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Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithms
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This study investigates the thermal properties of the repulsive Fermi-Hubbard model with chemical potential
using variational quantum algorithms, crucial in comprehending particle behavior within lattices at high tem-
peratures in condensed matter systems. Conventional computational methods encounter challenges, especially
in managing chemical potential, prompting exploration into Hamiltonian approaches. Despite the promise of
quantum algorithms, their efficacy is hampered by coherence limitations when simulating extended imaginary
time evolution sequences. To overcome such constraints, this research focuses on optimizing variational quantum
algorithms to probe the thermal properties of the Fermi-Hubbard model. Physics-inspired circuit designs are
tailored to alleviate coherence constraints, facilitating a more comprehensive exploration of materials at elevated
temperatures. Our study demonstrates the potential of variational algorithms in simulating the thermal properties
of the Fermi-Hubbard model while acknowledging limitations stemming from error sources in quantum devices

and encountering barren plateaus.
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I. INTRODUCTION

Quantum physics presents profound challenges in unrav-
eling the intricate dynamics governing particle interactions
within condensed matter systems. Among the pivotal models
illuminating such phenomena, the Fermi-Hubbard model [1,2]
encapsulates correlated particles’ behavior within a lattice
framework. A crucial facet in comprehending these systems
lies in probing their thermal properties.

However, the computational scrutiny of models encounter
substantial hurdles, especially when traditional methodologies
confront facets like the introduction of a chemical potential
[3] or topological terms [4]. Notably, Monte Carlo (MC) al-
gorithms falter in handling such characteristics, compelling
the exploration of Hamiltonian methodologies for their ro-
bustness in navigating these complexities.

Despite the promise inherent in Hamiltonian methods,
challenges endure. Due to their Hamiltonian-based approach,
tensor networks do not suffer from sign problems. Employing
imaginary time evolution through techniques like Time Evolv-
ing Block Decimation (TEBD) allows for accurate simulation
of thermal states for lattice field theories [5-8]. However,
while potent, TEBD confronts computational bottlenecks;
the escalating computational demand due to large bond
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dimensions associated with extensive time steps restricts the
efficacy of such methods in capturing the thermal equilibria of
these systems.

To address these challenges, attention has pivoted towards
leveraging the capabilities of quantum computing. Quan-
tum algorithms, immune to specific computational roadblocks
faced by classical algorithms, offer a promising avenue for
exploring complex condensed matter systems. Although it is
possible to implement imaginary time evolution for quantum
algorithms to study the thermal properties of lattice systems
without suffering from large bond dimensions [9], the finite
coherence time in quantum devices imposes constraints on
simulating prolonged time evolution sequences, necessitating
alternative strategies. Such approaches often require signifi-
cant number of Troterrized time-evolution steps to converge
to the state in question. Although, such approach guarantees
the accuracy of the state up to a Trotterization error, it is not
applicable to the near-term devices.

This study focuses on employing variational quantum algo-
rithms to investigate the thermal characteristics of the spin—%
Fermi-Hubbard model. These techniques find their roots in
the Variational Quantum Eigensolver (VQE) [10-12], which
utilizes a trainable unitary gate sequence to approximate
the diagonalization of a given Hamiltonian. Previous stud-
ies have applied this method to analyze the ground-state
properties of the Fermi-Hubbard model [13,14]. Furthermore,
Refs. [15-17] have extended VQE techniques to learn thermal
state density matrices using hybrid classical-quantum net-
work systems. Despite their success, integrating classical and
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quantum computing methods creates unavoidable bottlenecks,
as evidenced in data analysis applications [18]. It has been
shown that hybrid approaches lead to longer convergence
time, and they require classically constructing part of the
problem, which will require an exponential growth in the
computational resources with respect to number of qubits.
These challenges have prompted exploring and developing
alternative quantum-based algorithms [19-22].

We employ the quantum Variational Quantum Thermalizer
(qVQT) algorithm, proposed in Ref. [20]. Through efficient
circuit designs, we aim to surmount the limitations of quantum
coherence constraints. By doing so, we aim to glean more
profound insights into the behavior of these materials at el-
evated temperatures, thereby contributing to the foundational
understanding of quantum condensed matter systems. Refer-
ence [20] explores thermal behavior of the Heisenberg model,
which does not require a highly complex circuit design. In this
paper we explore the limitation of the qVQT algorithm for a
significantly more complex quantum many-body system and
show that one needs to employ more complex circuit designs
in order to achieve required accuracy.

Subsequent sections delve into the methodological intri-
cacies deployed in our study; the model will be introduced
in Sec. II, and in Sec. III we will present our methodology,
delineating the tailored circuit designs. Finally, in Sec. IV
we will discuss the insights gleaned from our investigations.
This research endeavors to provide a nuanced understand-
ing of materials at a quantum scale, potentially paving the
way for advancements in material science and technological
innovation.

II. THE REPULSIVE FERMI-HUBBARD MODEL
WITH CHEMICAL POTENTIAL

The Fermi-Hubbard model belongs to the category
of “tight-binding models,” representing effective electron-
electron interactions by a contact term. In its second-quantized
form, the Fermi-Hubbard Hamiltonian is expressed as

I‘? = —t Z[Cj,scjvf + H.c.]

(i,j).s

+U Y highiy =y . (1)

Here 71; s = czsc,-,x and 7ii; = ZS f; s represent the number op-
erator. The parameter U denotes the on-site repulsive coupling
constant, while p stands for the chemical potential [1,2].
The notation (i, j) denotes nearest-neighbor interaction, and
the s index accounts for spin orientations, where s € {1, | }.
The creation (annihilation) operators, CL (ci5), follow anticom-
mutation relations:

{cis, C.JI?S/} = 5ij853’1 {cis, st’} = {Cj';-s C;S/} =0.

For u # 0, Eq. (1) suffers from the so-called sign problem
due to the complex terms in the partition function, leading
MC-based algorithms to become ill-posed [23-25].

In order to embed such a Hamiltonian on a quantum de-
vice, one needs to go through a qubitization process via the

Jordan-Wigner transformation [26,27]

Jj—1
c; = l—[(_Zk) S;r , Sji = %(Xj +iY;), (2)
k=1

where X, Y, and Z represent Pauli operators. Notice that
for nearest-neighbor interactions, the chain of Z operators
vanishes and only reappears at the periodic boundaries. By
applying Eq. (2) to Eq. (1) one can rewrite the terms of the
Hamiltonian H = Hy + H, + H, as

N—-1
H,
——> = Y IS\8], +Hel
(i,j).s
N—1
+[]‘[<—Zi>} (S 4Sq.s + Heeo), 3)
i=1
N
H = ZZ(Z Ziv+Ziy+Zi, +1,) (4)
1= 4 : i, 40 i, i) i)s
=232 + 1), 5)
2 i,s i i

where N stands for the number of sites. Notice that in order
to simulate both spin flavors, one needs to have two sets
of N qubits, one for spin-up and one for spin-down, which
increases the number of qubits to N, = 2N.

III. QUANTUM SIMULATION

In this section we outline the methodology employed
to investigate the thermal equilibria of the Fermi-Hubbard
model at a fixed temperature using variational quantum algo-
rithms. Our primary focus will be on the method illustrated
in Ref. [20]. This exercise represents the thermal mixed state
induced by the Hamiltonian within quantum circuits.

The density matrix of a given Hamiltonian A at a fixed
temperature can be written as
e”‘m

7
where B is the inverse temperature (1/7"), and Z is the par-
tition function. For a variational ansatz, the thermal state at
a fixed temperature can be found by optimizing the system
with respect to the Helmholtz free energy ' = E — T'S, where
E corresponds to the expectation value of the Hamiltonian
at a fixed temperature (H) g = Tr[pﬂﬁ ], and entropy, S, can
be written as § = —Tr[pglog, pg]. The challenging part of
the quantum simulation arises from the fact that a quantum
computer is a pure-state simulator, and one does not have
direct access to the density matrix within the circuit.

The key components of our approach involve utilizing two
distinct quantum circuits, each designed to address specific
aspects of the problem. Our procedure is summarized in the
following three subsections.

7z = Tr[ef’m], (6)

Pp =

A. Entropy estimation

The first variational quantum circuit (VQC,) determines
the probabilities associated with each pure state within the
ensemble under investigation. This circuit calculates the
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probability of finding the system in each pure state. Since it
is not possible to extract the density matrix directly to com-
pute the entropy, one can compute the Shannon entropy after
measurement:

S=—Y_ pi6)log, pi(61). (7

where p;(6,) = [|(0|U,(8))|¢:) ||2 corresponds to the probabil-
ity of the ith pure state, |¢;), within the ensemble. Here 6,
represents the variational parameters of the variational quan-
tum circuit represented by U (6).

B. Estimation of the expectation value of the Hamiltonian

The second quantum circuit (VQC,) is responsible for
computing the expectation value of the Hamiltonian for each
of the pure states identified in the previous step. The Hamilto-
nian operator encapsulates the system’s energy characteristics,
and its expectation value reveals the energy associated with
each pure state. The expectation value of the density matrix
can be computed as

(H)p = pi61)(¢il 020U (6,)16). ®)

where 6, represents the variational parameters of the varia-
tional quantum circuit represented by U, (6).

C. Objective function and optimization

With the probabilities and energies of pure states at hand,
we compute the system’s total free energy. This is achieved
through a combination of the Shannon entropy, derived from
the probabilities obtained from the first quantum circuit and
the energy obtained from the second quantum circuit. The
free energy is a fundamental thermodynamic quantity that
encapsulates the system’s equilibrium properties.

Having established the total free energy of the system,
we employ variational quantum algorithms to optimize our
quantum circuits. The objective is to minimize the free energy:

min F (61, 62),
1,2

which corresponds to finding the variational parameters that
best represent the system’s thermal equilibrium. The varia-
tional parameters, 6, ,, can be updated with respect to the
gradient of the free energy:

, d(H)p , d(H)g ds

0,=f6,——), 0,=f|0,————-T—].

2 f<2 36, 1=I0 do,
where f represents a function to be employed to update vari-
ational parameters, e.g., gradient descent. This optimization
process enables us to refine our quantum states, ultimately

leading to a more accurate representation of the system’s
behavior.

IV. RESULTS

We tested the algorithm described in the previous sec-
tion on a four-site system, which required eight qubits to
describe the Fermi-Hubbard model, with four qubits assigned
to each spin configuration.

For VQC,, we selected a strongly entangling layer con-
figuration as prescribed in Ref. [28]. We observed that
maximizing the entanglement structure within the circuit was
crucial for accurately representing the entropy of the model.
Other ansatzes did not yield satisfactory results.'

For VQC,, we adopted the variational circuit structure
proposed in Ref. [14]. This configuration implements a Trot-
terized Hamiltonian time evolution sequence as a variational
ansatz time step for each term, which is implemented as a vari-

ational parameter. One can write Eq. (1) as U>(6,) = (e/®H )-:
UT(QZ) — l_[ 65(9,-‘0,XX,,.V®X;_.;+9,',-TY,-,X®Yj,;)’ 9)
(i.).s
UU 6,) = l—[ ei(é)gZ,;;@Z,-,m+91';Z,-,x)’ (10)
is
where {6‘3’;, 92’1} € 60, each being independent, X, Y, and

Z represent the Pauli operators, and subscripts indicate the
qubits that they are acting on. Notice that 6, indicates the
collective set of parameters included within VQC,, and each
term has an independent parameter. The complete ansatz per
layer consists of

L
0r(62) = [ ] 07 (65°) 0 (65°),
k=1

where L refers to the number of independent layers. The dif-
ference between Egs. (9)*> and (10) are coming from hopping
terms and the repulsive term in the Hubbard model respec-
tively. Here subindices i, j correspond to the site index, s to
the spin index, and k is the layer index. This step ensures the
preservation of the physical properties of spin types and the
correlation between spin flavors induced by on-site repulsive
coupling. We refer the reader to the Appendix for details on
the circuit representation.

For system optimization, we used SciPy’s minimizer based
on Sequential Least Squares Programming [30] (version
1.10.0). The quantum circuit and its gradient were simulated
using PennyLane [31] (version 0.32.0) and Qiskit’s AER sim-
ulator [32] (qiskit.aer plugin version 0.28.0, Qiskit version
0.24.1). All parameters are initialized from a central Gaussian
distribution with one standard deviation. To evaluate the qual-
ity of the final density matrix, we computed the fidelity of the
reconstructed density matrix with respect to the one computed
via exact diagonalization:

Fidelit}’(,o, Prec) = (Tr[ A/ Prec P/ prec])zs

where pr. represents the reconstructed density matrix.

To investigate the influence of temperature on the out-
comes, we conducted a scan across the inverse temperature
range 8 € [0.05, 35] while maintaining fixed values for U =
0.8 and p = 0.2. The VQC prescription mentioned earlier
represents a single layer, and we implemented four such layers

"We also tested our algorithm using the initially proposed circuit
structure for VQC, in Ref. [20], which is based on simple Pauli
rotations per qubit.

2Also known as a fermionic SWAP gate; see Ref. [29].
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FIG. 1. Quality metrics computed for fixed U = 0.8 and u = 0.2
values for four-site Fermi-Hubbard model. The blue line in each
panel shows the results computed via exact diagonalization, where
dots represent the results reconstructed via quantum simulation. The
colored dots in the top panel show the fidelity value achieved for
each point. From top to bottom, the panels compare free energy,
Hamiltonian density, entropy, and number operator density. The error
bars represent the statistical uncertainty for 3000 shots, and the black
dashed line shows the expectation value of the operators at § — oo.

for each VQC as an initial ansatz. The results of this scan for
four different metrics are illustrated in Fig. 1.

In the top panel of the figure, the computed free energy of
the system via exact diagonalization is depicted by the blue
line, and colored dots represent the optimized reconstructed
free energy. The color of these dots reflects the fidelity be-
tween the exact and reconstructed density matrix.

Within the range 8 € [0.05, 2], we observed a minimum
fidelity of 93%, indicating considerable success with our ini-
tial four-layer proposal. However, for higher 8 values, despite
accurately reconstructing the free energy, we noticed a sig-
nificant decrease in fidelity. This decline is attributed to the
reduced significance of the entropy term in the free energy
as B increases. Consequently, the system encountered greater
difficulty converging to the correct entropy value with increas-
ing B. Notably, while some values matched well, they did
not reflect achieving physical equilibrium. In order to assess
the importance of such large g values, we also include the
expectation value of the operators at T = 0, shown via a black
dashed line. This indicates the system behaves like a ground
state at 8 = 10.

To independently assess the physical accuracy of the sys-
tem, we utilized the number operator density, Y, f1;, revealing
considerable deviations from its exact value at higher 8 val-
ues. This highlights the necessity of considering physical
equilibrium beyond just achieving specific numerical accura-
cies. The results within 8 > 10 region have been constructed
by increasing the number of layers of the ansatz. However, we

did not observe significant improvement in the fidelity for up
to five layers.

In order to assess the possible effects on more generic
scans, we computed the density of the number operator at
a fixed temperature for U, w € [0.1, 1]. Figure 2 shows the
number density value (represented by the change in color) for
fixed B values, 0.5 and 3, respectively. The top panel in each
figure shows the result from exact diagonalization, whereas
the bottom panel shows the results reconstructed by quantum
simulation. We observe reasonable results for both 8 values,
matching the results from exact diagonalization.

A. Cost estimation

The variational system under consideration exhibits two
sources of computational complexity. The first arises from
computational errors within the quantum device, and the sec-
ond stems from the optimization landscape. We quantified the
CNOT gates within each quantum circuit to estimate the error
source. However, it is important to note that the precision
required for implementing rotation gates would amplify the
number of T gate implementations within the circuit, thereby
introducing an additional source of error. For simplicity, we
focused solely on the CNOT count.

The generalized CNOT count for both circuits in terms of
the number of sites (N) and layers (L) can be expressed as
follows:

#CNOTyqc, = 2LN, (11)

#CNOTyqc, = 2L(5N — 4). (12)

These equations demonstrate that both circuits scale the CNOT
count linearly concerning both N and L. Here Eq. (11) de-
notes the CNOT count in VQC,;, and Eq. (12) represents
VQC,. Additionally, a fully connected quantum circuit and
Hamiltonian-based approach has 24 and 28 trainable parame-
ters per layer, respectively.

For variational algorithms, an additional source of error
arises from optimization. Depending on the initialization, the
optimization algorithm can explore different regions of the
objective function landscape, which, in this specific appli-
cation, represents the free energy. In order to test this we
sampled our trainable parameters from a uniform distribu-
tion within [—m, m]. Figure 1 displays the results for one
such initialization, including shot noise. Figure 3 presents the
same computation as Fig. 1 for 10 different initializations. In
this figure, the blue line represents the exact diagonalization
results, and the red dots denote results obtained from opti-
mization. The error bars represent one standard deviation from
the mean value of the 10 initializations. We observe signifi-
cantly larger fluctuations in the computation compared to the
statistical error from the shot samples. Large uncertainties in-
dicate that the objective landscape has many local minimums,
and the optimization algorithm can get stuck in these. Table I
shows the number of layers that has been used in first and
second circuits followed by the number of iterations that it
took for the optimization algorithm to converge. Note that the
maximum number of layers allowed is limited by five, and the
algorithm iteratively increases the layers if fidelity is under
90%. The respective circuit layers are increased depending on
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FIG. 2. The top panels show the results computed with exact diagonalization, whereas the bottom panels show the same results recon-
structed with the variational quantum algorithm at a fixed temperature, 7 = 2 on the left and 7 = 0.3 on the right. The color in each panel

shows the number operator density per (U, u) grid.

the source of discrepancy, i.e., energy or entropy. We observed
that, although the convergence rate is improved with larger
B values, the number of layers required in the first circuit is
consistently high. This indicates that the algorithm struggles
to find an optimal entropy value, and since the entropy is
suppressed by g it gets harder to find an optimal entropy value
at large 8.

Furthermore, an essential aspect of optimizing the sys-
tem involves estimating the presence of barren plateaus. This
was accomplished by computing the variance in the free
energy based on 500 different 6 values drawn from a uni-
form distribution with 0, » € [—, 7].3 Figure 4 illustrates the
variance change concerning the number of layers and sites,
where the number of qubits is twice the number of sites. Our

31t has been shown that the variance in gradient is equivalent to the
variance in the objective function [33].

observations revealed that the variance in the free energy
remains around O(1073) up to six layers and sites without a
significant decline. This suggests that the algorithm can be
optimized for a relatively large number of qubits and layers.
It is essential to emphasize that using ansatzes, which is typi-
cally used for quantum machine learning applications, has led
to significantly lower values for the variance in free energy.
This finding reveals the importance of using physics-inspired
ansatzes to prevent or reduce the risk of barren plateaus in
variational quantum simulation applications.

V. CONCLUSION

In this study we investigated the feasibility of variational
quantum algorithms in examining the thermal behavior of
the Fermi-Hubbard model. Our analysis demonstrates that
employing qVQT alongside a physics-inspired ansatz proves
to be a viable approximation technique. Notably, while

TABLE 1. Number of layers for both circuits and optimization steps that has been used during the optimization process. Each value is
presented as the mean of 10 independent initialization and one standard deviation from the mean.

B 1.00 5.25 9.50 13.75 18.00 22.25 26.50 30.75 35.00
No. Lyqc, 3.3+0.9 45+£0.7 43+0.6 4.2+0.7 45+0.9 3.8+1.1 36+1.2 4.0+£0.9 39+13
No. Lvqc, 3.7+0.9 2.5+0.7 2.1+05 24+0.5 24+0.7 2.0+£0.7 2.1+0.7 2.1+0.8 2.5+0.7

No. iterations

123.1£44.4 116.5+36.4 91.6+£27.3 88.0+£17.1 942+£31.3 97.4£255 77.2+248 87.0+25.1 72.0£23.0
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FIG. 3. Same as Fig. 1, but error bars represent the optimization
error, estimated from 10 different initialization. The blue line shows
the results from exact diagonalization, and red dots represent the
results from the mean of different initialization between [—, 7].

achieving a relatively accurate depiction of the free energy
value at a given temperature is possible with any ansatz, our
findings underscore that the physics-inspired ansatzes offer
superior approximation, effectively capturing the system’s
physical behavior. To gauge this, we utilized the number
density operator as an independent metric, separate from the
optimization process. We showed that, although higher g val-
ues pose a significant challenge for the optimization algorithm
due to the large suppression of the entropy term, it is possible
to increase the fidelity of the system by increasing the number
of layers in the VQC;.

However, the Fermi-Hubbard model’s gapless nature ne-
cessitates a substantial number of sites to capture the lattice’s
phase transition behavior. Unfortunately, our computational
resources limited our ability to explore larger site numbers.
Nonetheless, our estimations indicate that the proposed ansatz

Number of sites

4 5 6
Number of layers

FIG. 4. Changes in the variance of the free energy with respect to
the number of sites and layers in the variational circuits where both
circuits are assumed to have the same number of layers. Variance has
been estimated by drawing 500 samples for 6; and 6,.

holds promise in providing a relatively barren plateau-free
environment for significantly larger lattices. Implementing
such approaches on tensor networks (TNs) demands substan-
tial resources due to the exponential expansion in the bond
dimension during the state’s imaginary time evolution (e.g.,
TEBD algorithm). Despite the significant limitations of cur-
rent quantum computers, they are not anticipated to suffer
from bond dimension constraints.
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APPENDIX: PHYSICS-INSPIRED ANSATZ

The ansatz that is proposed for VQC, in Egs. (9) and (10)
has been inspired by the Trotterized time-evolution steps of
the Fermi-Hubbard model in Eq. (1). The circuit version of the
three main terms is represented in Fig. 5. These terms can be
realized using similarity transformations where Y = SHZH S
and Z = HXH. Here H stands for Hadamard gate, and S
stands for phase gate with A = /2. Notice that SHS can also
be expressed as Ry (—w /2) = R} (/2).

elf0Xi®Xin —

el0Z2i®Zin —

'RZ(U)I
U U)WV

FIG. 5. Individual terms of the physics-inspired ansatz have been
represented as pieces of the quantum circuit. @ € [—m, 7] represents
trainable parameter in each term, and R,, m € {X, Z} represents
rotation in respective Pauli axis.
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