ2) since in steps 2 and 3 ρ1n2 and k1ρ2 MUL
and ADD gates are applied.

We provide examples of hypergraph product code encoder
using Algorithm 2 in Appendix B.

The reader must note that the celebrated quasicyclic low-
density parity check (LDPC) codes can be derived from lifted
product (LP) codes that generalize bicycle codes [25] and hy-
pergraph product codes [13], introduced in [26]. These codes
have nonzero asymptotic rates and almost linear distance with
the scaling of code length, making them suitable for practical
purposes. Such QC codes are widely used in classical com-
munication systems, such as in wireless systems [27] and data
storage devices [28,29] (HDDs and SSDs). LP codes are just
the lifted versions of hypergraph product codes. Since efficient
quantum codes can be from this broad family of LDPC codes,
we believe Algorithm 2 can be used for building encoders for
the family of LP codes as well.

VI. CONCLUSIONS AND FUTURE WORK

We developed a geometric framework for magic-state dis-
tillation and provided an exact analysis for the noise threshold
in terms of the noise over the magic states and qudit stabilizer
code parameters. Through information-theoretic analysis, we
proved the convergence analysis of the MSD protocol. We
provided scaling results that achieve the noise threshold in
terms of the quantum code minimum distance and code
length. We provided 31-qubit BCH code for distilling |T 〉 and
29-qutrit code for distilling |S〉 states with the noise thresholds
of 0.498 and 0.71, respectively, over the quantum depolarizing
channel. These codes are derived based on the scaling laws for
the code parameters towards reaching the theoretical limits for
the noise threshold. Finally, we proposed two encoding algo-
rithms for CSS and non-CSS qudit quantum stabilizer codes.
The proposed encoding architectures and quantum codes are
useful for designing fault-tolerant quantum circuits for com-
puting and communication applications.

Going forward, it would be interesting to develop fault-
tolerant circuits based on QECCs and magic-state distillation
for practical quantum neural networks, mindful of the con-
straints on decoherence and quantum circuit complexity.
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APPENDIX A: IMPORTANT PROOFS

In this Appendix, we have provided the proofs of all the
three theorems used in the main text.

We first prove the Theorem 1.
Proof. First, we calculate the entropy of the input state

at the t th iteration of MSD as H (σ )(t )
in = −tr[σ (t )

in log2(σ (t )
in )],

where

σ
(t )
in = (σ (t ) )⊗n =

∑
z∈Fn

p

w(t )
z |ξz〉〈ξz|. (A1)
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We can simplify H (σ )(t )
in as

H (σ )(t )
in

= −tr

⎡
⎢⎣∑

z∈Fn
p

w(t )
z |ξz〉〈ξz| log2

⎛
⎜⎝∑

y∈Fn
p

w(t )
y |ξy〉〈ξy|

⎞
⎟⎠

⎤
⎥⎦, (A2)

H (σ )(t )
in = −

∑
z,y∈Fn

p

w(t )
z log2

(
w(t )

y

)〈ξz||ξy〉tr(|ξz〉〈ξy|). (A3)

Since |ξz〉’s are orthonormal states, and tr(|ξz〉〈ξz|) = 1, we
have

H (σ )(t )
in = −

∑
z∈Fn

p

w(t )
z log2

(
w(t )

z

) = H (w(t ) ), (A4)

where H (w(t ) ) is classical Shannon entropy.

The quantum entropy of the output state σ
(t )
out = Pσ

(t )
in P

P(t )
s

of the
MSD procedure at time t is given by

H (σ )(t )
out = −tr

[
P(σ (t ) )⊗nP

P(t )
s

log2

(
P(σ (t ) )⊗nP

P(t )
s

)]
(A5)

= −tr

(
P(σ (t ) )⊗nP

P(t )
s

2 log2(P)

)

− tr

(
P(σ (t ) )⊗nP

P(t )
s

log2((σ (t ) )⊗n)

)

+ tr

(
P(σ (t ) )⊗nP

P(t )
s

log2

(
P(t )

s

))
, (A6)

where P(t )
s = tr(Pσ

(t )
out ), i.e., the syndrome probability.

Since the projection operator has unit eigenvalues, we have
log2(P)=0. Therefore, H (σ )(t )

out can be simplified as

H (σ )(t )
out = − 1

P(t )
s

tr{P(σ (t ) )⊗nP log2[(σ (t ) )⊗n]}

+ log2

(
P(t )

s

)
P(t )

s

tr[P(σ (t ) )⊗nP]. (A7)

We simplify Eq. (A7) as follows:

H (σ )(t )
out = H (t )

1 + H (t )
2 , (A8)

where H (t )
1 = − 1

P(t )
s

tr{P(σ (t ) )⊗nP log2[(σ (t ) )⊗n]} and H (t )
2 =

log2(P(t )
s )

P(t )
s

tr[P(σ (t ) )⊗nP]. Using Eq. (A1), we solve H (t )
1 first as

follows:

H (t )
1 = − 1

P(t )
s

tr

⎡
⎣ ∑

i, j∈Fp

|φi〉〈φi|
⎛
⎝∑

k∈Fn
p

w
(t )
k |ξk〉〈ξk|

⎞
⎠

×|φ j〉〈φ j | log2

⎛
⎝∑

l∈Fn
p

w
(t )
l |ξl〉〈ξl |

⎞
⎠

⎤
⎦, (A9)

H (t )
1 = − 1

P(t )
s

∑
i, j∈Fp

∑
k,l∈Fn

p

w
(t )
k log2

(
w

(t )
l

)〈φi||ξk〉〈ξk||φ j〉

× 〈φ j ||ξl〉tr(|φi〉〈ξl |). (A10)

On simplifying Eq. (A10) further, we get

H (t )
1 = − 1

P(t )
s

∑
k,l∈Fn

p

w
(t )
k log2

(
w

(t )
l

)∑
i∈Fp

〈φi||ξk〉〈ξl ||φi〉

×
∑
j∈Fp

〈ξk||φ j〉〈φ j ||ξl〉. (A11)

For a projection operator P, we get∑
j∈Fp

〈ξk||φ j〉〈φ j ||ξl〉 = 〈ξk|P|ξl〉. (A12)

We simplify Eq. (A11) as

H (t )
1 = − 1

P(t )
s

∑
k,l∈Fn

p

w
(t )
k log2

(
w

(t )
l

)|〈ξk|P|ξl〉|2. (A13)

Using Eq. (18) and the fact |〈ξk|P|ξl〉|2 � 1, we simplify
(A13) as

H (t )
1 � − 1

P(t )
s

∑
k∈Fn

p

w
(t )
k log2

(
w

(t )
k

)
. (A14)

Similarly, we solve for H (t )
2 in (A8), using (A1) as follows:

H (t )
2 = log2

(
P(t )

s

)
P(t )

s

∑
i, j∈Fp

∑
k∈Fn

p

w
(t )
k 〈φi||ξk〉〈ξk||φ j〉〈φi||φ j〉.

(A15)

As |φi〉’s are an orthonormal basis, simplifying Eq. (A15), we
get

H (t )
2 = log2

(
P(t )

s

)
P(t )

s

∑
i∈Fp

∑
k∈Fn

p

w
(t )
k |〈ξk||φi〉|2. (A16)

Using Eq. (A12) and
∑

k∈Fn
p
w

(t )
k = 1, we get

H (t )
2 � log2

(
P(t )

s

)
P(t )

s

. (A17)

Using Eqs. (A14) and (A17), (A8) becomes

H (σ )(t )
out � 1

P(t )
s

⎛
⎝log2

(
P(t )

s

) −
∑
k∈Fn

p

w
(t )
k log2

(
w

(t )
k

)⎞⎠.

(A18)

Using Eq. (A4) in (A18), we get

H (σ )(t )
out � 1

P(t )
s

[
log2

(
P(t )

s

) + H (σ )(t )
in

]
. (A19)

As log2(P(t )
s ) < 0, from Eq. (A19), it is evident that MSD is a

convergent map of the quantum entropic function. �
Next, we prove Theorem 2.
Proof. We shall first establish that the syndrome proba-

bility obtained by projecting the mixed state over the code
projection operator improves over iterations as long as we are
below the noise threshold. (a) Using Eqs. (18) and (22), the
single-qudit output state after the t th iteration of MSD is given
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by

ρout,t = 1

P(t−1)
s

∑
i∈Fp

p(t )
i |ξi〉〈ξi|, (A20)

where p(t )
i are fidelity functions and P(t−1)

s is the probability
at the t th iteration. As we are operating below the threshold,
i.e., ∃ ĩ/ p(t )

ĩ
� p(t )

i 	=ĩ
.10 Over n realizations of ρout, at the t th

iteration,

ρ⊗n
out,t =

(
1

P(t−1)
s

)n ∑
x∈Fn

p

p(t )
x |ξx〉〈ξx|, (A21)

where p(t )
x = p(t )

x1
p(t )

x2
. . . p(t )

xn
. Using Eq. (14), the fidelity func-

tions p(t+1)
i become

p(t+1)
i =

∑
x∈Fn

p

(
1

P(t−1)

)n

p(t )
x |〈ξx||φi〉|2. (A22)

We know that the MSD procedure is purifying and operating
below the noise threshold. The fidelity functions at t th and
(t + 1)st iterations should satisfy the following relation for
some ĩ, p(2)

ĩ
� p(1)

ĩ
and the rest p(2)

ĩ 	=i
� p(1)

ĩ 	=i
when |ξĩ〉 is the

state to be distilled. Therefore, using Eq. (22), it is clear
that the probability of projection onto the code space at the
(t + 1)st iteration is greater than the t th iteration. This holds
for all iterations. (b) We next show that an increment in the
probability of projection implies purification using the MSD
procedure from Eq. (22) as follows. Consider for some kth
iteration that the probability of projection is greater than the
(k − 1)st, then

P(k) =
(

1

P(k−1)

)n ∑
i∈Fp

pi,k � P(k−1),

∑
i∈Fp

pi,k � (P(k−1))n+1, (A23)

where P(k−1) is the probability of projection at the (k − 1)st
iteration and pi,k is the fidelity function at the kth iteration.
Using Eqs. (22) and (A23), we get

∑
i∈Fp

pi,k �

⎛
⎝∑

i∈Fp

pi,k−1

⎞
⎠

n+1

. (A24)

As fidelity functions, pi,k are less than 1, it satisfies

∑
i∈Fp

pi,k > pn+1
ĩ,k−1

+
⎛
⎝ ∑

i∈Fp\{ĩ}
pi,k−1

⎞
⎠

n+1

. (A25)

Let fĩ,k be noise fidelity function at time k for distilling state
|ξĩ〉:

fĩ,k =
∑

i∈Fp\{ĩ}
pi,k . (A26)

10There exists a state that has more fidelity than the rest, which will
eventually converge to a pure state.

Substituting fĩ,k from Eq. (A26) into (A25), we get

pĩ,k + fĩ,k � pn+1
ĩ,k−1

+ f n+1
ĩ,k−1

. (A27)

As we assumed that we are operating below threshold, pĩ,k �
fĩ,k . On the contrary, if the kth iteration is adding noise,
then fĩ,k−1 � fĩ,k and pĩ,k−1 � pĩ,k , implying f n+1

ĩ,k
� f n+1

ĩ,k−1

and pn+1
ĩ,k

� pn+1
ĩ,k−1

. Therefore,

pn+1
ĩ,k

+ f n+1
ĩ,k

� pn+1
ĩ,k−1

+ f n+1
ĩ,k−1

. (A28)

At the (k + 1)st iteration from Eq. (A27), we have

pĩ,k+1 + fĩ,k+1 � pn+1
ĩ,k

+ f n+1
ĩ,k

. (A29)

As a consequence, Eqs. (A28) and (A29) are contradicting
with our initial assumption that the syndrome probability
increases with iterations. Hence, the MSD procedure is pu-
rifying and no iteration is adding noise. This is valid for any
iteration t ; hence, the probability of projection onto the code
space is a nondecreasing function over MSD iterations. �

Finally, we prove Theorem 3.
Proof. Equations (33) can be simplified by using the fact

Ps � 1 − 2εout
11 as follows:

∑
i∈Sp\{0}

[(
ε

p − 1

)d

pi + (1 − pi )(1 − ε)d f (i, ε)

]

>
εout

p − 1
(1 − 2εout ). (A30)

Consider a [[n1, 1, d1]]p qudit quantum stabilizer code Q1

to distill the |u〉 state with an encoding operator E1, which
is an eigenstate of an operator W with eigenvalue uW such
that E1(|u〉) = |U 〉 and W̄ |U 〉 = uW |U 〉, where W̄ is a logical
operator onto the code space.

The code Q1 also satisfies the distillation conditions de-
scribed in Sec. II B with noise threshold ε1 = εout = ε by
definition [6] and f̃1(ε1) = maxi∈Sp\{0} f (i, ε1). We call the
function f̃ (ε1) maximum noise function. Equation (A30) for
the code Q1 can be written as(

ε1

p − 1

)d1

p̃1 + (1 − ε1)d1 (p − 1 − p̃1) f̃1(ε1) >
ε1(1 − 2ε1)

(p − 1)
,

(A31)

where f̃1(ε) = ∑
i∈S1

( ε1
(p−1)(1−ε1 ) )i and p̃1 = ∑

i∈Sp\{0} p(1)
i .

P|ξx〉 are the noisy states which are not proportional to magic
state |u〉 if |x|H ∈ S1 as described in Sec. III A, which implies
P|ξx〉 are the states proportional to noisy states as W̄ P|ξx〉 =
cW P|ξx〉, cW 	= uW .

Similarly, consider another [[n2, 1, d2]]p qudit quantum
stabilizer code Q2 satisfying distillable conditions as code Q1

to distill the |u〉 state with noise threshold ε2 such that d2 > d1.

11Consider a state ρ = 1
Ps

(ε1|ψ1〉〈ψ1| + ε2|ψ2〉〈ψ2|) such that Ps =
ε1 + ε2. The probability Ps is lower bounded by ε1 − ε2. Similarly,
for Eq. (33), Ps is lower bounded by 1 − 2εout .
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Therefore, Eq. (A30), for the code Q2, can be written as(
ε2

p − 1

)d2

p̃2 + (1 − ε2)d2 (p − 1 − p̃2) f̃2(ε2) >
ε2(1 − 2ε2)

(p − 1)
,

(A32)

where f̃2(ε2) = ∑
i∈S2

( ε2
(p−1)(1−ε2 ) )i, p̃2 = ∑

i∈Sp\{0} p(2)
i .

As d2 > d1, this implies (1 − ε)d1 > (1 − ε)d2 and εd1 >

εd2 and considering p̃2 � p̃1. Therefore, (A31) and (A32) can
be simplified as(

ε1

p − 1

)d1

P1 + (1 − ε1)d1 (p − 1 − p̃2) f̃1(ε1) >
ε1(1 − 2ε1)

(p − 1)
,

(A33)(
ε2

p − 1

)d1

p̃1 + (1 − ε2)d1 (p − 1 − p̃2) f̃2(ε2) >
ε2(1 − 2ε2)

(p − 1)
.

(A34)

On subtracting (A33) and (A34), we get

p̃1

(
ε2

p − 1

)d1

− p̃1

(
ε1

p − 1

)d1

+ (p − 1 − p̃2)

× [(1 − ε2)d1 f̃2(ε2) − (1 − ε1)d1 f̃1(ε1)]

>
ε2(1 − 2ε2)

(p − 1)
− ε1(1 − 2ε1)

(p − 1)
. (A35)

Similarly, on considering p̃1 < p̃2, (A31) and (A32) can be
written as(

ε1

p − 1

)d1

p̃2 + (1 − ε1)d1 (p − 1− p̃1) f̃1(ε1) >
ε1(1 − 2ε1)

(p − 1)
,

(A36)(
ε2

p − 1

)d1

p̃2 + (1 − ε2)d1 (p − 1− p̃1) f̃2(ε2) >
ε2(1 − 2ε2)

(p − 1)
.

(A37)

Subtraction of (A36) and (A37) will get us

p̃2

(
ε2

p − 1

)d1

− p̃2

(
ε1

p − 1

)d1

+ (p − 1 − p̃1)

× [(1 − ε2)d1 f̃2(ε2) − (1 − ε1)d1 f̃1(ε1)]

>
ε2(1 − 2ε2)

(p − 1)
− ε1(1 − 2ε1)

(p − 1)
. (A38)

Finally, on subtracting (A38) from (A35), we get

( p̃2 − p̃1)

[(
ε2

p − 1

)d1

−
(

ε1

p − 1

)d1
]

+ ( p̃2 − p̃1)

× [(1 − ε2)d1 f̃2(ε2) − (1 − ε1)d1 f̃1(ε1)] > 0. (A39)

On simplifying (A39), we get(
ε2

p − 1

)d1

−
(

ε1

p − 1

)d1

> (1 − ε1)d1 f̃1(ε1) − (1 − ε2)d1 f̃2(ε2). (A40)

If the code Q2 provides better noise suppression as com-
pared to code Q1, then the maximum noise functions of
codes Q1 and Q2 are related as f̃2(ε2) � f̃1(ε1); therefore,
the right-hand side in Eq. (A40) is non-negative and so from

the left-hand side, we get ε2 > ε1. As ε2 > ε1 implies (1 −
ε2)d1 < (1 − ε1)d1 so Eq. (A40) becomes[(

ε2

p − 1

)d1

−
(

ε1

p − 1

)d1
]

> [(1 − ε1)]d1 [ f̃1(ε1) − f̃2(ε2)]. (A41)

On simplifying Eq. (A41), we get

ε2 > (p − 1)

[(
ε1

p − 1

)d1

+ (1 − ε1)d1 [ f̃1(ε1) − f̃2(ε2)]

] 1
d1

.

(A42)

�

APPENDIX B: EXAMPLES OF ENCODING OPERATORS

We provide illustrative encoding examples of CSS and hy-
pergraph product codes using Algorithms 1 and 2 for shorter
length codes due to space limitations. The details of the stabi-
lizers and encoding operators for the [[31, 1, 16]]2 quantum
BCH code and [[29, 1, 15]]3 qutrit code that achieve near-
threshold magic-state distillation are available in Appendix C.

1. Encoding example of CSS code

Consider a [8, 6, 3]3 classical ternary code with parity
check matrix in row echelon form using Gaussian elimination
given by H(z) = H(x) = H = [1 0 2 0 1 2 1 2

0 1 0 2 1 2 2 1]

such that HHT ≡ 0 mod (3).
Using the CSS construction, a [[8, 4, 3]]3 quantum

code can be generated whose encoding operator is
given by Algorithm 1 as follows: On executing step
2 of Algorithm 1, the fifth and seventh columns of
the matrix H(x) do not have the value 2 in the first
row, so the required gate for the first row is S1 =
(ADD(1,3)

3 ADD(1,5)
3 ADD(1,6)

3 ADD(1,7)
3 ADD(1,8)

3 )(M (5)
2 M (7)

2 ).
The stabilizer matrix on application of operator S1 becomes

HCSS =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 2 2 2 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2
0 0 0 0 0 0 0 0 0 1 0 2 2 2 1 1

⎤
⎥⎥⎦. (B1)

Similarly, S2 = ADD(1,4)
3 ADD(1,5)

3 ADD(1,6)
3 ADD(1,7)

3

ADD(1,8)
3 (M (7)

2 M (8)
2 ) will transform HCSS as

HCSS =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 2 2 1 1
0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2

⎤
⎥⎥⎦.

The operator U1 = S2S1 = ADD(2,{4,5,6,7,8})
3 (M (7)

2 M (8)
2 )

ADD(1,{3,5,6,7,8})
3 (M (5)

2 M (7)
2 ) is obtained using commutativity

of MUL and ADD gates. On executing step 3 of Algorithm 1,
we get X = [1 1 2 2

1 1 1 1]. On execution of step 4 of Algo-
rithm 1, we can obtain the operator U2 using the matrix X as
U2 = ADD(8,4)

3 M (3)
2 ADD(8,3)

3 M (3)
2 ADD(7,4)

3 M (3)
2 ADD(7,3)

3 M (3)
2

ADD(6,4)
3 ADD(6,3)

3 ADD(5,4)
3 ADD(5,3)

3 , which can be
shortened using commutativity of ADD and MUL gates
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FIG. 11. Encoding circuit of a [[8, 4, 3]]3 quantum code whose stabilizer generators are given in Eq. (B1). The state |�〉 is encoded using
a sequence of DFT, MUL, and ADD gates to obtain an encoded codeword |�〉enc.

as U2 = M (3)
2 ADD({7,8},{3,4})

3 M (3)
2 ADD({5,6},{3,4})

3 . The last M (3)
2

gate in U2 is redundant as it affects only the ancilla qutrit not
the logical qutrit, so U2 = ADD({7,8},{3,4})

3 M (3)
2 ADD({5,6},{3,4})

3 .
The change in the stabilizer matrix is reflected as

HCSS =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

⎤
⎥⎥⎦.

Finally, on executing step 4, the application of DFT{1,2}
3

gate on the first two qutrits will make H(x) matrix zero, and
the complete stabilizer matrix becomes

HCSS =

⎡
⎢⎢⎣

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

⎤
⎥⎥⎦. (B2)

The complete encoding circuit is given in Fig. 11.

2. Example of hypergraph product code encoding

Now, we will provide an example where Algorithm 2 can
be used to encode a hypergraph product code.

For simplicity, we consider a nondual containing [3, 1]2

repetition code such that the parity check matrix is given by
H = [I2|A1] = [1 0 1

0 1 1]. This is already in the row echelon
form; hence, step 1 of Algorithm 2 is executed. An equivalent
quantum code can be created using the hypergraph construc-
tion such that X and Z stabilizer matrices are given using
Eqs. (84) and (85):

H(x) = [I2 ⊗ I3|A1 ⊗ I3|I2 ⊗ HT],

H(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 1 1 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B3)

H(z) =
[

I3 ⊗ H
I2 ⊗ I2

AT
1 ⊗ I2

]
,

H(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 1 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B4)

On executing step 2 of Algorithm 2, we get

W1 = CNOT{6,{9,12,13}} CNOT{5,{8,13}} CNOT{4,{7,12}}

× CNOT{3,{9,10,11}} CNOT{2,{8,11}} CNOT{1,{7,10}}.
(B5)

Using the operator W1, the stabilizer matrices H(x) and H(z)

will be transformed to

H(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B6)

H(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 1 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B7)

Now, step 3 of Algorithm 2 will provide us an operator W2 =
CNOT{9,{7,8}}, which will make the ninth column of H(z) zero.
We can also choose W2 = CNOT{7,{8,9}} that will make the
seventh column zero of H(z) matrix in Eq. (B7).

Finally, on executing step 4 of Algorithm 2, we will get
an operator U = H⊗6W2W1 that transforms all the X stabilizer
generators to identity and contains only Z stabilizer generators
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FIG. 12. The state |�〉 is a single-qubit state encoded using an encoding circuit of the [[13, 1, 3]]2 hypergraph product code containing
only CNOT and Hadamard gates designed using the Algorithm 2 to obtain a 13-qubit encoded state |�〉enc.

in the matrix form

H(z f ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 1 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B8)

Finally, the complete stabilizer matrix is of the form HS =
[012×13|H(z f )], where 012×13 is a zero matrix. We will get the
encoding operator W = U ⊥ = W1W2H⊗6, using Algorithm 2.
The encoding circuit of the [[13, 1, 3]]2 hypergraph code is
given in Fig. 12.

APPENDIX C: DECODERS FOR THE PROVIDED CODES

We provide the decoding operators for [[31, 1, 16]]2 and
[[29, 1, 15]]3 codes using Algorithm 1, which are used for
the distillation of the |T 〉 and the |S〉 states, respectively. The
decoding operators are helpful in the decoding step of the
MSD procedure.

1. Decoding operator for the [[31, 1, 16]]2 code

The parity check matrix of the [[31,1,16]] BCH code is
given by

H =
⎡
⎣1 α α2 α3 α4 α5 α6 · · ·α30

1 α3 α6 α9 α12 α15 α18 · · ·α28

1 α5 α10 α15 α20 α25 α30 · · · α26

⎤
⎦,

(C1)

where α is the primitive element with primitive polynomial
x5 + x2 + 1 over the field F31

2 . We choose α = [0 1 0 0 0]T

to transform the matrix H into the binary form as shown in
Fig. 13(a). Now, we apply the steps of Algorithm 1 to get
the decoding operator, which transforms the CSS stabilizer
matrix

HCSS =
[

H(x) 0
0 H(z)

]
, (C2)

where 0 is a 15 × 31 dimension-zero matrix and H(x) =
H(z) = H, to the matrix H̃ = [030×31|S30×15 S̃30×15 030×1],
where S and S̃ are some general matrices containing elements
from F2.

In the first step of Algorithm 1, we apply Gaussian elimina-
tion on the matrix H to bring the matrix into row echelon form,
i.e., H̃ = [I15×15|A15×15|B15×1] as shown in Fig. 13(b) and as-
sign X and Z stabilizer matrices with H̃, i.e., H(x) = H(z) = H̃
such that H(x) = [I(x)|A(x)|B(x)] and H(z) = [I(z)|A(z)|B(z)].

Now, in the second step of Algorithm 1, we iterate
over the rows of H(x) = [I(x)

15×15|A(x)
15×15|B(x)

15×1] matrix to get
operators to make submatrix [A(x)|B(x)] zero. For the first row,
we apply U1 = CNOT(1,c1 ), where c1 =
{16, 17, 20, 25, 26, 27, 28} are the nonzero entries of the
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FIG. 13. (a) Shows the parity check matrix of the [31, 16, 16]2 binary BCH self-dual code. (b) Shows the matrix after applying Gaussian
elimination on the matrix in (a) required in step 1 of Algorithm 1.

row [A(x)
1,∗|B(x)

1,∗] as shown in Fig. 13(b). Similarly, for the
second row of H(x), we apply U2 = CNOT(1,c2 ) to make
[A(x)

1,∗|B(x)
1,∗] zero, where c2 = {17, 18, 21, 26, 27, 28, 29} are

the nonzero entries of [A(x)
1,∗|B(x)

1,∗] as shown in Fig. 13(b).
On iterating over all the rows of H(x), we get the operator
U = ∏15

i=1 CNOT(i,ci ) that makes the submatrix [A(x)|B(x)]
zero. The effect of the operator U will also make I(z), the
submatrix of H(z) matrix zero, as proved earlier in Sec. V.

In the third step of Algorithm 1, we solve a linear equa-
tion A(z)x = B(z) and calculate the vector x. The vector x
helps to obtain an operator that will make the B(z) subma-

trix of H(z) zero. For the [[31, 1, 16]]2 code, the vector x =
[1 0 0 0 1 1 1 1 1 0 1 0 1 1 1]T. The operator U2 = CNOT(31,w)

will make B(z) submatrix of H(z) zero, where w are the tar-
get qubit positions calculated from the vector x by adding
15 to the indices i where xi = 1, for all i ∈ {1, 2, . . . , 15},
i.e, w = {16, 20, 21, 22, 23, 24, 26, 28, 29, 30}. Finally, we
apply Hadamard gates on the first 15 qubits using an
operator T = ∏15

i=1 DFT(i)
2 , where DFT(i)

2 is a Hadamard
gate applied on the ith qubit. The operator T will
make the I(x) submatrix of H(x) zero. Finally, we get
the decoding operator U for the [[31, 1, 16]]2 code as
U = TU2U1.

FIG. 14. (a) Shows the parity check matrix of the [29, 15, 15]3 ternary self-dual code. (b) Shows the matrix after applying Gaussian
elimination on matrix in (a) required in step 1 of Algorithm 1.
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2. Decoding operator for the [[29, 1, 15]]3 code

The parity check matrix H for the [[29, 1, 15]]3 code is
given in Fig. 14(a). On applying Gaussian elimination over
the matrix H, we bring matrix H into row echelon form as
H̃ = [U14×14|A14×14|B14×1] as shown in Fig. 14(b).

First assign H̃ to H(x) = [U(x)
14×14|A(x)

14×14|B(x)
14×1] and H(z) =

[U(z)
14×14|A(z)

14×14|B(z)
14×1] matrices and then iterate over the

rows of H(x). For the first row, we first apply multi-
plication gates (MUL) M2 on the row [A(x)

1,∗|B(x)
1,∗] where

elements are 1 then we apply ADD3 gates on all the
nonzero positions of the updated [A(x)

1,∗|B(x)
1,∗]. The operator

o1 = M
(c(1)

M )
2 ADD(1,c(1)

A )
3 , c(1)

M = {17, 18, 19, 23, 29}, and c(1)
A =

{15, 17, 18, 19, 21, 22, 23, 26, 27, 28, 29}. For the second

row of H(x), the operator o2 = M
(c(2)

M )
2 ADD(1,c(2)

A )
3 , where c(2)

M =
{21, 25, 29} and c(2)

A = {15, 16, 17, 21, 22, 24, 25, 29}. Simi-

larly, for any row i, oi is calculated as oi = M
(c(i)

M )
2 ADD(1,c(i)

A )
3 ,

where c(i)
M are the positions of [A(x)

i,∗ |B(x)
i,∗ ] where elements

are 1 and c(i)
A are positions of all nonzero elements of

[A(x)
i,∗ |B(x)

i,∗ ] which will make [A(x)
i |B(x)

i ] zero. As U(x) 	=
I(x), we need to add extra positions on cA as c̃( j)

A =
cA ∪ {14} for all j ∈ {7, 8, . . . , 12}. Finally, the operator
O1 = ∏14

i=1 oi.
Next, we solve a linear equation A(z)x = B(z) to

get x = [2 0 0 1 2 2 2 2 0 0 0 1 2 2]. The operator O2 =
M (cM )

2 ADD(29,cA ), where cM = {i + 14} such that xi = 2
and cA = { j + 14} such that x j 	= 0 for all i, j ∈ S14 =
{1, 2, . . . , 14}, so cM = {15, 19, 20, 21, 22, 27, 28} and
cA = cM ∪ {18, 26}. Finally, DFT3 gates are applied on
the first 14 qutrits as follows: T = ∏14

i=1 DFT(i)
3 to make

U (x) matrix zero. The complete decoding operator for the
[[29, 1, 15]]3 code is given by O = T O2O1 and the encoding
operator E = O†.
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