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Identification of a natural fieldlike entanglement resource in trapped-ion chains
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The electromagnetic trapping of ion chains can be regarded as a process of nontrivial entangled quantum
state preparation within Hilbert spaces of the local axial motional modes. To begin uncovering properties of
this entanglement resource produced as a by-product of conventional ion-trap quantum information processing,
the quantum continuous-variable formalism is herein utilized to focus on the leading-order entangled ground
state of local motional modes in the presence of a quadratic trapping potential. The decay of entanglement
between disjoint subsets of local modes is found to exhibit features of entanglement structure and responses
to partial measurement reminiscent of the free massless scalar field vacuum. With significant fidelities between
the two, even for large system sizes, a framework is established for initializing quantum field simulations by
“imaging” extended entangled states from natural sources, rather than building correlations through deep circuits
of few-body entangling operators. By calculating probabilities in discrete Fock subspaces of the local motional
modes, we present considerations for locally transferring these predistributed entanglement resources to the
qudits of ion internal energy levels, improving this procedure’s anticipated experimental viability.
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I. INTRODUCTION

Spatially distributed quantum correlations not only play an
important role in the structure, observed dynamics, and ap-
parent thermalization of quantum many-body systems [1–19]
but also act as a fundamental resource in designing and
operating quantum computation, simulation, sensing, and
communication technologies [20–31]. For such applications,
the necessary entanglement is commonly produced via a se-
ries of direct interactions generated between two or more
quantum degrees of freedom or distributed after production
through quantum networking techniques that maintain coher-
ence throughout transmission. A third possibility, however,
relies upon connecting locally to a shared system of natu-
rally distributed entanglement (see Fig. 1). For example, the
vacuum state of a quantum field is entangled at spacelike
separations [32–36], and a pair of locally interacting detectors
can transfer that entanglement into basic quantum degrees of
freedom [37–39] to drive subsequent quantum information-
processing protocols. While the raw entanglement produced
through this type of extraction is expected to be far smaller
than what can be generated through artificially constructed
logic gates, “imaging” natural entanglement can provide a
valuable structure of quantum correlations, e.g., as a starting
point for large-scale quantum simulations of physical systems
or the generation of entangled sensing arrays. The present pa-
per focuses on the local axial motional modes of a trapped-ion
chain, quantifying their entanglement properties and utilizing
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this information to guide applications in the quantum simula-
tion of quantum fields.

With each global motional mode in its ground state, the
vacuum of ion-chain zero-point fluctuations is an unentan-
gled, tensor-product state with respect to partitions among
the normal modes. However, for partitions among the associ-
ated local motional modes, this vacuum exhibits entanglement
and, to a good approximation for practical trapping poten-
tials, constitutes a Gaussian continuous-variable (CV) system.
Note that the ion chain supports both transverse and axial
modes (see Ref. [40] for a recent review). While the global
motional modes are commonly utilized to mediate all-to-all
entangling gates among ions within the trap [41–46], the local
transverse motional modes have been proposed to represent
computational bosonic degrees of freedom in the design of
lattice-gauge-theory quantum simulations [47,48].

For a pair of disjoint regions within the global vacuum
state, each comprising the fluctuations associated with one
or more consecutive ions, it is herein found that many en-
tanglement characteristics are remarkably similar to those
of the massless noninteracting lattice scalar field vacuum.
In particular, the logarithmic negativity between the regions
decreases exponentially with increasing separation, whereas
the corresponding two-point functions decrease, at most, as
a power law. As with the scalar field vacuum, the stronger
entanglement represented by the two-point functions can also
be recovered with classical communication of measurements
on parts of the system external to the two regions [49].

After the local axial modes of the trapped-ion vacuum are
presented as a Gaussian CV system in Sec. II, its entanglement
characteristics are described with reference to those of the
scalar field vacuum in Sec. III. Two possible applications
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FIG. 1. As discussed in Sec. III, the structure of spacelike dis-
tributed entanglement between disjoint regions of the free massless
scalar field vacuum is similar to that of the axial modes in a trapped-
ion-chain motional ground state. Motivated by this observation, We
propose cooled motional modes in Sec. IV as an entanglement re-
source that may be imaged as an alternative method of vacuum-state
preparation for scattering and quantum field simulations.

are subsequently discussed in Sec. IV using the trapped-ion
vacuum both as a state preparation resource for the scalar field
vacuum and as a more general resource from which entangle-
ment can be transferred into the discrete-variable framework
of ion internal states.1

In our pursuit of these applications, the entanglement struc-
ture provided essential guidance, e.g., by indicating that the
scalar field vacuum and axial modes of the ion-chain motional
ground state naturally contain similar distributions of quantum
correlations or by identifying the dominant collective modes
to optimize entanglement transfer. While the connections ex-
plored here represent only early observations, this concrete
example suggests significant opportunities for incorporating
natural sources of distributed entanglement as active compo-
nents in quantum technologies.

II. LOCAL AXIAL MOTIONAL MODES

The Hamiltonian describing N ions in a one-dimensional
linear trap is the sum of the ion kinetic energies T and
Coulomb interactions within the trapping potential U ,

T =
N∑

i=1

mż2
i

2
, (1)

U =
N∑

i=1

qκ2z2
i + 1

2

N∑
i, j=1
i �= j

q2

4πε0|zi − z j | , (2)

where q and m are the charge and mass of each ion (assuming
homogeneous ion species), κ2 is the strength of the quadratic
trapping potential, and zi is the position of the ith ion along the

1Note that the scalar field is also referred to as a harmonic chain or
Klein-Gordon field.

one-dimensional trap axis [50,51]. Although the incorporation
of anharmonicities in the trapping potential [52,53] will be of
future interest, e.g., for opportunities to design ion spacings
that produce local motional modes with a regularity that mir-
rors conventional latticizations of field theories, the current
work utilizes a quadratic trapping potential.

As usual, the equilibrium positions of ions within the trap
may be calculated by solving the set of equations enforcing
vanishing first derivatives of the potential with respect to
displacements,

∂U

∂zi

∣∣∣∣
z=z0

= �0, (3)

to place each ion in a stable local minimum. For small sys-
tems, these equations can be solved exactly (see Appendix A).
For larger systems, the equilibrium positions can be reliably
calculated numerically [54,55]. The central ions of these large
chains develop an approximately evenly spaced distribution,
with the edges systematically relaxing to larger separations
as the soft harmonic potential is countered by the center-
dominated Coulomb repulsion.

The above Hamiltonian has two significant scales, one
associated with the interion spacing and one associated with
oscillations of the ions about their equilibrium positions. Iso-
lating these characteristic scales to identify a dimensionless
description of the system, the Hamiltonian may be written as

H = mω2
z �

2
μm

2

N∑
i=1

⎛
⎜⎜⎝˙̄z2

i + z̄2
i +

N∑
j=1
j �=i

1

|z̄i − z̄ j |

⎞
⎟⎟⎠ (4)

= mω2
z �

2
μm

2
(T̄ + Ū ), (5)

where z̄ = z
�μm

and ˙̄z = ż
ωz�μm

. The characteristic spacing and

oscillation parameters are �μm = ( q
8πε0κ2

)
1
3 and ω2

z = 2qκ2

m ,
where the latter is the center-of-mass oscillation frequency
for an ion chain. The root-mean-square of fluctuations from
equilibrium in the ground state of an oscillator of this fre-

quency yields the length �nm =
√

h̄
mωz

. To provide a sense

of scale for these two lengths, a single 171Yb+ ion in a trap
with ωz/2π = 1MHz yields fluctuations characterized by the
scale �nm = 7.7 nm, while the separation between such ions
is governed by the larger scale �μm = 2.7 µm. As such, the
lengths have been labeled for their canonical magnitudes in a
broad regime of trapped-ion applications.

With a second set of variables defined and scaled for ex-
cursions from equilibrium positions, ζ̄ = z−z0

�nm
= (z̄ − z̄0) �μm

�nm
,

the potential may be expanded about the equilibrium as

U = h̄ωz

2

�2
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�2
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(
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∂ z̄i∂ z̄ j
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z̄=z̄0
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)2

ζ̄iζ̄ j
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3!

∂3Ū

∂ z̄i∂ z̄ j∂ z̄k

∣∣∣∣
z̄=z̄0

(
�nm

�μm

)3

ζ̄iζ̄ j ζ̄k + · · ·
)

, (6)

where a shift has been introduced to place the equilibrium
configuration at zero potential, Ū (z̄0) = 0. With higher-order
contributions suppressed by powers of �nm

�μm
, the convergence
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of this expansion is commonly rapid. For the representative
171Yb+ example considered above, this ratio is 2.8 × 10−3.
Implementing a harmonic approximation of the potential, the
leading-order dimensionless Hamiltonian describing small os-
cillations about equilibrium is

H̄2 =
N∑

i=1

˙̄ζ 2
i +

N∑
i, j=1

ζ̄iL̄i j ζ̄ j, (7)

where H2 = h̄ωz

2 H̄2 and L̄i j = 1
2

∂2Ū
∂ z̄i∂ z̄ j

|z̄=z̄0 is the Hessian ma-
trix of second derivatives. In the following, this harmonicity
supports the use of the Gaussian continuous-variable for-
malism [56,57], allowing the leading-order entanglement
information of the ground state to be succinctly captured by
the covariance matrix alone.

By diagonalizing the potential, axial normal modes of mo-
tion may be calculated as position-space eigenvectors eα of
the Hessian with eigenvalues ω̄2

α in units of the center-of-
mass oscillation frequency, ω̄ = ω/ωz. In this basis of normal
modes, the dimensionless Hamiltonian operator is that of a set
of independent oscillators,

ˆ̄H2 =
∑

α

ˆ̄ν2
α + ω̄2

α
ˆ̄ξ 2
α , (8)

with ˆ̄ξα and ˆ̄να being the dimensionless position and momen-
tum operators, respectively, of the chain’s normal modes. As
usual, these operators may be written in terms of normal-mode
creation and annihilation operators,

ˆ̄ξα = ξ̂α

�nm
= âα + â†

α√
2ω̄α

, (9)

ˆ̄να = �nm

h̄
ν̂α = −i

√
ω̄α

2
(âα − â†

α ), (10)

with [âα, â†
β ] = δαβ . Naturally, the matrix of normal-mode

eigenvectors e, constructed in rows as eα,i = (eα )i, provides
the unitary basis transformation between global and local
motional modes:

φ̂ = e−1ξ̂, π̂ = e−1ν̂, (11)

where φ̂ and π̂ are the vectors of position and conjugate-
momentum operators for the local motional modes, respec-
tively. A visualization of the ion chain and trap geometry is
provided in Fig. 2, showing the global normal modes and
their linear combinations that produce the basis of local axial
motional modes.

In the global normal-mode vacuum, âα|0〉 = 0, with two-
point expectation values of ω̄α〈0| ˆ̄ξα

ˆ̄ξβ |0〉 = 1
ω̄α

〈0| ˆ̄να ˆ̄νβ |0〉 =
δαβ

2 , the two-point functions of the local oscillators are

〈0|φ̂iφ̂ j |0〉
�2

nm

= 1

2

N∑
α=1

(e−1)iα (e−1) jα

ω̄α

, (12)

�2
nm

h̄2 〈0|π̂iπ̂ j |0〉 = 1

2

N∑
α=1

(e−1)iα (e−1) jαω̄α. (13)

In the local phase-space basis of ˆ̄r = { ˆ̄φ1, ˆ̄π1,
ˆ̄φ2, ˆ̄π2, . . . ,

ˆ̄φN , ˆ̄πN }, where the commutation relations are encapsulated
in the symplectic matrix � = −i[ˆ̄r, ˆ̄rT ] = ⊕N

j=1 iY , with Y

FIG. 2. For ions in a linear trap (center) with equilibrium posi-
tions z(i)

0 , normal modes of axial motion eα (right) may be linearly
combined to form an alternate basis (left) describing the local
motion of individual ions. The center diagram shows an example
configuration of symmetrically distributed regions of size d = 3
and separation r̃ = 4 in a chain of N = 20 ions. Analogous to the
tensor-product (entangled) structure of momentum (position) space
partitions of the free scalar field vacuum, in the normal-mode ground
state of ion motion, âα|0〉⊗N = 0, partitions among the local modes
are naturally entangled.

being the second Pauli matrix, the dimensionless ground-state
covariance matrix (CM) is

σ̄i, j = 〈0|{ ˆ̄ri − 〈 ˆ̄ri〉, ˆ̄r j − 〈 ˆ̄r j〉}+|0〉. (14)

Examples of these covariance matrices for the local ax-
ial motional modes in small ion chains are provided in
Appendix A. Because the vacuum expectation values of
position-momentum anticommutators vanish,

〈0|{φ̂i, π̂ j}+|0〉 = 0, (15)

the two point functions in Eqs. (12) and (13) fully determine
the CM and thus the entanglement properties of the local
motional modes in the leading-order Gaussian ground state.

The independence of the dimensionless CM, Eqs. (12)–
(14), with respect to both trap and ion experimental param-
eters indicates a universality of the harmonic approximation
[Eq. (6)] of the trapped-ion local motional mode correla-
tion structure. With a single dimensionless CM to describe
all ion choices and quadratic trap strengths, this universality
results in leading-order insensitivity to experimental imple-
mentations. This may prove useful for error robustness or,
conversely, may yield challenges because all modifications
to the CM, e.g., for optimizing connections to the scalar
field vacuum as discussed in Sec. IV A, must be imple-
mented through explicit quantum operations. Furthermore,
in this context, the dimensionful CM incorporates all ion
and trap parameters through the length scale �2

nm = h̄√
2mqκ2

,
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FIG. 3. Logarithmic negativity between two regions (of sizes
d = 1, 3, 5 modes each) as a function of their separation in one
spatial dimension. In the ion application (solid lines), each mode is
a local axial motional mode, with the pair of regions centered within
a 150-ion chain. In the scalar field application (dashed lines), each
mode is a field lattice site within an infinite volume in the massless
regime (m = 10−10). Each system is shown when the volume external
to the regions is traced or measured in the local position (φ) or local
conjugate-momentum (π ) basis.

which functions numerically as a global set of single-mode
squeezing parameters with zero entanglement power, i.e.,
scaling the 〈φ̂φ̂〉 expectation values inversely from those of
conjugate-momentum operators 〈π̂π̂〉 [see Eqs. (12) and (13)].
As such, leading-order entanglement quantities among local
modes with a quadratic trapping potential are pure numbers
independent of the variables of experimental design.

III. ENTANGLEMENT RESOURCE

To assess the entanglement naturally distributed among
the local motional modes, consider entanglement properties
between two disjoint regions, A and B, each composed of
d contiguous ions and separated by r̃ ions, as shown in the
center of Fig. 2, for example. For this bipartite state, three
logarithmic negativity values are of current interest: that when
the local modes outside the regions are traced, resulting in
an A-B mixed state, and those when the local modes outside
the regions are projectively measured in the φ or π basis,
resulting in A-B pure states.2 With differing levels of classical
information provided from possible external observers, these
measures quantify here the operational amount of entangle-
ment that could be consolidated into two-mode pairs spanning
the disjoint regions [58–60].

As demonstrated in Fig. 3 for disjoint regions of local
motional modes separated across the center of a 150-ion
chain, the logarithmic negativity decays exponentially with
the separation between regions upon tracing of the modes
in the remaining chain [61–63]. Originating from a system
with field (conjugate-momentum) two-point functions decay-
ing logarithmically (polynomially) with spatial separation, the
emergence of this strong decay is a result of the classical noise

2See Ref. [49] for further technical details.

introduced in the tracing procedure [49], i.e., resulting from
the loss of information about an entangled quantum system.
These features are common to the massless scalar field vac-
uum, for which Fig. 3 shows the analogous calculation in
gray scale for reference. Beyond the magnitude and decay,
the calculation in Fig. 3 also indicates close agreement in the
separation at which the classical noise causes these regions
of finite pixelation to transition into a regime of vanishing
negativity [61–74] that is also separable [63,75]. With no free
parameters, the externally traced logarithmic negativity is re-
markably similar between these two distinct physical systems,
one at the center of a quadratically trapped-ion chain and the
other within an infinite volume of a free massless scalar field
vacuum.

With the measurement of the external modes in the local
position φ basis, Fig. 3 shows that the two systems again
exhibit comparable underlying entanglement resources. How-
ever, with the measurement of the external modes in the
conjugate-momentum π basis, the distinction between these
two physical systems becomes apparent.3 This difference can
be understood as a result of the field gradients in the scalar
field and the quadratically balanced Coulomb repulsion in the
trapped-ion chain distributing inequivalent vacuum entangle-
ment.

Beyond the magnitudes of these entanglement measures,
the local motional modes are found to have further structural
entanglement features in common with the free lattice scalar
field. Although the spatial parity symmetry, present when
regions are centered within the ion chain, is generally insuf-
ficient for the techniques in Ref. [60] to ensure consolidation
of negativity into a separable set of two-mode entangled pairs
governed by partially transposed (PT) symplectic eigenvalues,
it is found that the local motional modes within the trapped-
ion chain do share this consolidation feature with the free
scalar field vacuum. As such, the PT symplectic eigenvec-
tors provide guidance for locally transforming the accessible
many-body entanglement between disjoint regions of ions into
a series of two-mode squeezed states. The availability of this
two-mode organization of many-body mixed-state entangle-
ment may prove to be useful experimentally in transferring
entanglement from the local motional modes into discrete ion
internal energy levels, as first proposed in Ref. [76] and further
discussed in Sec. IV B.

IV. PRELIMINARY APPLICATIONS

A. Vacuum-state preparation

For digital quantum algorithms, studies establishing the
efficiency (in, e.g., particle number, coupling strength, etc.)
of simulating scattering in interacting quantum fields [77,78]
show that the dominant use of quantum computational re-
sources is expected to be required not in the real-time
dynamics, but in the process of initial-state preparation, e.g.,
of the quantum field vacuum. From a complementary perspec-
tive, exploring the low-energy subspace and preparing states
within it from a trivial tensor-product fiducial state can be

3Explicit forms of the classical noise removed upon measurement
in each basis are provided in Ref. [49].
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beyond the expected asymptotic efficiency of quantum hard-
ware and software, even for few-body spatially local Hamilto-
nians [79–82]. These considerations, as well as the presence
of phase transitions in lattice gauge theories, motivate the
exploration of diverse methods of entangled quantum field
vacuum-state preparation [73,83–98], with strategies ranging
from variational techniques and guidance by tensor networks
to adiabatic flows and the design of reservoirs for dynamical
cooling procedures. To this vacuum-state-preparation litera-
ture, the present paper introduces the possibility of replacing
the trivial-complexity fiducial state with an experimentally
available state of naturally distributed entanglement.

When entanglement is generated through interleaved layers
of few-body operators, entanglement is created with an ex-
pansion rate governed by the Lieb-Robinson bound [99,100].
However, when many-body entanglement resources are natu-
rally present in a quantum architecture, e.g., the local motional
modes of a trapped-ion chain, actively incorporating them in
the algorithmic design can yield alternatives to propagation-
based entanglement distribution. Analogous to the way in
which providing a computational framework with quantum
degrees of freedom allows more efficient representation and
imitation of quantum systems themselves [20], providing a
computational framework with access to naturally distributed
arrays of entangled degrees of freedom could provide similar
advantages for quantum field simulations.

For scalar field applications suggested by the entanglement
observations above, consider quantifying the provided
leading-order approximation with the quantum fidelity
[22,101–103], F (ρ1, ρ2) = F (ρ2, ρ1) = tr(

√√
ρ1ρ2

√
ρ1),

where ρ1,2 are the density matrices of local axial motional
modes in the center of an ion chain and of CV lattice sites
within an infinite-volume scalar field. The fidelity saturates to
unity when the two density matrices are equivalent, vanishes
when they are composed of orthogonal subspaces, and may
be directly related to metrics providing a formal sense of
distance between quantum states [104,105]. Furthermore,
many preparation algorithms rely upon the availability of an
input initial state with nonvanishing fidelity with respect to a
desired state, impacting both figures of merit and necessary
statistics.

For mixed Gaussian CV states, Ref. [106] provides sev-
eral techniques for calculating the fidelity from the set of
first and second moments of each Gaussian state.4 A fidelity
analysis is shown in Fig. 4 between the local modes of the

4For example, when the first moments of both states are vanishing,
the formulation [106]

F (σ1, σ2) =

⎛
⎜⎝det (2[

√
I + (V �)−2

4 + I]V )

det (σ1 + σ2)

⎞
⎟⎠

1
4

, (16)

with

V = �T (σ1 + σ2)−1

(
�

4
+ σ2�σ1

)
, (17)

is straightforward to compute from the covariance matrices in the
present harmonic approximation of the combined ion trapping and
Coulomb potentials.

FIG. 4. Fidelity between the central local axial modes of trapped-
ion chains cooled to their motional ground state and a same-size
region of the infinite-volume, lattice scalar field vacuum in the
massless regime (m = 10−10). Shown for regions of up to 50 local
modes/lattice sites for 30-, 50-, and 150-ion chains, a one-parameter
optimization over a globally implemented single-mode squeezing
parameter allows the creation of approximations to the latticized field
vacuum with enduring fidelity.

trapped-ion motional ground state and the free, massless,
lattice scalar field vacuum. Unfortunately, approximate quan-
tum state preparations commonly yield fidelities that decay
exponentially with increasing system size, becoming rapidly
impractical for large-scale applications. As shown by the
open points in Fig. 4, such catastrophic loss of fidelity oc-
curs for the ion local motional modes naturally produced in
the hardware. However, inspired by the similar distribution
of disjoint two-region entanglement in both systems demon-
strated in Fig. 3, we perform a one-parameter optimization
of a single-mode squeezing applied to each local motional
mode (a unitary with zero entanglement power), which results
in substantial fidelities even for large systems. The values of
this squeezing parameter as a function of region and chain
size are recorded in the numerical tables in Appendix C.
For chain lengths comparable to the field-region size, these
squeezing magnitudes are realistic given current capabilities
and ongoing developments in the experimental squeezing of
ion motional modes [107–114]. Note that the universality
of the dimensionless CM [Eqs. (12)–(14)] indicates that this
squeezing must be introduced through external quantum op-
erations on each local motional mode.

It is encouraging that a simply calculated set of local
squeezings can produce a state of local motional modes with
similar disjoint entanglement structure and O(1) fidelity with
respect to large instances of the massless lattice scalar field
vacuum. The remaining fundamental distinctions between the
small oscillation approximation of ion local motional modes
and the scalar vacuum suggest that the calculated fidelity
will not asymptote to unity for larger ion chains. However,
note that this calculation considered only the flexibility of
one single-mode squeezing parameter; for a given system, all
entanglement features are thus generated only by the natural
ion local motional modes themselves. As such, this calcula-
tion is best interpreted as a leading-order result, subject to
systematic improvement upon the action of a broader array
of CV quantum circuitry.

These preliminary results motivate dedicated future inquiry
exploring the replacement of canonical tensor-product initial
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states by experimentally convenient states of naturally dis-
tributed entanglement.

B. Transferring distributed entanglement

For the purposes of simulation with finite-dimensional
quantum systems or for broader computational applications
of spatially distributed quantum correlations, it is of interest
to consider transferring the entanglement among local CV
motional modes into the Hilbert space composed of the asso-
ciated ions’ internal energy levels. This process was first pro-
posed as an opportunity for experimentally detecting vacuum
entanglement and for entangling trapped ions with quantum
gates utilizing only local phase-space excitations [76]. The
local motional modes then provide an entangled fabric of spa-
tially distributed entanglement that may be strategically ac-
cessed. That the naturally available entanglement structure is
remarkably similar to that of a simple latticized quantum field
suggests further possible applications from quantum simula-
tion of standard-model physics to large-scale quantum error
correction. Motivated by recent theoretical and experimen-
tal advances in qudit-based quantum information processing
[115–127], the following section details one important consid-
eration affecting the magnitude and efficiency of CV-to-qudit
entanglement transfer in the context of trapped ions.

There are many strategies for transferring entanglement
from CV local motional modes to finite-dimensional qudit
systems [76,128–132]. One basic paradigm involves writing
the CV system in an indexed orthonormal basis and perform-
ing an approximate swapping operation between n basis states
and the n-dimensional qudit system. For example, Ref. [76]
presents an approximation of such a SWAP operator for an
expression of the CV local motional modes in the Fock
basis, transferring the quantum information present in the
low-energy Fock space to qubits of ion internal energy levels.
Generalizing to qudits, the population of the CV system in
states external to the chosen subspace (e.g., above the lowest-
energy Fock states) yields excess population in the qudit
initial state, reducing the transferred entanglement. For the
Fock-space transfer, this external-population figure of merit is
shown in Fig. 5 in Appendix B for the local motional modes
of a two-ion chain as a function of increasing qudit dimension.

Although the entanglement between two Hilbert spaces is
not impacted by local operations, the entanglement accessible
from within a Hilbert space subset can be highly sensitive
to local restructuring. As such, local CV operations applied
prior to qudit extraction into the ion internal states can impact
the probability in the qudit subspace and thus the transferred
entanglement. Figure 5 indicates that first including a pair of
single-mode squeezings to transform the local motional mode
CM into normal form with balanced 〈φφ〉 and 〈ππ〉 matrix
elements reduces the population external to the low-energy
Fock states by several orders of magnitude, with the impact
increasing with increasing qudit dimension. By directly cal-
culating the motional mode CM naturally produced in the
ion chain, such operations can be designed to optimize the
localization of the ion modes in an experimentally convenient
orthonormal basis for entanglement transfer.

In designing local operators for more than two ions to
optimize this form of CV to finite-dimensional entanglement
transfer, the observation discussed at the end of Sec. III—

that the ion local motional modes in this context satisfy
requirements allowing the techniques in Ref. [60] to reorga-
nize the available entanglement between regions—provides
an additional advantage. Such consolidation, informed by
the eigensystem of the partially transposed 2d-ion mixed
state, reorganizes the bipartite entanglement between disjoint
many-body field or ion-chain regions into a tensor-product
series of (1A × 1B) entangled pairs. As such, this reorgani-
zation preconditions the CV entanglement to be conducive
to subsequent entanglement transfer, ultimately allowing this
entanglement to be consolidated into fewer ion pairs and im-
proving the entanglement yield.

V. SUMMARY AND OUTLOOK

Considering entanglement structure from multiple opera-
tional perspectives can serve to quantify resources available
for quantum information protocols and to guide the design
of quantum simulations. This paper considered whether the
local axial motional modes of a simple trapped-ion system
can serve as a useful starting point for generation of en-
tangled vacuum states of the massless scalar field. Because
several region-region entanglement measures exhibit strong
similarities between the two systems, analyses of fidelities
and localization in Fock-space constitute initial steps to-
ward utilizing naturally distributed entanglement resources
for computational applications. This perspective highlights
common elements among quantum simulation, sensing, and
networking as quantum fields are considered for incorporation
directly into quantum architectures.

The present analysis, however, only modestly addressed
a subset of the important questions driving research to-
ward quantum technology goals. For scientific application to
quantum state preparation, the approximate correspondence
observed in Sec. IV A must be promoted to a systematically
improvable protocol, possibly through the introduction of a
hierarchy of higher-complexity quantum operations [73,90].
Furthermore, future development toward quantum simulation
applications should be made beyond the idealized motional
vacuum to include experimentally attainable quantum states
after cooling procedures minimize, but do not eliminate, col-
lective phonon numbers.

For the application in Sec. IV B, further work is needed
to determine practical techniques for implementing an ap-
proximate swapping operator between the local motional
modes and ion internal levels, including the assessment of
many choices of the basis and the design of precondition-
ing procedures to strategically organize entanglement. Better
understanding of successful procedures for imaging natu-
rally distributed CV entanglement to finite dimensions may
further inform the design of entanglement-efficient bosonic
truncation and digitization schemes, e.g., in designing compu-
tational bases for the practical quantum simulation of quantum
field theories [118,123,133–150].

The present connection between the scalar field vacuum
and local motional modes of a trapped-ion chain, guided by
entanglement structure, brings present research still closer
to the vision of quantum simulation [20]: leveraging the
mutual intersimulatability of diverse quantum systems, even
those widely separated in natural energy scales, e.g., the
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connection between atomic and subatomic physics arising in
present quantum simulations of quantum chromodynamics.
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APPENDIX A: SMALL-CHAIN EXAMPLES

With a quadratic trapping potential, the equilibrium posi-
tions for two- and three-ion chains can be evaluated exactly
to be

z0
N=2 =

{
−21/3�μm

2
,

21/3�μm

2

}
,

z0
N=3 =

{
−101/3�μm

2
, 0,

101/3�μm

2

}
, (A1)

where �μm = ( q
8πε0κ2

)1/3 is a characteristic ion-separation
length scale. The resulting frequencies and normal modes are

ω̄ = ω

ωz
= {1,

√
3}, e =

(
e1

e2

)
= 1√

2

(
1 1

−1 1

)
(A2)

for a two-ion chain and

ω̄ = ω

ωz
=

{
1,

√
3,

√
29

5

}
,

e =
⎛
⎝e1

e2

e3

⎞
⎠ =

⎛
⎜⎝

1√
3

1√
3

1√
3

− 1√
2

0 1√
2

1√
6

− 2√
6

1√
6

⎞
⎟⎠ (A3)

for a three-ion chain. Interestingly, the ground-state center-of-
mass motion frequency and gap to the excited-state breathing
mode are known to be independent of the number of ions in
the chain [41].

With Eqs. (12)–(14), the dimensionless covariance matri-
ces for two and three ions are directly calculated to be

σ̄N=2 = 1

2

⎛
⎜⎜⎜⎝

3+√
3

3 0 3−√
3

3 0
0 1 + √

3 0 1 − √
3

3−√
3

3 0 3+√
3

3 0
0 1 − √

3 0 1 + √
3

⎞
⎟⎟⎟⎠,

σN=2 = �2
nm

2

⎛
⎜⎜⎜⎜⎜⎝

3+√
3

3 0 3−√
3

3 0

0
h̄2(1+√

3)
�4

nm
0

h̄2(1−√
3)

�4
nm

3−√
3

3 0 3+√
3

3 0

0
h̄2(1−√

3)
�4

nm
0

h̄2(1+√
3)

�4
nm

⎞
⎟⎟⎟⎟⎟⎠, (A4)

and

σ̄N=3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

29
√

3+√
145+58

174 0 1
3 −

√
5
29

3 0 −29
√

3+√
145+58

174 0

0 15
√

3+√
145+10

30 0 5−√
145

15 0 −15
√

3+√
145+10

30
1
3 −

√
5
29

3 0 1
3 + 2

√
5
29

3 0 1
3 −

√
5
29

3 0

0 5−√
145

15 0 2
√

145+5
15 0 5−√

145
15

−29
√

3+√
145+58

174 0 1
3 −

√
5
29

3 0 29
√

3+√
145+58

174 0

0 −15
√

3+√
145+10

30 0 5−√
145

15 0 15
√

3+√
145+10

30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

As demonstrated in the second equation in Eq. (A4), restoring the dimensions of the CM is achieved, according to Eqs. (12) and
(13), through insertion of �2

nm or h̄2

�2
nm

on the 〈φ̂φ̂〉 or 〈π̂π̂〉 submatrix, respectively. Note that the dimensionless covariance matrix
of this harmonic approximation is universal; i.e., no trap or ion experimental parameters are present. Therefore, all entanglement
properties are pure numbers, independent of the specifics of the chosen ion and strength of the quadratic trapping potential. In
particular, the two-mode logarithmic negativities are found to be

N N=2
1|2 = ln 3

ln 16
= 0.396241 . . . , (A6)

N N=3
1|2 =

ln
(

− 5220

−145(4
√

3+9)−2
√

145(11
√

3+153)+
√

435(−5952
√

3+4(105
√

3+299)
√

145+13571)

)
ln 4

= 0.384585 . . . , (A7)

N N=3
1|3 = ln

(
5
3 (49 − 4

√
145)

)
ln 16

= 0.118608 . . . , (A8)

where the third mode in the N = 3 examples has been traced. For the two-ion chain, the single-mode entanglement entropies are
found to be

EN=2
1 = 1

ln 4096

{[√
6(2

√
3 + 3) + 6

]
ln

[√
6(2

√
3 + 3) + 6

]

− 12 ln 12 −
[√

6(2
√

3 + 3) − 6
]

ln
[√

6(2
√

3 + 3) − 6
]}

= 0.13618 . . . , (A9)
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consistent with Ref. [76], in which the two-mode state of the
local motional modes was taken to be a two-mode squeezed
vacuum state in normal form, i.e., consistent with Eq. (A4) up
to local operations.

APPENDIX B: LOCAL MOTIONAL MODES
IN FOCK SPACE

A significant convenience of Gaussian CV quantum states
is that they are completely described by a covariance ma-
trix of second moments σ and a vector of first moments
r̄ in phase space. The dimensionality of these two objects
scales only linearly with the number of modes in the sys-
tem, allowing states of significant size to be computationally
practical. However, transferring entanglement from CV to
finite-dimensional quantum systems, e.g., from local motional
degrees of freedom to internal energy levels of trapped ions
as first proposed in Ref. [76], inspires departing from the
succinct phase-space language by expanding the CV state in
the infinite tower of Fock states. From this basis, Ref. [76]
discussed the experimental viability of dynamically swapping
the lowest-excitation motional Fock states with an internal
state ion qubit.

Before we evaluate the Fock-basis decomposition for an
arbitrary covariance matrix, we consider first the Fock repre-
sentation of a two-mode squeezed vacuum state [57],

|ψr〉 = er(â†
1 â†

2−â1â2 )|0, 0〉, (B1)

where â j and â†
j are bosonic creation and annihilation opera-

tors, [âi, â†
j ] = δi j . As usual, the associated covariance matrix

can be calculated via application of the two-mode squeez-
ing symplectic operation to the vacuum (identity) covariance
matrix,

σr = SrST
r ,

Sr =

⎛
⎜⎜⎝

cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r

⎞
⎟⎟⎠. (B2)

The evaluation of Eq. (B1) can be performed by utilizing
the su(1,1) algebra, with generators K± and K0 satisfying the
following commutation relations:

[K+, K−] = −2K0, [K0, K±] = ±K±. (B3)

Transformations in this context can be simplified by using so-
called disentanglement theorems [151,152],

ev+K++v−K−+v0Kt = et+K+e(ln t0 )K0 et−K− . (B4)

The determination of the coefficients �t from those of �v can
be achieved by utilizing a small-dimensional representation

of the generators—e.g., K+ =
(

0 1
0 0

)
, K− =

(
0 0

−1 0

)
, and

K0 = 1
2 Z , with Z being the third Pauli matrix—and equating

each matrix element of the two transformations. The resulting

coefficients are

t0 =
(

cosh( f ) − v0

2 f
sinh( f )

)−2

, (B5)

t± = v± sinh( f )

f
∣∣ cosh( f ) − v0

2 f sinh( f )
∣∣ , (B6)

with the parameter f 2 = 1
4v2

0 − v+v−. For application to the
two-mode squeezed vacuum state, one may identify K+ =
â†

1â†
2 and K− = â1â2, leading to K0 = 1

2 (â†
1â1 + â†

2â2 + 1).
The squeezing operation may thus be written in the well-
known Fock-basis form,

er(â†
1 â†

2−â1â2 )|0, 0〉 = etanh(r)â†
1 â†

2 e−(ln cosh r)(â†
1 â1+â†

2 â2+1)

× e− tanh(r)â1â2 |0, 0〉 (B7)

= 1

cosh(r)

∞∑
n=0

tanhn(r)|n, n〉 (B8)

≡
√

1 − e−2β

∞∑
n=0

e−βn|n, n〉, (B9)

with β ≡ − ln tanh(r) being commonly introduced. When
acting on the vacuum state in Eq. (B7), only the identity
survives from the first exponential on the right; the second
exponential becomes simply a normalization factor, and the
last exponential produces a tower of states with equal occupa-
tion and dominant support in the space of low excitations. As
stronger squeezing is applied, the distribution in Fock space
becomes increasingly delocalized, and the entanglement in-
creases. For example, the logarithmic negativity, which is
a necessary and sufficient measure of entanglement in this
two-mode context, is directly proportional to the squeezing
parameter as N = 2|r|

ln 2 .
For general Gaussian states, it is valuable to calculate

Fock-basis density-matrix elements directly. Each Fock state,
|n〉 = (n1, · · · , nN ), is labeled by a vector of numbers cor-
responding to the quantized excitations present in each of
the N modes. With diagonal elements of the density matrix
〈n|ρ|n〉 commonly calculated for applications in Gaussian
boson sampling [153,154], computational techniques for the
generic matrix element 〈m|ρ|n〉 applicable to mixed quantum
states were developed recently [155]. For states with r̄ = 0,
the techniques in Ref. [155] are summarized by the relations

〈m|ρ|n〉 = haf(Ã)√
det(σQ)

∏N
j=1 mj!n j!

,

Ã = Ā − diag(Ā), A = X
(
I2N − σ−1

Q

)
, (B10)

with

X =
(

0 IN

IN 0

)
, σQ = 1

2
(UâσxxppU

†
â + I2N ),

Uâ = 1√
2

(
IN iIN

IN −iIN

)
, (B11)

where U is the matrix transferring phase-space operators into
bosonic creation and annihilation operators and σxxpp is the
position-momentum reordered covariance matrix according to
the basis r̂′ = {φ̂1, φ̂2, . . . , φ̂N , π̂1, π̂2, . . . , π̂N }. Remaining
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FIG. 5. Left: For the local motional modes of a two-ion chain, the probability outside the lowest two-level Fock subspace (Pqubit = 1 −
Pqubit) is shown as a function of parameters governing one-mode symplectic operators applied symmetrically. That expressed directly by the
hardware upon trapping without further operations, (z, φ1) = (1, 0), is indicated in blue. The configurations optimally localizing the domain
of support to this qubit-sized subspace are indicated by solid and dashed black lines, achieved by locally transforming the covariance matrix
to normal form with constant diagonal 〈�̂ j �̂ j〉 = 〈π̂ j π̂ j〉. Right: Scaling of probability outside the qudit subspace as a function of increasing
Fock-space qudit dimension.

to be discussed are the Hafnian and Ā. As usual, the Hafnian
is a matrix property that can be calculated as

haf(B) =
∑
�j∈M

Bj1, j2 · · · Bjn−1, jn , (B12)

where M is the set of all ways to partition the n elements of B
into nonrepeating pairs. For example, haf(B4×4) = B12B34 +
B13B24 + B14B23, and the Hafnian of an odd-dimensioned
matrix is zero. The Hafnian of a zero-dimensional matrix is
set to be unity. While this computational form of the Haf-
nian makes manifest its combinatoric nature, note that Wick’s
theorem also allows haf(B) to be calculated as a Gaussian
expectation value of the product of all phase-space operators

subject to a covariance matrix governed by B and first moment
displacements diag(B). Finally, the matrix Ā is constructed
from A through repetition of its jth rows and columns n j (mj)
times for the first (second) N dimensions to create a matrix of
dimension [Ā] = ∑

j n j + mj , scaling with the total number
of Fock-space excitations involved in the matrix element.

Applying this formalism to the trapped-ion local mo-
tional modes, we consider the harmonic limit [Eq. (7)]
of the two-ion system, characterized by the covariance
matrix of Eq. (A4). In the Fock basis, the density-
matrix elements for the first three levels in the basis of
{|00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉, |21〉, |22〉} will read

ρ̄(0,1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.963 0 −0.0913 0 0.129 0 −0.0913 0 0.0259
0 0 0 0 0 0 0 0 0

−0.0913 0 0.00865 0 −0.0122 0 0.00865 0 −0.00246
0 0 0 0 0 0 0 0 0

0.129 0 −0.0122 0 0.0173 0 −0.0122 0 0.00348
0 0 0 0 0 0 0 0 0

−0.0913 0 0.00865 0 −0.0122 0 0.00865 0 −0.00246
0 0 0 0 0 0 0 0 0

0.0259 0 −0.00246 0 0.00348 0 −0.00246 0 0.000698

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B13)

Note that, as a subset, this portion of the density matrix is
neither pure nor normalized. The presence of the bold el-
ements is a clear indication that the two-ion state of local
motional modes is not simply a two-mode squeezed vacuum
state, Eq. (B9), as presented in Ref. [76]. However, one can
transform the two-ion local motional modes into a two-mode
squeezed vacuum state through local symplectic operations,
leading to agreement with the reported entanglement proper-
ties for the two-ion system.

While the presence of local operations does not impact
the value of entanglement measures, it does impact the dis-
tribution of a CV quantum state in Fock space. If aims of
entanglement extraction from the local motional modes to the
ion internal levels are pursued through exchange with the low-
est Fock states, as first proposed by Ref. [76], it is important
to ensure dominant support is present in this low-occupation
Hilbert subspace. For a two-ion chain, the left panel of Fig. 5
demonstrates the deviation of this probability from unity
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Pqubit, i.e., the probability of the local motional modes being
outside the two-state subspace of Fock states |0〉 and |1〉 as a
function of local operations. To parametrize single-mode sym-
plectic operations, one may perform a rudimentary application
of the Bloch-Messiah decomposition, allowing a symplectic
transformation to be decomposed into a set of single-mode
squeezing (Z) operations surrounded by a pair of passive (O)
operations (energy-preserving, e.g., beam splitters and phase
shifters), with real numbers (φ1, φ2, z) as [57,156,157]

S = O1ZO2,

Oj =
(

Re(γ j ) Im(γ j )
− Im(γ j ) Re(γ j )

)
, Z =

(
z 0
0 1

z

)
, (B14)

where γ j = eiφ j is a one-dimensional unitary. When each local
motional mode is squeezed by z = (σ2,2/σ1,1)1/4, the quantum

state upon trapping of an ion pair (blue point in Fig. 5) can be
shifted to a form that optimally compacts the support of the
quantum state in the low Fock states (green point and solid
line). The alternate solution (dashed line) simply exchanges
the position and momentum components, and thus, both
optimal points yield a two-mode squeezed vacuum state with
the Fock basis characterized by Eq. (B9). It is anticipated that
this determination of the true form of the local motional mode
CV quantum state and its guidance for additional single-mode
squeezing operations will improve experimental implementa-
tions of ion motional entanglement extraction.

APPENDIX C: NUMERICAL TABLES

Tables I–VII provide numerical values presented in Figs. 3
and 4 in the main text and Fig. 5 in Appendix B.

TABLE I. Numerical values for A, B region sizes of one ion or lattice site in Fig. 3.

Ions Scalar

Separation r̃/d NA|B(σ (t ) ) NA|B(σ (m,φ) ) NA|B(σ (m,π ) ) NA|B(σ (t ) ) NA|B(σ (m,φ) ) NA|B(σ (m,π ) )

0 3.66 × 10−1 3.94 × 10−1 9.25 × 10−1 4.44 × 10−1 5.00 × 10−1 2.30
1 5.95 × 10−2 1.14 × 10−1 7.38 × 10−1 0 9.63 × 10−2 2.08
2 0 5.48 × 10−2 6.43 × 10−1 0 4.12 × 10−2 1.97
3 0 3.25 × 10−2 5.81 × 10−1 0 2.29 × 10−2 1.90
4 0 2.16 × 10−2 5.36 × 10−1 0 1.46 × 10−2 1.85
5 0 1.54 × 10−2 5.00 × 10−1 0 1.01 × 10−2 1.81
6 0 1.16 × 10−2 4.71 × 10−1 0 7.40 × 10−3 1.78
7 0 9.04 × 10−3 4.46 × 10−1 0 5.66 × 10−3 1.76
8 0 7.26 × 10−3 4.25 × 10−1 0 4.47 × 10−3 1.73
9 0 5.97 × 10−3 4.06 × 10−1 0 3.62 × 10−3 1.71
10 0 4.99 × 10−3 3.90 × 10−1 0 2.99 × 10−3 1.70
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TABLE II. Numerical values for A, B region sizes of three ions or lattice sites in Fig. 3.

Ions Scalar

Separation r̃/d NA|B(σ (t ) ) NA|B(σ (m,φ) ) NA|B(σ (m,π ) ) NA|B(σ (t ) ) NA|B(σ (m,φ) ) NA|B(σ (m,π ) )

0 6.29 × 10−1 6.73 × 10−1 1.22 7.89 × 10−1 8.39 × 10−1 2.71
1
3 2.01 × 10−1 2.47 × 10−1 9.91 × 10−1 1.68 × 10−1 2.19 × 10−1 2.43
2
3 6.77 × 10−2 1.40 × 10−1 8.73 × 10−1 2.77 × 10−2 1.14 × 10−1 2.29

1 1.27 × 10−2 9.25 × 10−2 7.95 × 10−1 4.41 × 10−3 7.21 × 10−2 2.20
4
3 2.96 × 10−3 6.65 × 10−2 7.36 × 10−1 2.07 × 10−3 5.03 × 10−2 2.14
5
3 1.45 × 10−3 5.05 × 10−2 6.90 × 10−1 1.19 × 10−3 3.73 × 10−2 2.09

2 8.58 × 10−4 3.98 × 10−2 6.52 × 10−1 6.99 × 10−4 2.88 × 10−2 2.05
7
3 5.31 × 10−4 3.23 × 10−2 6.19 × 10−1 3.86 × 10−4 2.30 × 10−2 2.02
8
3 3.20 × 10−4 2.68 × 10−2 5.91 × 10−1 1.65 × 10−4 1.88 × 10−2 1.99

3 1.71 × 10−4 2.26 × 10−2 5.66 × 10−1 0 1.57 × 10−2 1.96
10
3 5.99 × 10−5 1.93 × 10−2 5.44 × 10−1 0 1.33 × 10−2 1.94

11
3 0 1.67 × 10−2 5.24 × 10−1 0 1.14 × 10−2 1.92

4 0 1.46 × 10−2 5.06 × 10−1 0 9.88 × 10−3 1.90
13
3 0 1.29 × 10−2 4.89 × 10−1 0 8.65 × 10−3 1.89
14
3 0 1.15 × 10−2 4.74 × 10−1 0 7.64 × 10−3 1.87

5 0 1.03 × 10−2 4.59 × 10−1 0 6.80 × 10−3 1.86
16
3 0 9.28 × 10−3 4.46 × 10−1 0 6.09 × 10−3 1.85
17
3 0 8.41 × 10−3 4.33 × 10−1 0 5.49 × 10−3 1.83

6 0 7.66 × 10−3 4.22 × 10−1 0 4.97 × 10−3 1.82
19
3 0 7.01 × 10−3 4.10 × 10−1 0 4.53 × 10−3 1.81
20
3 0 6.43 × 10−3 4.00 × 10−1 0 4.14 × 10−3 1.80

7 0 5.93 × 10−3 3.90 × 10−1 0 3.80 × 10−3 1.79
22
3 0 5.48 × 10−3 3.81 × 10−1 0 3.50 × 10−3 1.78

23
3 0 5.09 × 10−3 3.72 × 10−1 0 3.23 × 10−3 1.78

8 0 4.73 × 10−3 3.63 × 10−1 0 2.99 × 10−3 1.77
25
3 0 4.41 × 10−3 3.55 × 10−1 0 2.78 × 10−3 1.76
26
3 0 4.13 × 10−3 3.47 × 10−1 0 2.59 × 10−3 1.75

9 0 3.87 × 10−3 3.39 × 10−1 0 2.42 × 10−3 1.75
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TABLE III. Numerical values for A, B region sizes of five ions or lattice sites in Fig. 3.

Ions Scalar

Separation r̃/d NA|B(σ (t ) ) NA|B(σ (m,φ) ) NA|B(σ (m,π ) ) NA|B(σ (t ) ) NA|B(σ (m,φ) ) NA|B(σ (m,π ) )

0 7.75 × 10−1 8.18 × 10−1 1.33 9.67 × 10−1 1.01 2.89
1
5 2.89 × 10−1 3.32 × 10−1 1.09 2.55 × 10−1 3.00 × 10−1 2.59
2
5 1.32 × 10−1 2.02 × 10−1 9.69 × 10−1 8.55 × 10−2 1.71 × 10−1 2.44
3
5 5.77 × 10−2 1.41 × 10−1 8.85 × 10−1 2.87 × 10−2 1.15 × 10−1 2.35
4
5 2.36 × 10−2 1.06 × 10−1 8.22 × 10−1 1.40 × 10−2 8.42 × 10−2 2.28

1 1.17 × 10−2 8.32 × 10−2 7.72 × 10−1 8.53 × 10−3 6.48 × 10−2 2.22
6
5 7.11 × 10−3 6.74 × 10−2 7.30 × 10−1 5.66 × 10−3 5.17 × 10−2 2.18
7
5 4.74 × 10−3 5.60 × 10−2 6.95 × 10−1 3.86 × 10−3 4.24 × 10−2 2.14
8
5 3.30 × 10−3 4.73 × 10−2 6.64 × 10−1 2.63 × 10−3 3.54 × 10−2 2.11
9
5 2.32 × 10−3 4.06 × 10−2 6.37 × 10−1 1.73 × 10−3 3.01 × 10−2 2.08

2 1.62 × 10−3 3.53 × 10−2 6.13 × 10−1 1.06 × 10−3 2.59 × 10−2 2.06
11
5 1.09 × 10−3 3.10 × 10−2 5.91 × 10−1 5.78 × 10−4 2.26 × 10−2 2.04
12
5 6.87 × 10−4 2.74 × 10−2 5.70 × 10−1 2.65 × 10−4 1.98 × 10−2 2.02

13
5 3.86 × 10−4 2.45 × 10−2 5.52 × 10−1 9.64 × 10−5 1.76 × 10−2 2.00
14
5 1.83 × 10−4 2.20 × 10−2 5.35 × 10−1 2.62 × 10−5 1.57 × 10−2 1.98

3 6.87 × 10−5 1.99 × 10−2 5.19 × 10−1 9.51 × 10−6 1.41 × 10−2 1.97
16
5 2.00 × 10−5 1.80 × 10−2 5.04 × 10−1 5.13 × 10−6 1.27 × 10−2 1.95
17
5 7.42 × 10−6 1.65 × 10−2 4.90 × 10−1 3.28 × 10−6 1.16 × 10−2 1.94
18
5 4.01 × 10−6 1.51 × 10−2 4.77 × 10−1 2.27 × 10−6 1.05 × 10−2 1.93
19
5 2.59 × 10−6 1.39 × 10−2 4.65 × 10−1 1.63 × 10−6 9.66 × 10−3 1.91

4 1.82 × 10−6 1.28 × 10−2 4.53 × 10−1 1.18 × 10−6 8.88 × 10−3 1.90
21
5 1.33 × 10−6 1.19 × 10−2 4.42 × 10−1 8.56 × 10−7 8.20 × 10−3 1.89
22
5 9.99 × 10−7 1.10 × 10−2 4.32 × 10−1 6.05 × 10−7 7.59 × 10−3 1.88

23
5 7.55 × 10−7 1.03 × 10−2 4.21 × 10−1 4.05 × 10−7 7.05 × 10−3 1.87
24
5 5.69 × 10−7 9.61 × 10−3 4.12 × 10−1 2.41 × 10−7 6.56 × 10−3 1.87

5 4.21 × 10−7 9.00 × 10−3 4.03 × 10−1 1.05 × 10−7 6.12 × 10−3 1.86
26
5 3.01 × 10−7 8.45 × 10−3 3.94 × 10−1 0 5.73 × 10−3 1.85
27
5 2.01 × 10−7 7.94 × 10−3 3.85 × 10−1 0 5.37 × 10−3 1.84
28
5 1.17 × 10−7 7.48 × 10−3 3.77 × 10−1 0 5.04 × 10−3 1.83
29
5 4.50 × 10−8 7.07 × 10−3 3.69 × 10−1 0 4.75 × 10−3 1.83

6 0 6.68 × 10−3 3.62 × 10−1 0 4.48 × 10−3 1.82
31
5 0 6.33 × 10−3 3.55 × 10−1 0 4.23 × 10−3 1.81
32
5 0 6.00 × 10−3 3.48 × 10−1 0 4.00 × 10−3 1.81

33
5 0 5.70 × 10−3 3.41 × 10−1 0 3.79 × 10−3 1.80
34
5 0 5.43 × 10−3 3.34 × 10−1 0 3.59 × 10−3 1.80

7 0 5.17 × 10−3 3.28 × 10−1 0 3.42 × 10−3 1.79
36
5 0 4.93 × 10−3 3.22 × 10−1 0 3.25 × 10−3 1.78
37
5 0 4.71 × 10−3 3.16 × 10−1 0 3.10 × 10−3 1.78
38
5 0 4.50 × 10−3 3.10 × 10−1 0 2.95 × 10−3 1.77
39
5 0 4.30 × 10−3 3.04 × 10−1 0 2.82 × 10−3 1.77

8 0 4.12 × 10−3 2.99 × 10−1 0 2.69 × 10−3 1.76
41
5 0 3.95 × 10−3 2.93 × 10−1 0 2.58 × 10−3 1.76
42
5 0 3.79 × 10−3 2.88 × 10−1 0 2.47 × 10−3 1.75

43
5 0 3.65 × 10−3 2.83 × 10−1 0 2.36 × 10−3 1.75
44
5 0 3.50 × 10−3 2.78 × 10−1 0 2.27 × 10−3 1.75

9 0 3.37 × 10−3 2.73 × 10−1 0 2.18 × 10−3 1.74
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TABLE IV. Numerical values for the N = 30 ion chain shown in
Fig. 4.

Fidelity

Region size Squeezing z Raw Locally squeezed

2 4.119 3.49 × 10−1 0.814
4 3.666 1.88 × 10−1 0.767
6 3.507 1.03 × 10−1 0.738
8 3.420 5.79 × 10−2 0.717
10 3.362 3.28 × 10−2 0.699
12 3.315 1.89 × 10−2 0.682
14 3.274 1.10 × 10−2 0.667
16 3.234 6.56 × 10−3 0.652
18 3.194 3.99 × 10−3 0.636
20 3.152 2.49 × 10−3 0.619
22 3.106 1.60 × 10−3 0.600
24 3.054 1.08 × 10−3 0.576
26 2.993 7.59 × 10−4 0.544
28 2.919 5.73 × 10−4 0.493
30 2.821 4.47 × 10−4 0.368

TABLE V. Numerical values for the N = 50 ion chain shown in
Fig. 4.

Fidelity

Region size Squeezing z Raw Locally squeezed

2 5.118 2.83 × 10−1 0.827
4 4.579 1.25 × 10−1 0.784
6 4.390 5.70 × 10−2 0.758
8 4.292 2.62 × 10−2 0.739
10 4.229 1.22 × 10−2 0.724
12 4.184 5.67 × 10−3 0.710
14 4.149 2.67 × 10−3 0.698
16 4.118 1.26 × 10−3 0.686
18 4.091 6.04 × 10−4 0.675
20 4.066 2.91 × 10−4 0.665
22 4.041 1.42 × 10−4 0.654
24 4.016 6.97 × 10−5 0.644
26 3.991 3.47 × 10−5 0.634
28 3.965 1.75 × 10−5 0.624
30 3.938 9.00 × 10−6 0.613
32 3.910 4.70 × 10−6 0.601
34 3.879 2.51 × 10−6 0.588
36 3.846 1.37 × 10−6 0.574
38 3.811 7.67 × 10−7 0.557
40 3.771 4.44 × 10−7 0.538
42 3.728 2.66 × 10−7 0.515
44 3.679 1.67 × 10−7 0.485
46 3.623 1.12 × 10−7 0.445
48 3.556 8.03 × 10−8 0.387
50 3.473 6.09 × 10−8 0.271

TABLE VI. Numerical values for the N = 150 ion chain shown
in Fig. 4.

Fidelity

Region size Squeezing z Raw Locally squeezed

2 8.262 1.73 × 10−1 0.850
4 7.453 4.86 × 10−2 0.813
6 7.166 1.40 × 10−2 0.792
8 7.018 4.08 × 10−3 0.776
10 6.928 1.19 × 10−3 0.763
12 6.866 3.51 × 10−4 0.752
14 6.821 1.03 × 10−4 0.742
16 6.787 3.06 × 10−5 0.733
18 6.759 9.05 × 10−6 0.724
20 6.736 2.68 × 10−6 0.716
22 6.716 7.98 × 10−7 0.709
24 6.699 2.37 × 10−7 0.701
26 6.684 7.08 × 10−8 0.694
28 6.671 2.12 × 10−8 0.688
30 6.658 6.34 × 10−9 0.681
32 6.646 1.90 × 10−9 0.675
34 6.635 5.71 × 10−10 0.669
36 6.625 1.72 × 10−10 0.663
38 6.615 5.19 × 10−11 0.657
40 6.605 1.57 × 10−11 0.652
42 6.596 4.76 × 10−12 0.646
44 6.586 1.45 × 10−12 0.640
46 6.577 4.41 × 10−13 0.635
48 6.568 1.35 × 10−13 0.630
50 6.558 4.12 × 10−14 0.624

TABLE VII. Numerical values shown in Fig. 5.

Pqudit

Fock truncation/qudit dimension Raw Locally squeezed

2 1.93 × 10−2 3.47 × 10−4

3 1.28 × 10−3 6.46 × 10−6

4 3.17 × 10−4 1.20 × 10−7

5 2.99 × 10−5 2.24 × 10−9

6 5.88 × 10−6 4.17 × 10−11

7 6.73 × 10−7 7.77 × 10−13

8 1.17 × 10−7 1.45 × 10−14
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between collective operators in a linear harmonic chain, Phys.
Rev. A 73, 052107 (2006).

[67] P. Calabrese, J. Cardy, and E. Tonni, Entanglement entropy of
two disjoint intervals in conformal field theory, J. Stat. Mech.
(2009) P11001.

[68] P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity
in quantum field theory, Phys. Rev. Lett. 109, 130502 (2012).

[69] P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity
in extended systems: A field theoretical approach, J. Stat.
Mech. (2013) P02008.

[70] M. R. Mohammadi Mozaffar and A. Mollabashi, Entangle-
ment in Lifshitz-type quantum field theories, J. High Energy
Phys. 07 (2017) 120.

[71] A. Coser, C. De Nobili, and E. Tonni, A contour for the
entanglement entropies in harmonic lattices, J. Phys. A 50,
314001 (2017).

[72] Y. Javanmard, D. Trapin, S. Bera, J. H. Bardarson, and M.
Heyl, Sharp entanglement thresholds in the logarithmic nega-
tivity of disjoint blocks in the transverse-field Ising chain, New
J. Phys. 20, 083032 (2018).

[73] N. Klco and M. J. Savage, Systematically localizable operators
for quantum simulations of quantum field theories, Phys. Rev.
A 102, 012619 (2020).

[74] G. Di Giulio and E. Tonni, On entanglement Hamiltonians of
an interval in massless harmonic chains, J. Stat. Mech. (2020)
033102.

[75] G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, Entangle-
ment criteria for all bipartite Gaussian states, Phys. Rev. Lett.
87, 167904 (2001).

[76] A. Retzker, J. I. Cirac, and B. Reznik, Detecting vacuum
entanglement in a linear ion trap, Phys. Rev. Lett. 94, 050504
(2005).

[77] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum
computation of scattering in scalar quantum field theories,
Quantum Inf. Comput. 14, 1014 (2014).

[78] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum algorithms
for quantum field theories, Science 336, 1130 (2012).

[79] J. Kempe, A. Kitaev, and O. Regev, The complexity of
the local Hamiltonian problem, SIAM J. Comput. 35, 1070
(2006).

[80] R. Oliveira and B. M. Terhal, The complexity of quantum spin
systems on a two-dimensional square lattice, Quantum Inf.
Comput. 8, 0900 (2008).

[81] M. H. Freedman and M. B. Hastings, Quantum systems on
non-k-hyperfinite complexes: A generalization of classical sta-
tistical mechanics on expander graphs, Quantum Inf. Comput.
14, 144 (2014).

[82] A. Anshu, N. P. Breuckmann, and C. Nirkhe, NLTS Hamilto-
nians from good quantum codes, in Proceedings of the 55th
Annual ACM Symposium on Theory of Computing (Associ-

062419-15

https://doi.org/10.1038/nature01492
https://doi.org/10.1038/nature01494
https://doi.org/10.1103/PRXQuantum.4.030311
https://doi.org/10.1103/PhysRevLett.107.260501
https://doi.org/10.1103/PhysRevResearch.3.043072
https://doi.org/10.1103/PhysRevA.108.012429
https://doi.org/10.1103/PhysRevA.45.6493
https://doi.org/10.6028/jres.103.019
https://doi.org/10.1209/0295-5075/86/60004
https://doi.org/10.1088/1367-2630/13/7/073026
https://doi.org/10.1007/s003400050225
https://doi.org/10.1007/s003400050373
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.2307/2371062
https://doi.org/10.1103/PhysRevA.67.052311
https://doi.org/10.1103/PhysRevA.107.012415
https://doi.org/10.1103/PhysRevA.80.012325
https://doi.org/10.1103/PhysRevD.103.065007
https://doi.org/10.1103/PhysRevLett.127.211602
https://doi.org/10.1103/PhysRevA.66.042327
https://doi.org/10.1103/PhysRevA.70.052329
https://doi.org/10.1103/PhysRevA.73.052107
https://doi.org/10.1088/1742-5468/2009/11/P11001
https://doi.org/10.1103/PhysRevLett.109.130502
https://doi.org/10.1088/1742-5468/2013/02/P02008
https://doi.org/10.1007/JHEP07(2017)120
https://doi.org/10.1088/1751-8121/aa7902
https://doi.org/10.1088/1367-2630/aad9ba
https://doi.org/10.1103/PhysRevA.102.012619
https://doi.org/10.1088/1742-5468/ab7129
https://doi.org/10.1103/PhysRevLett.87.167904
https://doi.org/10.1103/PhysRevLett.94.050504
https://dl.acm.org/doi/10.5555/2685155.2685163
https://doi.org/10.1126/science.1217069
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.48550/arXiv.quant-ph/0504050
https://dl.acm.org/doi/10.5555/2600498.2600507
https://doi.org/10.1145/3564246.3585114


NATALIE KLCO AND D. H. BECK PHYSICAL REVIEW A 109, 062419 (2024)

ation for Computing Machinery, New York, NY, 2003), pp.
1090–1096.

[83] A. Kitaev and W. A. Webb, Wavefunction preparation and
resampling using a quantum computer, arXiv:0801.0342.

[84] D. B. Kaplan, N. Klco, and A. Roggero, Ground states via
spectral combing on a quantum computer, arXiv:1709.08250.

[85] A. Hamed Moosavian and S. Jordan, Faster quantum algo-
rithm to simulate fermionic quantum field theory, Phys. Rev.
A 98, 012332 (2018).

[86] D. Lee, J. Bonitati, G. Given, C. Hicks, N. Li, B.-N. Lu,
A. Rai, A. Sarkar, and J. Watkins, Projected cooling algo-
rithm for quantum computation, Phys. Lett. B 807, 135536
(2020).

[87] A. H. Moosavian, J. R. Garrison, and S. P. Jordan, Site-by-
site quantum state preparation algorithm for preparing vacua
of fermionic lattice field theories, arXiv:1911.03505.

[88] K. Choi, D. Lee, J. Bonitati, Z. Qian, and J. Watkins, Rodeo al-
gorithm for quantum computing, Phys. Rev. Lett. 127, 040505
(2021).

[89] A. J. Buser, T. Bhattacharya, L. Cincio, and R. Gupta, State
preparation and measurement in a quantum simulation of the
O(3) sigma model, Phys. Rev. D 102, 114514 (2020).

[90] N. Klco and M. J. Savage, Fixed-point quantum circuits for
quantum field theories, Phys. Rev. A 102, 052422 (2020).

[91] L. Lin and Y. Tong, Near-optimal ground state preparation,
Quantum 4, 372 (2020).

[92] P. Deliyannis, M. Freytsis, B. Nachman, and C. W. Bauer,
Practical considerations for the preparation of multivariate
Gaussian states on quantum computers, arXiv:2109.10918.

[93] A. N. Ciavarella and I. A. Chernyshev, Preparation of the
SU(3) lattice Yang-Mills vacuum with variational quantum
methods, Phys. Rev. D 105, 074504 (2022).

[94] L. Funcke, T. Hartung, K. Jansen, S. Kühn, M. Schneider, P.
Stornati, and X. Wang, Towards quantum simulations in par-
ticle physics and beyond on noisy intermediate-scale quantum
devices, Philos. Trans. R. Soc. A 380, 20210062 (2021).

[95] M. Bagherimehrab, Y. R. Sanders, D. W. Berry, G. K.
Brennen, and B. C. Sanders, Nearly optimal quantum algo-
rithm for generating the ground state of a free quantum field
theory, PRX Quantum 3, 020364 (2022).

[96] I. Stetcu, A. Baroni, and J. Carlson, Projection algorithm for
state preparation on quantum computers, Phys. Rev. C 108,
L031306 (2023).

[97] R. C. Farrell, M. Illa, A. N. Ciavarella, and M. J. Savage, Scal-
able circuits for preparing ground states on digital quantum
computers: The Schwinger model vacuum on 100 qubits, PRX
Quantum 5, 020315 (2024).

[98] T. D. Cohen and H. Oh, Efficient vacuum state preparation for
quantum simulation of strongly interacting local quantum field
theories, Phys. Rev. A 109, L020402 (2024).

[99] E. H. Lieb and D. W. Robinson, The finite group velocity of
quantum spin systems, Commun. Math. Phys. 28, 251 (1972).

[100] B. Nachtergaele, Y. Ogata, and R. Sims, Propagation of corre-
lations in quantum lattice systems, J. Stat. Phys. 124, 1 (2006).

[101] A. Uhlmann, The “transition probability” in the state space of
a ∗-algebra, Rep. Math. Phys. 9, 273 (1976).

[102] R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41,
2315 (1994).

[103] C. A. Fuchs, Distinguishability and accessible information in
quantum theory, Ph.D. thesis, New Mexico University, 1995.

[104] C. Helstrom, Minimum mean-squared error of estimates in
quantum statistics, Phys. Lett. A 25, 101 (1967).

[105] D. Bures, An extension of kakutani’s theorem on infinite prod-
uct measures to the tensor product of semifinite w*-algebras,
Trans. Am. Math. Soc. 135, 199 (1969).

[106] L. Banchi, S. L. Braunstein, and S. Pirandola, Quantum fi-
delity for arbitrary Gaussian states, Phys. Rev. Lett. 115,
260501 (2015).

[107] D. J. Heinzen and D. J. Wineland, Quantum-limited cooling
and detection of radio-frequency oscillations by laser-cooled
ions, Phys. Rev. A 42, 2977 (1990).

[108] J. I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, “Dark”
squeezed states of the motion of a trapped ion, Phys. Rev. Lett.
70, 556 (1993).

[109] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and
D. J. Wineland, Generation of nonclassical motional states of
a trapped atom, Phys. Rev. Lett. 76, 1796 (1996).

[110] J. Alonso, F. M. Leupold, B. C. Keitch, and J. P. Home,
Quantum control of the motional states of trapped ions through
fast switching of trapping potentials, New J. Phys. 15, 023001
(2013).

[111] D. Kienzler, H. Y. Lo, B. Keitch, L. de Clercq, F. Leupold, F.
Lindenfelser, M. Marinelli, V. Negnevitsky, and J. P. Home,
Quantum harmonic oscillator state synthesis by reservoir en-
gineering, Science 347, 53 (2015).

[112] D. Kienzler, C. Flühmann, V. Negnevitsky, H. Y. Lo, M.
Marinelli, D. Nadlinger, and J. P. Home, Observation of
quantum interference between separated mechanical oscillator
wave packets, Phys. Rev. Lett. 116, 140402 (2016).

[113] S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson,
D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C.
Allcock, Quantum amplification of mechanical oscillator mo-
tion, Science 364, 1163 (2019).

[114] R. T. Sutherland, S. C. Burd, D. H. Slichter, S. B. Libby, and
D. Leibfried, Motional squeezing for trapped ion transport and
separation, Phys. Rev. Lett. 127, 083201 (2021).

[115] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown,
K. R. Brown, and F. T. Chong, Asymptotic improvements
to quantum circuits via qutrits, in Proceedings of the 46th
International Symposium on Computer Architecture (Asso-
ciation for Computing Machinery, New York, NY, 2019),
pp. 554–566.

[116] P. J. Low, B. M. White, A. A. Cox, M. L. Day, and C. Senko,
Practical trapped-ion protocols for universal qudit-based quan-
tum computing, Phys. Rev. Res. 2, 033128 (2020).

[117] M. S. Blok, V. V. Ramasesh, T. Schuster, K. O’Brien, J. M.
Kreikebaum, D. Dahlen, A. Morvan, B. Yoshida, N. Y. Yao,
and I. Siddiqi, Quantum information scrambling on a su-
perconducting qutrit processor, Phys. Rev. X 11, 021010
(2021).

[118] A. Ciavarella, N. Klco, and M. J. Savage, Trailhead for quan-
tum simulation of SU(3) Yang-Mills lattice gauge theory in the
local multiplet basis, Phys. Rev. D 103, 094501 (2021).

[119] D. M. Kurkcuoglu, M. S. Alam, A. C. Y. Li, A. Macridin,
and G. N. Perdue, Quantum simulation of φ4 theories in qudit
systems, arXiv:2108.13357.

[120] Y. Chi et al., A programmable qudit-based quantum processor,
Nat. Commun. 13, 1166 (2022).

[121] E. Gustafson, Noise improvements in quantum simulations of
sQED using qutrits, arXiv:2201.04546.

062419-16

https://arxiv.org/abs/0801.0342
https://arxiv.org/abs/1709.08250
https://doi.org/10.1103/PhysRevA.98.012332
https://doi.org/10.1016/j.physletb.2020.135536
https://arxiv.org/abs/1911.03505
https://doi.org/10.1103/PhysRevLett.127.040505
https://doi.org/10.1103/PhysRevD.102.114514
https://doi.org/10.1103/PhysRevA.102.052422
https://doi.org/10.22331/q-2020-12-14-372
https://arxiv.org/abs/2109.10918
https://doi.org/10.1103/PhysRevD.105.074504
https://doi.org/10.1098/rsta.2021.0062
https://doi.org/10.1103/PRXQuantum.3.020364
https://doi.org/10.1103/PhysRevC.108.L031306
https://doi.org/10.1103/PRXQuantum.5.020315
https://doi.org/10.1103/PhysRevA.109.L020402
https://doi.org/10.1007/BF01645779
https://doi.org/10.1007/s10955-006-9143-6
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.2307/1995012
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevA.42.2977
https://doi.org/10.1103/PhysRevLett.70.556
https://doi.org/10.1103/PhysRevLett.76.1796
https://doi.org/10.1088/1367-2630/15/2/023001
https://doi.org/10.1126/science.1261033
https://doi.org/10.1103/PhysRevLett.116.140402
https://doi.org/10.1126/science.aaw2884
https://doi.org/10.1103/PhysRevLett.127.083201
https://doi.org/10.1145/3307650.3322253
https://doi.org/10.1103/PhysRevResearch.2.033128
https://doi.org/10.1103/PhysRevX.11.021010
https://doi.org/10.1103/PhysRevD.103.094501
https://arxiv.org/abs/2108.13357
https://doi.org/10.1038/s41467-022-28767-x
https://arxiv.org/abs/2201.04546


IDENTIFICATION OF A NATURAL FIELDLIKE … PHYSICAL REVIEW A 109, 062419 (2024)

[122] N. Goss, A. Morvan, B. Marinelli, B. K. Mitchell, L. B.
Nguyen, R. K. Naik, L. Chen, C. Jünger, J. M. Kreikebaum,
D. I. Santiago, J. J. Wallman, and I. Siddiqi, High-fidelity
qutrit entangling gates for superconducting circuits, Nat.
Commun. 13, 7481 (2022).

[123] D. González-Cuadra, T. V. Zache, J. Carrasco, B. Kraus, and P.
Zoller, Hardware efficient quantum simulation of non-Abelian
gauge theories with qudits on Rydberg platforms, Phys. Rev.
Lett. 129, 160501 (2022).

[124] T. V. Zache, D. González-Cuadra, and P. Zoller, Fermion-qudit
quantum processors for simulating lattice gauge theories with
matter, Quantum 7, 1140 (2023).

[125] P. P. Popov, M. Meth, M. Lewenstein, P. Hauke, M. Ringbauer,
E. Zohar, and V. Kasper, Variational quantum simulation of
U(1) lattice gauge theories with qudit systems, Phys. Rev. Res.
6, 013202 (2024).

[126] P. J. Low, B. White, and C. Senko, Control and readout of a
13-level trapped ion qudit, arXiv:2306.03340.

[127] M. Meth, J. F. Haase, J. Zhang, C. Edmunds, L. Postler, A.
Steiner, A. J. Jena, L. Dellantonio, R. Blatt, P. Zoller, T.
Monz, P. Schindler, C. Muschik, and M. Ringbauer, Simulat-
ing 2D lattice gauge theories on a qudit quantum computer
arXiv:2310.12110.

[128] W. Son, M. S. Kim, J. Lee, and D. Ahn, Entanglement transfer
from continuous variables to qubits, J. Mod. Opt. 49, 1739
(2002).

[129] B. Kraus and J. I. Cirac, Discrete entanglement distribution
with squeezed light, Phys. Rev. Lett. 92, 013602 (2004).

[130] M. Paternostro, W. Son, M. S. Kim, G. Falci, and G. M. Palma,
Dynamical entanglement transfer for quantum-information
networks, Phys. Rev. A 70, 022320 (2004).

[131] A. Serafini, M. Paternostro, M. S. Kim, and S. Bose, Enhanced
dynamical entanglement transfer with multiple qubits, Phys.
Rev. A 73, 022312 (2006).

[132] F. Casagrande, A. Lulli, and M. G. A. Paris, Improving the
entanglement transfer from continuous-variable systems to lo-
calized qubits using non-Gaussian states, Phys. Rev. A 75,
032336 (2007).

[133] T. Byrnes and Y. Yamamoto, Simulating lattice gauge theories
on a quantum computer, Phys. Rev. A 73, 022328 (2006).

[134] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations
of gauge theories with ultracold atoms: Local gauge invari-
ance from angular momentum conservation, Phys. Rev. A 88,
023617 (2013).

[135] E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg, A.
Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz, P. Zoller
et al., Real-time dynamics of lattice gauge theories with a few-
qubit quantum computer, Nature (London) 534, 516 (2016).

[136] I. Raychowdhury and J. R. Stryker, Solving Gauss’s law on
digital quantum computers with loop-string-hadron digitiza-
tion, Phys. Rev. Res. 2, 033039 (2020).

[137] N. Klco and M. J. Savage, Digitization of scalar fields for
quantum computing, Phys. Rev. A 99, 052335 (2019).

[138] A. Alexandru, P. F. Bedaque, S. Harmalkar, H. Lamm,
S. Lawrence, and N. C. Warrington (NuQS Collaboration),
Gluon field digitization for quantum computers, Phys. Rev. D
100, 114501 (2019).

[139] N. Klco, M. J. Savage, and J. R. Stryker, SU(2) non-Abelian
gauge field theory in one dimension on digital quantum com-
puters, Phys. Rev. D 101, 074512 (2020).

[140] M. Kreshchuk, W. M. Kirby, G. Goldstein, H. Beauchemin,
and P. J. Love, Quantum simulation of quantum field the-
ory in the light-front formulation, Phys. Rev. A 105, 032418
(2022).

[141] Z. Davoudi, I. Raychowdhury, and A. Shaw, Search for effi-
cient formulations for Hamiltonian simulation of non-Abelian
lattice gauge theories, Phys. Rev. D 104, 074505 (2021).

[142] J. F. Haase, L. Dellantonio, A. Celi, D. Paulson, A. Kan, K.
Jansen, and C. A. Muschik, A resource efficient approach for
quantum and classical simulations of gauge theories in particle
physics, Quantum 5, 393 (2021).

[143] C. W. Bauer and D. M. Grabowska, Efficient representation for
simulating U(1) gauge theories on digital quantum computers
at all values of the coupling, Phys. Rev. D 107, L031503
(2023).

[144] U.-J. Wiese, From quantum link models to D-theory: A re-
source efficient framework for the quantum simulation and
computation of gauge theories, Philos. Trans. R. Soc. A 380,
20210068 (2021).

[145] M. Aidelsburger, L. Barbiero, A. Bermudez, T. Chanda, A.
Dauphin, D. González-Cuadra, P. R. Grzybowski, S. Hands,
F. Jendrzejewski, J. Jünemann et al., Cold atoms meet lat-
tice gauge theory, Philos. Trans. R. Soc. A 380, 20210064
(2021).

[146] G. Pardo, T. Greenberg, A. Fortinsky, N. Katz, and E. Zohar,
Resource-efficient quantum simulation of lattice gauge the-
ories in arbitrary dimensions: Solving for Gauss’s law and
fermion elimination, Phys. Rev. Res. 5, 023077 (2023).

[147] S. V. Kadam, I. Raychowdhury, and J. R. Stryker, Loop-string-
hadron formulation of an SU(3) gauge theory with dynamical
quarks, Phys. Rev. D 107, 094513 (2023).

[148] C. W. Bauer, Z. Davoudi, N. Klco, and M. J. Savage, Quantum
simulation of fundamental particles and forces, Nat. Rev. Phys.
5, 420 (2023).

[149] I. D’Andrea, C. W. Bauer, D. M. Grabowska, and M. Freytsis,
A new basis for Hamiltonian SU(2) simulations, Phys. Rev. D,
109, 074501 (2024).

[150] L. Funcke, T. Hartung, K. Jansen, and S. Kühn, Review on
quantum computing for lattice field theory, Proc. Sci. 430, 228
(2023).

[151] R. Gilmore, Baker-Campbell-Hausdorff formulas, J. Math.
Phys. 15, 2090 (1974).

[152] M. A. M. Santiago, Baker-Campbell-Hausdorff formulae
and spherical and hyperbolic rotations, J. Phys. A 9, 897
(1976).

[153] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, Gaussian boson sampling, Phys. Rev.
Lett. 119, 170501 (2017).

[154] R. Kruse, C. S. Hamilton, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, Detailed study of Gaussian boson sam-
pling, Phys. Rev. A 100, 032326 (2019).

[155] N. Quesada, L. G. Helt, J. Izaac, J. M. Arrazola, R.
Shahrokhshahi, C. R. Myers, and K. K. Sabapathy, Simulating
realistic non-Gaussian state preparation, Phys. Rev. A 100,
022341 (2019).

[156] B. Arvind, Dutta, N. Mukunda, and R. Simon, The real sym-
plectic groups in quantum mechanics and optics, Pramana 45,
471 (1995).

[157] S. L. Braunstein, Squeezing as an irreducible resource, Phys.
Rev. A 71, 055801 (2005).

062419-17

https://doi.org/10.1038/s41467-022-34851-z
https://doi.org/10.1103/PhysRevLett.129.160501
https://doi.org/10.22331/q-2023-10-16-1140
https://doi.org/10.1103/PhysRevResearch.6.013202
https://arxiv.org/abs/2306.03340
https://arxiv.org/abs/2310.12110
https://doi.org/10.1080/09500340110120941
https://doi.org/10.1103/PhysRevLett.92.013602
https://doi.org/10.1103/PhysRevA.70.022320
https://doi.org/10.1103/PhysRevA.73.022312
https://doi.org/10.1103/PhysRevA.75.032336
https://doi.org/10.1103/PhysRevA.73.022328
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1038/nature18318
https://doi.org/10.1103/PhysRevResearch.2.033039
https://doi.org/10.1103/PhysRevA.99.052335
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevA.105.032418
https://doi.org/10.1103/PhysRevD.104.074505
https://doi.org/10.22331/q-2021-02-04-393
https://doi.org/10.1103/PhysRevD.107.L031503
https://doi.org/10.1098/rsta.2021.0068
https://doi.org/10.1098/rsta.2021.0064
https://doi.org/10.1103/PhysRevResearch.5.023077
https://doi.org/10.1103/PhysRevD.107.094513
https://doi.org/10.1038/s42254-023-00599-8
https://doi.org/10.1103/PhysRevD.109.074501
https://doi.org/10.22323/1.430.0228
https://doi.org/10.1063/1.1666587
https://doi.org/10.1088/0305-4470/9/6/010
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevA.100.032326
https://doi.org/10.1103/PhysRevA.100.022341
https://doi.org/10.1007/BF02848172
https://doi.org/10.1103/PhysRevA.71.055801

