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Information carried by a single particle in quantum multiple-access channels
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Nonclassical features of quantum systems have the potential to strengthen the way we currently exchange
information. In this paper, we explore this enhancement on the most basic level of single particles. To be more
precise, we compare how well multiparty information can be transmitted to a single receiver using just one clas-
sical or quantum particle. Our approach is based on a multiple-access communication model in which messages
can be encoded into a single particle that is coherently distributed across multiple spatial modes. Theoretically,
we derive lower bounds on the accessible information in the quantum setting that strictly separate it from the
classical scenario. This separation is found whenever there is more than one sender, and also when there is just a
single sender who has a shared phase reference with the receiver. When there is only one sender, the separation
is impossible without a shared phase reference due to the famous Holevo’s bound. Experimentally, we present a
proof-of-principle demonstration of such quantum advantage in single-particle communication by implementing
a multiport interferometer with messages being encoded along the different trajectories. Specifically, we consider
a two-sender communication protocol built by a three-port optical interferometer. In this scenario, the rate sum
achievable with a classical particle is upper bounded by one bit, while we experimentally observe a rate sum of
1.0152 ± 0.0034 bits in the quantum setup.
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I. INTRODUCTION

It is well known that a quantum particle exhibits fundamen-
tally different properties than its classical counterpart. Much
of the nonclassical behavior found in quantum systems is a
manifestation of wave-particle duality, which enables a single
quantum particle to be placed in a coherent superposition of
different physical states. Quantum computing exploits these
wave-like superpositions to perform certain calculations more
efficiently than classical means. In a distributed setting, the
most natural type of quantum superposition to consider is
spatial superposition. While a classical particle has a definite
trajectory in space, a quantum particle can be placed in a
coherent superposition of different paths as it moves from
one point in space to another. A natural question is whether
this superposition of trajectories can be utilized for perform-
ing some communication task more efficiently than classical
means. Similar to quantum computing, when claiming that
quantum mechanics offers some operational advantage over
classical means, one should first have a rigorous framework in
place that supports a fair and useful comparison. Inspired by
ideas in quantum resource theories [1], recently much effort
has been devoted to establishing such frameworks that capture
quantum superposition as a communication resource [2–9].

Here, we advance this line of research by exploring both
theoretically and experimentally the most basic way that a

*These authors contributed equally to this work.

single quantum particle can enhance communication. Specif-
ically, we investigate whether the path coherence of a single
quantum particle can be used to achieve higher classical com-
munication rates between N spatially separated parties and a
single receiver. To isolate the utility of just path coherence,
we ignore any internal degree of freedom of the particle in our
framework. This makes our approach distinct from the theo-
retical result of Ref. [4] and its experimental demonstration
[10], where an internal degree of freedom of particle is used
for information transmission. Our framework thus allows us
to address the following question: is path coherence itself a
resource strong enough to enable larger communication rates?

Several previous papers have addressed similar questions
in this direction. Inspired by the famous two-slit experiment,
Massar first showed the advantage of quantum particles in the
bipartite fingerprinting task [11]. In such a task, Alice and Bob
each possesses one bit x, y ∈ {0, 1}, and they wish to let a
referee decide whether x = y by sending a minimal amount
of information to the referee. It is not difficult to see that
one quantum particle in the state 1/

√
2(|0〉A|1〉B + |1〉A|0〉B)

suffices for this objective, while in the classical regime, the
parties must send both x and y for the referee to certify
that x = y. In Ref. [12], the authors reinterpreted this result
as two-way communication using only one single quantum
particle, which is forbidden if the information medium is
a classical particle. This idea was further extended to the
scenario where Alice and Bob each have an n-bit string
[13]. Using an n-level Mach-Zehnder interferometer, one of
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Alice and Bob can retrieve the other’s full n-bit string, while
only one bit of information is revealed to the other party.
Since this can be done for an arbitrary n, this result suggests,
roughly speaking, that a single quantum particle can carry
an arbitrarily large amount of information in point-to-point
communication. Complementing the point-to-point communi-
cation results, it was recently discovered via convex polytope
analysis that using a single quantum particle, one can generate
multiple-access channels (MACs) p(y|x1, . . . , xN ) that cannot
be constructed with a classical particle [8,9].

However, there is also a fundamental difference between
much of this prior work and what we consider here. The
communication task studied in this paper involves asymptotic
noiseless communication (which is the content of Shannon’s
well-known channel coding theorem [14]), whereas the prior
study of classical and quantum MACs in terms of convex
polytopes is relevant to the problem of noisy channel simu-
lation (which is the content of the reverse Shannon theorem
[15,16]). While it is true that any channel lying outside of
the so-called classical polytope will require a nonclassical
resource to perfectly simulate, this channel itself may of-
fer no advantage for noiseless communication. Indeed, the
MACs constructed in Refs. [8,9] that fall outside the classi-
cal polytope have no greater communication capacities than
what is achievable using a classical particle. In general, it
has remained unknown whether path coherence can be used
to generate a classical channel p(y|x1, . . . , xN ) with larger
communication rates.

In this paper, we show that such an advantage can be
found even at the most fundamental level of a quantum sys-
tem. Specifically, we utilize the framework of single-particle
multiple-access channels (MACs) developed in Ref. [9] to
investigate the achievable rate regions of distributed commu-
nication using a single particle. While the communication
rate sum of the different senders is always upper bounded
by one bit if a single classical particle is used, in the quan-
tum setting a rate sum of at least 1.10 bits is achievable for
two senders. Even higher rates can be achieved if there are
more than two senders. Moreover, we experimentally demon-
strate the quantum advantages by implementing one of our
designed protocols. In particular, we achieve a quantum ad-
vantage within five standard deviations using linear optics and
a single-photon state.

This paper is organized as follows: In Sec. II, we in-
troduce the operational framework of single-particle MACs
and review some information-theoretic concepts such as the
achievable rate regions of MACs. In Sec. III, we study in
detail the theoretical aspects of our work. In Sec. IV, we
give our experimental demonstration of the two-sender co-
herent assisted communication protocol using linear optics
and a heralded single-photon state, where quantum-enhanced
communication is achieved by preparing a single photon in a
superposition of different trajectories.

II. OPERATIONAL FRAMEWORK AND INFORMATION
THEORY PRELIMINARIES

A. Multiple-access channels constructed with one particle

To compare how much classical information can be carried
by a classical or quantum particle with none of its internal

degrees of freedom being accessible, we utilize the frame-
work of single-particle MACs developed in Ref. [9]. This
framework, which we now briefly describe, was inspired by
previous work [17,18] that captured the resource-theoretic
features of quantum coherence in a multiport interferome-
ter setup. We denote the collection of N spatially separated
senders as A = (A1, A2, . . . , AN ) and assume that each mes-
sage sent by each sender is finite. A one-particle state is
distributed and shared among these N senders. Recall that the
Fock space is described by H = ⊕∞

j=0 H j , where H j is the
j-particle subspace of H. A one-particle state is represented
by a density operator ρA acting on the one-particle subspace,
which is

HA
1 := span{|ei〉 : 1 � i � N}, (1)

where |ei〉 = |0〉A1 · · · |1〉Ai · · · |0〉AN is the state that the par-
ticle is on the path of sender Ai, with |0〉 being the vacuum
state. The senders then locally encode their messages using
completely positive trace-preserving (CPTP) maps. For exam-
ple, if party Ai wishes to send message xi, the CPTP map EAi

xi

is locally applied. The fully encoded state for joint message
x := (x1, . . . , xN ) is given by

σx := σx1,...,xN = EA1
x1

⊗ · · · ⊗ EAN
xN

(ρA). (2)

For the purposes of this investigation, we restrict the allowed
CPTP maps that the senders use to encode. Specifically, since
we are interested in the information-carrying ability of a single
particle, we have to require that the encoding operations can-
not increase particle number. More specifically, we model the
encoding operations as CPTP maps with a particle number-
preserving unitary extension; that is,

EAi
xi

(X Ai ) = TrEi [Uxi (X
Ai ⊗ |0〉〈0|Ei )U †

xi
], (3)

where each Uxi preserves the total number of particles in the
system Ai and the environment Ei. This set of operations
was termed number-preserving extendible (NPE) operations
in Ref. [9] and was fully characterized for an arbitrary number
of particles. This set of operations is the most general one
in our setting due to the fact that (1) any quantum operation
can be written in terms of a unitary dilation that couples the
system and the environmental mode; (2) the lack of phase
reference between the senders and the receiver implies a
particle number superselection rule [19], which means the
unitary is block diagonal in the particle number basis, i.e., it
is number-preserving; and (3) the environmental mode should
be initialized as a vacuum state since no extra particle can be
introduced. Note that in (2) we do not assume there is a shared
reference frame since this provides an additional resource for
communication [19], and our model is just trying to isolate
single-particle path coherence as the communication resource.
However, the coherence-assisted scenario introduced in the
next section enables the sender to effectively transmit a phase
reference to the receiver over the assisted path, and we show
the enhanced communication this provides in Theorem 3.

In this work, we focus only on the case where
there is at most one particle in the system. In this
case, these operations are convex combinations of quan-
tum operations EAi (X Ai ) = ∑

j KAi
j X Ai KAi†

j with Kraus
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FIG. 1. The general scheme for building a multiple-access clas-
sical channel using a single particle.

operators

KAi
1 = |0〉〈0| + eiφ1

√
1 − γ |ei〉〈ei|,

KAi
2 = eiφ2

√
γ |0〉〈1|. (4)

Note they can be seen as generalized amplitude damping
channels with two additional relative phase parameters. In
this work, we rely heavily on two particular NPE opera-
tions in the encoding: the completely damping operation
ρ �→ E (vac)(ρ) := Tr(ρ)|0〉〈0| and the phase shift operation
ρ �→ E (φ)(ρ) := e−iZφ/2ρeiZφ/2, where Z = (1 0

0 −1). Note

that E (vac) and E (φ) correspond to the choices γ = 1 and
γ = 0 in Eq. (4), respectively. In optical communication,
these encoding operations correspond to on-off keying (OOK)
modulation and phase-shift keying (PSK) modulation [20,21].
Unless all of EA1

x1
, . . . , EAN

xN
are phase shift operations, the

encoded state σx1,...,xN will be supported on the direct sum of
the zero-particle sector and one-particle sector HA

0 ⊕ HA
1 =

span{|0〉⊗N , |ei〉 : 1 � i � N}.
After the encoding operations, the state σx is sent to the re-

ceiver, and the receiver tries to reconstruct the message using
a positive operator-valued measure (POVM) {�y}y supported
on HA

0 ⊕ HA
1 . This process induces a classical channel by

p(y|x) := Tr(�yσx). (5)

A graphical representation of this framework is shown in
Fig. 1. Note that in our model we always assume that the
receiver shares a phase reference with the particle source, so
|ei〉 is defined with the same overall phase for both the source
and detector [19].

With this operational framework in mind, we define the
set of N-sender MACs constructed from a single particle as
MACs of the form

p(y|x1 · · · xN ) = Tr
(
�y

[
EA1

x1
⊗ · · · ⊗ EAN

xN
(ρA)

])
, (6)

where ρA ∈ D(H1). Here D(H1) denotes the set of density
operators on the one-particle subspace. If the particle is clas-
sical, then the initial state is simply a probabilistic mixture
of definite trajectories, i.e., ρA

cl = ∑N
i=1 pi|ei〉〈ei|. Throughout

this work we assume that the message xi of party Ai is cho-
sen from alphabet set Xi, which will always be a finite set
of integers Xi = [mi] := {0, . . . , mi − 1}. Similarly, we let Y
denote the output alphabet of the receiver B. For input and
output alphabet X := X1 × X2 × · · · × XN and Y , we denote
the set of classical MACs by CN (X ;Y ) and quantum MACs

FIG. 2. A coherence-assisted protocol allows for an unperturbed
side channel through which the particle can traverse coherently to the
decoder.

by QN (X ;Y ). We use QN and CN to denote general N-sender
channels with arbitrary input and output alphabets.

B. Coherence-assisted communication

Thus far we have focused on scenarios where the num-
ber of senders equals the number of paths through which
the particle source emits the particle. We can generalize this
model by allowing for extra paths that are not acted upon
by a sender (Fig. 2). We refer to these as coherence-assisted
protocols, with the extra paths being called assistance paths.
Note that since the assistance paths are not touched by any en-
coding operation, we can without loss of generality combine
amplitudes of multiple assistance paths into one assistance
path. Intuitively, the assistance path can serve as a phase
reference between the senders and the receiver, circumventing
the particle-number superselection rule [19] and potentially
allowing higher rates of communication. One the other hand,
as we see in Proposition 2 below, this assistance path cannot
enhance the communication rate when the source is a classical
particle. We let Qass

N (X ;Y ) denote the family of all coherence-
assisted channels built by N parties using a single quantum
particle and NPE operations.

An analogy can be drawn here to entanglement-assisted
communication [15,22], in which entanglement is shared
between the senders and receiver. In fact, one could
imagine in Fig. 2 that the particle is coherently distributed to
the receiver along the assisted path prior to the encoding of
the senders. Then the scenario becomes conceptually equiva-
lent to the entanglement-assisted setup except that the shared
resource between senders and receivers is coherence in single-
particle spatial modes rather than coherence in multiparticle
states [23].

C. Communication rates of multiple-access channels

In this work we consider the achievable communication
rates of the classical multiple-access channels as constructed
in the previous section. Roughly speaking, a rate tuple
(R1, . . . , RN ) is achievable for a given MAC if for every ε > 0
and n sufficiently large, each sender i can send 2nRi possible
messages with average error no greater than ε (see Ref. [24]
for details). Remarkably the achievable rate region of an
N-sender MAC has a single-letter characterization in terms
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of the conditional mutual information, which, for random
variables X1, X2, Y , is defined as I (X1 : Y |X2) = I (X1X2 : Y )
− I (X2 : Y ).

Proposition 1 [24–26]. A rate tuple (R1, . . . , RN ) for MAC
p(y|x) is achievable if and only if it lies in the closure of the
convex hull of all rate tuples satisfying

RS � I (XS : Y |XSC ) ∀ S ⊂ {1, . . . , N} (7)

for some product distribution p(x1) · · · p(xN ) over the input
alphabet X . Here in a slight abuse of notation we denote
XS := ×i∈SXi and RS := ∑

i∈S Ri. In particular, for two parties,
the achievable rate region is the convex hull of all rate pairs
satisfying

R1 � I (X1 : Y |X2),

R2 � I (X2 : Y |X1),

R1 + R2 � I (X1X2 : Y ), (8)

for product distributions p(x1)p(x2).
For the purpose of this investigation, we are mainly inter-

ested in the largest amount of information that can be jointly
sent by the senders. In our framework, this corresponds to the
largest rate sum R := ∑

i∈{1,...,N} Ri that can be achieved using
a MAC constructed from a single particle.

D. The accessible information and Holevo information

As described in the previous sections, each communication
protocol using a single particle consists of three elements: a
choice of the initial one-particle state ρ, an encoding strategy
which specifies a family of NPE encoding operations {EAi

xi
},

and the decoding measurement {�y}. We are interested in
optimizing the joint achievable communication rate under this
framework, and, to do so, we split the full optimization into
two parts. Every choice of initial state, encoding strategy,
and prior product distribution p(x) = p(x1) · · · p(xN ) over the
messages gives rise to the classical-quantum (cq) state

σXA =
∑

x

p(x)|x〉〈x|X ⊗ σA
x , (9)

where σA
x = EA1

x1
⊗ · · · ⊗ EAN

xN
(ρ). For each such cq state,

when a POVM {�y} is performed on systems A, the resulting
joint probability distribution can be described by the classical-
classical (cc) state

σXY =
∑
x,y

p(x)p(y|x)|x〉〈x|X ⊗ |y〉〈y|Y. (10)

where p(y|x) = Tr(�yσx) is the constructed MAC in
QN (X ;Y ). If X denotes the random variable over all N
messages and Y denotes the output variable for the receiver,
then the information obtained by the receiver about X is the
mutual information I (X : Y )σXY . Optimizing over all POVMs
quantifies the so-called accessible information of the cq
state σXA,

Iacc(σXA) := max{�y}
I (X : Y )σXY . (11)

We then further optimize the accessible information over all
valid cq states [i.e., those having the form of Eq. (9)],

R(QN ) := max
σXA

Iacc(σXA). (12)

Thanks to Proposition 1, R(QN ) captures the largest commu-
nication rate-sum that quantum mechanics allows when using
a fixed encoding strategy and single-copy decoding measure-
ment on each particle. This is the central quantity of interest
in this paper.

Lower bounds of R(QN ) are given by R(QN ) �
Iacc(σXA) � I (X : Y )σXY , with I (X : Y )σXY arising from any
explicit protocol. On the other hand, the celebrated Holevo’s
bound limits the accessible information as

Iacc(σXA) � χ (σXA), (13)

where χ (σXA) := I (X : A)σXA = S(
∑

x p(x)σA
x ) − ∑

x p(x)
S(σA

x ) is called the Holevo information [27]. Therefore, a
natural upper bound for R(QN ) is

R(QN ) = max
σXA

Iacc(σXA) � χ (QN ) := max
σXA

χ (σXA). (14)

Again, the maximization is over the cq state having the form
of Eq. (9).

In addition to providing an upper bound, the Holevo infor-
mation χ (σXA) admits an operational interpretation [28,29]
within our one-particle communication framework. Namely,
it captures the scenario in which the senders prepare inde-
pendent and identically distributed (i.i.d.) copies of σXA, yet
the receiver is allowed to perform joint decoding measure-
ment across all copies. In the asymptotic limit, the largest
amount of information that the receiver can gain is exactly
the Holevo information χ (σXA). Therefore, the optimized
Holevo information χ (QN ) represents the ultimate amount of
information that can be transmitted by N senders using a fixed
single-particle encoding scheme. We similarly let R(Qass

N ) and
χ (Qass

N ) be defined as in Eqs. (12) and (14), respectively,
except with the maximum now taken over all cq states σXA

built using a coherence assistance path.
While R(QN ) � χ (QN ) and R(Qass

N ) � χ (Qass
N ), for gen-

eral N these bounds appear to be quite loose. For example, we
show below that χ (QN ) � log2 N and χ (Qass

N ) � log2(N +
1). On the other hand, the best lower bounds on R(QN ) and
R(Qass

N ) we obtain do not even exceed 1.13. While this bound
still exceeds the largest classical rate, which is the main focus
of this paper, its divergence from the Holveo information re-
flects the strong communication degradation that arises when
restricting to single-copy measurements.

III. THEORETICAL RESULTS

Having established our communication model, we now
probe the theoretical limits of single-particle communica-
tion in both the classical and quantum settings. Our main
goal is to place bounds on the communication rates intro-
duced in the previous section. For simplicity, we focus on
multiple-access channels with binary and ternary inputs and
outputs. In Sec. III A we compute the ultimate communication
rates using a classical particle, which serve as thresholds for
our quantum protocols. In Sec. III B we construct explicit
quantum-enhanced communication protocols. Lower bounds
on R(Qass

1 ) and R(Q2) are presented in Secs. III B 1 and
III B 2, respectively; for N � 2 lower bounds on R(QN ) and
R(Qass

N ) are provided in Sec. III B 3. Finally, in Sec. III B 4
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FIG. 3. An illustration of our bounds on the one-sender
coherence-assisted communication rate R(Qass

1 ) and two-sender
unassisted communication rate sum R(Q2). Each bound is estab-
lished via the labeled proposition or theorem.

we show that both χ (QN ) and χ (Qass
N ) grow as log2 N . An

illustration of our results is shown in Fig. 3.

A. Classical multiple-access channels

We begin by establishing the intuitive upper bound of one
bit for the N-party rate-sum using a single classical particle.
The following proposition places a fundamental bound on N-
party communication within our framework.

Proposition 2. R(CN ) = 1 ∀ N . That is, we can communi-
cate at most one bit of information using a classical particle.
Furthermore, an assistance path does not help in the classical
setting.

Proof. We first show that R(CN ) � 1. According to
Eq. (A1), any channel in CN admits the decomposition

p(y|x1 · · · xN ) =
∑

i

pi

∑
m=0,ei

d (y|m)qi(m|xi ), (15)

where d (y|m) and q(m|xi ) are conditional probability dis-
tributions associated with the decoder and the encoder,
respectively. By convexity of mutual information I (X1 · · · XN :
Y ) with respect to the underlying channel, we can conclude
that the rate sum is maximized by channels of the form
p(y|x1 · · · xN ) = p(y|xi ) = ∑

m=0,ei
d (y|m)qi(m|xi ). However,

capacities of these channels cannot exceed one bit since
d (y|m) is essentially a classical postprocessing map, and
qi(m|xi ) is a channel with binary outputs.

On the other hand, suppose the initial state is |ei〉〈ei|, the
ith sender Ai encodes information by either annihilating the
particle or preserving the particle, and the receiver performs
measurement in the particle number basis. In this case, Ai

can send one bit of information, while other senders cannot
send any information. So, the total amount of transmitted
information is one bit, and therefore R(CN ) � 1. To see that
an assistance path does not help, observe that R(CN ) = 1 holds
for arbitrary N , and an assistance path can be seen as a special
case of CN+1 where the (N + 1)th party acts trivially. �

FIG. 4. Coherence-assisted communication with one sender.

B. Quantum multiple-access channels

1. Surpassing the classical bound with one sender
and coherence assistance

Given the classical communication bounds established
in the previous section, it is natural to consider whether
quantum mechanics can do better. We begin by consider-
ing the special case of just one sender, and the encoding
scheme presented here will generalize as more parties are
added. In the one-sender scenario, if no coherence assis-
tance is used then the whole communication system is
simply a two-dimensional space spanned by {|0〉, |1〉}. By
Holevo’s theorem, the communication rate is bounded above
by log2 2 = 1, and therefore, quantum mechanics offers no
advantage over classical physics. This can also be understood
as a consequence of the lack of phase reference [19]. Because
there is no phase reference, any encoded state appear to the
receiver as p0|0〉〈0| + p1|1〉〈1|. Such a state is a classical
state, which can be used to communicate no more than one bit
of information. However, by leveraging coherence assistance
in the sense of Fig. 4 and using a small portion of the state as
the phase reference, it is possible to communicate more than
one bit of information in the point-to-point scenario.

To achieve a greater rate using a single particle, we con-
struct a channel with ternary input symbols. Suppose that the
initial state distributed from the particle source is |ψ〉AR =
cos θ |e1〉 + sin θ |e2〉 with θ ∈ [0, π/2]. Note that this de-
scribes the most general one-particle state since any relative
phase can be absorbed into the definition of |e1〉, which we
assume is known to the receiver. For message x ∈ {0, 1, 2}, let
the sender A encode the state |ψ〉 according to the following
NPE operations:

E0(ρ) = E (vac)(ρ) = Tr(ρ)|0〉〈0|,
E1(ρ) = ρ,

E2(ρ) = E (α)(ρ) = e−iαZ/2ρeiαZ/2. (16)

Let σx = EA
x ⊗ idR(|ψ〉〈ψ |) and σXAR = ∑

x p(x)|x〉〈x| ⊗ σx

be an encoded cq state with the prior distribution over mes-
sages have the form p(0) = 1 − q and p(1) = p(2) = q/2.
As shown in Sec. III B 4, the Holevo information χ (Qass

1 ) is
attained by this type of cq state. Hence, we are motivated
to conjecture that the encoding scheme of Eq. (16) is also
optimal for the single-particle rate R(Qass

1 ). Even if this con-
jecture fails to be true, the accessible information of σXAR still
provides a lower bound on R(Qass

1 ).
In general, calculating the accessible information of an

arbitrary cq state is mathematically challenging. However,
in our case, the encoded cq state enjoys the following sym-
metries: (i) each σx is block-diagonal in the particle number
basis, and (ii) q/2 · σ1 and q/2 · σ2 are related by a reflection
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across the line y = x tan(α/2) in the x-y plane of the Bloch
sphere. Using similar arguments to those in Ref. [30], we find
(see Appendix B) that α = π provides an optimal encoding.
Further analysis then shows that the accessible information is
maximized by a prior probability q and coherence angle θ in
the source state that together satisfy a pair of transcendental
equations. Solving these equations numerically leads to the
following theorem.

Theorem 3. There exists a one-sender coherence-assisted
communication protocol that sends approximately
1.0931 bits per channel use, i.e., R(Qass

1 ) � 1.0931.
The optimal (q, θ ) that achieves this are approximately
(0.8701, arccos(

√
0.4715)), and the optimal measurement

projects into the basis {|00〉, 1√
2
(|e1〉 ± |e2〉)}.

Note that the largest accessible information is not attained
using a state with uniform superposition across both paths.
Yet, the optimal decoding measurement is a projection into
uniform superposition states 1√

2
(|e1〉 ± |e2〉). When using a

source state with uniform superposition across both paths (i.e.,
θ = π/4), the largest communication rate is computed to be
1.0875.

2. Two-sender multiple-access channels

Let us now add a second sender to the communication
picture. We first consider the scenario of two senders with no
coherence assistance. Thus there are only two paths connect-
ing the source to the receiver. Although there is no coherence
assistance, each path serves as a phase reference between
the receiver and the other sender. We borrow ideas from
the previous one-sender coherence-assisted protocol, which
also has two paths. Let senders A1 and A2 share the state
|ψ〉A1A2 = cos θ |e1〉 + sin θ |e2〉. Consider first the following
binary encoding strategy:

EA1
0 (ρ) = Tr(ρ)|0〉〈0|,

EA1
1 (ρ) = ρ,

EA2
0 (ρ) = ρ,

EA2
1 (ρ) = e−iαZ/2ρeiαZ/2. (17)

Observe that EA1
0 ⊗ EA2

0 (|ψ〉〈ψ |) = EA1
0 ⊗ EA2

1 (|ψ〉〈ψ |), and
so there only three distinct encoded states. In fact, if A1 has
prior probabilities {1 − q, q} over messages {0, 1} and A2

has uniform prior probabilities over the messages, then the
resulting cq state σXA1A2 is equivalent to the cq state σXAR

constructed in the one-sender assisted protocol. Therefore,
by Theorem 3, α = π is optimal, and the maximal rate sum
achievable with this protocol is 1.0931, which is achieved
by the source state

√
0.4715|e1〉 + √

0.5285|e2〉 and encoding
probability q ≈ 0.8701.

The achievable rate region can also be computed. For
each fixed θ ∈ [0, π/2], the initial state |ψ〉A1A2 = cos θ |e1〉 +
sin θ |e2〉 induces a classical MAC [2] × [2] → [3] when us-
ing the encoding of Eq. (17) and the decoding measurement
which projects into the basis {|00〉, 1√

2
(|e1〉 ± |e2〉)}. The rate

region (R1, R2) is then found using Proposition 1 (see Fig. 5).
As we sweep θ over the interval [0, π/2], the union of all
achievable rate pairs using encoding scheme (17) is identified

FIG. 5. An example of rate region that is achievable by using ini-
tial state |ψ〉 = √

1/3|e1〉 + √
2/3|e2〉 and the binary-input protocol.

in Fig. 6. The solid line in this figure indicates the outer
boundary on achievable rates using a uniform superposition
input state |ψ〉 = 1√

2
(|e1〉 + |e2〉). These values are notewor-

thy since they are what we try to experimentally replicate in
Sec. IV.

We can enhance the rate sum even further if we allow
one of the parties to have three inputs. Suppose now that A2

encodes with the same ternary operation as in Eq. (16), and

FIG. 6. The union of all achievable rate regions using our binary-
input protocol (gray area). The solid line represents the boundary
of rate region that is achievable using an equal superposition state√

1/2(|e1〉 + |e2〉). The dashed line represent the convex hull of all
rate pairs achievable using a classical particle.
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FIG. 7. A multipath state with attenuated amplitudes is generated
by a successive application of beam splitters.

A1 again uses the on-off keying encoding:

EA1
0 (ρ) = Tr(ρ)|0〉〈0|,

EA1
1 (ρ) = ρ,

EA2
0 (ρ) = Tr(ρ)|0〉〈0|,

EA2
1 (ρ) = ρ,

EA2
2 (ρ) = e−iαZ/2ρeiαZ/2. (18)

Suppose that Alice and Bob’s prior probability of message 0 is
q and q′, respectively. Then using the same method of calcu-
lating the accessible information of symmetric ensembles (see
Appendix C), we again find that the optimal phase encoding is
α = π . This allows us to calculate the accessible information
of the encoded cq state for any q, q′, and θ , which we then
maximize.

Proposition 4. There exists a two-sender unassisted
communication protocol [2] × [3] → [3] that sends 1.1014
bits of information per channel use, i.e., R(Q2) � 1.1014.
The optimal (q, q′, θ ) that achieves this are approximately
(0.9197, 0.9197, π/4), and the optimal measurement is given
by projecting on the basis {|00〉, 1√

2
(|e1〉 ± |e2〉)}.

Note that, unlike in this case of binary encoding, the opti-
mal source state is a uniform superposition across both paths
(i.e., θ = π/4).

3. A general encoding method for N � 2 parties without blocking

One drawback of the encoding schemes presented in
Eqs. (17) and (18) is that it requires one of the parties to
perform an on-off keying (i.e., “blocking”) operation. While
intuitively simple, a reliable implementation of this encoding
in an optical setup can be quite demanding. Here we show
that through the use of a coherence assistance path, a rate sum
strictly larger than one is always achievable using simple 0, π

phase encoding. The latter means that the sender either acts
trivially on the particle or applies a rotation E (π )(ρ) = ZρZ .

Our protocol involves the idea of creating more paths
by successive uses of a beam splitter (see Fig. 7). Suppose
that at the layer we start with the uniform superposition
state 1√

2
(|e1〉 + |e2〉). A beam splitter is inserted along the

second path yielding the state 1√
2
|e1〉 + 1

2 (|e2〉 + |e3〉). This

is repeated repeatedly until the initial state |ψ〉A1···AN R =∑N
i=1 (2i )−1/2|ei〉 + (2N )−1/2|eN+1〉 is prepared for N senders

FIG. 8. Numerical calculation of rate sums achievable with our
N-sender protocol [Eq. (19)] for N up to 10.

A1, . . . , AN and a coherence assistance path R. Each sender
encodes by applying a π phase shift

EAi
xi

(ρ) = ZxiρZxi (19)

for message xi ∈ {0, 1} with prior probability p(xi ). Upon
receiving the encoded particle, the receiver decodes using
the projective measurement {|bi〉〈bi| : i ∈ [N + 1]} with or-
thonormal vectors

|b0〉 = 1√
2
|e1〉 +

N∑
i=2

1√
2i

|ei〉 + 1√
2N

|eN+1〉,

|b1〉 = − 1√
2
|e1〉 +

N∑
i=2

1√
2i

|ei〉 + 1√
2N

|eN+1〉,

|b2〉 = − 1√
2
|e2〉 +

N∑
i=3

1√
2i−1

|ei〉 + 1√
2N−1

|eN+1〉,

...

|bN 〉 = − 1√
2
|eN 〉 + 1√

2
|eN+1〉.

This induces a classical channel p(y|x1, . . . , xN ), and for
small N we can numerically compute their capacities using
the generalized Blahut-Arimoto algorithm adapted for MACs
[31–33] (Fig. 8). Note that finding the optimal rate sum of
a MAC is a nonconvex optimization problem since we have
to optimize over the nonconvex set of product distributions
p(x1) · · · p(xN ). This makes the optimization particularly chal-
lenging. In fact, the generalized Blahut-Arimoto algorithm is
not guaranteed to converge to the optimal rate sum [34]. How-
ever, suppose we instead optimize over all joint distributions
p(x1, . . . , xN ). In other words, we treat p(y|x1, . . . , xN ) as
a single-sender-single-receiver channel. The original Blahut-
Arimoto algorithm does in fact converge to the optimal rate for
a point-to-point channel. This point-to-point capacity serves
as an upper bound for the rate sum since we are giving senders
more power to coordinate.

For N = 2, the problem allows for an analytic solution, and
we summarize the result in the proposition below.

Proposition 5. There exists a two-sender coherence-
assisted communication protocol that does not require
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blocking operation or vacuum detection and sends
log2(17/8) ≈ 1.0875 bits per channel use, i.e., R(Qass

2 ) �
1.0875. The optimal prior probability that achieves this is
p(x1 = 0) = 1/2 and p(x2 = 0) = 15/17.

As N increases, we numerically find that the rate sum
does not increase significantly. On the one hand, this is not
surprising since our encoding strategy uses an initial state
|ψ〉 that places smaller and smaller weight on the paths of
additional parties. However, on the other hand, we have not
been able to find any superior coding method. A significant
open problem is to find upper bounds on the largest N-party
rate sum using a single quantum particle, which we conjecture
will not be too far from the lower bound depicted in Fig. 8.

The coherence-assisted protocol just described uses only
phase encodings. However, it can easily be converted to a
coherence-unassisted communication protocol at the expense
of needing blocking operations. To see the idea, consider the
case of N = 2. In the assisted protocol, the encoded states
σA1A2R

x1x2
= |ψx1x2〉〈ψx1x2| have the form

|ψ00〉 = 1√
2
|e1〉 + 1

2
|e2〉 + 1

2
|e3〉,

|ψ01〉 = 1√
2
|e1〉 − 1

2
|e2〉 + 1

2
|e3〉,

|ψ10〉 = − 1√
2
|e1〉 + 1

2
|e2〉 + 1

2
|e3〉,

|ψ11〉 = − 1√
2
|e1〉 − 1

2
|e2〉 + 1

2
|e3〉.

Observe that these are made equivalent to the states

|ψ ′
00〉 = 1√

2
|e1〉 + 1√

2
|e2〉,

|ψ ′
01〉 = 1√

2
|e1〉 + 1√

2
|e3〉,

|ψ ′
10〉 = − 1√

2
|e1〉 + 1√

2
|e2〉,

|ψ ′
11〉 = − 1√

2
|e1〉 + 1√

2
|e3〉, (20)

by a unitary operator that also transforms the measurement
vectors into

|b′
0〉 = 1√

2
|e1〉 + 1√

2
|e2〉,

|b′
1〉 = − 1√

2
|e1〉 + 1√

2
|e2〉,

|b′
2〉 = |e3〉. (21)

Hence, the states of Eq. (20) and measurement of Eq. (21)
will generate the same transition probabilities as the original
MAC. But since the |b′

i〉 have no coherence between the {|e1〉,
|e2〉}, and {|e3〉} subspaces, we can first dephase the |ψ ′

x1x2
〉

across these subspaces without altering the transition proba-
bilities. Doing so and relabeling |0〉 ≡ |e3〉 leads to states σx1x2

obtained by the unassisted encoding of Eq. (17) (up to a swap
A1 ↔ A2). This method of converting a coherence-assisted
protocol to an unassisted protocol generalizes for any N � 2.

4. The single-particle Holevo capacities

All of the communication rates computed thus far assumes
the receiver performs the same single-copy measurement on
each received quantum particle so as to generate multiple
uses of the same classical channel p(y|x). While this leads
to a definite communication advantage compared with the
use of a classical particle, Fig. 8 suggests that this advantage
is not that dramatic. On the other hand, if we enlarge the
measurement capabilities of the decoder and allow for col-
lective measurements across multiple particle transmissions,
then the capacity can be enlarged significantly. This quantity
is the single-particle Holevo information χ (QN ) as defined in
Eq. (14), with χ (Qass

N ) denoting its coherence-assisted form.
Our first result is the calculation of χ (Qass

N ) for N = 1.
Theorem 6.

χ
(
Qass

1

) = max
q,cos2 θ∈[0,1]

qh2(cos2 θ ) + cos2 θh2(q)

= max
x∈[0,1]

2xh2(x)

≈ 1.2339,

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy.
Note that, since R(Qass

1 ) � χ (Qass
1 ), this shows that the en-

coding scheme of Theorem 3 is not too far from optimal.
The proof of Theorem 6 is provided in Appendix D. As an
intermediate step in our proof, we show that the encoding
strategy of Eq. (16) maximizes the Holevo information for
each choice of initial state. Then optimizing over the initial
state, we find the maximum in Theorem 6 is obtained by the
values (q, cos2 θ ) ≈ (0.7035, 0.7035).
Turning to the N-sender case, we find that the single-particle
Holevo information grows unbounded, in sharp contrast to
the optimized accessible information, which we do not know
exactly, but seems to remain bounded for all N despite our
best efforts in searching for better protocols. Such large gap
between the accessible information achieved by single-copy
measurement and the Holevo information achieved by joint
measurements is not unusual. It has been shown that in the
limit of small average photon number, the photon information
efficiency (defined in Ref. [35]) is bounded if considering
product measurements such as the Dolinar receiver, whereas
Holevo information is unbounded in that limit [36,37]. We
leave as an interesting open problem to find better bounds on
the optimized accessible information of our case.

Proposition 7. log2 N � χ (QN ) � log2(N + 1) and
log2(N + 1) � χ (Qass

N ) � log2(N + 2).
To achieve the lower bounds, the parties use an equal su-

perposition state |ψ〉 = ∑
i

1√
N
|ei〉 and 0, π phase encoding.

If each local message xi has uniform prior over {0, 1} then,
the average encoded state is

∑
x p(x)σA

x = 1
N

∑N
i=1 |ei〉〈ei|.

Hence, χ (QN ) � log2 N . For the assisted case, a similar con-
struction yields χ (Qass

N ) � log2(N + 1). The upper bounds
are simply dimensionality bounds based on the total number
of dimensions of the communication system. The lower bound
given here is in general not tight. For instance, when N = 2,
Proposition 4 shows that χ (QN ) � 1.1014.
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FIG. 9. Experimental setup: (a) Photon pairs are generated from a type II down conversion process by pumping a PPKTP crystal with the
second harmonic of a pulsed laser (generated in BiBO). (b) The heralded single photons are prepared by detecting the reflected photons of the
first polarization beam-splitter and are sent to a three-port optical interferometer consisting of an inner Sagnac loop and an outer Mach Zehnder
(MZ) interferometer with information encoded by auto-controlled phase plates. (c) The heralded single photons are coupled into single-mode
fibers (SMF) and detected by avalanche photodiodes (APD); different combinations of coincidence counts are processed by a time-to-digital
converter (TDC).

IV. EXPERIMENTAL DEMONSTRATION OF ENHANCED
MULTIPLE-ACCESS COMMUNICATION

USING A SINGLE PHOTON

To give a proof-of-principle demonstration of our theoret-
ical idea, we have applied our communication framework to
a multiport optical interferometer experiment in which each
sender controls one path that the particle can traverse. A
single photon is used as the message carrier, prepared into the
desired superposition mode via the interferometric structure.
Messages are coherently encoded by different senders onto
the photon along each optical path of the interferometer and
decoded by the single receiver, who collects the photon at the
output ports of the channel.

Not all the communication protocols described above
can be faithfully implemented using such a setup, due to
various unavoidable experimental imperfections, including
finite transmission and detection efficiencies, a nonideal
probabilistic single-photon source with multi-photon-pair
generation, and imperfect interference visibility of the optical
interferometer. In particular, the photon loss incurred from the
finite detection and transmission efficiency prevents us from
exploring the vacuum mode as a valid decoding outcome.
Furthermore, the quantum enhancement is extremely sensitive
to interferometric visibility, as we explain in detail later.
Taking all these factors into consideration, the most viable
experiment to conduct is the two-sender coherence-assisted
communication protocol (Proposition 5) presented in
Sec. III B 3. The advantage of this scenario is that
quantum-enhanced communication can be achieved using

only phase encoding by each sender. However, as argued in
Sec. III B 3, the communication rates are the same as in a
two-sender unassisted protocol using path blocking and phase
encoding on the uniform superposition state 1√

2
(|e1〉 + |e2〉)

(see the solid line in Fig. 6).
The experimental setup for this protocol is shown in Fig. 9.

A photon pair with orthogonal polarization is created from
a type II spontaneous parametric down-conversion (SPDC)
[38]. By detecting the idler photon reflected on the first po-
larization beam splitter (PBS), the signal photon is heralded,
and it is sent to a three-port interferometer with splitting
ratio 1/2 : 1/4 : 1/4. The single-photon state is filtered with
a polarizer and spectral filter and coupled into single-mode
fiber (SMF), which allows us to ignore all of its internal
degrees of freedom and write down the corresponding her-
alded state as a superposition of different path basis states
|ei〉 = |0〉A1 · · · |1〉Ai · · · |0〉AN :

|ψ〉 = 1√
2
|e1〉 + 1

2
|e2〉 + 1

2
|e3〉, (22)

where the third path is the assistance path, while senders 1
and 2 each encode their input bits onto the photon locally with
tunable phase shifters in the form of glass windows. The phase
shifters are characterized with respect to the angle of rotation
of the glass window and a phase-shift of zero is set to encode
the bit “0” and π to encode the bit “1.” At the output ports of
the interferometric setup, single-photon detectors are placed
and information is decoded purely based on the which-port
information.
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FIG. 10. Expected enhanced two-sender communication rate as a
function of the interference visibilities of the inner Sagnac and outer
Mach-Zehnder (MZ) interferometers. The maximal capacity rate of
1.0875 is achieved when perfect interference visibility is obtained.

A. Experimental results

To claim the implementation of a communication protocol
with only one single particle involved, we characterize the
heralded second-order cross-correlation function at zero delay
g(2)

hcc(0) of our photon-pair source. For an ideal source this
number should be zero, which means exactly one photon
is produced in a heralded manner; however, without a per-
fect photon-number-resolving detector, there will always be a
trade-off between having a higher heralded-single-photon rate
and lower g(2)

hcc(0). We measure g(2)
hcc(0) = 0.0017 ± 0.001,

which can basically rule out the possibility of having more
than one particle traveling into the communication setup after
heralding. This value is set to be an order of magnitude smaller
than our expected quantum violation, as we elaborate later.

A nonideal single-photon source with small multiphoton,
encoding operations, and/or decoding detections can all de-
grade the performance of our quantum protocol to some
extent. Among them, most error in the setup is actually caused
by the nonunit interference visibility. Ideally, when the three-
port optical interferometer has perfect interference visibility
the following transition probabilities can be achieved:

p(1|10) = 1, p(2|11) = 1,

p(0|00) = 1
2 , p(1|00) = 1

4 , p(2|00) = 1
4 ,

p(0|01) = 1
2 , p(1|01) = 1

4 , p(2|01) = 1
4 . (23)

However, the communication protocol is extremely sensitive
to interference visibility, as shown in Fig. 10. To obtain a
greater quantum enhancement with better interferometric visi-
bility, we devise a three-port optical interferometer comprised
of a passively stabilized Mach-Zehnder (MZ) interferome-
ter with an offset Sagnac interferometer embedded within
it. The visibility of the Sagnac interferometer is achieved
to above Vs = 99.5 ± 0.2% after tightly filtering the single
photon spectrally and spatially. The visibility for the outer MZ
interferometer is measured to be Vz = 98.6 ± 0.4% averaged
over 10 minutes.

Our experimental demonstration of quantum advantage
comes in two forms. We first build a channel having transition
probabilities close to those of Eq. (23). With this channel, it
is, in principle, possible to achieve asymptotic communication
rates strictly larger than what is possible using a classical
particle. Second, we go one step further and actually use the
channel to establish correlated random variables between the
senders and receivers whose mutual information is above one,
thereby exceeding the accessible information of a classical
particle.

1. Characterizing a two-sender assisted
channel by transition probabilities

To demonstrate quantum enhancement in the two-sender
communication protocol, we first characterize the transition
probability of the channel p(y|x = (x1, x2)), where xi is the bit
encoded by sender i corresponding to 0 (π ) phase for xi = 0
(xi = 1), while y is the trit decoded by the receiver based on
the “which-port” information of the output particle measured.
Given the low g(0)

hcc we set, we characterize each transition
probability with different inputs x = (x1, x2) by registering
coincident counts over a three minute period with around
N = 105 events registered [see Fig. 11(a)].

Using the measured transition probabilities p(y|x), the
asymptotic rate region for the constructed channel can be
computed. In particular, for the ideal channel of Eq. (23), the
mutual information between senders and receivers is found to
be maximized by a uniform prior distribution for x1 ∈ {0, 1}
and a biased distribution for x2 ∈ {0, 1} with Pr{x2 = 0} ≈
15/17. With X = (X1, X2) denoting input variables with these
distributions, our constructed channel can thus achieve an
input-output mutual information of

I (X : Y )ch =
∑
x,y

p(x)p(y|x) log2
p(y|x)

p(x)

= 1.0152 ± 0.0034, (24)

where the error is the standard deviation over 10 runs of
the experiment to take both statistical and systematic error
into consideration (the estimation of the statistical error is
given in Appendix E). More generally, by varying the prior
p(x) = p(x1)p(x2), a different rate region is determined by
the three mutual information quantities {I (X1 : Y |X2), I (X2 :
Y |X1), I (X1X2 : Y )} via Eq. (8). The union of these regions is
presented in Fig. 11(b).

2. Characterizing a two-sender assisted
channel by mutual information

We take the demonstration further by generating empirical
random variables (X,Y ) that are correlated using the single-
particle channel we build. Ideally we would like their mutual
information I (X : Y ) to be close to the maximum accessible
information R(Qass

2 ), but any value larger than one will already
yield a quantum advantage. To this end, we generate multiple
series of random bits each of length 680 by independently
sampling from the input set {0, 1} with uniform probability
p(0) = 1/2 for input x1 and biased probability p(0) = 15/17
for input x2. Ideally, each sample would correspond to a
specific choice of encoding in one run of the experiment.
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FIG. 11. (a) Example of transition probability p(y|x) from direct characterization of the two-sender channel where inputs x = (x1, x2) ∈
{0, 1}×2 and output y ∈ {0, 1, 2}. (b) The union of achievable rate regions with the corresponding channel, with experiment in blue and the
ideal case in gray. The dashed line represents the bound of the rate region achievable by a classical MAC. (c) Comparing our empirical
joint distribution p(x, y)empirical to its theoretical value for two-sender channel inputs x ∈ {0, 1}×2 and output y ∈ {0, 1, 2} where error bars are
statistical uncertainty.

However, in practice we can only change the encoding map
once per second. Hence, the ensemble we generate has the
form {p(x), σ⊗m

x }⊗n rather than (ideally) {p(x), σx}⊗mn, where
both n = 680 and m ≈ 600 to be the coincident count rates.
Even if we assume that the decoder does not try to exploit this
block structure (see the discussion on loopholes below), there
are still two sources of uncertainty in this setup: (a) the genera-
tion of the random bit and (b) the photon number fluctuation in
each run of the experiment. The result is a mutual information
with larger uncertainty and larger bias than I (X : Y )ch, yet still
above the classical threshold:

I (X : Y )empirical =
∑
x,y

p(x, y) log2
p(x, y)

p(x)p(y)

= 1.0117 ± 0.0047, (25)

where again the error is the standard deviation over 10 runs of
the experiment. Here, I (X : Y )empirical is computed using the
empirical joint distribution p(x, y)empirical compiled from both
the input and output data.

B. Experimental imperfections and loopholes

Similar to the problems encountered in most photonic Bell
tests [39–41], our communication framework suffers from
several experimental loopholes. While these can be fixed in
principle, they make an experimental demonstration of en-
hanced quantum communication challenging to attain at the
single-particle level.

1. Detection loophole

In optical experiments, the main difficulty in demonstrat-
ing our theoretical protocols is the limited photon detection
efficiency, which generates many “no-click” events. The
single-photon detector we employ (APD, Excelitas SPCM-
AQ4C) has a photon detection efficiency around 40% at our
working wavelength of 810 nm. This ratio can be improved
up to 95% with superconducting single-photon detectors. Yet,
even this relatively high efficiency is insufficient to implement

many single-particle communication protocols. The standard
way of demonstrating a detection-loophole-free Bell test is
to classically relabel no-click events as some other detection
event. Unfortunately, this is not a good strategy in any commu-
nication protocol that uses blocking as an encoding operation
since then “no-click” events are intentionally used to transmit
information. (See examples in Secs. III B 1 and III B 2.)

To see this quantitatively, consider the two-sender unas-
sisted protocol in Sec. III B 2 that uses blocking as an
encoding operation. When starting with a uniform superposi-
tion 1√

2
(|e1〉 + |e2〉) and following the encodings of Eq. (17),

the resulting channel without detection efficiency has the tran-
sition probabilities of Eq. (23). If we assume the detection
efficiency is a constant η for all detectors, then the transition
probabilities are replaced by

p(1|10) = η, p(0|10) = 1 − η,

p(2|11) = η, p(0|11) = 1 − η,

p(0|00) = 1 − 1
2η, p(1|00) = 1

4η, p(2|00) = 1
4η,

p(0|01) = 1 − 1
2η, p(1|01) = 1

4η, p(2|01) = 1
4η.

As shown in Fig. 12, the largest capacity rate sum of this
channel drops below one quickly. A similar situation occurs
if the transmission efficiency is low (below 97% in the above
case), which is almost inevitable in optical experiments.

This experimental imperfection leads to two consequences.
First, we cannot perform any protocol with block operations
using our current technologies. Second, even for the case of
using just phase encoding, our experiment does not close the
detection loophole but instead uses the assumption of “fair
sampling.” In other words, we assume that the accepted data
in our experiment is representative of the data that would have
been recorded if the detectors had unit efficiency [39].

2. Freedom-of-choice loophole

The freedom-of-choice loophole has recently been pro-
posed and fixed in Bell tests [40,41]. This loophole refers
to the possibility that “hidden variables” may influence the
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FIG. 12. For a nonideal single-photon detector, no quantum en-
hancement can be observed in the two-sender unassisted scenario
when the detector efficiency η drops below roughly 97% (and all
other apparatuses behave flawlessly).

choice of measurements in experiments and thus enable cheat-
ing in acquiring the empirical results.

A similar concern could also be raised in the experimental
demonstration presented in Sec. IV A 2. As described, the time
delay in our ability to switch the encoding of each sender
means that the same channel input is selected in m = O(103)
consecutive experimental runs. This lack of input freedom
for each trial could be exploited in some classical protocol
that is attempting to reproduce the same mutual information
I (X : Y )empirical > 1. The ultimate way of fixing this problem
is to independently choose an input (x1, x2) and apply en-
coding EA1

x1
⊗ EA2

x2
for each incoming photon. This requires a

phase encoding operation as fast as 80 MHz in order to match
our laser repetition rate. This can be achieved potentially with
electro-optic devices or acousto-optical devices; however, due
to the demanding requirements of the overall interference
visibility for the interferometric setup, we could not easily
introduce such components into our setup.

3. Locality loophole

In standard Bell experiments, the locality constraint is set
to prevent the two sites from communicating with each other
[42]. Our experiment has a similar loophole in that without
sufficient separation between the senders, it is potentially pos-
sible for them to communicate and perform some joint (i.e.,
not independent) encoding on the particle. To avoid this, at
least we would need to design the experiment so that the com-
munication time between senders is much longer than the time
it takes the photon to travel from one sender to the receiver. In
our case, the required time difference is determined by the
coincidence window we set, which requires the spatial sepa-
ration between senders to be greater than 2 ns × c = 0.6 m.
Closing this loophole in our setup is challenging since the
overall interference visibility and stability are limited by the
size of the interferometer.

V. CONCLUSION

In the present paper, we investigated how the path coher-
ence of a single quantum particle can be leveraged to enhance

distributed communication from multiple senders to a single
receiver. To analyze this question and to show an advantage of
quantum over classical particles, we have created a framework
of classical multiple-access channels constructed by locally
modulating an initial superposition state of different paths and
afterwards detecting the particle with a general measurement.
The classical case is included when the initial state assigns a
definite path to the particle; on the other hand, if the initial
state is a genuine quantum superposition, it has the potential
to induce channels not reachable with a classical state. Specif-
ically, we found that the communication rates of independent
messages of the separate users show a clear quantum advan-
tage. Indeed, using a single classical particle, the rate-sum for
any number of senders is bounded by one bit, while it exceeds
one bit for two or more senders if a quantum particle is used,
being monotonically increasing in the number of senders. The
rate-sum can be even larger in the model of coherence assis-
tance, where there is another path from the source directly to
the decoder, which allows a rate exceeding one bit even for
the single-sender model, to be precise 1.0931 bits per channel
use. These quantum enhancements are achieved even if the
measurement performed by the receiver are single-copy mea-
surements on each individual encoded particle. If the receiver
is allowed to perform joint measurements on i.i.d. copies of
the encoded quantum particle, we find that the rate-sum can
grow unbounded as O(log2 N ) for N senders. We also ex-
perimentally demonstrated our predicted quantum advantage
by implementing the two-sender coherence-assisted protocol
using an optical interferometric setup. The constructed chan-
nel supports a communication rate-sum of 1.0152 ± 0.0034,
showing a four-standard-deviation quantum advantage over
the classical bound. Alternatively, the channel can be used
to correlate random variables whose mutual information we
empirically found to be I (X : Y )empirical = 1.0117 ± 0.0047,
again exceeding the classical threshold of one.

We leave a number of open questions regarding the basic
theoretical understanding of the single-particle MAC, starting
with the maximal achievable rate-sum for any number of
senders and the characterization of the full capacity region,
when the receiver is limited to single-copy measurements.
Our best upper bound on this is the Holevo quantity, which
scales as log2 N for large number N of senders. In contrast,
we do not even know if the achievable rate-sum achievable
with single-copy measurements diverges or not. It seems we
would want better outer bounds on the capacity region, but it
is perhaps much more exciting to search for improved modu-
lation and detection schemes. In another direction, fixing the
particular initial state, but optimizing over modulations and
detection, the achievable rate region could give new quanti-
fiers for the amount of coherence in the state along the lines
of Refs. [18,43,44].

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation Awards No. 1839177 and No. 2112890. A.W. is
supported by the European Commission QuantERA grant
ExTRaQT (Spanish MICIN Project No. PCI2022-132965),
by the Spanish MINECO (Project No. PID2019-107609GB-
I00) with the support of FEDER funds, the Generalitat de

062420-12



INFORMATION CARRIED BY A SINGLE PARTICLE IN … PHYSICAL REVIEW A 109, 062420 (2024)

Catalunya (Project No. 2017-SGR-1127), by the Spanish
MICIN with funding from European Union NextGenera-
tionEU (PRTR-C17.I1) and the Generalitat de Catalunya, and
by the Alexander von Humboldt Foundation, as well as the
Institute for Advanced Study of the Technical University
Munich.

APPENDIX A: CLASSICAL RATE REGION

In this section, we complement the results in Sec. III A on
the classical rate sum by characterizing the rate pairs achiev-
able with a classical particle.

a. Classical canonical form

Despite the fact that both classical and quantum MACs can
be described using Born’s rule as in (6), classical MACs ad-
mit a much simpler characterization. The state

∑N
i=1 pi|ei〉〈ei|

can be understood simply as a classical particle that is
sent along path i with probability pi. A local NPE oper-
ation then reduces to probabilistically applying some local
channel that either lets the particle continue along its re-
spective path or blocks it from reaching the receiver B, i.e.,
either E (vac) or the identity map is performed. With proba-
bility qi(0|xi ) the particle is blocked by party Ai for input
choice xi, and with probability qi(ei|xi ) it is transmitted.
Hence if the input state is |ei〉〈ei|, then the state received by
B is

σxi =
⊗
j �=i

|0〉〈0|A j ⊗ EAi
xi

(|1〉〈1|)

= qi(ei|xi )|ei〉〈ei|A1···AN + qi(0|xi )|0〉〈0|A1···AN .

On the decoding end, party B examines each path to see if
it contains a particle. Output b is produced with probability
d (b|ei ) when a particle is received along path i and with
probability d (b|0) when no particle is received. Hence the
channel obtained after averaging over all input states is

p(y|x1, . . . , xN ) =
N∑

i=1

pi[d (y|0)qi(0|xi )

+ d (y|ei )qi(ei|xi )]. (A1)

We next turn to the problem of identifying achievable rate
tuples using a single classical particle. This task is simplified
by recognizing that every canonical MAC can be obtained
from a canonical MAC combined with stochastic encoders
and a stochastic decoder. By the data processing inequality,
stochastic postprocessing cannot increase the rate region, and
the same is true for stochastic preprocessing (Problem 14.5 in
Ref. [45]). Therefore, if (R1, . . . , RN ) is a rate tuple achievable
by some single-particle classical MAC, then it is also achiev-
able by a canonical one defined below.

Proposition 8. For arbitrary input and output sets
X1 × · · · × XN and Y , every MAC in CN (X1, · · ·XN ;Y ) can
be obtained by stochastic encoding and decoding from a MAC
that has binary inputs for each sender and N + 1 outputs for
the receiver.

Proof. For a given classical state ρ = ∑N
k=1 pk|ek〉〈ek| and

induced MAC p(y|x1, . . . , xN ) having the form of Eq. (A1),
define the canonical MAC with transition probabilities

p̃(k| j1, . . . , jN ) =
{

pk if jk = 1
0 if jk = 0,

(A2a)

p̃(0| j1, . . . , jN ) =
∑

k
such that jk = 0

pk . (A2b)

This channel likewise has the form of Eq. (A1) and
therefore belongs to C([2], . . . , [2]; [N + 1]). Also, define
local preprocessing stochastic maps q̃i : Xi → {0, 1} with
q̃i(0|xi ) = qi(0|xi ) and q̃i(1|xi ) = qi(ei|xi ), along with a post-
processing stochastic map d̃ : {0, 1 . . . , N} → Y by d̃ (y|k) =
d (y|ek ) for k = 1, . . . , N and d̃ (y|0) = d (y|0). Then it is
straightforward to verify that

p(y|x1, . . . , xN ) =
N∑

k=0

1∑
j1=0

· · ·
1∑

jN =0

{d̃ (y|k)

× p̃(k| j1, . . . , jN )q̃1( j1|x1) · · · q̃N ( jN |xN )}.
(A3)

�

b. Two-sender classical rate regions

We now turn to the rate regions for two-sender communi-
cation. Consider the canonical MAC p(y|x) that is generated
by a classical particle ρcl = λ|e1〉〈e1| + (1 − λ)|e2〉〈e2| and
having the structure of Eqs. (A2a) and (A2b). Since N = 2,
the canonical MAC is characterized by the single parameter
λ = p1, and the transition probabilities are given by

1 = p(00|00),

λ = p(01|01) = p(00|10) = p(01|11),

1 − λ = p(10|10) = p(00|01) = p(10|11). (A4)

For a fixed λ ∈ [0, 1], and prior p(x1)p(x2) the achievable rate
pairs (R1, R2) are determined by Proposition 1, which follows
a pentagon constrained by Eq. (8). Combining all these re-
gions with fixed λ ∈ [0, 1] but different priors p(x1)p(x2), we
could obtained the achievable rate region of a specific MAC.

We are now interested in computing the union of all achiev-
able rate regions as λ is varied within the interval [0,1]. This
will yield the total collection of all asymptotic rate pairs
(R1, R2) feasible by a MAC built using a single classical
particle.

Note that a rate pair (R1, R2) lies in the enclosed region of
Fig. 13 if and only if it is achievable using many copies of
the same source state ρcl = λ|e1〉〈e1| + (1 − λ)|e2〉〈e2|, and
the union of these rate pairs evidently forms a nonconvex set.
However, if we relax this i.i.d. constraint and allow λ to vary
across the multiple uses, then more rate pairs are accessible
by time sharing. In this case, the collection of achievable rate
pairs is just the convex hull of the region in Fig. 13, i.e., a
triangle with outer vertices (1,0) and (0,1).
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FIG. 13. The shaded region is the union of all achievable rate
pairs as the weight λ of the source state ρcl = λ|e1〉〈e1| + (1 −
λ)|e2〉〈e2| varies over interval [0,1]. The dashed line represents the
boundary of the rate region assuming time sharing.

APPENDIX B: LOWER BOUND FOR ONE-SENDER
ASSISTED ACCESSIBLE INFORMATION R(Qass

1 )

Using the encoding operations given in Eq. (16), the en-
coded cq state is

σXAR = (1 − q)|0〉〈0| ⊗ σ0 + q

2
|1〉〈1| ⊗ σ1 + q

2
|2〉〈2| ⊗ σ2

= (1 − q)|0〉〈0| ⊗ (cos2 θ |00〉〈00| + sin2 θ |e2〉〈e2|)
+ q

2
|1〉〈1| ⊗ (cos θ |e1〉 + sin θ |e2〉)(cos θ〈e1|

+ sin θ〈e2|) + q

2
|2〉〈2| ⊗ (eiα cos θ |e1〉 + sin θ |e2〉)

× (eiα cos θ〈e1| + sin θ〈e2|).

To calculate its accessible information, we first note that
the optimal POVM achieving the accessible information
can be taken to be rank-1 projectors [46]. Additionally,
as noted in the main text, the ensemble has the follow-
ing symmetries: (i) σXAR is diagonal in the number basis,
and (ii) q/2 · σ1 and q/2 · σ2 are related by a reflection
across the line y = x tan(α/2) in the x-y plane of the Bloch
sphere. Using the same arguments in Ref. [30] (Proposition
1), we deduce that the optimal measurement attaining the
accessible information can be made to have the same sym-
metries. Therefore, the optimal POVM can be taken to be
{|00〉〈00|,wm|πm〉〈πm|, wm|π ′

m〉〈π ′
m|}, where

|πm〉 =
√

σm|e1〉 + √
σmeiβm |e2〉, (B1)

|π ′
m〉 =

√
σm|e1〉 + √

σme−i(α+βm )|e2〉. (B2)

Here σm = 1 − σm. Each m labels a pair of symmet-
ric projectors specified by (wm, σm, βm). Now, since∑

m(wm|πm〉〈πm| + wm|π ′
m〉〈π ′

m|) is the projector onto the
|e1〉, |e2〉 subspace, we have∑

m

[
wm

(
σm

√
σmσme−iβm√

σmσmeiβm σm

)

+ wm

(
σm

√
σmσmei(α+βm )√

σmσme−i(α+βm ) σm

)]
= I, (B3)

from which we can conclude that∑
m

wmσm = 1

2
,

∑
m

wm = 1,

∑
m

wm

√
σmσm(eiβm + e−i(α+βm ) ) = 0. (B4)

Denote the set of {(wm, σm, βm)}m satisfying all three con-
straints in Eq. (B4) as S . Following the same approach laid
out in Ref. [30], the accessible information of the ensemble

(and hence the total communication rate) is given by

Iacc = max
S

∑
m

wmJ (σm, βm; q, θ, α), (B5)

where

J (σ, β; q, θ, α) = q|
√

σ cos θ + eiβ√
σ sin θ |2 log2 |

√
σ cos θ + eiβ√

σ sin θ |2

+ q|
√

σ cos θ + ei(β−α)√σ sin θ |2 log2 |
√

σ cos θ + ei(β−α)√σ sin θ |2

+ 2(1 − q)σ sin2 θ log2(σ sin2 θ ) − 2κ log2 κ − (1 − q) cos2 θ log2(1 − q), (B6)

in which

κ = q[cos β + cos (β − α)]
√

σσ cos θ sin θ + σ sin2 θ

+ qσ cos2 θ. (B7)

We can relax the restriction on wm, σm, and βm by dropping
the last condition in Eq. (B4), thus obtaining an upper bound.
Formally, let S̃ denote the set of {(wm, σm, βm)}m that satisfy
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only the first two conditions in Eq. (B4), then

Ĩacc = max
S̃

∑
m

wmJ (σm, βm; q, θ, α) � Iacc. (B8)

Note that dropping the third condition essentially allows us
to optimize βm’s freely independent of any other parameter.
Our first goal is to find the optimal phase encoding α, denoted
by α∗, that maximizes the function J (σ, β; q, θ, α).

Lemma 9. For any σ , q, and θ , J (σ, β; q, θ, α) is maxi-
mized only if (α, β ) = (0, 0), (0, π ), (π, 0) or (π, π ).

Proof. For J to attain a local maximum, it is nec-
essary that the directional derivative D�uJ = 0 and the
second directional derivative D2

�uJ � 0 along any direc-
tion �u on the α-β plane. Specifically, let us consider

two direction given by �u1 = (1, 0)ᵀ and �u2 = (1, 1)ᵀ. Then
we have:

D �u1 J = ∂J

∂α
= 0, (B9)

D �u2 J = ∂J

∂α
+ ∂J

∂β
= 0, (B10)

D2
�u1

J = ∂2J

∂α2
� 0, (B11)

D2
�u2

J =
(

∂

∂α
+ ∂

∂β

)(
∂J

∂α
+ ∂J

∂β

)
� 0. (B12)

Calculating the first derivatives gives:

D �u1 J = 1

ln 2
q(ln |

√
σ cos θ + ei(β−α)√σ sin θ |2 + 1)2

√
σσ cos θ sin θ sin (β − α)

− 1

ln 2
2(ln κ + 1)q

√
σσ cos θ sin θ sin(β − α) = 0, (B13)

D �u2 J = − 1

ln 2
q(ln |

√
σ cos θ + eiβ√

σ sin θ |2 + 1)2
√

σσ cos θ sin θ sin β

+ 1

ln 2
2(ln κ + 1)q

√
σσ cos θ sin θ sin β = 0. (B14)

Assuming q
√

σσ cos θ sin θ �= 0 (when one of q, cos θ , and sin θ is zero, the ensemble becomes trivial, and when one of σ and
σ is 0, then J reduces to −(1 − q) cos2 θ log2(1 − q), which is independent of α and β), the two equations simplify to

sin (β − α) log2 |
√

σ cos θ + ei(β−α)√σ sin θ |2 − sin (β − α) log2 κ = 0, (B15)

sin β log2 |
√

σ cos θ + eiβ√
σ sin θ |2 − sin β log2 κ = 0. (B16)

There are four possibilities:

(i) sin (β − α) = 0, sin β = 0; (B17)

(ii) |
√

σ cos θ + ei(β−α)√σ sin θ |2 = κ, sin β = 0; (B18)

(iii) sin (β − α) = 0, |
√

σ cos θ + eiβ√
σ sin θ |2 = κ; (B19)

(iv) |
√

σ cos θ + ei(β−α)√σ sin θ |2 = κ, |
√

σ cos θ + eiβ√
σ sin θ |2 = κ. (B20)

Now, calculating the second derivatives gives us

D2
�u1

J = 2q
√

σσ cos θ sin θ

[
− cos (β − α) log2

(
|√σ cos θ + ei(β−α)√σ sin θ |2

κ

)

+ 1

ln 2
sin (β − α)

(
2

|√σ cos θ + ei(β−α)
√

σ sin θ |2 − q

κ

)√
σσ cos θ sin θ sin (β − α)

]
, (B21)

D2
�u2

J = 2q
√

σσ cos θ sin θ

[
− cos β log2

(
|√σ cos θ + eiβ√

σ sin θ |2
κ

)

+ 1

ln 2
sin β

(
2

|√σ cos θ + eiβ
√

σ sin θ |2 + q

κ

)√
σσ cos θ sin θ sin β

]
. (B22)

Recall that cos θ sin θ > 0 since θ can be taken to be in
[0, π/2], and we assumed cos θ sin θ �= 0. Plugging each of

the four conditions into the two expressions above we find
that D2

�u1
J > 0 for conditions (ii) and (iv), while D2

�u2
J > 0
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for conditions (iii) and (iv), unless sin(β − α) = sin β = 0
also holds. Therefore, points satisfying (i), namely, (α, β ) =
(0, 0), (0, π ), (π, 0), or (π, π ), are the only possible local
maxima of J. �

Since we have dropped some constraints on β and treated
it as an independent variable when optimizing, the optimal
(α, β ) may not actually be feasible. However, it is easy to
check that (α, β ) = (0, π ), (π, 0), and (π, π ) satisfies all of
the constraints in Eq. (B4), and therefore they correspond to
physical POVMs. This result tells us that the best phase encod-
ing that the encoder can perform in our one-sender protocol is
either α = 0 or α = π . Additionally, note that (α, β ) = (π, 0)
and (α, β ) = (π, π ) are images of each other under the reflec-
tion across y = x tan(α/2). So, they correspond to the same
pair of projectors, and we can freely choose either one.

Note that, if the encoder chooses α = 0, the encoded cq
state σXAR effectively reduces to

σXAR = (1 − q)|0〉〈0| ⊗ (cos2 θ |00〉〈00| + sin2 θ |e2〉〈e2|)
+ q|1〉〈1| ⊗ (cos θ |e1〉 + sin θ |e2〉)(cos θ〈e1|
+ sin θ〈e2|).

The accessible information of this state is necessarily less
than or equal to one bit, meaning that there is no quantum

advantage. In other words, for maximal quantum advantage,
one should use π phase encoding. This is summarized by the
following proposition.

Proposition 10. In the one-sender coherence-assisted sce-
nario, if the encoding maps is given by Eq. (16), then for
any initial state |ψ〉AR and any measurement POVM for B,
whenever there is a quantum advantage in the communication
rate (i.e., whenever the communication rate exceeds one bit),
α = π is always the optimal phase encoding that A can per-
form.

We can now prove the following theorem in the main text.
Theorem 3. There exists a one-sender coherence-assisted

communication protocol that sends approximately 1.0931 bits
of information, i.e., R(Qass

1 ) � 1.0931. The optimal (q, θ ) that
achieves this are approximately (0.8701, arccos(

√
0.4715)),

and the optimal measurement is the projective measurement
{|00〉, 1√

2
(|e1〉 ± |e2〉)}.

Proof. Having established that α = π is the best encoding
phase, in which case the best decoding phase is 0 (or equiva-
lently π ) we set α = β = π and obtain

Iacc(q, θ ) = max∑
m wmσm=1/2∑

m wm=1

∑
m

wmJ̃ (σm; q, θ ) (B23)

with

J (σ, β = π ; q, θ, α = π ) ≡ J̃ (σ ; q, θ )

= q(
√

σ cos θ + √
σ sin θ )2 log2(

√
σ cos θ + √

σ sin θ )2 + q(
√

σ cos θ − √
σ sin θ )2 log2(

√
σ cos θ − √

σ sin θ )2

+ 2(1 − q)σ sin2 θ log2(σ sin2 θ ) − 2(qσ cos2 θ + σ sin2 θ ) log2(qσ cos2 θ + σ sin2 θ ) − (1 − q) cos2 θ log2(1 − q).

(B24)

Following the same argument presented in Ref. [30], which we briefly recapitulate here for completeness, we first find that
this maximization for the accessible information can be rewritten as a maximization with at most two terms [47], that is,

Iacc(q, θ ) = max
σ1�1/2�σ2

(
σ2 − 1/2

σ2 − σ1
J̃ (σ1; q, θ ) + 1/2 − σ1

σ2 − σ1
J̃ (σ2; q, θ )

)
(B25)

= max
σ1�1/2�σ2

[
J̃ (σ1; q, θ ) + 1/2 − σ1

σ2 − σ1
(J̃ (σ2; q, θ ) − J̃ (σ1; q, θ ))

]
. (B26)

The maxand can be understood as the value of the line through points (σ1, J̃ (σ1)) and (σ2, J̃ (σ2)) at 1/2. For each θ , we can
find three different measurement regimes. When q is sufficiently small, the optimal (σ1, σ2) is (0,1), corresponding to optimal
measurement vectors |e1〉 and |e2〉. As q becomes larger, the optimal (σ1, σ2) is zero and some σ ∗ ∈ [1/2, 1], corresponding to
a POVM with |e1〉 and a mirror-symmetric pair of rank-one projectors. Finally, when q is sufficiently close to one, the optimal
(σ1, σ2) is (1/2, 1/2), corresponding to projective measurements { 1√

2
(|e1〉 ± |e2〉)}.

By straightforward calculation, we find the accessible information of the ensemble in region 1 as

Iacc,1(q, θ ) = −(1 − q) cos2 θ log2(1 − q). (B27)

In region 3,

Iacc,3(q, θ ) = q − qh2

(
1 + sin 2θ

2

)
+ (1 − q) sin2 θ log2 sin2 θ − (q cos2 θ + sin2 θ ) log2(q cos2 θ + sin2 θ )

− (1 − q) cos2 θ log2(1 − q), (B28)

where h2 is the binary entropy function. In region 2, the calculation is more involved,

Iacc,2(q, θ ) = J (0) + 1

2

dJ

dσ
(σ ∗), (B29)
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FIG. 14. The accessible information of the cq state for one-sender assisted communication (assuming α = π ) in terms of q and θ .

where σ ∗ is determined from the fact that the tangent line of J at σ ∗ passes through (0, J (0)), in other words,

J (0) + σ ∗ ∂J

∂σ
(σ ∗) = J (σ ), (B30)

which after much algebra becomes

q cos2 θ log2
qσ ∗ cos2 θ + σ ∗ sin2 θ

σ ∗ cos2 θ − σ ∗ sin2 θ
= (1 − q)σ ∗ sin2 θ log2 σ ∗. (B31)

To plot the accessible information in the entire region of (q, θ ), we note Iacc(q, θ ) = maxi=1,2,3{Iacc,i(q, θ )} (see Fig. 14).
One can check by comparing the plot of Iacc,1(q, θ ), Iacc,2(q, θ ), and Iacc,3(q, θ ) that the maximal accessible informa-
tion occurs in region 3. To compute its value, we take the derivative of Iacc,3 with respect to q and θ and set both
to zero:

∂Iacc,3

∂θ
= q cos 2θ log2

(
1 + sin 2θ

1 − sin 2θ

)
+ (1 − q) sin 2θ log2

(
(1 − q) sin2 θ

q cos2 θ + sin2 θ

)
= 0, (B32)

∂Iacc,3

∂q
= 1 − h2

(
1 + sin 2θ

2

)
− log2 sin2 θ + cos2 θ log2

(
(1 − q) sin2 θ

q cos2 θ + sin2 θ

)
= 0. (B33)

There is no closed form solution for this system of transcendental equations. Solving these two equations numerically gives
sin θ∗ ≈ √

0.4715 and q∗ ≈ 0.8701. This optimal choice of θ and q corresponds to the initial source state ≈√
0.4715|e1〉 +√

0.5285|e2〉, prior probability p(x) ≈ (0.1299, 0.4351, 0.4351), and the rate sum is approximately 1.0931. �
Proposition 11. If the source state is the maximally coherent state 1√

2
|e1〉 + 1√

2
|e2〉, then the optimal rate is log2(17/8) ≈

1.0875 > 1, and the optimal prior probabilities given by q∗ = 15/17 ≈ 0.8824.
Proof. Take θ = π/4 in Eq. (B28) and after simplification, we find that I (q, π/4) = 2q − 1 + h2( 1+q

2 ). The maximizer q∗
can be found by setting the derivative with respect to q to zero, and we find that q∗ = 15/17, in which case the mutual information
is log2(17/8). �

APPENDIX C: LOWER BOUND FOR TWO-SENDER UNASSISTED ACCESSIBLE INFORMATION R(Q2)

In this section, we calculate the accessible information of cq states arising from the binary-ternary encoding strategy given in
Eq. (18). Following the same steps laid out in Sec. B, the accessible information can be expressed as

Iacc = max
S

∑
m

wmJ (σm, βm; q, θ, α), (C1)

062420-17



XINAN CHEN et al. PHYSICAL REVIEW A 109, 062420 (2024)

where

J (σ, β; q, q′, θ, α) = (1 − q)q′(sin2 θ log2 sin2 θ + 2σ cos2 θ log2 σ cos2 θ )

+ q(1 − q′)(cos2 θ log2 cos2 θ + 2σ sin2 θ log2 σ sin2 θ ) + qq′|
√

σ cos θ

+ eiβ√
σ sin θ |2 log2 |

√
σ cos θ + eiβ√

σ sin θ |2

+ qq′|
√

σ cos θ + e−i(α+β )√σ sin θ |2 log2 |
√

σ cos θ + e−i(α+β )√σ sin θ |2 − ξ log2 ξ − 2η log2 η,

ξ = (1 − q)(1 − q′) + (1 − q)q′ sin2 θ + q(1 − q′) cos2 θ = 1 − q′ cos2 θ − q sin2 θ,

η = (1 − q)q′σ cos θ + q(1 − q′)σ sin2 θ + 1
2 qq′[|

√
σ cos θ + eiβ√

σ sin θ |2 + |
√

σ cos θ

+ e−i(α+β )√σ sin θ |2]. (C2)

By the same argument as in Lemma 9, we can deduce that the local extrema of function J occurs only if α and β are both
multiples of π . And that α = π is the optimal phase encoding whenever there is a quantum advantage. Same as in the previous
section, we find three regimes for the optimal measurement, and the accessible information is maximized in the regime that
corresponds to σ = 1/2. Therefore,

Iacc(q, q′, θ ) = J

(
σ = 1

2
, β = π ; q, q′, θ, α = π

)
= (1 − q)q′

(
sin2 θ log2 sin2 θ + cos2 θ log2

1

2
cos2 θ

)
+ q(1 − q′)

(
cos2 θ log2 cos2 θ + sin2 θ log2

1

2
sin2 θ

)
− qq′h2

(
1 + sin 2θ

2

)
− ξ log2 ξ − 2η log2 η, (C3)

where

ξ = 1 − q′ cos2 θ − q sin2 θ, (C4)

η = 1
2 q′ cos2 θ + 1

2 q sin2 θ. (C5)

Again taking the derivative of Iacc with respect to q, q′, and θ , we obtain the following system of equations:

∂J

∂q
= −q′

(
sin2 θ log2 sin2 θ + cos2 θ log2

1

2
cos2 θ

)
+ (1 − q′)

(
cos2 θ log2 cos2 θ + sin2 θ log2

1

2
sin2 θ

)
− q′h2

(
1 + sin 2θ

2

)
+ sin2 θ log2

ξ

η

= (2q′ − 1)h2(sin2 θ ) + q′ − sin2 θ − q′h2

(
1 + sin 2θ

2

)
+ sin2 θ log2

ξ

η
= 0, (C6)

∂J

∂q′ = (1 − q)

(
sin2 θ log2 sin2 θ + cos2 θ log2

1

2
cos2 θ

)
− q

(
cos2 θ log2 cos2 θ + sin2 θ log2

1

2
sin2 θ

)
− qh2

(
1 + sin 2θ

2

)
+ cos2 θ log2

ξ

η

= (2q − 1)h2(sin2 θ ) + q − cos2 θ − qh2

(
1 + sin 2θ

2

)
+ cos2 θ log2

ξ

η
= 0, (C7)

∂J

∂θ
= (q + q′ − 2qq′) log2 tan2 θ + qq′ cot 2θ log2

1 + sin 2θ

1 − sin 2θ
= 0. (C8)

Numerically solving this system of equations, we obtain that the optimal q, q′, and θ is (0.9197, 0.9197, π/4), and the optimal
rate sum is 1.10138.

APPENDIX D: ONE-SENDER ASSISTED HOLEVO INFORMATION (χ(Qass
1 ))—PROOF OF THEOREM 6

Theorem 6.

χ
(
Qass

1

) = max
q,cos2 θ∈[0,1]

qh2(cos2 θ ) + cos2 θh2(q)

= max
x∈[0,1]

2xh2(x)

≈ 1.2339.
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Proof. We first show that the encoding given by Eq. (16) is in fact the best encoding strategy. Consider the most general
encoding strategy using NPE operations. By convexity of the mutual information with respect to the underlying channel, it
is sufficient for us to consider pure initial state cos θ |e1〉 + sin θ |e2〉 and encoding strategies consisting of only extremal NPE
operations [Eq. (4)]. With this simplification, we only need to optimize the Holevo information over cq states

∑
x px|x〉〈x| ⊗ ρx,

where px is the prior probability and

ρx =

⎛⎜⎝γx cos2 θ

(1 − γx ) cos2 θ
√

1 − γx cos θ sin θeiφx

√
1 − γx cos θ sin θe−iφx sin2 θ

⎞⎟⎠, (D1)

which yields S(ρx ) = ∑
x pxh2(γx cos2 θ ). Besides, S(

∑
x pxρx ) is upper bounded by H ({∑x pxγx cos2 θ,

∑
x px(1 −

γx ) cos2 θ, sin2 θ}), therefore, one could immediately obtain an upper bound on the Holevo quantity:

χ

(∑
x

px|x〉〈x| ⊗ ρx

)
= S

(∑
x

pxρx

)
−

∑
x

pxS(ρx ) � χ̃ (θ ; px, γx )

:= H

({∑
x

pxγx cos2 θ,
∑

x

px(1 − γx ) cos2 θ, sin2 θ

})
−

∑
x

pxh2(γx cos2 θ ). (D2)

Here H (·) is the Shannon entropy, and the inequality becomes equality when
∑

x px
√

1 − γxeiφx = 0. Taking derivative of χ̃

with respect to γx, and after some algebra, we find

dχ̃

dγx
= px cos2 θ

(
log2

∑
x′ px′ (1 − γx′ )γx cos2 θ∑
x′ px′γx′ (1 − γx cos2 θ )

)
. (D3)

If there is a local max, then dχ̃/dγx = 0 for all x, which means γx = ∑
x′ px′γx′/cos2 θ ∀ x, i.e., they are all equal. However,

this then means γx = γx/cos2 θ , which cannot be true unless cos2 θ = 1. Therefore, if cos2 θ �= 1, then χ̃ has no local extrema,
and the maximum has to occur at the boundaries γx = 0 or γx = 1, corresponding to phase shift or complete damping encoding
operations.

Thus to maximize χ̃ (θ ; px, γx ) with respect to γx, γx must be zero or one. In this case, let us define p := ∑
x:γx=1 px. Then we

have

χ̃ (θ ; px, γx ) � cos2 θh2(1 − p) + (1 − p)h2(cos2 θ ), (D4)

which means that

χ
(
Qass

1

)
:= max χ

(∑
x

px|x〉〈x| ⊗ ρx

)
� max

p,θ
cos2 θh2(p) + ph2(cos2 θ )

= max
x,y∈[0,1]

xh2(y) + yh2(x). (D5)

Note that this upper bound can be achieved by precisely the encoding scheme given in Eq. (16).
It remains to show that

max
x,y∈[0,1]

xh2(y) + yh2(x) = max
x∈[0,1]

2xh2(x). (D6)

First, by the symmetry of the objective function, if (x∗, y∗) maximizes the objective function, then (y∗, x∗) must also maximize
it. Moreover, observe that

(1 − x)h2(y) + yh2(1 − x) > xh2(y) + yh2(x)

for any x < 1/2. Therefore, we must have x∗ � 1/2, and similarly y∗ � 1/2. By Lemma 12 below, the objective function
xh2(y) + yh2(x) is concave in [1/2, 1] × [1/2, 1]. Therefore, ( x∗+y∗

2 ,
x∗+y∗

2 ) must be a maximum, too.
To solve maxx∈[0,1] 2xh2(x), we take the derivative of the objective function and set it to zero, giving us a transcendental

equation h2(x∗) + x∗ log2( 1−x∗
x∗ ) = 0. Solving this equation numerically yields x∗ ≈ 0.7035, at which point the objective function

takes the maximal value 1.2339. In other words, the optimal initial state is |ψinit〉 ≈ √
0.7035|e1〉 + √

0.2965|e2〉, and the optimal
encoding is given by Eq. (16) with optimal prior probabilities p(x) = (1 − x∗, x∗/2, x∗/2) ≈ (0.2965, 0.3518, 0.3518). �

Lemma 12. The function f (x, y) := xh2(y) + yh2(x) is concave in the region (x, y) ∈ [1/2, 1] × [1/2, 1].
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FIG. 15. (a) Experimental result for heralded second-order correlation g(2)
iss′ under different SHG pump powers; (b) Interference visibility

of the Mach—Zehnder interferometer measured in 10 minutes. (c) Theoretical characterization of our phase plate.

Proof. The Hessian of f (x, y) is

H =
(

∂2 f /∂x2 ∂2 f /∂x∂y
∂2 f /∂y∂x ∂2 f /∂y2

)
= 1

ln 2

⎛⎝ − y
x(1−x) ln

( (1−x)(1−y)
xy

)
ln

( (1−x)(1−y)
xy

) − x
y(1−y)

⎞⎠. (D7)

Calculating the eigenvalues of H reveals that H � 0 if and only if

1

(1 − x)(1 − y)
−

[
ln

(
(1 − x)(1 − y)

xy

)]2

� 0. (D8)

This is true for all (x, y) ∈ [1/2, 1] × [1/2, 1] since√
1

(1 − x)(1 − y)
� ln

(
1 + 1

(1 − x)(1 − y)

)
� ln

(
1 + x + y − 1

(1 − x)(1 − y)

)
= ln

(
xy

(1 − x)(1 − y)

)
(D9)

for any x, y ∈ [1/2, 1). Since the Hessian H � 0 for all (x, y) ∈ [1/2, 1] × [1/2, 1], the function is concave in this region. �

APPENDIX E: DETAILS OF THE EXPERIMENT

Source preparation. The source of photon pairs is based
on type II spontaneous parametric down-conversion in a
2 mm periodically polled potassium titanyl phosphate (PP-
KTP) crystal (with temperature stabilizing oven). The crystal
is pumped with frequency-doubled light pulses originating
from a Tsunami mode-locked laser (a train of ≈100-fs pulses
with center wavelength 810 nm and repetition rate 80 MHz),
doubled using a 0.5 mm bismuth borate (BiBO) crystal. To
prepare the photons in a single spectral, polarization, and
spatial mode, the heralding photons from the pair are filtered
to ≈2 nm bandwidth at full-width-at-half-maximum by a pair
of tilted spectral filters, set to linear polarization by a polarizer,
and coupled into single-mode fiber. The existence of this idler
photon is detected via a single-photon detector (avalanche
photodiode, Excelitas SPCM-AQ4C), while the other, her-
alded single photon is sent to a three-port interferometer
to prepare the desired state |ψ〉 = 1√

2
|e1〉 + 1

2 |e2〉 + 1
2 |e3〉,

where we have ignored all the internal degrees of freedom of
the single particle and only represented it in a superposition
of different path basis states |ei〉 = |0〉A1 · · · |1〉Ai · · · |0〉AN .

To ensure the signal photon is close to a single-photon
source, we looked at the heralded signal photon within a 2 ns
coincident window after heralding the idler photon. We char-
acterize the source by measuring its second-order correlation

g(2)
iss′ , which can be calculated as

g(2)
iss′ = Ciss′Ci

CisCis′
, (E1)

where Ciss′ are threefold coincident counts between one
idler photon and two single photons after splitting, Cis(s′ )
represents twofold coincident counts between idler photon
and one signal photon, and Ci denotes single counts for the
idler. The power-dependence of the second-order correlation
values is shown in Fig. 15(a), which indicates good agree-
ment with the linear curve fitting and allows us to set the
pump power to suppress the two-photon contribution from the
source.

In our experiment, the heralded second-order correlation
g(2)

iss′ has to be set extremely small, due to the fact that large
higher-order terms could in principle enable a higher capacity
rate even in the classical case. Taking the small violation we
have estimated (1.02), we set g(2)

iss′ (0) = 0.0017 ± 0.001 to be
one order of magnitude smaller than the violation to make
sure the contribution from multiple-photon events can be ne-
glected. As a consequence, we have relatively low coincidence
count rates around 600 Hz

Interferometer design. The interference visibility of our
three-port interferometer limits the performance of our
quantum-enhanced communication. To achieve a high enough
visibility with free-space optics, we design a three-port inter-
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ferometer consisting of (1) an inner offset Sagnac interferom-
eter, which is extremely stable over a few hours with above
99.5% interference visibility; (2) an outer Mach-Zehnder
interferometer, which is passively stabilized thermally and
vibrationally inside a small box and gives around 98.2% in-
terference visibility over 10 minutes. It was further actively
adjusted by a piezo actuator implemented on the translation
stage in the delay line between different runs of measurement;
(3) three 3-mm-thin glasses windows for controlling the phase
independently; windows were chosen instead of other bulky
electro-optical devices, which could potentially degrade the
interference visibility.

The whole setup can be maintained stable over ≈10 min-
utes with average interference visibilities around 99.5% and
98.2% for the inner and outer loops, respectively, while slight
adjustment with the piezo actuator helps to retrieve good
interference visibility for the next round of the experiment.
During the runs of our experiment, we do not turn the active
stabilization on so that the average stability remains the same
over 10 minutes.

Encoding operation. As has been mentioned before, with
the current type of single-photon detectors used and the loss in
our free-optics setup, performing general amplitude damping
operations on the photons is nontrivial. Instead, we devised
our setup based on the coherent-assisted protocol where only
phase encoding is required.

One of the most commonly used phase shifters is elec-
trically controlled liquid crystal, where the refractive index
along some axes of the crystal depends on the voltage applied
to it and thus can be used to add phase on single photons.
However, the resolution of the applied phase (around 3◦) and
the size and the parallelism of most commercial liquid crystals
prevent us from using them in our small-size, high-visibility
interferometer. Therefore, as a replacement, we create a phase
shifter based on a d = 3 mm glass window (with a reflective
index around ng = 1.51) mounted on a rotation stage (with a
resolution around 25 second-arc). Starting from placing the
glass plate perpendicular to the incoming beam, the phase
added to the photon after slightly tilting it with angle α can
be computed as

�φ = 2πd

λ

[(√
n2

g − sin (α)2 − cos (α)
) − (ng − 1)

]
,

(E2)

which is plotted in Fig. 15. The average resolution over 2π

phase shift is around 2◦; however, due to its nonlinear be-
havior, we can obtain a much finer resolution at �φ = 0 and
�φ = π

2 .
Error analysis. To estimate the experimental error, we

note at first that we are limited mostly by the interferometer
stability. To ensure high interference visibility, we perform
each run of our measurement for ≈10 minutes and re-optimize
the setup between different runs.

In each run of the experiment, the statistical error can be
calculated from standard error propagation. For the case of
characterizing channel transition probability p(y|x):

V (R1) = 1

N2

∑
xy

V (ny|x )({p(x)[log2 q(y) + H (q(y))]}2

+ {p(x)[log2 p(y|x) + H (p(y|x))]2}), (E3)

where q(y) = ∑
x p(y|x)p(x) with fixed optimal prior p(x1 =

0) = 1/2 and p(x2 = 0) = 15/17. ny|x is the total number of
photons collected at port y conditional on input x and N is
the total number of counts used in characterizing the channel
for every input x. H (u) = −∑

p(u) log2 p(u) is the entropy
of variable u and the statistical error assuming the Poisson
distribution is given as V (ny|x ) = N p(y|x)(1 − p(y|x)). With
N ≈ 105, the statistical error is around

√
V (R1) ≈ 0.002.

Similarly, for the case of measuring the joint distribution
p(x, y), the error can be computed as

V (R2) = 1

N2

∑
x,y

V (nxy)[log2 q(y) + log2 p(x)

− log2 p(x, y) + I (y : x)]2. (E4)

With extra uncertainty in p(x) from the generation of
encoding random bits and V (nxy) = np(x)(1 − p(x))m +
nmp(y|x)(1 − p(y|x)) where n = 680 (the number of random
input bits) and m ≈ 600 (the number of counts per second),
we get a statistical error of estimating V (R2) to be around√

V (R2) ≈ 0.011.
However, experimentally, besides the statistical error, the

channels built from run to run are actually slightly different
since they are extremely sensitive to the overall interference
visibility. To take those systematic errors into consideration
and to show that our experimental result is repeatable, we
calculate the experimental result I (X : Y ) in 10 runs of ex-
periments and average the capacity rate sum, which is what
we present in the main text.
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