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Learning probability distribution is an essential framework in classical learning theory. As a counterpart,
quantum state learning has spurred the exploration of quantum machine learning theory. However, as dimension-
ality increases, learning a high-dimensional unknown quantum state via conventional quantum neural network
approaches remains challenging due to trainability issues. In this work we devise the quantum sequential
scattering model, inspired by the classical diffusion model, to overcome this scalability issue. Training of our
model could effectively circumvent the vanishing gradient problem for a large class of high-dimensional target
states possessing polynomial-scaled Schmidt ranks. Theoretical analysis and numerical experiments provide
evidence for our model’s effectiveness in learning both physically and algorithmically meaningful quantum
states and outperform the conventional approaches in training speed and learning accuracy. Our work indicates
that an increasing entanglement (a property of quantum states) in the target states necessitates a larger-scaled
model, which could reduce our model’s learning performance and efficiency.
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I. INTRODUCTION

Quantum computing, as a prospective advanced com-
putational framework, is expected to provide significant
inspiration in both theoretical and experimental aspects.
Meanwhile, the remarkable achievements of influential clas-
sical machine learning models [1] have spurred the evolution
of their quantum counterparts within the emerging field of
quantum machine learning (QML) [2–5]. In particular, learn-
ing correlations between individual events and data is one of
the crucial tasks in this area, where the correlations between
random samples can be characterized by some probability
distributions [6] of some stochastic process. Classical distri-
bution learning aims to reconstruct a sample generator that
could simulate such a correct stochastic process.

In quantum computing, the correlations between quantum
data are encoded within the quantum states. Consequently,
the task of learning an arbitrary quantum state bears a resem-
blance to classical distribution learning. Typical quantum state
learning aims to efficiently reconstruct a complete representa-
tion of a given target state instead of numerically simulating
it [7], which can be further used in quantum data encoding,
data analysis, and quantum simulation [8–10].

A plethora of approaches and schemes have been designed
to learn correlations for both scenarios. Classically, mod-
els such as continuous evolutionary algorithms [11,12] and
supervised learning within the neural network framework,
including the Boltzmann machine, graph neural network, and
diffusion model [13–16], have been invented to determine
distribution learning. Meanwhile, with the quick expansion of
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the field of noisy intermediate-scale quantum (NISQ) com-
puting [17], the concept of quantum neural networks (QNNs),
serving as quantum counterparts to classical neural networks,
has emerged. The gradually reliable hybrid quantum-classical
techniques make QML well suited for handling state learning
tasks [18–21].

In this work we focus on the QNN-powered algorithms
combining both classical and quantum computation. Utiliz-
ing parametrized quantum circuits, these algorithms explore
the Hilbert space through classical optimization techniques
involving gradient descent or gradient-free methods and then
determine the optimal parameters [22,23]. Beyond our scope,
schemes using shadow tomography [24,25] fulfill another
category of state learning with the aim of characterizing the
classical information of quantum states.

As the main solution to quantum state learning, the im-
plementation of the QNN-based methods suffers challenges
including scalability and training efficiency issue [26,27],
dense local minima [28–30], and training phase transi-
tion [31,32]. Specifically, deep QNNs containing surplus
circuit layers could ensure reachability of any unitary matrix
in the Hilbert space. Such features will experience expo-
nentially vanishing gradients during training, a phenomenon
referred to as barren plateaus [26], leading to a flattening of
the cost function landscape as the system scales up.

To overcome the above bottleneck, we drew inspiration
from the classical diffusion model [33], which dilates in-
formation regarding Gaussian distribution using sequential
diffusion layers. The main idea behind our work is to conduct
state learning by progressively augmenting subsystems in a
sequential manner, which is achieved by purifying subsys-
tem states and layerwise training [34]. From an information
theory perspective, the comprehensive learning procedure can
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be likened to a quantum information diffusion mechanism
across a cascade of system dilations, analogous to the classical
diffusion model.

In this work we devise a quantum sequential scattering
model (QSSM) integrating Uhlmann’s purification theo-
rem [35] into the training of QNNs. Our main contributions
involve (i) conceptually combining quantum information
diffusion and adaptive quantum state learning, (ii) techni-
cally devising a quantum neural network model, namely, the
QSSM, and the state learning algorithm via a sequentially
subsystem-learning strategy, (iii) theoretically proving the
effectiveness of the state learning algorithm and a polynomial-
scaled gradient variance of the QSSM which indicates an
avoidance of barren plateaus for rank-restricted state learning,
and (iv) numerically demonstrating our results on learning
different quantum states involving the noise effects. We com-
pare the QSSM directly to the conventional QNN model for
handling state learning tasks and showcase its enhancement
in both training efficiency and learning accuracy.

II. MAIN RESULT

A. Quantum sequential scattering model

We present a sketch of the design for the quantum sequen-
tial scattering model, which could efficiently accomplish the
state learning tasks. Given an n-qubit quantum state ρ repre-
sented by certainly ordered qubits denoted by q1, q2, . . . , qn, a
kth partition of ρ separates the state into bipartite subsystems
Ak and Āk covering the first k qubits and the remaining qubits,
respectively, where 1 � k � n. For k = n, Āk becomes trivial
and Ak = C2n

. We denote by ρk the partial state on system
Ak , i.e., ρk = TrĀk

(ρ), where TrB(·) denotes the partial trace
operation on subsystem B. By fixing the number of qubits in
the system, the dimension of Ak increases as k grows and the
dimension of Āk decreases.

The fundamental idea of the QSSM is to construct ρk

for each k. In contrast, traditional QNN learning handles the
entire system at a time. Suppose we have access to the copies
of a pure target state ρ = |φ〉〈φ| from some quantum instances
and we denote by k the kth learning step. The model aims to
construct a purification |ψk〉〈ψk| for the kth partition target
state ρk of the first k qubits via training the corresponding
kth scattering layer, denoted by Uk (θk ). The scattering layer
indicates the information flow driven by Uk (θk ) during train-
ing, which is a parametrized circuit acting partially on the
entire system. The kth scattering layer is applied on wk qubits
indexed from qk to qk+wk−1, which preserves previous learning
results from ρk . As a model iterative variable, wk controls
the dimensionality of the purification at the kth learning step
generated from the model. For sufficiently large wk the reach-
ability of the purification |ψk〉〈ψk| is ensured so that the state
|ψk〉 is represented in k + wk − 1 qubits. The optimization on
Uk (θk ) is accomplished by minimizing an adaptive kth step
cost function as

Ck (θk ) := D(σk (θk ), ρk ), (1)

where σk represents the kth partition of |ψk〉〈ψk|, i.e., σk =
TrĀk

(|ψk〉〈ψk|), and D(·) denotes a distance measured be-
tween two density operators. By hierarchically conducting the

ALGORITHM 1. QSSM for (pure) state learning.

Require: Copies of the n-qubit target state ρ = |φ〉〈φ|, initialize
the model to |0〉⊗n with qubit labels q1, q2, . . . , qn.

Ensure: All layer parameters are randomly initialized regarding
uniform distribution of [0, 2π ).

1: Let k = 1.
2: The step scattered layer width wk = k + 1.
3: while k � n do
4: if k � �n/2� then
5: wk = k + 1.
6: else if k > �n/2� then
7: wk = n − k + 1.
8: end if
9: Random initialize Uk (θk ) acting on qubits qk ∼ qk+wk−1.
10: Minimize Ck (θk ) via classical optimization algorithm.
11: k = k + 1.
12: end while
13: Store all optimized θ1, . . . , θn in classical memory.
return reconstructed representation |ψ〉 = Un · · ·U1|0〉⊗n ≈ |φ〉.

scattering layers, we could then construct the entire target
through our QSSM. We summarize our quantum state learn-
ing algorithm via the QSSM in Algorithm 1. A flowchart of
QSSM state learning is illustrated in Fig. 1.

Remark 1. QSSM state learning applies to a given mixed
target state ρ acting on A by learning the purification |AR〉 of
ρ, where R is the ancillary system.

B. Cost function evaluation

As a hybrid quantum-classical model, declaring the prac-
tical realization of the model is necessary. In our context, we
use the square of the Schatten 2-norm to define the distance
metric, or the kth step cost, as shown in

Ck (θk ) = Tr{[σk (θk ) − ρk][σk (θk ) − ρk]†}. (2)

We have chosen the cost function of the form (2) due to
its convenience and efficiency of evaluations, which could
possibly be performed on near-term quantum hardware. We
rearrange Eq. (2) as

Ck (θk ) = Tr
[
σ 2

k (θk )
] + Tr

(
ρ2

k

) − 2 Tr[σk (θk )ρk]. (3)

The terms involving state overlaps can be evaluated via a
SWAP test [36], which has been experimentally demonstrated
on real quantum devices [37,38]. In addition, in the case of
exponentially vanishing overlap between states which fails the
SWAP test, the estimation of the overlap can rely on the strategy
with collective measurement [39]. The training of the kth layer
can be described as finding the kth step optimal parameters
θ

opt
k so that Ck (θopt

k ) is minimized to approximately zero.

C. Analytic gradient

We now show that the analytical gradients of the cost func-
tion in Eq. (2) can also be computed efficiently, making the
gradient-based scheme a prospective candidate for the train-
ing processes. The analytic gradient of Ck can be evaluated
according to [21,40–42]. Suppose the kth layer Uk consists
of the gates satisfying the parameter-shift rule [40,41] and
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FIG. 1. Conceptual diagram of QSSM state learning. Starting with a full tensor product state (e.g., |0〉⊗n) initially, each QSSM layer Uk

produces a purification |ψk〉 of the reduced density ρk of |φ〉. At each step, the cost Ck (θk ) can be estimated via the SWAP test [36] shown in the
diagram. After all n training steps, the entire trained model produces a complete circuit representation |ψ〉 approaching the target |φ〉. The state
|ψ〉 therefore carries almost the same stochastic behavior as |φ〉 and can be regenerated conveniently for further computational assignments.

contains m trainable parameters. Each optimization iteration
is driven by the estimations of the cost gradient given by

∇θkCk (θk ) = (∂1Ck (θk ), . . . , ∂mCk (θk )), (4)

where ∂μ := ∂
∂θ

μ

k
, indicating the partial derivative with respect

to a fixed θ
μ

k in the kth layer. In particular, we derive the
analytic gradient of Ck as follows:

∂μC∗
k = 〈G∗

k〉(θ
μ

k

)∗
+π/2

− 〈G∗
k〉(θ

μ

k

)∗
−π/2

. (5)

The asterisk indicates the corresponding quantity evaluated at
θk = θ∗

k . Here Gk is a Hermitian operator involving both σk

and ρk and is expressed as

Gk (θk ) := 	k (θk ) ⊗ 
k, (6)

where 	k (θk ) = σk (θk ) − ρk represents the kth step state dif-
ference and 
k is the maximally mixed state I/d , with I
the identity operator of dimension d = 2wk−1; 
k = 1 when
wk = 1. The bra-ket operation is in the analytic form 〈A〉α =
〈ψk−1|U †

k (θk )AUk (θk )|ψk−1〉 for some Hermitian operator A
evaluated at θ

μ

k = α. This quantity of Gk in Eq. (5) indicates
the expectation value of Gk regarding the kth step variational
ansatz |ψk〉 evaluated at (θμ

k )∗ ± π/2, where all other scatter-
ing layers remain unchanged. The detailed derivation of these
definitions and forms can be found in Appendix C.

To summarize, each partial derivative of Ck at θ∗
k can be

explicitly determined by Eq. (5), which can be efficiently
computed on NISQ devices via shifting the corresponding
parameter. The gradient-based optimization could be applied
to the cost by specifically updating the parameters θk in the
kth layer as

θk ← θ∗
k − η∇θkCk (θ∗

k ), (7)

where η is the learning rate determined for the classical opti-
mizers defining the iteration step size. Apart from the plain
gradient decent, classical gradient-based and gradient-free
methods, such as Adam and COBYLA [43,44], can be used
during optimizations. By repeating the step (7), the cost func-
tion will possibly converge to the optimal minimum. We then

iterate the above procedures for each kth layer to complete
the model training with a final output circuit representation
U (θopt) = Un(θopt

n ) · · ·U1(θopt
1 ) for generating the target state.

III. THEORETICAL PERFORMANCE ANALYSIS

In this section we elaborate on the theoretical effectiveness
of QSSM state learning for arbitrary quantum states. Then we
explore the model’s trainability, which strongly corresponds
to the scattering layers’ maximum width.

A. Effectiveness of the QSSM

One of the implications of Uhlmann’s theorem is that it
ensures the degrees of freedom for quantum state purifica-
tion [35]. Given a mixed state ρ with a purification |AR〉,
one can always find a local unitary UR acting on the ancil-
lary system R such that |AR′〉 = (IA ⊗ UR)|AR〉 forms another
purification of ρ. Based on that, the theoretical guarantee of
QSSM state learning is stated in the following lemma.

Lemma 1. Given a target state ρ acting on the system of A
and B, suppose its purification |ψ〉 is on system ABE , where
E is an ancillary system, such that

TrBE (|ψ〉〈ψ |) = TrB(ρ). (8)

There always exists a local unitary UBE acting on the compos-
ite system BE such that

TrE [(IA ⊗ UBE )|ψ〉〈ψ |(IA ⊗ U †
BE )] = ρ. (9)

The proofs and details of Lemma 1 can be found in Ap-
pendix D. We now apply Lemma 1 to our QSSM in order
to demonstrate the effectiveness of perfectly learning a target
pure state. Consider an n-qubit pure target ρ = |φ〉〈φ| where
we wish to reconstruct it using an n-qubit circuit representa-
tion. Apart from these n qubits and the ancillary systems for
cost and gradient evaluations, there is no need for additional
ancillary qubits for the entire learning process. At the kth
step, we suppose that the purification |ψk〉 has been perfectly
learned and represented on the first k + wk − 1 qubits so that
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FIG. 2. The kth partition of an ordered qubit system. The corre-
sponding element rk is the rank of the reduced state ρk = TrĀk

(ρ ).

the following equation holds:

σk = TrĀk
(|ψk〉〈ψk|) = TrĀk

(ρ) = ρk . (10)

We call this the kth perfect learning condition of QSSM state
learning. Then, by Lemma 1 there exists a local unitary such
that

TrĀk+1
[(Ik ⊗ Uk+1)|ψk〉〈ψk|(Ik ⊗ U †

k+1)] = TrĀk+1
(ρ), (11)

where the existence of Uk+1 ensures the effectiveness of the
QSSM. We call it a perfect learning assumption of QSSM
state learning if all the kth perfect learning can be achieved.

One important point to note here is that when the rank of ρk

for 1 � k < n in the target is bounded from above, an upper
bound for each layer width wk can be determined while main-
taining perfect learning. We introduce the definition of rank
sequence of any quantum state characterizing the Schmidt
rank distributions within the state.

Definition 1. Given an n-qubit pure quantum state ρ

represented by certainly ordered qubits, the (Schmidt) rank
sequence is an ordered list Rρ ,

Rρ = {r1, r2, . . . , rn−1, rn}, (12)

where rk indicates the Schmidt rank of the kth partition re-
duced states ρk in Fig. 2 and rn = 1.

We then have the following sufficient and necessary condi-
tions for the perfect learning of the QSSM,

Proposition 1. For a given n-qubit pure target state ρ rep-
resented by certainly ordered qubits, if the rank sequence is

Rρ = {r1, r2, . . . , rn−1, rn},
then the QSSM can achieve perfect learning for ρ if and
only if the minimum width of the kth scattering layer is
�log2 rk + 1.

The proof of Proposition 1 directly follows by Lemma 1
and Schmidt decomposition. The proposition identifies a
group of quantum states that can be learned more efficiently
using the QSSM. One notable exemplar within this proposi-
tion is the n-qubit Greenberger-Horne-Zeilinger (GHZ) state.

Remark 2. An n-qubit GHZ state [45] has constant rank
rk = 2 for 1 � k < n. Hence setting wk = 2 ∀ k is sufficient
to obtain perfect learning of QSSM state learning on the GHZ
state.

Direct intuition from the above phenomenon suggests a
connection between the amount of entanglement within a
target state and the sufficient widths wk to achieve perfect
learning. The higher the rank, the harder the target state that
could be learned via the QSSM.

B. Avoiding barren plateaus

Trainability is a critical challenge for the practical usage
of QNNs. Using a deep QNN for a global system signifi-
cantly increases the randomness of an initial guess, which
nevertheless leads to the emergence of the barren plateau (BP)
issue [26] for sizable state learning. In this case, the partial
derivative of the cost function would have a zero mean and
an exponentially small variance with respect to the number of
qubits, thereby making it challenging to identify the correct
direction to decrease the cost function value.

As shown in previous sections, the QSSM has illustrated
a potential capability of addressing trainability issues be-
cause of its nature of focusing on subsystems instead of the
whole state. In this section we show that the QSSM has
explicit advantages in trainability by directly computing the
variance of the cost gradient, thus enabling it to avoid a
BP in many cases. For the gradient of the kth step ∂μCk

[see Eq. (5)], the kth scattering layer can be expressed as
Uk (θ) = U (k)

+ (θ+)e−iθμHμU (k)
− (θ−), where the total parameter

vector θ = (θ+, θμ, θ−). For simplicity, we have omitted the
superscript k in the parameter. The results are summarized as
follows.

Definition 2. A unitary t-design of dimension d [46] with
respect to the Haar measure is defined as a finite set of uni-
taries {Uk}M

k=1 on a d-dimensional Hilbert space such that

1

M

M∑
k=1

P(t,t )(Uk ) =
∫
U (d )

dμHaar(U )P(t,t )(U ), (13)

where P(t,t )(U ) denotes a homogeneous polynomial of degree
at most t on the elements of U and U †.

Proposition 2. For QSSM learning of an n-qubit target
state, ρ has a fixed-order representation and a rank sequence

Rρ = {r1, r2, . . . , rn−1, rn}.
If U (k)

± of the kth step form at least a local unitary 4-design,
the expectation and the variance of the analytic gradient for
the kth learning step with respect to θμ are evaluated as

E(∂μCk ) = 0, Var(∂μCk ) ∈ O

(
1

rk

)
. (14)

The proof of this proposition is presented in Appendix E.
This proposition notably implies that the gradient magnitude
is greatly determined by the largest Schmidt rank in the rank
sequence of the target state rather than the total number of
qubits n. In other words, the gradient magnitude scales with
the width of each scattering layer as O(2−wk ) and the QSSM
could escape from the barren plateaus by carefully setting
the layer widths. A typical example is given in the following
remark.

Remark 3. The variance of the gradient magnitude for
learning an n-qubit GHZ state scales as

Var(∂μCk ) ∈ O(1) (15)

for any integer 1 � k � n, which means there is no barren
plateau.

Proposition 2 implies that the QSSM can efficiently facili-
tate the learning of any pure states with rk ∼ O( Poly(n)). This
encompasses a broad spectrum of quantum states, including
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FirsFirs

FIG. 3. Comparison of the gradient magnitude between different steps in the QSSM and global QNN. The data points represent the sample
variance of gradients of the cost function as a function of the number of qubits on a semilogarithmic plot for the learning of (a) the GHZ state
and (b) the ground state of the Heisenberg model. The red solid, black dash-dotted, and blue dashed lines represent the gradient magnitude of
the first step, the n

2 th step, and the last step, respectively. The yellow diagonal line represents the gradient magnitude of using the randomly
initialized global QNN. Our method apparently outperforms the conventional global QNN in terms of gradient variance scaling, indicating the
absence of barren plateaus.

cases like slightly entangled states [7] and matrix product
states [47], which can be classically efficiently characterized
and simulated [48]. However, while the former necessitates
a maximal Schmidt rank over all possible bipartite splits
of polynomial scaling, our QSSM applies more than those
merely requiring a polynomial scaling of the Schmidt rank
over bipartite splits from all possible permutations of those
representing qubits. Moreover, although our QSSM illustrates
similar favor of tensor network techniques, in contrast to
existing methods [49–51] tailored for learning matrix prod-
uct states, primarily applicable to one-dimensional quantum
spin model ground states, the QSSM has broader applica-
tions and could work more generally for learning different
quantum states. Therefore, our QSSM exhibits broader utility
and potential applicability across a wider spectrum of quan-
tum states compared to these methods. Even in the worst
case, wherein the rank sequence of the target state is Rρ =
{21, 22, . . . , 2�n/2�, . . . , 2, 1}, the gradient magnitude scales
as O(2−�n/2�). Our QSSM state learning still gains a square
root advantage compared with the conventional global QNN
having a gradient variance scaling as O(2−n).

From another point of view, random pure states ρ, despite
having maximum rank in Rρ , scale as 2�n/2� and can be
useless as practical computational resources [52]. In addition,
the few smallest eigenvalues of the middle partition ρ�n/2� can
be negligible. Learning their low-rank approximation prede-
termined by the quantum principal component analysis [53]
can be treated as a quantum compressing of unknown states,
which still captures the main statistical behaviors of target
states. By allowing a certain error tolerance of learning ρ

instead of perfect learning, one can omit the influence of
those tail eigenvalues and the efficient training condition of
the QSSM still applies by fixing the maximum layer width.

Compared to the n-qubit universal QNN model state
learning, the QSSM demands significantly fewer parametric
degrees of freedom (DOFs) to reach the same approximat-
ing error. The generating Lie algebra of an n-qubit universal

QNN model has to span SU(2n), resulting in a model DOF
of O(4n). In contrast, since the kth scattering layer involves
at most � n

2� + 1 quantum registers, the total DOF of the
QSSM experiences a quadratic reduction to at most O(4�n/2�).
Also, to learn the polynomial rank-bounded target state ρ,
rmax = maxRρ ∼ O( Poly(n)). The DOF required for each
scattering layer in the QSSM scales as O( Poly(n)). Therefore,
the entire model comprises fewer quantum gates, rendering
this approach considerably more hardware efficient.

To illustrate the result shown in Proposition 2, we compare
the gradient variances of cost (2) as a function of the number
of qubits for the QSSM and global QNN state learning. For the
QSSM, we particularly investigate the values in the first step,
the middle step ( n

2 th step), and the last step of the learning
procedure. We look into a single-parameter RZ gate in the
middle of a circuit forming a local 4-design. The two parts
split by the gate are also local 4-designs and are represented as
Haar random unitaries in our experiment. For the global QNN,
we calculate the gradient variances of a single-parameter RZ

gate which is sandwiched between two global Haar unitaries.
We learn the GHZ state and ground state of the Heisenberg
model [54] with maximum width wmax being 2 and 4, respec-
tively. The variance values are computed from sampling 500
Haar unitary pairs for both cases.

As can be seen in Fig. 3, the variance of the gradient
vanishes exponentially with the number of qubits when using
the randomly initialized global QNNs. In contrast, the QSSM
demonstrates a constant scaling of variance magnitude. We
note that there is a decay of the gradient variance of the
middle step in Fig. 3(b). Nevertheless, this decay is caused by
a constant factor that originates from the nature of the ground
state (GS). It does not exhibit the exponentially decreasing
behavior appearing in the global QNN cases.

It is worth noting that the recent work by Cerezo et al. [27]
claims that strategies aimed at avoiding barren plateaus will
result in a polynomially sized subspace constraining the
evolved observable, rendering them classically simulable.
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TABLE I. Effectiveness (noise-free) validation of the QSSM in
learning diverse 12-qubit quantum states regarding the final-state
fidelities. The QSSM consistently surpasses the conventional global
QNN in terms of achieving higher final-state fidelity across a variety
of quantum states, showing its remarkable efficiency in tackling
quantum state learning tasks.

Physical states Global QNN QSSM

XXX model GS 0.533 0.926
XXZ model GS 0.523 0.948
LiH molecular GS 0.531 0.973

Algorithmic states Global QNN QSSM

GHZ state 0.535 0.971
W state 0.527 0.958
Gaussian distribution encoding 0.561 0.978
MNIST data encoding 0.330 0.867
random state 0.317 0.834

However, we note that the enhanced trainability of our al-
gorithm primarily stems from its layerwise learning scheme,
which can be regarded as applying a warm start for each learn-
ing step. In addition, the loss function employed in the QSSM
diverges from the assumption considered in that work [27].
Therefore, the QSSM does not align with the classically
simulable algorithms in the same manner as the strategies
considered in [27]. To the best of our knowledge, it remains
uncertain if the QSSM is classically simulable. We believe it
would be a valuable research direction to explore in the future.

IV. LEARNING PHYSICAL AND ALGORITHMIC
QUANTUM STATES

To showcase the effectiveness of the QSSM on state learn-
ing tasks, we conduct numerical simulations of learning both
physical and algorithmic 12-qubit quantum states using the
QSSM and the traditional global QNN, shown in Table I.
The XXX and XXZ models represent the Heisenberg spin-
1/2 chains (Jx = Jy = Jz = 1, and Jx = Jy = 1 and Jz = 2,
respectively) with zero external magnetic fields, satisfying
periodic boundary conditions. The ground state of the LiH
molecule is provided by OpenFermion tools. For the Gaussian
and MNIST experiments, the distribution and image data are
encoded to the unit quantum state vectors of dimension 2n via
amplitude encoding [55] with automatic padding of 0’s filling
out the extra grayscale pixels. A consistent experimental con-
figuration is employed across all the following simulations.

In our numerical simulations involving the global QNN
and the QSSM, we employ a general hardware-efficient
ansatz [23] of depth d = 20 with random initialized param-
eters. This choice of a random circuit can be considered as
an approximate 2-design, thus providing robust expressibility.
The optimization uses the Adam optimizer with a learning
rate of 0.1, spanning 200 iterations. Comparing the outcomes
with those of the global QNN, we discern clear advantages ex-
hibited by the QSSM, which consistently attains notably high
fidelity in the learning of diverse quantum states. Conversely,
conventional methods do not perform well, primarily due to
the challenges encountered during the training process when

dealing with a large number of qubits, where the convergence
speed significantly decreases.

More specifically, we present the trend line depicting
the outcome performance in terms of fidelity between the
network-produced results and the target states, as showcased
in Fig. 4. This figure offers a comparative view of the per-
formance of the two models as learning the ground states of
the Heisenberg spin-1/2 chain model (Jx,y,z = 1 and hz = 0)
across an increasing number of qubits. Each data point is an
average from five independent numerical experiments, and
the error bars indicate the range of trained outcome fidelities.
The performance of the global QNN, represented by the red
curve, exhibits a marked decline when dealing with higher-
dimensional states. On the other hand, the QSSM effectively
sustains its convergence speed under the same computational
resource allocation, as indicated by the slight decrease in the
blue curve.

We also perform noisy quantum simulations in which the
QSSM is used to learn a four-qubit GHZ state on the IBMQ
Qiskit simulator [56]. We build our noise model from single-
qubit and multiqubit depolarizing channels (DCs) and thermal
relaxation channels (TRCs) [57]. The error rate of the DCs is
set to 10−3 and the T1, T2, and gate time of the TRCs are set to
1000 µs, 100 µs, and 1 ns, respectively. In Fig. 5(a) we show
the behavior of the cost function in every step of the QSSM’s
optimization. At each step, we run the optimization of the
QSSM circuit 20 times and use the parameters that correspond
to the lowest cost to update the circuit before going to the next
step. We find this trick can significantly alleviate the random-
ness arising from sampling of bit strings in the measurement
of quantum circuits and therefore improves the stability of
our state learning task. We also show the distribution of bit
strings generated from the learned QSSM circuit after the
measurement in Fig. 5(b). The fidelity between the quantum
state generated from the QSSM and the GHZ state could reach
91%. The figure validates the efficacy and efficiency of the
QSSM even in the presence of noisy environments, conse-
quently reinforcing the practical applicability and prospects
of our method.

From the analytical description and numerical demonstra-
tion, we see that the QSSM has the ability to learn arbitrary
quantum states with high fidelity compared to the conven-
tional variational methods. It is worth noting that, based on
the result shown in Proposition 1, the QSSM will only require
narrow and shallow circuits in learning quantum states that
are weakly entangled in each partition, thus being extremely
efficient in learning such a class of quantum states.

A. Truncation performance

The original QSSM assumes perfect learning for arbitrary
pure quantum states, necessitating wk = k + 1 or n − k + 1 to
cover any state ρ of rk = 2min{k,n−k} in Rρ , based on Proposi-
tion 1. However, as highlighted in Remark 2 for the GHZ state,
the flexibility of confining the maximum width wmax of the
scattering layers can inspire a truncated version of the QSSM
(TQSSM). With prior knowledge of the rank sequence of the
target state, we could use narrower layers to accomplish the
kth learning step.
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×d
U3(θ1) • U3(θ5)

U3(θ2) • U3(θ6)

U3(θ3) • U3(θ7)

U3(θ4) U3(θ8)

FIG. 4. Comparison of effectiveness (noise-free) trends between the QSSM and global QNN in learning the ground state of the periodic
Heisenberg model of different system sizes. The blue and red curves illustrate the final learned fidelity from the QSSM and the global QNN
model, respectively. On the right we show the architecture of the circuit model used in the experiments. The circuit is composed of the repeated
block consisting of CNOT gates and U3 gates. The dashed block circuit repeats d times.

In addition, a state with exponentially large ranks in the
rank sequence might not necessarily be hard to learn. Those
with concentrated eigenvalues contain large ranks but can
be learned up to a high fidelity [59] with limited resources.
Intuitively, only highly entangled states have insignificant tail
eigenvalues, which occupy a limited region throughout the
entire Hilbert space. In the worst case, learning a state that
is maximally entangled [60] is the most challenging task for
the QSSM since every kth partition reduced state of the max-
imally entangled states has the maximum attainable rank rk

with eigenvalues uniformly spread.
In most cases, we could omit the insignificant impactful

tail Schmidt coefficients of the target state and concentrate
on the dominant terms. In essence, a truncated version of
the target state can be learned, encapsulating the majority of
stochastic characteristics yet requiring fewer computational
resources. As a result, during practical QSSM implementa-
tions, it becomes viable to truncate the maximum layer width

wmax, thereby enhancing efficiency without significantly com-
promising the quality of state learning.

We determine a width constraint to the QSSM so that wk =
min{k + 1,wmax, n − k + 1}. To clarify the performance of
the truncated QSSM, we conduct numerical simulations on
the model, as before, by setting different values of wmax and
learning the same quantum states used in Table I. All the other
hyperparameters stay the same. Results are shown in Table II.

In most situations, reasonably constrained widths for
scattering layers would counterintuitively yield superior per-
formance compared to the original strategy used in the QSSM.
As evident from Table II, it is apparent that attaining an
acceptable fidelity level (approximately 0.9) for learning these
quantum states only necessitates wmax = 4 or 5. Larger values
of wmax could even lead to a decrease in the model perfor-
mances of state learning. For instance, in the case of learning
the GHZ state, opting for wmax = 2 yields an optimal fidelity
of 0.994, whereas a value of only 0.971 is achieved with

FIG. 5. Noisy quantum simulation of the QSSM for learning a four-qubit GHZ state. (a) Comparison of the variation of the cost function
with the noisy quantum simulation and noise-free simulation. For both cases, the optimization was processed via the COBYLA optimizer [58]
on SWAP-test estimated cost values. (b) Distribution of measurement outcomes which are generated noise-free from the state that was obtained
by the noisy trained QSSM. The blue (left) bar shows the result of the noisy simulation and the orange (right) bar shows the result of the
standard GHZ state.
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TABLE II. Flexibility of TQSSM (noise-free) numerical simulations on learning both physical and algorithmic quantum states with
increasing maximum layer widths wmax. All layers with different wmax have the same ansatz setup as in Table I. For n = 12 states, wmax = 7 is
equivalent to the worst case of doubling the dimensionality.

Maximum layer widths

Physical states 2 3 4 5 6 7

XXX model GS 0.523 0.883 0.915 0.956 0.950 0.926
XXZ model GS 0.750 0.887 0.954 0.952 0.952 0.948
LiH molecule GS 0.978 0.973 0.967 0.978 0.982 0.973

Algorithmic states 2 3 4 5 6 7

GHZ state 0.994 0.993 0.990 0.989 0.975 0.971
W state 0.990 0.992 0.982 0.985 0.982 0.958
Gaussian distribution 0.969 0.985 0.976 0.981 0.986 0.978
MNIST data encoding 0.517 0.759 0.891 0.903 0.887 0.867
random state 0.318 0.768 0.856 0.871 0.879 0.834

wmax = 7. A plausible explanation for this phenomenon could
be the overparametrization and the mild BP effect during the
training of the half-dimensional scattering layers. Notably,
learning random state undoubtedly obtains the worst learning
results.

V. DISCUSSION

We have proposed a QSSM state learning framework com-
bining purification theory and QNN training. The main feature
of our QSSM is that it avoids barren plateaus in learning a
large class of quantum states containing a medium amount
of entanglement. By theoretical and numerical demonstra-
tions, we have shown that the QSSM can outperform the
conventional QNN architecture on quantum state learning
tasks with higher fidelity and convergence speed. Our model
only requires QNN layers crossing adjacent systems and fewer
network parameters, showing convenient topological connec-
tivity and robustness on circuit noise from simulations. From
the perspective of trainability, we briefly introduced the is-
sue of barren plateaus in training QNN-based algorithms and
reviewed some recent solutions and schemes resolving it. In
particular, we rigorously proved that the QSSM would avoid
barren plateaus for learning a large class of quantum states.
We also performed numerical sampling to compute the gradi-
ent variances with respect to some fixed network parameters.
Our QSSM shows constant and polynomial scaling of gradient
variance for those states, which partially solves the challeng-
ing trainability issues in QML.

While barren plateaus have received considerable attention
in the literature, recent investigations have revealed a broader
challenge posed by the concentration of local minima [28,29]
near the global minimum due to the nonconvex nature of
the cost landscape. This phenomenon can impede training
progress, leading to unreliable results. Given that our model,
the QSSM, adopts a layerwise learning strategy wherein the
outcome of each step depends on the preceding one, it is
susceptible to this issue. However, some promising method-
ologies [61,62] have emerged to mitigate such challenges,
demonstrating efficiency in escaping local minima. Therefore,
by integrating these techniques, the QSSM can potentially
overcome these hurdles and achieve better performance.

Another challenge for the sequential training procedure is the
phenomenon known as abrupt phase transition [31,32], which
could also be problematic in the training of our model. This
phenomenon means that the loss value cannot be improved
by adding subsequent layers and the trained layers will be
close to an identity, thus rendering the layerwise training
strategy ineffective. However, it is essential to distinguish the
QSSM from the standard layerwise training methods, wherein
a new layer is trained at each step while maintaining the
same loss function. In the QSSM, the training at each step
can be regarded as an independent global optimization task,
with a distinct loss function tailored to the different target
states. Consequently, the QSSM circumvents the limitations
associated with traditional layerwise training approaches.

There are other remaining issues of the QSSM for fu-
ture discussion. Different choices of scattering layers would
influence the learning performance, which has to be exempli-
fied. How to further improve the state fidelity provided the
high-fidelity state from the QSSM could become a signifi-
cant open question. Understanding and resolving the effect
of overparametrization from the QSSM should be explained.
A theoretical performance guarantee and the connection be-
tween scattering layer dilation and information flow of QSSM
state learning should be established for a complete story
of truncated state learning. Finally, we also expect some
extended applications of the QSSM, for instance, learning
special probability distributions that have been encoded as
quantum states instead of only state learning on near-term
quantum devices.
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APPENDIX A: FOUNDATION OF QUANTUM COMPUTING

We first briefly introduce some basic concepts of quan-
tum computation necessary for a self-contained reading of
the paper. Our notation follows the conventional textbook
by Nielsen and Chuang [35]. Quantum information is en-
coded and processed via the fundamental cells, namely,
qubits, and described by quantum states. An n-qubit state
can be mathematically represented by a 2n × 2n positive-
semidefinite density matrix ρ over the complex field where
ρ � 0 and Tr(ρ) = 1. A pure state, in this formulation, sat-
isfies rank (ρ) = 1 and can be expressed in Dirac bra-ket
notation as ρ = |ψ〉〈ψ |, where |ψ〉 ∈ C2n

denotes a Hilbert
space unit column vector with the corresponding dual vector
〈ψ |† = |ψ〉, with the dagger denoting the complex conju-
gate transpose operation. In general, we also use |ψ〉 to
represent a pure state. A mixed state satisfies rank (ρ) > 1,
and based on the spectral theorem, it has a decomposition
form ρ = ∑

j p j |ψ j〉〈ψ j |, where p j > 0 denotes the proba-
bility of observing |ψ j〉〈ψ j | in ρ and

∑
j p j = 1. Based on

Uhlmann’s theorem [35], for every mixed state ρ acting as
a linear operator on a Hilbert space A there exists a pu-
rified state |AR〉 (i.e., pure state) in the composite system
AR such that TrR(|AR〉〈AR|) = ρ, where TrR(·) denotes the
partial trace operation tracing out the ancillary system R. The
purification |AR〉 has a Schmidt decomposition form |AR〉 =∑

j
√

p j |ψ j〉 ⊗ | jR〉 for some orthonormal set | jR〉 in R.
The evolution of a quantum state ρ is realized by ap-

plying a series of quantum gates, which are mathematically
described as unitary operators. The state ρ ′ that undergoes
transformation via a quantum gate U can be obtained through
direct matrix multiplication, expressed as ρ ′ = UρU †. Com-
mon single-qubit gates include the Pauli rotations {RP(θ ) =
e−i(θ/2)P|P ∈ {X,Y, Z}}, which are in the matrix exponential
form of Pauli matrices

X :=
(

0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
.

(A1)

In QML, QNNs are usually represented as parametrized uni-
taries consisting of a bunch of single-qubit gates and several
two-qubit gates, including a controlled-X [or controlled-NOT

(CNOT)] gate equal to I ⊕ X and a controlled-Z (CZ) gate
equal to I ⊕ Z , where ⊕ denotes the direct sum operation. An
n-qubit operator generally exists in the linear operator space
L(C2n

) over the complex field. Quantum measurements are
then applied at the end of the quantum circuits, which extract
classical information by projecting the quantum states onto its
classical shadow.

APPENDIX B: LITERATURE ON QUANTUM
NEURAL NETWORKS

In quantum machine learning, QNNs are usually repre-
sented as parametrized unitaries consisting of a bunch of
single-qubit rotation gates and several two-qubit gates, de-
noted by U(θ), where θ are the trainable parameters. The
model is trained using a classical optimizer according to a
minimization process on some cost function C(θ) based on
the quantum measurement results.

Quantum neural networks can be used to handle a variety
of computational tasks, which is usually seen as a quantum
version of classical neural networks. In the most general form,
a QNN model can be expressed as U(θ) = ∏M

k=1 Uk (θk ) for
some subnetwork layers Uk (θk ), where each layer can also be
seen as a combination of parametrized circuits as Uk (θk ) =∏d

j=1 Uj (θ
(k)
j )Wj , where Uj (θ

(k)
j ) = e−ig jθ

(k)
j is a parametrized

gate with a Hermitian generator g j . The Wj is usually non-
parametrized, like the networks of CNOT and CZ gates. The
product

∏
k here is, by default, in increasing order from right

to left in the above representations.
The idea of quantum neural networks has obtained massive

attention since its introduction [63]. Various QNN archi-
tectures have been introduced to address a diverse range
of computational challenges, spanning both classical and
quantum problem domains [64–68], thereby pioneering an
entirely novel realm of machine learning models. Recent lit-
erature focusing on the trainability theory of QNNs indicates
a prospective direction for coping with barren plateaus by
reducing the expressibility of QNN architectures [69,70]. Be-
yond that, some strategies have been proposed under certain
conditions, for example, adopting a clever initialization strat-
egy [71,72], using adaptive algorithms [34,73–75], making a
parametrization generalization [76,77], and choosing different
cost forms and circuit architectures [59,69,78].

APPENDIX C: ANALYTIC EVALUATION OF THE COST
FUNCTION AND GRADIENT

In this Appendix we provide a detailed analysis of the ana-
lytic gradient of our cost function Ck (2). We take the 2-norm
squared cost function as our objective. At the kth learning
step, analyzing the exact form of ∂μCk is necessary for further
designing the training strategy of the QSSM. Recalling the
expression of Ck , we could derive the derivative form with
respect to the parameter θμ = θ

μ

k . From here we concentrate
on the kth step and for convenience we will omit the subscript
k of the parameter in the following. The partial derivative of
Ck with respect to θμ is then expressed as

∂μCk = 2 Tr[2σk∂μ(σk )] − 2 Tr[ρk∂μ(σk )], (C1)

where σk = σk (θ), which is constructed via the parametrized
circuit Uk (θ), and ρk is the kth step reduced target. In a
practical sense, our Uk is composed of the quantum gates sat-
isfying the parameter-shift rule and Uk = Ule−i(θμ/2)μUr =

FIG. 6. The kth learning step layer. Based on adaptive learning
processes, the previously learned state |ψk−1〉 on system ABE must
be pure, where E is the additional system acted upon by the kth step
layer Uk . Under perfect learning defined in Sec. III A, we have σk−1 =
TrBE (ψk−1) = ρk−1.
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ŨlUr , where 2
μ = I . The kth scattering layer is shown in

Fig. 6. Then the following lemma holds.
Lemma 2. The kth step cost function Ck has the partial

derivative form (with respect to θμ and evaluated at θ = θ∗)

∂μC∗
k =

〈
	∗

k ⊗ IE

dE

〉
θμ+π/2

−
〈
	∗

k ⊗ IE

dE

〉
θμ−π/2

, (C2)

where 	k = σk − ρk and the asterisk indicates the state differ-
ence evaluated at θ∗. The other symbols all match the settings
in Fig. 6.

Proof. By observing σk = TrE [(IA ⊗ Uk )Pψk−1 (IA ⊗ U †
k )],

where Pψk−1 = |ψk−1〉〈ψk−1|, we could compute the expres-
sion of ∂μσk based on the linearity of the derivative operation,

∂μσk = TrE {[IA ⊗ ∂μ(Uk )]Pψk−1 (IA ⊗ U †
k )}

+ TrE {(IA ⊗ Uk )Pψk−1 [IA ⊗ ∂μ(U †
k )]}. (C3)

Recalling the expression of ∂μ(Uk ) and ∂μ(U †
k ), we have

∂μσk = − i

2
TrE {(IA ⊗ Ũl )[(IA ⊗ μ), (IA ⊗ Ur )Pψk−1 (IA ⊗ U †

r )](IA ⊗ Ũ †
l )} = − i

2
TrE [Ũl (μ,UrPψk−1U

†
r )Ũ †

l ], (C4)

where we have abbreviated the IA⊗ correspondence for
simplicity, meaning the subsystem A would never join the op-
timization during the kth step. Since Uμ(θμ) = e−i(θμ/2)μ sat-
isfies the parameter-shift rule, we could use the gate identity

i(μ, M ) = Uμ

(
−π

2

)
MU †

μ

(
−π

2

)
− Uμ

(
π

2

)
MU †

μ

(
π

2

)
(C5)

for any linear operator M and then derive the exact value of
∂μσ ∗

k at θ = θ∗ as

∂μ(σ ∗
k ) = 1

2
TrE

[
Uk

(
θ∗
μ + π

2

)
Pψk−1U

†
k

(
θ∗
μ + π

2

)

− Uk

(
θ∗
μ − π

2

)
Pψk−1U

†
k

(
θ∗
μ − π

2

)]
. (C6)

Here ∂μ(σ ∗
k ) = ∂μ(σk )|θ=θ∗ and the circuit Uk (θ∗

μ + α) takes
in θ∗ and modifies the parameter θ∗

μ to θ∗
μ + π

2 . Now recalling
the fact that

Tr[TrB(ρAB)σA] = Tr

[
ρAB

(
σA ⊗ IB

dB

)]
, (C7)

we have

Tr[ρk∂μ(σ ∗
k )] =

〈
ρk ⊗ IE

dE

〉
θ∗
μ+π/2

−
〈
ρk ⊗ IE

dE

〉
θ∗
μ−π/2

,

Tr[σ ∗
k ∂μ(σ ∗

k )] =
〈
σ ∗

k ⊗ IE

dE

〉
θ∗
μ+π/2

−
〈
σ ∗

k ⊗ IE

dE

〉
θ∗
μ−π/2

,

(C8)
where 〈M〉θ = 〈ψk (θ )|M|ψk (θ )〉 and |ψk (θ )〉 is derived
by applying Uk (θ ) on |ψk−1〉. We combine the above
calculations to obtain the desired result in Lemma 2,
taking 	∗ = σk (θ∗) − ρk . Finally, by taking in the actual
dimensional factors, we could derive the analytic form of the
partial derivative as shown in Sec. II C. �

APPENDIX D: PROOF OF THE EFFECTIVENESS
OF THE QSSM

In this Appendix we prove the effectiveness of the QSSM
based on Schmidt decomposition and the properties of pu-
rification. Purification is a commonly used mathematical
procedure in quantum computing. For an arbitrary quantum

state, its purification is not unique. However, we could bridge
these purification states via unitary transformations, which we
called the freedom in purification.

Lemma 3. Let |ψ〉 and |φ〉 be two purifications of a state ρ

acting on a composite system AE . Then there exists a unitary
UE locally acting on E such that

|ψ〉 = (IA ⊗ UE )|φ〉. (D1)

Proof. The proof is simply inspired by the Schmidt decom-
position. Let |ψ〉 and |φ〉 be the purifications of ρ acting on
AE . Write the Schmidt decomposition of these two states as

|ψ〉 =
∑

j

√
λ j | jA〉| jE 〉, |φ〉 =

∑
k

√
ηk|kA〉|kE 〉. (D2)

Note that TrE (ψ ) = ρ = TrE (φ), which then induces∑
j

λ j | jA〉〈 jA| =
∑

k

ηk|kA〉〈kA|. (D3)

By linear algebra, we could easily extend both {| jA〉} j and
{|kE 〉}k to the basis set of HE , via the Gram-Schmidt method,
and hence prove the existence of a unitary UE such that

UE |kE 〉 = | jE 〉, (D4)

which is then substituted into the above equations to prove the
lemma. �

Based on the freedom in purification, we could prove
Lemma 1 and therefore prove the effectiveness of our QSSM.

Proof. From the definition, |ψ〉〈ψ | and ρ have the same
reduced state acting on A. Suppose the state |φ〉 is the purifi-
cation of ρ on system ABE . Thus it is also a purification of
ρA = TrB(ρ). As we have that |φ〉 and |ψ〉 are both acting on
the composite system ABE , by Lemma 3 there exists a UBE

such that

|φ〉〈φ| = (IA ⊗ UBE )|ψ〉〈ψ |(IA ⊗ U †
BE ). (D5)

Since |φ〉 is the purification of ρ, we have

trE [|φ〉〈φ|] = ρ, (D6)

as required. �
Now we are ready to prove the effectiveness of the QSSM.

The proof assumes a sufficient number of computational
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resources, which then ensures ideal learning for each step’s
reduced target.

Proposition 3. Given any target n-qubit pure state ψ , we
claim that our QSSM could ideally learn the state.

Proof. Based on the setup of the algorithm, we divide the
entire learning task into three main stages. In the beginning,
a state |0〉 is initialized for the model. We denote the step
by k = 1 for learning the reduced state acting on A1 of a
single qubit. Note that for any one-qubit state ρA1 with a
eigendecomposition,

ρA1 = λ
(1)
1 |0(1)〉〈0(1)| + λ

(1)
2 |1(1)〉〈1(1)|, (D7)

where the states |0(1)〉 and |1(1)〉 are not necessarily the com-
putational basis elements. There exists a purification unitary
UA1A2 such that

UA1A2 |00〉 =
√

λ
(1)
1 |0(1)〉|0(2)〉 +

√
λ

(1)
2 |1(1)〉|1(2)〉. (D8)

Such a unitary should have the following components. The
rest of the matrix can be extended using the Gram-Schmidt
process. We could write the computational basis representa-
tion of UA1A2 as

(UA1A2 )mn

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
λ

(1)
1 〈00|0(1)0(2)〉 +

√
λ

(1)
2 〈00|1(1)1(2)〉 · · ·√

λ
(1)
1 〈01|0(1)0(2)〉 +

√
λ

(1)
2 〈01|1(1)1(2)〉 · · ·√

λ
(1)
1 〈10|0(1)0(2)〉 +

√
λ

(1)
2 〈10|1(1)1(2)〉 · · ·√

λ
(1)
1 〈11|0(1)0(2)〉 +

√
λ

(1)
2 〈11|1(1)1(2)〉 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(D9)

For 1 < k � �n/2, by the assumption of ideal learning of
the state ρAk−1 , a purification (denoted by |ψk−1〉) of it would
be imported from the (k − 1)th step. The reduced state ρAk

would in general require at least k extra ancillary qubits to be
purified, which is the reason a width control wk = k + 1 or
n − k + 1 was settled on in the original QSSM.

Now suppose a purification |φk〉 of ρAk . Since
dim(|ψk−1〉) � dim(|φk〉), we could always extend |ψk〉
to |ψ̃k〉 = |ψk〉|0〉 so that the resulting pure state exists in
the same dimensional Hilbert space as |φk〉. Now we could
observe |ψ̃k〉 and |φk〉 as two purifications of ρAk−1 . Based on
Lemma 1, there exists a Uk acting on the qubit index from
k + 1 to ζk such that

TrĀk+1
[(IAk−1 ⊗ Uk )ψ̃k (IAk−1 ⊗ U †

k )] = TrĀk+1
(φk ) = ρAk .

(D10)
Finally, for �n/2 < k � n, |φk〉 becomes the pure state

acting on the entire system of n qubits. The imported purifi-
cation |ψk−1〉 of ρAk−1 is also a pure state of n qubits. The
result follows by applying Lemma 1 again. Above all, we
have proven the effectiveness of the QSSM. The proof also
encourages us to study situations when the sequential scatter-
ing unitary Uk is not determined via the doubling strategy and
better understand the truncated version of the QSSM. �

Based on Proposition 3 and freedom in purification, we can
easily arrive at Proposition 1.

APPENDIX E: PROOF OF THE TRAINABILITY
OF THE QSSM

In this Appendix we give the proof for Proposition 2 stated
about the trainability of the QSSM in this paper. To make the
proof easy to read and to emphasize important intermediate
results, we first recall some useful lemmas. The following
lemmas were derived from the studies of unitary t-design.
These were originally computed in [69].

Lemma 4. Suppose X ⊂ U (d ) is a unitary t-design and
A, B,C, D are arbitrary linear operators. If t � 1, then we have

1

|X |
∑
U∈X

Tr(U †AUB) =
∫
U (d )

Tr(U †AUB)dη(U )

= Tr(A) Tr(B)

d
. (E1)

If t � 2, then we have

1

|X |
∑
U∈X

Tr(U †AUBU †CUD)

=
∫
U (d )

Tr(U †AUBU †CUD)dη(U ) (E2)

= Tr(A) Tr(C) Tr(BD) + Tr(AC) Tr(B) Tr(D)

d2 − 1

− Tr(AC) Tr(BD) + Tr(A) Tr(B) Tr(C) Tr(D)

d (d2 − 1)
. (E3)

Lemma 5. Suppose A, B,C, D are arbitrary linear opera-
tors. Then∫

U (d )
Tr(UAU †B) Tr(UCU †D)dη(U )

= 1

d2 − 1
[Tr(A) Tr(B) Tr(C) Tr(D) + Tr(AC) Tr(BD)]

− 1

d (d2 − 1)
[Tr(AC) Tr(B) Tr(D)

+ Tr(A) Tr(C) Tr(BD)]. (E4)

Lemma 6. Let H = HA ⊗ HB be a bipartite Hilbert space
of dimension d = dAdB, and for arbitrary linear operators
M, N : H → H we have∫

U (dB )
dη(U )(IA ⊗ U )M(IA ⊗ U †)N = TrB(M ) ⊗ IB

dB
N

(E5)

and ∫
U (dB )

dη(U ) Tr[(IA ⊗ U )M(IA ⊗ U †)N]

= Tr[TrB(M ) TrB(N )]

dB
. (E6)

Lemma 7. Let H = HA ⊗ HB be a bipartite Hilbert space
of dimension d = dAdB (d = 2n and dA = 2n′

), and for arbi-
trary linear operators M, N,U : H → H we have

Tr[(IA ⊗ U )M(IA ⊗ U †)N] =
∑
p,q

Tr(UMqpU
†Npq), (E7)
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where the summation runs over all bit strings of length n′ and
Mqp = TrA[(|p〉〈q| ⊗ I )M], (E8)

Npq = TrA[(|q〉〈p| ⊗ I )N]. (E9)

With these lemmas, now we can start our proof by di-
rectly calculating the variance of gradients. The whole proof
includes three parts indicating the gradient magnitude of dif-
ferent stages in the algorithm.

Proposition 4. For an n-qubit target state ρ, assume we
start from the σ̂ such that Trn(ρ) = Trn(σ̂ ), where Trn(ρ)
denotes the partial trace over the last qubit of the state. In
addition, if the circuit is only acting on the last qubit and forms
a 2-design, then E(∂μCn) = 0 and the variance Var(∂μCn) ∈
[ 16

27 , 8
9 ].

Proof. Suppose the output state is σ . Then the cost
function is

Cn(θ) = Tr{[ρ − σ (θ)][ρ − σ (θ)]†}. (E10)

With notation similar to that used by McClean et al. in [26],
we can use U to denote the unitary representation of circuits.
We can write it as U = U+e−iθμHU−, where H denotes the
Hermitian operator and in most cases it will be the Pauli
matrices, which are traceless. Since Trn(ρ) = Trn(σ̂ ), we have

σ̂ = (IA ⊗ VB)ρ(IA ⊗ V †
B ), (E11)

where V is a fixed unitary and system A denotes the first n −
1 qubits and system B denotes the last qubit. So dA = 2n−1

and dB = 2. For simplicity, we will omit the subscript in the
following proof. We then arrive at

σ = (I ⊗ UV )ρ(I ⊗ V †U †). (E12)

Next we compute the partial derivative of Cn with respect
to the kth parameter. Note that the trace is linear; the derivative
operation could pass through the trace and hence we obtain

∂μCn = ∂μ Tr[ρ2 + σ 2 − 2(ρσ )] = −2 Tr[ρ∂μ(σ )].

Now we start by calculating the mean of gradients. Ex-
panding the expression for σ , we could find

∂μCn = −2 Tr(ρ{[I ⊗ (∂μU )V ]ρ(I ⊗ V †U †)

+ (I ⊗ UV )ρ[I ⊗ V †(∂μU †)]}),

by the chain rule of derivative. Since U = U+e−iθμHU−, we
could compute the derivatives as

∂μU = −iU+e−iθμH HU−, ∂μU † = iU †
−HeiθμHU †

+.

For convenience, we define Ũ+ = U+e−iθμH . We substitute the
above into the expression of the cost derivative to achieve

∂μCn = 2i Tr{ρ[(I ⊗ Ũ+HU−V )ρ(I ⊗ V †U †)

− (I ⊗ UV )ρ(I ⊗ V †U †
−HŨ †

+)]}.
Now if we expand U = Ũ+U− and assume the Ũ− = U−V , we
obtain

∂μCn = 2i Tr{ρ[(I ⊗ Ũ+HU−V )ρ(I ⊗ V †U †
−Ũ †

+)

− (I ⊗ Ũ+U−V )ρ(I ⊗ V †U †
−HŨ †

+)]}
= 2i Tr{ρ[(I ⊗ Ũ+HŨ−)ρ(I ⊗ Ũ †

−Ũ †
+)

− (I ⊗ Ũ+Ũ−)ρ(I ⊗ Ũ †
−HŨ †

+)]}
= 2i Tr{(I ⊗ Ũ †

+)ρ(I ⊗ Ũ+)

× [I ⊗ H, (I ⊗ Ũ−)ρ(I ⊗ Ũ †
−)]},

where [A, B] = AB − BA denotes the commutator notation.
We denote the commutator [I ⊗ H, (I ⊗ Ũ−)ρ(I ⊗ Ũ †

−)] by
T−; thus we have

∂μCn = 2i Tr[(I ⊗ Ũ †
+)ρ(I ⊗ Ũ+)T−]. (E13)

Then we integrate over Ũ+ by using Lemma 6,

E(∂μCn) = 2i
Tr[TrB(ρ) TrB(T−)]

dB

= i Tr[TrB(ρ) TrB(T−)].

We can write ρ as

ρ =
∑
i, j

|i〉〈 j|A ⊗ Xi, j, (E14)

which thus leads to

TrB(T−)

= TrB{[I ⊗ H, (I ⊗ Ũ−)ρ(I ⊗ Ũ †
−)]}

=
∑
i, j

TrB{[I ⊗ H, (I ⊗ Ũ−)(|i〉〈 j|A ⊗ Xi, j )(I ⊗ Ũ †
−)]}

=
∑
i, j

TrB(|i〉〈 j| ⊗ HŨ−Xi, jŨ
†
− − |i〉〈 j| ⊗ Ũ−Xi, jŨ

†
−H )

=
∑
i, j

|i〉〈 j|[Tr(HŨ−Xi, jŨ
†
−) − Tr(Ũ−Xi, jŨ

†
−H )]

= 0. (E15)

Therefore, we have

E(∂μCn) = 0. (E16)

The mean of gradients is 0. Based on the fact that the mean of
gradients is 0, we then only need to consider the E[(∂μCn)2]
in order to determine the variance

Var(∂μCn) = E[(∂μCn)2]

= −4EŨ+,Ũ− ({Tr[(I ⊗ Ũ †
+)ρ(I ⊗ Ũ+)T−]}2). (E17)

Using Lemma 7, we have

EŨ+,Ũ− ({Tr[(I ⊗ Ũ †
+)ρ(I ⊗ Ũ+)T−]}2)

= EŨ+,Ũ−

⎡
⎣

⎛
⎝∑

p,q

Tr(Ũ+ρqpŨ
†
+T−pq )

⎞
⎠

×
⎛
⎝∑

m,n

Tr(Ũ+ρnmŨ †
+T−mn)

⎞
⎠

⎤
⎦

= EŨ+,Ũ−

⎛
⎝ ∑

p,q,m,n

Tr(Ũ+ρqpŨ
†
+T−pq ) Tr(Ũ+ρnmŨ †

+T−mn)

⎞
⎠

=
∑

p,q,m,n

EŨ+,Ũ− [Tr(Ũ+ρqpŨ
†
+T−pq ) Tr(Ũ+ρnmŨ †

+T−mn)].

062425-12



QUANTUM SEQUENTIAL SCATTERING MODEL FOR … PHYSICAL REVIEW A 109, 062425 (2024)

Then, according to Lemma 5,∑
p,q,m,n

EŨ+,Ũ− [Tr(Ũ+ρqpŨ
†
+T−pq ) Tr(Ũ+ρnmŨ †

+T−mn)]

=
∑

p,q,m,n

EŨ−

(
1

d2
B − 1

[Tr(ρqp) Tr(T−pq) Tr(ρnm) Tr(T−mn) + Tr(ρqpρnm) Tr(T−pqT−mn)]

− 1

dB
(
d2

B − 1
) [Tr(ρqpρnm) Tr(T−pq) Tr(T−mn) + Tr(ρqp) Tr(ρnm) Tr(T−pqT−mn)]

)
. (E18)

Since

Tr(ρqp) = Tr{TrA[(|p〉〈q| ⊗ I )ρ]} = Tr[(|p〉〈q| ⊗ I )ρ] = Tr[|p〉〈q| TrB(ρ)] = 〈q| TrB(ρ)|p〉 (E19)

and

Tr(T−pq) = Tr{TrA[(|q〉〈p| ⊗ I )T−]} = Tr[(|q〉〈p| ⊗ I )T−] = Tr[|q〉〈p| TrB(T−)] = 0, (E20)

Eq. (E20) holds because of Eq. (E15). Thus Eq. (E18) can be simplified as∑
p,q,m,n

EŨ+,Ũ− [Tr(Ũ+ρqpŨ
†
+T−pq ) Tr(Ũ+ρnmŨ †

+T−mn)]

=
∑

p,q,m,n

EŨ−

(
1

d2
B − 1

Tr(ρqpρnm) Tr(T−pqT−mn) − 1

dB
(
d2

B − 1
) Tr(ρqp) Tr(ρnm) Tr(T−pqT−mn)

)

=
∑

p,q,m,n

EŨ−

(
1

dB
(
d2

B − 1
) Tr(T−pqT−mn)[dB Tr(ρqpρnm) − Tr(ρqp) Tr(ρnm)]

)

=
∑

p,q,m,n

1

dB
(
d2

B − 1
) [dB Tr(ρqpρnm) − Tr(ρqp) Tr(ρnm)]EŨ−[Tr(T−pqT−mn)].

We now need to evaluate the other integral with respect to Ũ−. A simplification can be made by noting that

T−pq = TrA[(|q〉〈p| ⊗ I )T−] = TrA[I ⊗ H, (I ⊗ Ũ−)(|q〉〈p| ⊗ I )ρ(I ⊗ Ũ †
−)]

= trA([I ⊗ H, (I ⊗ Ũ−)(|q〉〈p| ⊗ I )ρ(I ⊗ Ũ †
−)]) = [H, Ũ−ρpqŨ †

−],

since |p〉〈q| ⊗ I commutes with other operators. Therefore,

Tr(T−pqT−mn) = Tr([H, Ũ−ρpqŨ †
−][H, Ũ−ρmnŨ

†
−])

= 2 Tr(HŨ−ρpqŨ †
−HŨ−ρmnŨ

†
−) − Tr(Ũ−ρpqρmnŨ

†
−H2) − Tr(Ũ−ρmnρpqŨ †

−H2).

So according to Lemma 4,

EŨ− [Tr(T−pqT−mn)] = 2

d2
B − 1

[Tr(ρpq) Tr(ρmn) Tr(H2) + Tr(ρpqρmn) Tr2(H )]

− 2

dB
(
d2

B − 1
) [Tr(ρpqρmn) Tr(H2) + Tr(ρpq) Tr(ρmn) Tr2(H )] − 2

dB
Tr(ρpqρmn) Tr(H2)

= −2

dB
(
d2

B − 1
) [dB Tr(ρpqρmn) − Tr(ρpq) Tr(ρmn)][dB Tr(H2) − Tr2(H )]

= −2

d2
B − 1

Tr(H2)[dB Tr(ρpqρmn) − Tr(ρpq) Tr(ρmn)].

Subsitituting the above into Eq. (E18) to obtain,∑
p,q,m,n

EŨ+,Ũ− [Tr(Ũ+ρqpŨ
†
+T−pq ) Tr(Ũ+ρnmŨ †

+T−mn)]

=
∑

p,q,m,n

−2

dB
(
d2

B − 1
)2 Tr(H2)[dB Tr(ρqpρnm) − Tr(ρqp) Tr(ρnm)][dB Tr(ρpqρmn) − Tr(ρpq) Tr(ρmn)].
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First, we look at Tr(ρqpρnm),

Tr(ρqpρnm) = Tr{TrA[(|p〉〈q| ⊗ I )ρ] TrA[(|m〉〈n| ⊗ I )ρ]}

= Tr

( ∑
i

{〈i| ⊗ I[(|p〉〈q| ⊗ I )ρ]|i〉 ⊗ I}
∑

j

[〈 j| ⊗ I (|p〉〈q| ⊗ I )ρ| j〉 ⊗ I]

)

= Tr[(〈q| ⊗ I )ρ(|p〉〈n| ⊗ I )ρ(|m〉 ⊗ I )] = Tr{〈q| TrB[ρ(|p〉〈n| ⊗ I )ρ]|m〉}
= 〈q| TrB[ρ(|p〉〈n| ⊗ I )ρ]|m〉.

Then ∑
p,q,m,n

Tr(ρqpρnm) Tr(ρpqρmn) =
∑

p,q,m,n

〈q| TrB[ρ(|p〉〈n| ⊗ I )ρ]|m〉〈m| TrB[ρ(|n〉〈p| ⊗ I )ρ]|q〉

=
∑
p,n

Tr{TrB[ρ(|p〉〈n| ⊗ I )ρ] TrB[ρ(|n〉〈p| ⊗ I )ρ]}.

Suppose the Schmidt decomposition of |φ〉 is

|φ〉 =
∑

k

λk|uk〉A|vk〉B, (E21)

where {|uk〉} is the orthogonal basis on the system A and {|vk〉} is the orthogonal basis on the system B. Therefore, we can write
ρ as

ρ =
∑
i, j

λiλ j |ui〉〈u j | ⊗ |vi〉〈v j |. (E22)

We can expand ρ in TrB[ρ(|p〉〈n| ⊗ I )ρ],

TrB[ρ(|p〉〈n| ⊗ I )ρ] = TrB

[( ∑
i, j

λiλ j |ui〉〈u j | ⊗ |vi〉〈v j |)(|p〉〈n| ⊗ I

)(∑
k,l

λkλl |uk〉〈ul | ⊗ |vk〉〈vl |
)]

=
∑

i, j,k,l

λiλ jλkλl TrB(|ui〉〈u j ||p〉〈n||uk〉〈ul | ⊗ |vi〉〈v j ||vk〉〈vl |)

=
∑
i, j

λ2
i λ

2
j |ui〉〈u j ||p〉〈n||u j〉〈ui|.

Thus, we arrive at ∑
p,n

Tr{TrB[ρ(|p〉〈n| ⊗ I )ρ] TrB[ρ(|n〉〈p| ⊗ I )ρ]}

=
∑
p,n

Tr

⎡
⎣

⎛
⎝∑

i, j

λ2
i λ

2
j |ui〉〈u j ||p〉〈n||u j〉〈ui|

⎞
⎠

⎛
⎝∑

k,l

λ2
kλ

2
l |uk〉〈ul ||p〉〈n||uk〉〈ul |

⎞
⎠

⎤
⎦

=
∑
p,n

Tr

⎛
⎝ ∑

i, j,k,l

⎞
⎠λ2

i λ
2
jλ

2
kλ

2
l |ui〉〈u j ||p〉〈n||u j〉〈ui||uk〉〈ul ||n〉〈p||ul〉〈uk|

=
∑
p,n

∑
i, j,l

λ4
i λ

2
jλ

2
l Tr(〈u j ||p〉〈n||u j〉〈ul ||n〉〈p||ul〉)

=
∑
i, j,l

λ4
i λ

2
jλ

2
l Tr[Tr(|ul〉〈u j |) Tr(|u j〉〈ul |)] =

∑
i, j

λ4
i λ

4
j =

(∑
i

λ4
i

)2

.

Then we look at Tr(ρqp) Tr(ρpq) Tr(ρmn) Tr(ρnm),∑
p,q,m,n

Tr(ρqp) Tr(ρpq) Tr(ρmn) Tr(ρnm) =
∑

p,q,m,n

〈q| TrB(ρ)|p〉〈p| TrB(ρ)|q〉〈m| TrB(ρ)|n〉〈n| TrB(ρ)|m〉

= Tr[TrB(ρ) TrB(ρ)] Tr[TrB(ρ) TrB(ρ)] = {Tr[TrB(ρ) TrB(ρ)]}2 =
( ∑

i

λ4
i

)2

.
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Now we look at Tr(ρqpρnm) Tr(ρpq) Tr(ρmn):

Tr(ρqpρnm) = 〈n| TrB[ρ(|m〉〈q| ⊗ I )ρ]|p〉 (E23)

=
∑
i, j

λ2
i λ

2
j〈n||ui〉〈u j ||m〉〈q||u j〉〈ui||p〉 (E24)

and

Tr(ρpq) Tr(ρmn) = 〈p| TrB(ρ)|q〉〈m| TrB(ρ)|n〉 =
∑
i, j

λ2
i λ

2
j〈p||ui〉〈ui||q〉〈m||u j〉〈u j ||n〉.

Thus,

∑
p,q,m,n

Tr(ρqpρnm) Tr(ρpq) Tr(ρmn) =
∑

p,q,m,n

( ∑
k,l

λ2
kλ

2
l 〈n||uk〉〈ul ||m〉〈q||uk〉〈ul ||p〉

)( ∑
i, j

λ2
i λ

2
j〈p||ui〉〈ui||q〉〈m||u j〉〈u j ||n〉

)

=
∑

p,q,m,n

∑
i, j,k,l

λ2
i λ

2
jλ

2
kλ

2
l (〈n||uk〉〈ul ||m〉〈q||uk〉〈ul ||p〉〈p||ui〉〈ui||q〉〈m||u j〉〈u j ||n〉)

=
∑
q,m

∑
i, j,k,l

λ2
i λ

2
jλ

2
kλ

2
l Tr(|uk〉〈ul ||m〉〈q||uk〉〈ul ||ui〉〈ui||q〉〈m||u j〉〈u j |)

=
∑

i, j,k,l

λ2
i λ

2
jλ

2
kλ

2
l Tr(|uk〉〈ul ||ui〉〈ui|) Tr(|u j〉〈u j ||uk〉〈ul |) =

∑
i

λ8
i .

Therefore, we have∑
p,q,m,n

[dB Tr(ρpqρmn) − Tr(ρpq) Tr(ρmn)]

= (
d2

B + 1
)(∑

i

λ4
i

)2

− 2dB

(∑
i

λ8
i

)
.

So

Var(∂μCn) = 8

dB
(
d2

B − 1
)2 Tr(H2)

[(
d2

B + 1
)(∑

i

λ4
i

)2

− 2dB

(∑
i

λ8
i

)]
. (E25)

Since dB is 2, we can simplify the equation above as

Var(∂μCn) = 4
9 Tr(H2)

(
λ8

1 + λ8
2 + 10λ4

1λ
4
2

)
(E26)

= 8
9

(
c4

1 + c4
2 + 10c2

1c2
2

)
, (E27)

where c1 = λ2
1 and c2 = λ2

2 such that c1 + c2 = 1, and
Tr(H2) = dB = 2. Therefore, we can simply to get the range
of the variance

16
27 � Var(∂μCn) � 8

9 . (E28)

�
Lemma 8. For the target pure state ρABC on system ABC,

suppose we start from an initial state σ̂ such that TrBC (ρ) =
TrBC (σ̂ ) and the output state is σ . If the cost function is

C = Tr{[TrC (ρ) − TrC (σ )][TrC (ρ) − TrC (σ )]} (E29)

and the circuit is acting on system BC while forming a local 4-
design, then E(∂μC) = 0 and the variance of the cost gradient
scales as Var(∂μC) ∈ O( 1

d3
BdC

), where dB and dC denote the
dimensions of systems B and C, respectively.

Proof. Since TrBC (ρ) = TrBC (σ̂ ), there exist a fixed unitary
V such that

σ̂ = (IA ⊗ VBC )ρ(IA ⊗ V †
BC ). (E30)

Then

σ = (I ⊗ UV )ρ(I ⊗ V †U †). (E31)

Then the cost gradient becomes

∂μC = 2 Tr[TrC (σ )∂μ TrC (σ ) − 2 Tr[TrC (ρ)∂μ TrC (σ )]]

= 2i Tr[TrC[(I ⊗ U+U−V )ρ(I ⊗ V †U †
−U †

+) − ρ]

× TrC[(I ⊗ U+U−V )ρ(I ⊗ V †U †
−HU †

+)

− (I ⊗ U+HU−V )ρ(I ⊗ V †U †
−U †

+)]].

We exploit the RTNI package [79] to calculate the mean of the
cost gradient. It turns out that the mean of the cost gradient is
zero,

E(∂μC) = 0. (E32)

Then we consider the variance

Var(∂μC) = −E[(∂μC)2]. (E33)

With the RTNI package, it turns out that the exact expression
of the variance is dominant by

Var[∂μC] d→∞−−−→ Tr[H2]
d2

B(d2
Bd2

C − 1)
·

ρ ρρ ρ

(E34)
We know that Tr(H2) = dBdC ; thus we have

Var(∂μC) ∈ O

(
1

d3
BdC

)
. (E35)

�
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Proposition 5. For the kth learning step (k � n) in the
QSSM, the mean of the cost gradient is 0 and the variance
of the cost gradient scales as Var(∂μCk ) ∈ O(2−nk ), where nk

is the circuit width of the kth learning step.
Proof. Suppose the target state is ρ and the input state

for the kth learning step is σ̂ . We assume system A denotes
the first k − 1 qubits, system B denotes the kth qubit, and
system C denotes the (k + 1)th qubit to the (k + nk − 1)th
qubit. With the definition of nk claimed in the main text, there
exists a purification ρ̂ABC of ρA on system ABC. According to
Lemma 8, we can easily know that

Var(∂μCk ) ∈ O

(
1

2nk+2

)
= O(2−nk ). (E36)

�

Proposition 3 (main proposition restated). For an n-qubit
target state ρ with fixed-order representation, we suppose
its rank sequence is Rρ = {r1, r2, . . . , rn−1, rn}. Then for
learning the target state ρ with the QSSM, if the cir-
cuit used for each step is sufficiently random in forming
a local 4-design, the expectation gradient for the kth step
E(∂μCk ) = 0 and the variance of the cost gradient scales with
rk as

Var(∂μCk ) ∈ O

(
1

rk

)
. (E37)

Proof. Since we know that 2nk−1 � rk � 2nk , according to
Propositions 4 and 5, we can get the proof. �

[1] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature
(London) 521, 436 (2015).

[2] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[3] M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction to
quantum machine learning, Contemp. Phys. 56, 172 (2015).

[4] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algo-
rithms for supervised and unsupervised machine learning,
arXiv:1307.0411.

[5] M. Schuld, I. Sinayskiy, and F. Petruccione, The quest for
a quantum neural network, Quantum Inf. Process. 13, 2567
(2014).

[6] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire,
and L. Sellie, On the learnability of discrete distributions, in
Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing (ACM Press, New York, NY, 1994), pp.
273–282.

[7] G. Vidal, Efficient classical simulation of slightly entangled
quantum computations, Phys. Rev. Lett. 91, 147902 (2003).

[8] M. Schuld, R. Sweke, and J. J. Meyer, Effect of data encoding
on the expressive power of variational quantum-machine-
learning models, Phys. Rev. A 103, 032430 (2021).

[9] G. Li, R. Ye, X. Zhao, and X. Wang, Concentration of data
encoding in parameterized quantum circuits, Adv. Neural Inf.
Process. Syst. 35, 19456 (2022).

[10] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles,
Challenges and opportunities in quantum machine learning,
Nat. Comput. Sci. 2, 567 (2022).

[11] N. Hansen, D. V. Arnold, and A. Auger, Evolution strate-
gies, in Springer Handbook of Computational Intelligence,
edited by J. Kacprzyk and W. Pedrycz (Springer, Berlin, 2015),
pp. 871–898.

[12] S. Kern, S. D. Müller, N. Hansen, D. Büche, J. Ocenasek,
and P. Koumoutsakos, Learning probability distributions in
continuous evolutionary algorithms—A comparative review,
Nat. Comput. 3, 77 (2004).

[13] E. Baum and F. Wilczek, Supervised learning of probability
distributions by neural networks, in Neural Information Pro-
cessing Systems, edited by D. Anderson (AIP Press, College
Park, Maryland, 1987).

[14] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning
algorithm for boltzmann machines, Cognit. Sci. 9, 147 (1985).

[15] L. Franceschi, M. Niepert, M. Pontil, and X. He, Learning dis-
crete structures for graph neural networks, in Proceedings of the
36th International Conference on Machine Learning (PMLR,
2019), Vol. 97, pp. 1972–1982.

[16] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré, and M. Welling,
Argmax flows and multinomial diffusion: Learning categorical
distributions, Adv. Neural Inf. Process. Syst. 34, 12454 (2021).

[17] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[18] M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles, Vari-
ational quantum state eigensolver, npj Quantum Inf. 8, 113
(2022).

[19] A. N. Chowdhury, G. H. Low, and N. Wiebe, A varia-
tional quantum algorithm for preparing quantum Gibbs states,
arXiv:2002.00055.

[20] S. Ghosh, T. Paterek, and T. C. H. Liew, Quantum neuromor-
phic platform for quantum state preparation, Phys. Rev. Lett.
123, 260404 (2019).

[21] Y. Wang, G. Li, and X. Wang, Variational quantum Gibbs state
preparation with a truncated Taylor series, Phys. Rev. Appl. 16,
054035 (2021).

[22] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor,
Nat. Commun. 5, 4213 (2014).

[23] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[24] S. Aaronson, Shadow tomography of quantum states, in Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing (ACM Press, New York, NY, 2018), pp. 325–338.

[25] H.-Y. Huang, Learning quantum states from their classical shad-
ows, Nat. Rev. Phys. 4, 81 (2022).

[26] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[27] M. Cerezo, M. Larocca, D. García-Martín, N. L. Diaz, P.
Braccia, E. Fontana, M. S. Rudolph, P. Bermejo, A. Ijaz,

062425-16

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature23474
https://doi.org/10.1080/00107514.2014.964942
https://arxiv.org/abs/1307.0411
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.1023/B:NACO.0000023416.59689.4e
https://doi.org/10.1207/s15516709cog0901_7
https://openreview.net/forum?id=6nbpPqUCIi7
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41534-022-00611-6
https://arxiv.org/abs/2002.00055
https://doi.org/10.1103/PhysRevLett.123.260404
https://doi.org/10.1103/PhysRevApplied.16.054035
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/s42254-021-00411-5
https://doi.org/10.1038/s41467-018-07090-4


QUANTUM SEQUENTIAL SCATTERING MODEL FOR … PHYSICAL REVIEW A 109, 062425 (2024)

S. Thanasilp et al., Does provable absence of barren plateaus
imply classical simulability? Or, why we need to rethink varia-
tional quantum computing, arXiv:2312.09121.

[28] E. R. Anschuetz, Critical points in quantum generative mod-
els, in International Conference on Learning Representations
(ICLR, 2022).

[29] E. R. Anschuetz and B. T. Kiani, Quantum variational algo-
rithms are swamped with traps, Nat. Commun. 13, 7760 (2022).

[30] H.-k. Zhang, C. Zhu, M. Jing, and X. Wang, Statistical analysis
of quantum state learning process in quantum neural networks,
in Thirty-Seventh Conference on Neural Information Processing
Systems (NeurIPS, 2023).

[31] E. Campos, A. Nasrallah, and J. Biamonte, Abrupt transitions in
variational quantum circuit training, Phys. Rev. A 103, 032607
(2021).

[32] E. Campos, D. Rabinovich, V. Akshay, and J. Biamonte, Train-
ing saturation in layerwise quantum approximate optimization,
Phys. Rev. A 104, L030401 (2021).

[33] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y.
Shao, W. Zhang, B. Cui, and M.-H. Yang, Diffusion models:
A comprehensive survey of methods and applications, ACM
Comput. Surv. 56, 1 (2023).

[34] A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt,
and M. Leib, Layerwise learning for quantum neural networks,
Quantum Mach. Intell. 3, 5 (2021).

[35] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2010).

[36] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa,
and C. Macchiavello, Stabilization of quantum computations by
symmetrization, SIAM J. Comput. 26, 1541 (1997).

[37] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli,
and M. Greiner, Measuring entanglement entropy in a quantum
many-body system, Nature (London) 528, 77 (2015).

[38] N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, A. Y.
Matsuura, and C. Monroe, Measuring the Rényi entropy of
a two-site Fermi-Hubbard model on a trapped ion quantum
computer, Phys. Rev. A 98, 052334 (2018).

[39] M. Fanizza, M. Rosati, M. Skotiniotis, J. Calsamiglia, and V.
Giovannetti, Beyond the swap test, optimal estimation of quan-
tum state overlap, Phys. Rev. Lett. 124, 060503 (2020).

[40] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran,
Evaluating analytic gradients on quantum hardware, Phys. Rev.
A 99, 032331 (2019).

[41] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum
circuit learning, Phys. Rev. A 98, 032309 (2018).

[42] M. Ostaszewski, E. Grant, and M. Benedetti, Structure opti-
mization for parameterized quantum circuits, Quantum 5, 391
(2021).

[43] D. Kingma and J. Ba, Adam: A method for stochastic optimiza-
tion, in International Conference on Learning Representations
(ICLR) (ICLR, 2015).

[44] M. J. D. Powell, A direct search optimization method that mod-
els the objective and constraint functions by linear interpolation,
in Advances in Optimization and Numerical Analysis, edited by
S. Gomez and J.-P. Hennart (Springer Netherlands, Dordrecht,
1994), pp. 51–67.

[45] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going
beyond Bell’s theorem, in Bell’s Theorem, Quantum Theory and

Conceptions of the Universe, edited by M. Kafatos (Springer
Netherlands, Dordrecht, 1989), pp. 69–72.

[46] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and
approximate unitary 2-designs and their application to fidelity
estimation, Phys. Rev. A 80, 012304 (2009).

[47] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,
Matrix product state representations, Quantum Inf. Comput. 7,
401 (2007).

[48] M. Yoganathan, A condition under which classical simulability
implies efficient state learnability, arXiv:1907.08163.

[49] O. Landon-Cardinal, Y.-K. Liu, and D. Poulin, Efficient direct
tomography for matrix product states, arXiv:1002.4632.

[50] A. Anshu and S. Arunachalam, A survey on the complexity of
learning quantum states, Nat. Rev. Phys. 6, 59 (2024).

[51] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross,
S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu,
Efficient quantum state tomography, Nat. Commun. 1, 149
(2010).

[52] D. Gross, S. T. Flammia, and J. Eisert, Most quantum states
are too entangled to be useful as computational resources,
Phys. Rev. Lett. 102, 190501 (2009).

[53] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal
component analysis, Nat. Phys. 10, 631 (2014).

[54] M. Takahashi, One-dimensional Heisenberg model at finite
temperature, Prog. Theor. Phys. 46, 401 (1971).

[55] M. Schuld, Supervised quantum machine learning models are
kernel methods, arXiv:2101.11020.

[56] Qiskit contributors, Qiskit: An Open-Source Framework for
Quantum Computing (Zenodo, Geneva, 2023).

[57] K. Georgopoulos, C. Emary, and P. Zuliani, Modeling and
simulating the noisy behavior of near-term quantum computers,
Phys. Rev. A 104, 062432 (2021).

[58] Advances in Optimization and Numerical Analysis, edited by
S. Gomez and J.-P. Hennart, Mathematics and Its Applications
Vol. 275 (Springer, Dordrecht, 1994).

[59] X. Liu, G. Liu, H.-K. Zhang, J. Huang, and X. Wang, Mit-
igating barren plateaus of variational quantum eigensolvers,
IEEE Trans. Quantum Eng. (2024).

[60] N. Gisin and H. Bechmann-Pasquinucci, Bell inequality, Bell
states and maximally entangled states for n qubits, Phys. Lett.
A 246, 1 (1998).

[61] J. Rivera-Dean, P. Huembeli, A. Acín, and J. Bowles, Avoiding
local minima in variational quantum algorithms with neural
networks, arXiv:2104.02955.

[62] D. Faílde, J. D. Viqueira, M. Mussa Juane, and A. Gómez,
Using differential evolution to avoid local minima in variational
quantum algorithms, Sci. Rep. 13, 16230 (2023).

[63] G. Tóth, C. S. Lent, P. D. Tougaw, Y. Brazhnik, W. Weng, W.
Porod, R.-W. Liu, and Y.-F. Huang, Quantum cellular neural
networks, Superlattices Microstruct. 20, 473 (1996).

[64] P. Rebentrost, T. R. Bromley, C. Weedbrook, and S. Lloyd,
Quantum Hopfield neural network, Phys. Rev. A 98, 042308
(2018).

[65] J. Zhao, Y.-H. Zhang, C.-P. Shao, Y.-C. Wu, G.-C. Guo, and
G.-P. Guo, Building quantum neural networks based on a swap
test, Phys. Rev. A 100, 012334 (2019).

[66] C.-Y. Liu, C. Chen, C.-T. Chang, and L.-M. Shih, Single-
hidden-layer feed-forward quantum neural network based on
grover learning, Neural Networks 45, 144 (2013).

062425-17

https://arxiv.org/abs/2312.09121
https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1103/PhysRevA.103.032607
https://doi.org/10.1103/PhysRevA.104.L030401
https://doi.org/10.1145/3554729
https://doi.org/10.1007/s42484-020-00036-4
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1038/nature15750
https://doi.org/10.1103/PhysRevA.98.052334
https://doi.org/10.1103/PhysRevLett.124.060503
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.1103/PhysRevA.80.012304
https://arxiv.org/abs/1907.08163
https://arxiv.org/abs/1002.4632
https://doi.org/10.1038/s42254-023-00662-4
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1103/PhysRevLett.102.190501
https://doi.org/10.1038/nphys3029
https://doi.org/10.1143/PTP.46.401
https://arxiv.org/abs/2101.11020
https://zenodo.org/records/8190968
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1109/TQE.2024.3383050
https://doi.org/10.1016/S0375-9601(98)00516-7
https://arxiv.org/abs/2104.02955
https://doi.org/10.1038/s41598-023-43404-3
https://doi.org/10.1006/spmi.1996.0104
https://doi.org/10.1103/PhysRevA.98.042308
https://doi.org/10.1103/PhysRevA.100.012334
https://doi.org/10.1016/j.neunet.2013.02.012


JING, LIU, REN, AND WANG PHYSICAL REVIEW A 109, 062425 (2024)

[67] I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional
neural networks, Nat. Phys. 15, 1273 (2019).

[68] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N.
Quesada, and S. Lloyd, Continuous-variable quantum neural
networks, Phys. Rev. Res. 1, 033063 (2019).

[69] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent barren plateaus in shallow parametrized
quantum circuits, Nat. Commun. 12, 1791 (2021).

[70] J. Liu, K. Najafi, K. Sharma, F. Tacchino, L. Jiang, and A.
Mezzacapo, An analytic theory for the dynamics of wide quan-
tum neural networks, Phys. Rev. Lett. 130, 150601 (2023).

[71] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An initialization strategy for addressing barren plateaus in
parametrized quantum circuits, Quantum 3, 214 (2019).

[72] A. Kulshrestha and I. Safro, Beinit: Avoiding barren plateaus
in variational quantum algorithms, in Proceedings of the 2022
IEEE International Conference on Quantum Computing and
Engineering (QCE) (IEEE, Piscataway, NJ, 2022), pp. 197–203.

[73] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall,
An adaptive variational algorithm for exact molecular sim-

ulations on a quantum computer, Nat. Commun. 10, 3007
(2019).

[74] F. Zhang, N. Gomes, Y. Yao, P. P. Orth, and T. Iadecola, Adap-
tive variational quantum eigensolvers for highly excited states,
Phys. Rev. B 104, 075159 (2021).

[75] H. R. Grimsley, G. S. Barron, E. Barnes, S. E. Economou, and
N. J. Mayhall, Adaptive, problem-tailored variational quantum
eigensolver mitigates rough parameter landscapes and barren
plateaus, npj Quantum Inf. 9, 19 (2023).

[76] T. Volkoff and P. J. Coles, Large gradients via correlation in
random parameterized quantum circuits, Quantum Sci. Technol.
6, 025008 (2021).

[77] L. Friedrich and J. Maziero, Avoiding barren plateaus with
classical deep neural networks, Phys. Rev. A 106, 042433
(2022).

[78] M. Kieferova, O. M. Carlos, and N. Wiebe, Quantum generative
training using Rényi divergences, arXiv:2106.09567.

[79] M. Fukuda, R. König, and I. Nechita, RTNI—A symbolic in-
tegrator for Haar-random tensor networks, J. Phys. A: Math.
Theor. 52, 425303 (2019).

062425-18

https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/PhysRevResearch.1.033063
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1103/PhysRevLett.130.150601
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1103/PhysRevB.104.075159
https://doi.org/10.1038/s41534-023-00681-0
https://doi.org/10.1088/2058-9565/abd891
https://doi.org/10.1103/PhysRevA.106.042433
https://arxiv.org/abs/2106.09567
https://doi.org/10.1088/1751-8121/ab434b

