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Reexamination of quantum state transformations with zero communication
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It is known that general convertibility of bipartite entangled states is not possible to arbitrary error without
some classical communication. While some tradeoffs between communication cost and conversion error have
been proven, these bounds can be very loose. In particular, there are many cases in which tolerable error
might be achievable using zero-communication protocols. In this work we address these cases by deriving
the optimal fidelity of pure quantum state conversions under local unitaries as well as local operations and
shared randomness. We also use these results to explore catalytic conversions between pure states using zero
communication.
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I. INTRODUCTION

The theory of quantum mechanics through the lens of
information and vice versa [1–3] has afforded the physicist
and the information scientist alike with a new way to view the
objects and long-term goals of their study. No better example
of this can be found than quantum resource theories. Quantum
resource theories specify the relevant physical property in
such a manner as to better tease apart the complexities of
quantum mechanics while also establishing what tasks may be
achieved with said resource [4]. Perhaps the earliest example
of such a resource theory is the resource theory of entangle-
ment. Entanglement may be viewed as a form of correlation
that does not exist in the classical world [5]. Roughly speak-
ing, the resource theory of entanglement asks (1) what tasks
may be performed better using entangled states and (2) how
entangled states may be converted from one to another under
some class of free operations.

The most standard view of the resource theory of en-
tanglement considers the set of free operations to be local
operations and classical communication (LOCC) which cap-
tures the “distant laboratory” paradigm where two (or more)
parties share an entangled state in spatially separated labs
and they can only perform operations on their respective
portions and exchange classical information (see Fig. 1). Not
only is this the most standard set of free operations, but in
some respect it seems minimal. Indeed, Hayden and Winter
showed that to convert one (pure) entangled state to another
to sufficiently small precision requires a certain amount of
communication between labs, regardless of how many aux-
iliary electron paramagnetic resonance (EPR) pairs they share
[6] (see also [7]). This is distinct not only from the classical
setting [8], but also from quantum states that are not entangled
[9,10]. However, the results of Hayden and Winter, while
fundamental, do not give us a complete picture of the trade-
off between communication and achievable tolerated error in
quantum state conversions. Indeed, it is easy to find examples
of state conversions which, according to the best known lower
bounds, still may be possible to perform with a tolerated error
of 1% using no communication (see Example 1 of Sec. III).

This shows that a relatively large gap in our understanding of
zero-communication entanglement transformations still per-
sists, and one we aim to address in this work.

Moreover, the tools we develop to address this problem
will also allow us to study quantum state transformations us-
ing shared auxiliary entanglement. The operational paradigm
in which parties are allowed to use arbitrary preshared entan-
glement but no communication is known as local operations
and shared entanglement (LOSE) [11]. Without restriction on
the entangled resource, quantum state convertibility |ψ〉AB →
|φ〉AB under LOSE is trivial since Alice and Bob could al-
ways just demand |φ〉 as their preshared entanglement and
then throw away |ψ〉 when it is given. However, if one tries
to minimize the amount of preshared entanglement (under
some measure), the problem becomes quite interesting. A
more demanding setting is to minimize the amount of pre-
shared entanglement |ω〉 while requiring it outputs the target
state |φ〉, i.e., |ψ〉AB ⊗ |ω〉A′B′ → |φ〉AB ⊗ |ω〉A′B′ for auxiliary
pre-shared entanglement |ω〉A′B′ . Transformations of this form
are known as catalytic transformations with |ω〉A′B being the
catalyst (see [12,13] for reviews on catalytic transformations).

When instead the catalyst only needs to be returned ap-
proximately, we distinguish it from the zero-error case by
calling it an “embezzler” or “embezzling state.” Remarkably,
van Dam and Hayden showed that there exists a family of
“universal embezzling states” under local operations [14].
That is, they found a family of states {|μ(n)〉A′B′ }n∈N such
that for any tolerated nonzero error ε, one can always prepare
a pure quantum state |ψ〉AB using a member of this family
and zero communication. Perhaps even more surprising, the
authors showed that this family of embezzlers is “optimal” in a
certain sense. In particular, they showed that if one strengthens
the class of transformations to local operations and clas-
sical communication (LOCC) and replaces the appropriate
universal embezzler state |μ(nε )〉 for some nε ∈ N to a state-
dependent embezzler state |ζ (ψ, ε)〉 that also depends on the
tolerated error ε, the dimension of the entanglement in |μ(nε )〉
and |ζ (ψ, ε)〉 will become nearly the same as ε approaches
zero. This near optimality along with Hayden and Winter’s
result has, understandably, largely ceased the study of entan-
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FIG. 1. Conversion of pure quantum states in distant labs. (a) The
LOCC model where communication is exchanged. (b) The embez-
zling of quantum states where an auxiliary entangled state is used.
This may be seen as a special case of catalytic conversion.

glement transformations with zero communication because
when one needs entanglement transformations without com-
munication, one uses embezzlement [15,16].1 It is, however,
not clear what is the necessary error for embezzlement to
become near optimal, which could be relevant in practical set-
tings. Indeed, for any tolerated error, it is easy to find sufficient
conditions on pure quantum states to be converted with no
catalyst at all (Example 2 of Sec. III). This is an indication
that we also do not understand embezzling sufficiently well.

A. Summary of results

The primary aim of this work is to provide tighter lower
bounds on the error in pure quantum state entanglement con-
vertibility with zero communication. A high-level comparison
of our results to the aforementioned work on this topic is
presented in Fig. 2. This depicts a “one-shot resource trade-
off” region that must contain the “true” one-shot resource
tradeoff surface for a given pure state conversion. Hayden and
Winter’s result provides a lower bound on the achievability
independent of the amount of shared maximally entangled
states, but their result can be too loose when considering
zero communication. The result of van Dam and Hayden
provides an outer bound on the achievability surface on the
face pertaining to LOSE, but their result in fact can be too
loose when the error is not sufficiently small. In this work,
our results allow one to exactly solve the minimal error in
the zero-communication setting and also provide significantly
tighter bounds than quantum embezzling for a relevant region
on the LOSE face (see Fig. 2).

To formally establish our results, we reduce the class of
questions regarding optimal pure quantum state conversion
to optimization problems that only concern non-negative vec-
tors. This is because of a bijection between the equivalence
classes of pure quantum states under local unitaries, which
are defined solely by their Schmidt coefficients, and the prob-
ability simplex. We do this by showing the optimal fidelity
of pure quantum state transformations with local unitaries is
efficiently computable. Of course, in general one would not
expect local unitaries to be the optimal strategy and we build
on this result to present a nonconvex optimization program
over an optimization variable with bounded dimension. An

1The notable exceptions to this halted topic of research have been
the consideration of special embezzling families [17] and the corre-
lated sampling lemma [18], which may be viewed as a variation of
embezzling.

FIG. 2. Comparison of [14] (blue), [19] (green), and this work’s
results (pink). Reference [19] finds lower bounds on the classical
communication necessary to convert one state to another, but in the
zero-communication setting the bound is loose (see Examples 1 and
3 for an example of the depicted gap). We find methods for solving
this exactly (Sec. IV), which establishes that communication is nec-
essary for larger tolerated errors. Reference [14] establishes a method
for pure quantum state transformations with zero communication
with massive amounts of entanglement. This result is known to be
almost optimal for sufficiently small error. Nonetheless, we find we
find the necessary resources can be too strong for a relevant error
range, even if ultimately it is optimal (Sec. VI).

immediate corollary of this result is the impossibility of pure
quantum state conversions with zero communication for negli-
gible error. We also present efficient computable upper bounds
on the achievable error using a semidefinite programming
(SDP) relaxation. We also show that in the case where either
the seed (i.e., initial) or target state is a two-qubit state, the
local unitary strategy is optimal. However, we can show for
larger dimensions this is not the case.

Having established general properties in the single-copy
case, we move to the multiple-copy case, i.e., where the
seed and/or target state is of independent and identically dis-
tributed (i.i.d.) form. This is standard in determining the rate
of converting one state to another. In particular, we consider
dilution and distillation where the seed state or target state,
respectively, is many copies of a maximally entangled state
and show these are convex optimization programs and may
be seen as involving the Ky-Fan norms when extended to the
regime where they are not a norm. Lastly, in a sense extending
our earlier two-qubit results, we establish that if the target
state is an n-fold copy of a two-qubit entangled state and the
seed state’s Schmidt rank is less than the target state, then local
unitaries are the optimal strategy.

Finally, given these results, we turn our attention to
quantum embezzlement. We begin by noting that the cor-
respondence between Schmidt coefficients and probability
distributions means that quantum embezzlement implies a
classical equivalent we call randomness embezzlement. We
then proceed to use our tools to consider the problem of
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approximate catalytic pure quantum state conversion un-
der local unitaries, in effect a generalization of traditional
embezzling, and compare it to embezzling. We show in par-
ticular that at least in general the optimality of the embezzling
states is only for very small errors. Indeed, we show for
reasonable tolerable errors, the embezzling state may have
a Schmidt rank of many orders of magnitude larger than a
state-dependent embezzler. This may have practical relevance
and strongly refines our understanding of quantum state trans-
formations under LOSE.

B. Relation to previous work

There has been a great deal of work on embezzlement
within communication theory as well as to some degree within
quantum thermodynamics. There has also been work on state
conversion under LOSR. As such, we briefly state how our
work relates to these and other mathematical methodologies.
The major technical results of this work focus on the maxi-
mum fidelity of conversion between bipartite entangled pure
states under local unitaries or local operations and shared
randomness. This may be viewed as a variation of optimal
conversion distance, which is often described in terms of trace
distance (See [20] for a discussion of conversion distance
in terms. of trace norm for general resource theories.) This
significantly differs from previous works on conversion of
bipartite states under LOSR [11,21], which establish equiv-
alent conditions for there being an exact conversion from
one bipartite state to another under LOSR. As previously
stated, we use our technical results to look at embezzling and
necessary communication for entangled state transformations.
While motivated and focused on the work of van Dam and
Hayden [14] and Hayden and Winter [6], there has been
further related work. In terms of necessary communication,
[22] showed necessary and sufficient conditions for there to
exist an exact catalytic transformation between two quantum
states under LOCC. In terms of embezzlement, [23] was the
first to construct universal embezzling families with respect to
zero communication for m > 2 parties. Reference [17] studied
properties of universal embezzling families with respect to
zero communication in more detail. In quantum thermody-
namics, there is the notion of “thermal embezzling,” which
is understood when the states commute with the relevant
Hamiltonian, thereby reducing the problem to majorization
[24,25]. Reference [24] sketches how quantum embezzlement
as done in van Dam and Hayden [14] implies a type of thermal
embezzlement that shows the second law of thermodynamics
does not hold in an approximate catalytic sense. This formal
insight is equivalent to what we call “randomness embezzle-
ment” in Sec. IV. In [25], they can exclude this issue with
the second law by imposing physical assumptions. They also
construct an optimal universal thermal embezzling family.
Finally, we remark that embezzling (with respect to any set
of allowed transformations) is a form of approximate catalytic
transformation. We refer the reader to recent reviews on catal-
ysis for further information [12,13].

C. Organization of the paper

The rest of the paper is organized as follows. In Secs. II
and III we present the necessary notation and background,

respectively, to understand the rest of the paper. In Sec. IV,
we do the following:

(i) Make explicit the correspondence between pure quan-
tum states under local unitaries LU and the probability
simplex and note this implies the existence of a classical
variation of embezzlement (Proposition 7).

(ii) Prove our equation for fidelity of state conversion
under local unitaries (Theorem 1) and our optimization for
fidelity of state conversion under local operations and shared
randomness (Theorem 2).

(iii) Establish computable upper bounds on the fidelity of
state conversion under LOSR (Theorem 5).

In Sec. V we present the results where the target or seed
state is of i.i.d. form. In Sec. VI we discuss embezzlers under
local unitaries. In Sec. VII we discuss why our theory does
not generalize beyond bipartite pure states.

II. BASIC NOTATION

Our notation largely aligns with standard texts [26,27].
In this paper we consider finite-dimensional quantum sys-
tems. Given n ∈ N, we define [n] := {1, . . . , n}. A finite-
dimensional Hilbert space will be labeled with a capital roman
letter, e.g., A, B, and may be identified by its dimension
d ∈ N, e.g., A ∼= Cd . The space of quantum states, or density
matrices, with respect to a Hilbert space A, is the space of
positive-semidefinite operators with unit trace, i.e., D(A) :=
{ρ ∈ L(A) : ρ � 0 and Tr(ρ) = 1} where � is the Löwner or-
der and L(A) is the space of endomorphisms. If a quantum
state is a joint state over multiple Hilbert spaces, we will use
a subscript to specify this, e.g., ρAB ∈ D(A ⊗ B). A quantum
state ρA is pure if ρA = |ψ〉〈ψ | for a unit vector |ψ〉, where
we are using bra-ket notation. For this previous reason, we
generally just specify a pure quantum state by |ψ〉A, or ψ

if we are considering its density matrix representation. We
say a state is classical if it is diagonal in the standard basis,
i.e., it is a probability distribution. The space of probability
distributions over d elements is denoted P (d ). A quantum
channel E is a (linear) completely positive, trace-preserving
map E : L(A) → L(B). We denote the set of quantum chan-
nels from L(A) → L(B) as C(A, B).

III. BACKGROUND AND MOTIVATION

Throughout this section we fix A ∼= Cd , B ∼= Cd ′
for

clarity.
a. Fidelity. The fidelity is a standard measure of similarity

between two positive-semidefinite operators R, S � 0:

F (R, S) = ‖
√

R
√

S‖2
1 = Tr

(√√
SR

√
S
)2

, (1)

where the square root of a positive-semidefinite operator is
defined in the standard fashion on its spectral decomposition
and ‖ · ‖1 is the Schatten 1-norm. It satisfies various proper-
ties that will be relevant for this work which we summarize
here. All of these may be verified by direct calculation or by
referring to standard texts.

Proposition 1 (Summary of fidelity properties). Let ρ, σ ∈
D(A). The following hold:
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(1) 0 � F (ρ, σ ) � 1 where the upper bound is saturated
if and only if ρ = σ and the lower bound saturates if and only
if their images are orthogonal.

(2) The fidelity is isometrically invariant, i.e., given isom-
etry V : A → B,

F (V ρV †,V σV †) = F (ρ, σ ) .

(3) The fidelity satisfies data processing. That is, for any
quantum channel E ∈ C(A, B),

F (ρ, σ ) � F (E (ρ), E (σ )) .

(4) If both states are pure,

F (|φ〉〈φ|, |ψ〉〈ψ |) = |〈ψ |φ〉|2 ,

and if one state is pure

F (|φ〉〈φ|, σ ) = 〈φ|σ |φ〉 .

(5) If both states are classical, P, Q ∈ P (d ), then the fi-
delity reduces to the square of the Bhattacharyya coefficient:

F (P, Q) =
⎛⎝∑

i∈[d]

√
p(i)q(i)

⎞⎠2

= BC(p, q)2 ,

where p(i) = P(i, i) and likewise for Q.
(6) Given pure quantum states with the same eigen-

basis and real amplitudes, |ψ〉 = ∑
x

√
p(x)|x〉, |φ〉 =∑

x

√
q(x)|x〉, the fidelity reduces to the square of the

Bhattacharyya coefficient of the probability distributions de-
fined by the amplitudes

F (|φ〉〈φ|, |ψ〉〈ψ |) = BC(p, q)2 .

We also note that in all of these definitions there is a pesky
squaring that effectively we do not care about. For this reason
we could define the square-root fidelity

√
F (R, S) :=

√
F (R, S) .

Note the square-root fidelity could be viewed as the quantum
extension of the Bhattacharyya coefficient.

b. Norms. In defining the fidelity we used the
Schatten 1-norm. More generally, there are the Schatten
p-norms which for X ∈ L(A, B) may be defined as ‖X‖p :=
‖σ (X )‖p where σ (X ) is the ordered vector of singular values
of X , σ1(X ) � σ2(X ) � · · · � σrank(X )(X ) and it is being
evaluated under the Lp-norm where p � 1. The infinity
norm, ∞-norm, is limp→∞ ‖X‖p = ‖X‖∞ = maxi σi(X ).
The infinity norm was generalized to the Ky-Fan k-norms
‖X‖(k) := ∑

σi(X ) for 1 � k � min{d, d ′}. The Ky-Fan
norms have relevance in measuring entanglement [28]. A
generalization of the Ky-Fan and Schatten norms together is
given by the (k, p)-norms [29]

‖X‖(k,p) :=
⎛⎝∑

i∈[k]

σi(X )p

⎞⎠1/p

, (2)

which also have use in measuring entanglement of pure quan-
tum states [30]. Much like is common to do for the Schatten
p-norms, we can extend the (k, p)-norms to p > 0 with the
caveat they will not be norms as they will not in general satisfy
subadditivity (the triangle inequality) for p ∈ [0, 1).

c. Entanglement theory. A bipartite positive operator ρAB

is separable if there exists n ∈ N, p ∈ P (n), {σ i
A}i∈[n] ⊂ D(A),

and {τ i
B}i∈[n] such that

ρAB =
∑
i∈[n]

p(i)σ i
A ⊗ τ i

B .

Otherwise, the state is entangled. As a pure quantum state
|ψ〉〈ψ |AB is defined by a unit vector, this reduces to a pure
quantum state is separable, referred to product in this setting,
if and only if there exists |φ〉A, |ϕ〉B such that |ψ〉 = |φ〉A ⊗
|ϕ〉B. While this is sufficient for determining if a bipartite pure
state is entangled, there is also a notion of “how” entangled a
state is in terms of Schmidt rank. Every bipartite pure state
|ψ〉AB admits a unique (up to reordering) decomposition of
the form

|ψ〉AB =
∑
i∈[k]

√
p(i)|ui〉A ⊗ |vi〉B, (3)

where k = max{d, d ′}, p ∈ P (k), and {|ui〉}i∈[k], {|vi〉}i∈[k] are
orthonormal bases of A and B, respectively. We note that for
nonunit vectors, such a decomposition still exists, it is just
p ∈ R�0, i.e., is a non-negative vector rather than a probability
distribution.

The
√

p(i) > 0 terms are referred to as the Schmidt coeffi-
cients of the pure quantum state. The Schmidt rank of |ψ〉AB,
SR(|ψ〉) = supp(p), i.e., the number of Schmidt coefficients.
This may be viewed as a measure of entanglement in the sense
that the Schmidt rank of a product state is 1 and the maximally
entangled state |�+〉CdCd = 1√

d

∑
i |i〉Cd |i〉Cd has Schmidt

rank d . We define the set SR(d ) := {|ψ〉 : SR(|ψ〉) � d},
where we note this set is independent of the dimension the
state is embedded in.

Lastly we note a particularly nice property of pure states,
known as Uhlmann’s theorem.

Lemma 1 (Uhlmann’s theorem). Given R, T ∈ Pos(A) and
(possibly unnormalized) |ψ〉 ∈ A ⊗ B such that TrB(ψ ) = R,
then

F (R, T ) = max{|〈ψ |φ〉|2 : |φ〉 ∈ A ⊗ B, TrB(φ) = T } .

d. No-go theorems, embezzling, and motivation. With the
established background, we now present the previous results
related to zero-communication pure state transformations
which we will discuss our results in relation to. The first
is a lower bound on the number of qubits or classical bits
necessary to convert between pure quantum states [6].

Proposition 2. (Reference [6, Theorem 8]). Consider a
state transformation via an arbitrary channel E ∈ C(A ⊗
B, A ⊗ B) from seed state |φ〉AB to target state |ψ〉AB such
that F (E (φ), ψ ) � 1 − ε where the channel E is implemented
using local operations and quantum communication. Then,
independent of any amount of entanglement assistance, for
δ = 8

√
ε, in the implementation of E , q qubits must have been

exchanged where

q � 1
2 [
δ (TrB(|ψ〉〈ψ |)) − 
0(TrB(|φ〉〈φ|))]
+ log2(1 − δ), (4)
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where

exp[
ε(P)] = min rank(P̃)λmax(P̃)

s.t.Tr(P̃) � 1 − ε,

P̃ = �P�,

[P,�] = 0,

�2 = � .

Moreover, the bound given in (4) holds for a necessary amount
of classical communication by multiplying the right-hand side
by two.

While the above proposition is very powerful and implies
two states with different Schmidt decompositions cannot be
perfectly converted with zero communication, it is not suffi-
cient in every scenario. In particular, the following example
shows that in certain cases Proposition 2 cannot eliminate any
state from being able to be converted to a given target state
with relatively high fidelities.

Example 1 (On the necessity of communication). Up to
local unitaries, let the target state be |ψ〉 = √

0.54|00〉 +√
0.02|11〉 + √

0.44|22〉. Assume we are interested in
a state transformation E such that F (E (φ), ψ ) = 0.99,
where |φ〉 is the seed state. Then ε = 0.01, so δ > 0.56.
Note TrB(|ψ〉〈ψ |) = 0.54|0〉〈0| + 0.02|1〉〈1| + 0.44|2〉〈2|.
Then 
δ (TrB(|ψ〉〈ψ |)) = log2(|1| × 0.44) < −1.18, by
removing the 0.02 and 0.54 eigenvalues. It may be shown
[6] that 
0(TrB(|ψ〉〈ψ |)) � 0 and clearly log2(1 − δ) < 0.
It follows that in this setting the right-hand side of (4) is
negative. Therefore, we have no proof from this bound that
any transformation for any seed state which achieves this
relatively high fidelity of 99% requires any communication.

While the above example shows there are reasonably small
tolerated errors ε where Proposition 2 is not helpful, when the
tolerated error is sufficiently small, it will imply the need for
communication. This sort of structure for sufficiently small ε

also appears when considering quantum embezzlement [14],
which may be seen as a solution to Proposition 2 implying
communication is necessary. Quantum embezzlement in ef-
fect shows one can make pure state transformations with zero
communication to any nonzero error if they have the right
sufficiently large embezzling state.

Proposition 3. (Reference [14]). Consider the family of
embezzler states |μ(n)〉A′B′ = 1√

Hn

∑n
j=1

1√
j
| j〉A′ | j〉B′ where

Hn := ∑n
i=1 n−1 is the harmonic number. For any ε > 0 and

target bipartite pure quantum state |ψ〉AB with Schmidt rank
m, for n > m1/ε there exist unitaries UAA′ ,WBB′ such that

F [UAA′ ⊗ WBB′ (|μ(n)〉A′B′ |0〉A|0〉B],

|μ(n)〉A′B′ ⊗ |ψ〉AB) � 1 − ε.

Moreover, U,W are in effect permutations on the joint
Schmidt bases.

One can see quantum embezzlement implies a way to con-
vert one pure state to another to non-zero error by picking a
large enough embezzler and then first “embezzling out” the
original state (uncomputing |φ〉 to |0〉|0〉 via embezzling) and
then “embezzling in” the target state |ψ〉.

What is perhaps most remarkable about the above approach
is that it was shown in the original work that even if we allow

LOCC and a state-dependent embezzler |ζ 〉, the amount of
entanglement n in |ζ 〉 must scale proportionally to 1

log2(n) as
the error ε becomes close to zero, but the universal embezzling
family |μ(n)〉 scales the same way in the entanglement n.
That is, as ε approaches zero, embezzling using van Dam and
Hayden’s universal embezzling family is effectively optimal.
However, just as with the discussion pertaining to Proposition
2, it is clear embezzling is not necessary for reasonable error
levels in general. In fact, we show in the following example
that for any nonzero error there exist states which can be
converted without any catalyst or embezzler.

Example 2 (On the necessity of embezzling). As noted, as
ε → 0, embezzling is necessary. However, it is not in general
clear at what point embezzling becomes necessary. This can
be seen as follows. Consider ε ∈ (0, 1) and two probability
distributions p, q ∈ P (m) such that the BC(p, q)2 � 1 − ε.
Define the seed state as |φ〉 = ∑

i∈[m]

√
p(i)|i〉A|i〉B and the

target state as |ψ〉 = ∑
i∈[m]

√
q(i)|i〉A|i〉B. Then we have

F (|φ〉〈φ|, |ψ〉〈ψ |) = BC(p, q)2 � 1 − ε ,

where we have used item 5 of Proposition 1. Therefore, given
|φ〉, it requires no communication or entanglement to generate
|ψ〉 to error ε. In fact, as we show later (Proposition 4), this
will be true for converting the set of states with Schmidt
coefficients defined via p to the set of states with Schmidt
coefficients defined via q in general.

Given these two examples, we see that while these results
give strong characterizations of pure state transformations
with zero communication, neither the need for communication
by Proposition 2 nor the optimality of Proposition 3 when the
error tends to zero give us a full understanding of this setting.
It would therefore be of value to better understand this task,
and this is what the rest of this work addresses.

IV. SINGLE-COPY PURE STATE CONVERSION WITH
ZERO COMMUNICATION

Our primary goal of this section is to determine the min-
imal error of conversion between pure quantum states with
zero communication, which would resolve the gap presented
in Example 1. To establish the minimal error of conversion, we
will use the correspondence between the probability simplex
and Schmidt coefficients under local unitaries (LU), which
we establish in the following subsection. We also note that
this implies the existence of a classical equivalent of em-
bezzling, which we call randomness embezzling (Theorem
5). This correspondence motivates the idea that the optimal
fidelity of pure state conversion under local unitaries is sim-
ply reordering the Schmidt coefficients, which we in fact
prove (Theorem 1). We then use the local unitary result to
establish a bounded but nonlinear optimization program that
determines the optimal achievable fidelity under conversion
via local operations and shared randomness (LOSR), which
does not require shared randomness (Theorem 2). We end
the section by discussing the relationship between the LU
and LOSR strategies and introducing an SDP relaxation for
efficiently establishing upper bounds on the achievable fidelity
of pure state conversions under LOSR.
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A. Correspondence under local unitaries between Schmidt
coefficients and the probability simplex

In this subsection we establish the bijection between
Schmidt coefficients, which define the equivalence classes of
bipartite pure quantum states under local unitaries, and the
probability simplex. One reason for this is because the rest
of the results of this work might be best seen as verifying
that in the zero-communication setting this correspondence
is all that matters. Indeed, we will see this in the subsequent
subsections which show that the minimal fidelity error of pure
state transformations under zero communication will always
be functions of only the Schmidt coefficients.

Definition 1. We define the the ordered probability simplex
P↓(d ) as p ∈ P↓ if p(i) � p(i + 1) for all i ∈ [d − 1].

Proposition 4. Up to local unitaries, any pure quantum
state is of the form

|ψ〉AB =
∑
i∈[k]

√
p↓(i)|i〉A ⊗ |i〉B,

where p↓(i) � p↓(i + 1) for all i ∈ [k − 1], k = max{d, d ′},
p↓ ∈ P↓(k), and {|i〉} is the computational basis in both cases.
In other words, there exist both equivalence classes on pure
quantum states under local unitary operations in terms of
Schmidt coefficients and ordered Schmidt coefficients.

Proof. Consider |ψ〉AB = ∑
j∈[k]

√
p′( j)|u j〉 ⊗ |v j〉 as de-

composed in (3). Now fix the permutation π on [k] such
that p′[π−1(i)] � p′[π−1(i + 1)] for all i ∈ [k − 1], i.e., π

relabels p′ so that it is decreasing. Define the unitaries
UA = ∑

j∈[k] |π ( j)〉〈u j |, WB = ∑
j∈[k] |π ( j)〉〈v j |, which may

be verified to be unitaries by direct calculation. Then (UA ⊗
WB)|ψ〉AB will be of the form given in the proposition state-
ment. Finally, we could make this argument for any pure
quantum state without ordering the Schmidt coefficients to get
one set of equivalence classes. As such, under local unitaries,
we can define equivalence classes of pure quantum states in
terms of ordered or nonordered Schmidt coefficients. This
completes the proof. �

Definition 2. The space of (representatives of the equiv-
alence class of) ordered Schmidt coefficient pure quantum
states with Schmidt rank bounded by d is given by SR↓(d ).
That is, if |ψ〉 ∈ SR↓(d ), then |ψ〉 = ∑

i∈[d]

√
p↓(i)|ui〉|i〉|i〉

where p↓ ∈ P↓(d ).
We can use the previous proposition to relate the (ordered)

probability simplex over d elements to to the equivalence
classes of (ordered) Schmidt decompositions with Schmidt
rank bounded by d . This will make use of the vec mapping.

Definition 3. Given the space of linear operators L(A, B)
where A ∼= Cd , B ∼= Cd ′

, the vec mapping vec : L(A ⊗ B) →
A ⊗ B is defined by vec(|i〉〈 j|) = | j〉 ⊗ |i〉 where {|i〉}i∈[d] and
{| j〉} j∈[d ′] are the computational bases for A and B, respec-
tively.

This choice of definition for the vec mapping satisfies the
identity (

X T
1 ⊗ X0

)
vec(Y ) = vec(X0Y X1), (5)

where X0 ∈ L(A0, B0), X1 ∈ L(A1, B1), and Y ∈ L(B1, B0).
Proposition 5. Consider the functions vec(

√·) : L(Cd ) →
Cd ⊗ Cd and vec−1(·�2) : Cd ⊗ Cd → L(Cd ) where ·�2 is
the entrywise square of a vector. These functions define a

bijection between P (d ) [respectively P↓(d )] and the space
of equivalence classes of Schmidt decompositions under local
unitaries with Schmidt rank bounded by d [respectively the
space SR↓(d )].

Proof. We prove it via direct calculation for P (d ) and the
space of Schmidt decompositions. The proof in the other case
works the same. Let C ∼= Cd . First, consider p ∈ P (d ) which
we write in its density matrix form, e.g., P = ∑

i∈[d] p(i)|i〉〈i|.
Then

vec(
√

P) = vec

⎛⎝∑
i∈[d]

√
p(i)|i〉〈i|

⎞⎠
=
∑
i∈[d]

√
p(i)|i〉C ⊗ |i〉C′,

which is in the specified equivalence class by applying isome-
tries that take the computational bases from C,C′ to A, B. In
the other direction, take the Schmidt decomposition in the pu-
rified basis |ψ〉AB = ∑

i∈[d]

√
q(i)|i〉A ⊗ |i〉B. We can convert

the A space to C via the channel

FA→C (·) := V † · V + (1 − V †V ) · (1 − V †V ) ,

where V = ∑
i∈[d] |i〉A〈i|C is the isometry that takes the C

space to the A space as |A| � |C| by assumption. The same
type of conversion holds for the B and C′. Therefore, we have
(up to equivalences) |ψ〉AB = ∑

i∈[d]

√
q(i)|i〉C |i〉C′ . Then,

vec−1(|ψ〉·2) = vec−1

⎛⎝∑
i∈[d]

q(i)|i〉C|i〉C′

⎞⎠
=
∑
i∈[d]

q(i)|i〉〈i|C,

where in the last line we used that C′ ∼= C so that L(C,C′) ∼=
L(C). This completes the proof. �

The reason this is useful is it draws equivalence between
the equivalence classes of entangled states in terms of Schmidt
coefficients and probability distributions under fidelity.

Proposition 6. Consider |φ〉 = ∑
i∈[d]

√
p(i)|i〉A|i〉B,

|ψ〉 = ∑
i∈[d]

√
q(i)|i〉A|i〉B. Then F (|φ〉〈φ|, |ψ〉〈ψ |) =

BC(p, q)2.
Proof. First note V : |i〉A → |i〉A|i〉B is an isometry. Define

|φ′〉 := ∑
i

√
p(i)|i〉A and similarly |ψ ′〉. Note V |φ′〉 = |φ〉

and V |ψ ′〉 = |ψ〉. Thus, we have

F (|φ〉〈φ|, |ψ〉〈ψ |) = F (V |φ′〉〈φ′|V †,V |ψ ′〉〈ψ ′|V †)

= F (|ψ ′〉〈ψ ′|, |φ′〉〈φ′|)
= BC(p, q)2,

where the first equality is our observation, the second is iso-
metric equivalence (item 2 of Proposition 1), and the third is
using item 6 of Proposition 1 where we note |ψ ′〉, |φ′〉 are of
the form given in that item. This completes the proof. �

Randomness embezzling. Before moving forward, we note
that independent of the focus of this work, this equivalence
between Schmidt coefficients and the probability simplex
means that the proof of quantum embezzlement also proves
the existence of a classical version. Specifically, the proof of
quantum embezzlement [14] only bounds the fidelity between

062418-6



REEXAMINATION OF QUANTUM STATE … PHYSICAL REVIEW A 109, 062418 (2024)

FIG. 3. Comparison between embezzlement of classical distri-
butions and quantum states. (a) The embezzlement of classical
distributions happens within one laboratory and a local permutation
of the joint computational basis. (b) The embezzling of quantum
states happens across two laboratories where each party applies the
permutation of the joint computational basis on their local halves.
Note in both cases this is done in an approximate fashion as denoted
by the ≈ symbol in the diagrams.

the Schmidt coefficients of the embezzling state and the target
state tensored with the embezzling state (under some permu-
tation). This allows them to bound the fidelity by reducing it
to the Bhattacharyya coefficient of the Schmidt coefficients:

F (|ψ〉, |φ〉) = |〈ψ, φ〉|2 = |〈
√

P,
√

Q〉|2

=
(∑

i

√
p(i)q(i)

)2

= BC(p, q)2 .

This argument follows the same form as the previous few
propositions. This allows us to ultimately conclude the
same proof bounds a classical equivalent of embezzling
(Proposition 7) which is depicted in Fig. 3 for comparison
with quantum embezzlement. This is shown in further formal
detail in Appendix A.

Moreover, we note this above idea has been previously
explored in the context of quantum thermodynamics. Specifi-
cally, this exact idea was sketched in [24] where it was used to
show that any process can be done cyclically when an approx-
imate error condition is permitted and there are no restrictions
on the embezzling state. Moreover, Ref. [25] explored this
issue in further detail and in particular showed thermal em-
bezzling no longer violates the second law in an approximate
sense when there are physical restrictions on the embezzling
state. As we did not present the proof for embezzlement of
quantum states and the proof is omitted in [24], we present
the proof of embezzlement of probability distributions in full
for clarity in Appendix A.

Proposition 7. (See also [24,25]). For any ε > 0 and target
probability distribution P ∈ P (m), the embezzling distribu-
tion Rn := 1

Hn

∑n
j=1

1
j | j〉〈 j| is such that for n > m1/ε there

exists a unitary representation of a basis relabeling Uf of the
joint distribution such that

F (Uf (Rn ⊗ |0〉〈0|)U †
f , Rn ⊗ P) � 1 − ε.

We note the major difference between randomness and
quantum embezzlement is the role of locality. In the classical
case there is a single party and the distribution is not bipartite,
both of which remove the notion of locality. These differences

are nontrivial: one cannot construct a nonlocal classical equiv-
alent of embezzling that at the same time demands that the
embezzler remains decoupled as in Proposition 3, and one
cannot find a quantum equivalent of the nonlocal classical
variation that one can implement as follows from Proposition
2. As it is not central to the rest of this work, we provide an
extended discussion of this nuance for the interested reader in
Appendix A after the proof of Theorem 5.

B. Pure state conversion under local unitaries

Having established the relationship between the equiva-
lence classes of pure states in terms of Schmidt coefficients
and the probability simplex, we now show the optimal strat-
egy for converting one pure quantum state to another under
local unitaries is simply relabeling the Schmidt basis so the
ordering of the Schmidt coeffficients is the same. This is not
necessarily surprising. It is not clear what more one could
do, and indeed this is the strategy that is used to implement
quantum embezzlement [14].

Lemma 2. Let R ∈ Pos(Cd ), T ∈ Pos(Cd ′
). Then

max
U

F (P,UQU †) = F (R̃↓, T̃ ↓) ,

where R↓ = ∑
i νi(R)|i〉〈i|, ν1(R) � ν2(R) � · · · are the (de-

creasing) ordered eigenvalues of R, and likewise for T ↓. In
other words, the fidelity between R and T maximized over
unitaries is equal to the fidelity of their ordered eigenvalues.

Proof. This proof is a combination of the definition of
fidelity and a corollary of von Neumann’s trace theorem. A
similar identity was established in [31]:

max
U

F (R,UTU ∗) = max
U

‖
√

R
√

UTU ∗‖2
1

= max
U

‖
√

RU
√

TU ∗‖2
1

= max
U

(max
W

|Tr[W
√

RU
√

TU ∗]|)2

= max
U,W

|Tr[W
√

RU
√

T ]|2

=
⎛⎝∑

i∈[q]

σi(R)σi(T )

⎞⎠2

= F (R̃↓, T̃ ↓).

The first equality is (1). The second equal-
ity is because

√
UTU ∗ = ∑

i

√
λi(T )|ψi〉〈ψi| =

U (
∑

i

√
λi(T )|φi〉〈φi|)U ∗ = U

√
TU ∗ by defining |ψi〉 :=

U |φi〉 where {|φi〉}i is the eigenbasis of T . The third equality
is a well-known variational form of the 1-norm [27]. The
fourth is using cyclicity of trace, redefining U ∗W → W ,
and pulling out the maximization. The fifth is [32, Corollary
7.4.1.3], and the final equality is by definition of the operators
(which are defined in the same basis). �

We now can use the above lemma to establish the pure
state property we are actually interested in. For notational
simplicity, we define the following notation:

FLU(ρ, σ ) := max
U,V

F (ρ, (U ⊗ V )(σ )), (6)
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which is without loss of generality unitaries as we can just
trivially embed the states ρ, σ so that they both are de-
fined on the same local spaces. That is, in general one
would optimize over isometries, but by treating the states
embedded into the same local spaces already, we can focus
on unitaries. To see this, consider ρAB and σA′B′ such that
|A| =: dA > dA′ := |A′|. We can then embed the local space
A′ into A by taking any bases of A and A′, respectively,
e.g., {|χi}〉i∈[dA] and {|ζ j〉} j∈[dA′ ], and defining the isometry
WA′→A := ∑

j∈[dA′ ] |χi〉〈ζi|. We can then consider W σW ∗ in-
stead of σ directly. The same idea works for embedding B′
into B when |B′| � |B| and we can always treat ρ as in the
higher-dimensional space (again, by embedding it). All of this
is because it does not affect the eigenvalues of the respective
or Schmidt coefficients of the relevant states. Finally, the
choice of isometries that we do the embedding for does not
matter as the U,V we optimize over can take any choice of
the local isometries on the σ state to any others.

Theorem 1. Let |ψ〉, |φ〉 ∈ A ⊗ B be (possibly unnor-
malized) vectors with (possibly unnormalized) Schmidt
coefficients r1 � r2 � · · · , t1 � t2 � · · · , respectively. Then,

max
U,V

F (|ψ〉,U ⊗ V |φ〉) = F (R↓, T ↓), (7)

where R↓ = ∑
i ri|i〉〈i|, T ↓ = ∑

i ti|i〉〈i|. In particular, if we
treat these as quantum states, this gives the optimal fidelity of
converting |φ〉 to |ψ〉 under local unitaries.

Proof. Up to local unitaries, |ψ〉 = ∑
i
√

ri|i〉|i〉. There-
fore, without loss of generality, that can be taken as our target
state by allowing free local unitaries on the seed state. We
can take the seed state to be of the form |φ〉 = ∑

i

√
ti|i〉|i〉 by

the same argument. Then by assumption, we are interested in
maxU,V F (|ψ〉, (U ⊗ V )|φ〉) with the specified forms. Note

TrB[(U ⊗ V )|φ〉〈φ|(U ⊗ V )†]

=
∑
i,i′

√
titi′U |i〉〈i′|U †Tr(V |i〉〈i′|V †)

=
∑

i

tiU |i〉〈i|U † =: UQU †.

Now for any unitary U we define the following purification:

|w|U 〉 := vec(
√

UQU †)

= (U ⊗ U ) vec(
√

Q) = (U ⊗ U )|φ〉,

where we have used
√

UQU † = U
√

QU † and the vec map
identity (5). Now we have

F (R↓,UQU †) = max
|w′〉

F (|ψ〉, |w′〉)

= max
V

F (|ψ〉, (1 ⊗ V )|w|U 〉)

= max
V

F (ψ, (U ⊗ VU )|φ〉),

(8)

where the first equality is by Uhlmann’s theorem (Lemma
1), the second is because all purifications of a given operator
are unitarily equivalent on the purifying space [27], so there
exists a V such that (1 ⊗ V )|w|U 〉 = |w′〉. The final line is just
expanding the definition of |w|U 〉.

It follows

max
W,V

F (|ψ〉, (W ⊗ V )|φ〉) = max
U ,V ′

F (|ψ〉, (U ⊗ V ′U )|φ〉)

= max
U ,V ′

F (|ψ〉, (1 ⊗ V )|w|U 〉)

= max
U

F (R↓,UQU †)

=F (R↓, T ↓),

where the first equality is because unitaries are closed un-
der multiplication and the optimizations are independent, the
second and third are both by (8) for clarity, the third is be-
cause unitaries are closed under conjugation, and then the
final equality is by applying Lemma 2. This completes the
proof. �

This means under local unitaries, it is efficient to compute
the optimal fidelity and that in fact the optimal strategy is
simply Alice and Bob reordering the basis so that the Schmidt
coefficients are in the same relative ordering. It also follows
from item 1 of Proposition 1 that unless all the Schmidt
coefficients are equal, the fidelity cannot be one under local
unitary strategies.

C. Pure state conversions under local operations
and shared randomness

While the previous section is nice in that it finds an efficient
way of calculating the optimal conversion strategy under local
unitaries, it would be natural to ask if local operations can do
better than local unitaries as it is a much more general class of
operations. In fact, we can see that it must do better in some
cases in a trivial manner. Consider the target state |ψ〉 and the
seed state |φ〉 = |ψ〉 ⊗ |ζ 〉 where |ζ 〉 is not product. Under
local unitaries this transformation is not possible to arbitrary
precision because of |ζ 〉, but of course in reality the parties
could trace out whichever portion(s) of |ζ 〉 they hold. Thus,
we need a theory of transformations under local operations.

Note that this trivial example we have given would not
be resolved by local mixed unitary strategies, i.e., strategies
where each party varies their choice of unitary according to
some local randomness. Indeed, we begin by noting that local
mixed unitary strategies cannot ever outperform local unitary
strategies.

Corollary 1. Let |ψ〉 be the target state and |φ〉 be the seed
state and only optimize over Alice and Bob using mixed uni-
tary channels. Then the optimal is the same as in Theorem 1.

Proof. Letting EU ,FW be local mixed unitary maps,

max
EU ,FW

F (ψ, (EU ⊗ FW )(φ))

= 〈ψ |(EU ⊗ FW )(φ)|ψ〉

=
∫

U,W
〈ψ |(U ⊗ W )(φ)|ψ〉dU dW

�
∫

U,W
max
U,W

〈ψ |(U ⊗ W )(φ)|ψ〉

= max
U,W

〈ψ |(U ⊗ W )(φ)|ψ〉

= F (P↓, Q↓),
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where the first equality is by item 4 of Proposition 1, the
second is letting the mixed unitary map be for any probability
measures dU , dW over the unitary group. The inequality is
because the inner product is real and so it is lower bounded
by the maximum. The second to last equality is by linearity,
and the final equality is by Theorem 1. Noting that a specific
choice of local unitaries is a special case of mixed unitary
channels completes the proof. �

The above tells us that we must escape the use of unitaries
to improve our bounds. Note, however, that in general the only
maps that preserve pure quantum states are isometries, and
our results so far have been in terms of pure quantum states,
so we need to maintain this structure to build on them. For
this reason, the following proof will make use of the isometric
representation of quantum channels.

For notational simplicity, we define the optimal fidelity
of conversion under local operations and shared randomness
(LOSR) fidelity

FLOSR(ρ, σ ) := max
μ,Eλ,Fλ

F

(
ρ,

∫
(Eλ ⊗ Fλ)(σ )dμ(λ)

)
,

where μ is a probability measure over an index set for sets of
local channels {Eλ} and {Fλ}. Similarly, we can define optimal
fidelity of conversion under local operations (LO) as

FLO(ρ, σ ) := max
E,F

F (ρ, E ⊗ F )(σ )) .

With these defined, we prove the following.
Theorem 2. Let |ψ〉, |φ〉 ∈ A ⊗ B be (possibly unnormal-

ized) vectors with (possibly unnormalized) Schmidt coeffi-
cients r1 � r2 � . . . and t1 � t2 � . . ., respectively. Then,

FLOSR(|ψ〉, |φ〉) = FLO(|ψ〉, |φ〉)

= max
P′∈P (�)

F ((R ⊗ P′)↓, T ↓
embed), (9)

where the finite alphabet � satisfies |�| � [SR(|φ〉)SR(|ψ〉)],
R = ∑

i ri|i〉〈i| and similarly for Tembed which is the distri-
bution T embedded into the joint probability simplex over
the finite alphabet indexing R and �. In particular, if we
treat |ψ〉, |φ〉 as quantum states, this gives the optimal fidelity
of converting |φ〉 to |ψ〉 under local operations and shared
randomness.

Proof. The first equivalence follows similarly to the mixed
unitary case. Clearly the class of LOSR strategies is more
general than the class of LO strategies, so we just need to show
LOSR is only as strong as LO here:

FLOSR(φ,ψ ) = F

(
ψ,

∫
(Eλ ⊗ Fλ)(φ)dμ(λ)

)
=
∫

〈ψ |(Eλ ⊗ Fλ)(φ)|ψ〉dμ(λ)

�
∫

max
E,F

[〈ψ |(E ⊗ F )(φ)|ψ〉]dμ(λ)

= max
E,F

〈ψ |E ⊗ F )(φ)|ψ〉

= FLO(φ,ψ ),

where the first equality is by definition and denoting the
optimizers by μ, {Eλ}, {Fλ}, the second is by linearity of

the Lebesgue integral, the inequality is because 〈ψ |(E ⊗
F )(φ)|ψ〉 is a real number for any choice of local channels,
the third equality is because μ is a probability measure that is
now independent of the argument of the integral, and the final
equality is by definition. This proves the reduction of LOSR
to LO if the target state is pure.

Next, we bound the dimension of �. We want to consider
maxE,F F (ψ, (E ⊗ F )(φ)). Without loss of generality, we
assume the local spaces are “compressed” such that din :=
SR(|φ〉) so that E,F both act on L(Cdin ). We now show that
without loss of generality we may restrict the output dimen-
sion of E,F to be dout := SR(|ψ〉). This is just because we
can project onto the support of the marginal of |ψ〉 on both
local spaces, so we can restrict the local maps to this space.
Formally, this can be seen as follows. Consider arbitrary E,F
and consider the target state (up to LU) |ψ〉 = ∑

i
√

ri|i〉|i〉.
Define �P := ∑

i:ri>0, i.e., the projector onto the support of
TrB(ψ ) = TrA(ψ ), where the equality is up to the change
in space. Note rank(�P ) = Schmidt(ψ ). By construction,
(�P ⊗ �P )|ψ〉 = |ψ〉. Therefore,

F (ψ, (E ⊗ F )(φ)) = 〈ψ |(E ⊗ F )(φ)|ψ〉
= Tr[|ψ〉〈ψ |(E ⊗ F )(φ)]

= Tr
[
ψ�⊗2

P (E ⊗ F )(φ)�⊗2
P

]
,

where in the first equality we have used item 4 of Proposition
1 and the other two use cyclicity of trace along with invariance
of ψ under the projector. Now we can expand

�⊗2
P (E ⊗ F )(φ)�⊗2

P

=
∑
k,l

�PAk ⊗ �PBkφA†
k�P ⊗ B†

l �P

≡ (E� ⊗ F�)(ψ ),

where {Ak}, {Bl} are the Kraus operators of E,F , respectively,
and E�,F� are completely positive, trace non-increasing
(CPTNI) maps defined by {�PAk}, {�PBl}, respectively. Note
this equivalence holds as (�Ak )† = A†

k�P since �
†
P = �P so

it is CP and it is TNI because∑
k

(�PAk )†(�PAk ) =
∑

k

A†
k�PAk

�
∑

k

A†
k1Ak = 1,

where we used �2
P = �P in the first equality, �P � 1 and

that E is CP in the inequality, and that E is TP in the last in-
equality. An identical argument holds for FP. This proves the
optimizer is achieved with CPTNI maps T(L(Cdin ), L(Cdout )).
Finally, we can lift EP,FP to being CPTP, denoted Ê, F̂ ∈
T(L(Cdin ), L(Cdout )) by adding one Kraus operator, e.g., for
EP add the Kraus operator Z ∈ L(Cdin ,Cdout ) where Z†Z =
(1 −∑

k A†
k�Ak ) � 0 which always exists by definition of the

space of positive-semidefinite operators. By linearity,

F (ψ, (E ⊗ F )(φ)) = Tr[ψ (E� ⊗ F�)(φ)]

� Tr[ψ (Ê ⊗ F̂ )(φ)].
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Therefore, without loss of generality, the optimal channels
are E,F ∈ C(Cdin ,Cdout ). Note this means that Rank(JE ) �
dindout and likewise for JF .

We now derive the equation using the isometric represen-
tation of the channel [27]:

max
E,F

F (ψ, (E ⊗ F )(φ))

= 〈ψ, (E ⊗ F )(φ)〉
= max

V1,V2,|ζ 〉
|〈ψ |〈ζ |(V1 ⊗ V2)|φ〉|2

= max
U1,U2,|ζ 〉

∣∣〈ψ |〈ζ |(U1 ⊗ U2)|φ〉|0〉E1 |0〉E2

∣∣2
= max

U ′
1,U

′
2,|ζp′ 〉

∣∣〈ψ |〈ζp′ |(U ′
1 ⊗ U ′

2)|φ〉|0〉E1 |0〉E2

∣∣
= max

P′
F ((R ⊗ P′)↓, T ↓

embed ),

where the second equality is because there exists an isometric
representation of each channel which means (V1 ⊗ V2)|φ〉 is a
pure quantum state, so we can apply Uhlmman’s theorem to
find a purification of |ψ〉 that saturates the bound, but as |ψ〉
is already pure, any purification will be a product state with
a unit vector. The third line is because we can always convert
an isometry into a unitary on the appropriately large space.
The fourth line means that ζp′ = ∑

i′
√

p′(i)|i〉|i〉, which can
always be achieved by local unitaries on the E1 and E2 spaces,
which result in new unitaries on the other side but the same
maximum. The final equality is just using Theorem 1 and we
write Tembed to stress it is defined over the whole alphabet.
Lastly, as we established bounds on the ranks of the local
maps Choi matrices, we have bounds E1, E2 � dindout, which
justifies the maximum and tells us how large of a system we
have to consider in the statement of the theorem. �

It is useful to see how this result works. It in effect shows
the following equivalence of conversion distance when mea-
sured under fidelity:

F{|φ〉 −→
LO

|ψ〉]} = max
|ζ 〉

F{|φ〉 −→
LU

|ψ〉 ⊗ |ζ 〉}, (10)

where here F{a →O b} denotes the optimal conversion be-
tween a and b using maps included in set O according to
fidelity. (See [20] for a discussion of conversion distance
in terms of trace norm for general resource theories.) This
statement can be viewed both by proof and via intuition as
a special case of the isometric representation of a channel.
Moreover, it is easy to see in this form how it handles our
motivating example. Indeed, if the target state is |ψ〉 and the
seed state is |ψ〉 ⊗ |ζ 〉, then clearly the maximizer is chosen
by the ancillary state being |ζ 〉 and the local unitaries being
trivial.

Example 3 (Tightened error bounds for zero communica-
tion). We now recall Example 1, which showed Proposition 2
could not show that any seed state |φ〉 would require commu-
nication to be mapped to |ψ〉 = √

0.54|00〉 + √
0.02|11〉 +√

0.44|22〉. Here we calculate the error if the seed is a qutrit
maximally entangled state, which we note is an example of
the task of dilution. By Theorem 2,

FLOSR(|ψ〉, |�+
3 〉) = max

P′∈P ([9])
F
(
(P ⊗ P′)↓, 1

31C3

)
= 1

3 max
P′∈P↓([9])

F ((P ⊗ P′)↓, 1C3 ),

where we have used a slight abuse of notation as 1C3 is
embedded in a larger space. We note P′ can be ordered as it
will not change (P ⊗ P′)↓. By the definition of fidelity (1),

F ((P ⊗ P′)↓, 1C3 )

= (
max

p′∈P↓([9])

√
0.54p′(1) +

√
0.44p′(1) +

√
0.54p′(2)

)2
,

where we have used p′(1) � p′(2) and 0.54 > 0.44, so these
must be the largest three elements without loss of gener-
ality. As we are considering a maximization, it can only
be increased by letting p′(2) = 1 − p′(1). This allows us to
parametrize in terms of p′ ∈ [0, 1]. Taking the derivative with
respect to p′ and setting equal to zero, we find p′� ≈ 0.6014.
Plugging this back in, we get

FLOSR(|ψ〉, |�+
3 〉)≈ 1

3 (1.59018)2 ≈ 0.8429 .

Thus, not only would communication be necessary, but with-
out any, the fidelity can be far from one.

D. Relation between LO and LU strategies

The natural question given the previous theorems is if we
can better understand the relationship between LO and LU
strategies. We first show that LU and LO strategies are equiv-
alent when either the target or the seed state is a two-qubit
state.

1. LU and LO equivalence for two-qubit seed or target state

Proposition 8. Consider (possibly unnormalized) entan-
gled two-qubit seed state |φ〉 ∈ C2 ⊗ C2. Let the (possibly
unnormalized) target entangled state be |ψ〉 ∈ Cd ⊗ Cd ′

.
Then the optimal noncommunicative strategy is the local uni-
tary strategy.

Proof. First, we point out that it suffices to consider
normalized distributions. This is because if we have unnor-
malized vectors, then, using the definition of fidelity,

F ((R ⊗ P′)↓, T ↓) = Tr[R]Tr[T ]F ((P ⊗ P′)↓, Q↓) ,

where P := Tr[R]−1R, Q := Tr[T ]−1T . It follows since these
scaling factors will appear for both the LU and LO cases (and
thus cancel when comparing the values), the normalized case
is sufficient.

Without loss of generality, q↓ = (q, 1 − q) where q � 1
2

and p↓ = (p(1), p(2), . . . ). Then the optimal local unitary
strategy is

√
qp(1) + √

(1 − q)p(2). For any P′ we can write
(p′)↓ = (p′(1), p′(2), . . . ). The optimal CPTP strategy (up to
a square) is of the form√

qp(1)p′(1) +
√

(1 − q) max{p(1)p′(2), p(2)p′(1)} .

These values can only increase by assuming p′ has two out-
comes, so let us assume so without loss of generality and
parametrize the distribution by p′ ∈ [ 1

2 , 1] to obtain√
qp(1)p′ +

√
(1 − q) max{p(1)(1 − p′), p(2)p′} .

Moreover, note p(2)p′ < p(2) unless p′ = 1, which is equiv-
alent to the LU strategy, so the second entry in the
maximization would be lower than the LU setting. Therefore,
we focus on the remaining case. We are specifically interested
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in when the following strict inequality holds:√
qp(1)p′ +

√
(1 − q)p(1)(1 − p′)

>
√

qp(1) +
√

(1 − q)p(2)

⇔ g(p′) :=
√

qp(1)(
√

p′ − 1)

+
√

1 − q(
√

p(1)(1 − p′) −
√

p(2)) > 0.

Then d
d p′ g(p′) =

√
qp(1)

2
√

p′ +
√

p(1)(1−q)
2
√

1−p′ . It follows
√

qp(1)
√

1 − p′

2
√

p′√1 − p′ +
√

p′√p(1)(1 − q)

2
√

1 − p′√p′ � 0

⇔
√

qp(1)
√

1 − p′ +
√

p′√p(1)(1 − q) � 0

⇔ √
q
√

1 − p′ +
√

p′√(1 − q) � 0

⇔
√

F (Q↓, P′↓) � 0,

where the first line is multiplying to get identical denomina-
tors, the second line is multiplying by the denominator, the
third is dividing out p(1), and the final is by the definition
of square-root fidelity. Note the final inequality will always
hold strictly unless q ∈ {0, 1}, i.e., the state is a product state,
by item 1 of Proposition 1. If q ∈ {0, 1}, then the state is a
product state which would contradict that we assume the state
is entangled. Therefore, in our setting, g(p′) only increases
over its interval p′ ∈ [0, 1]. Thus, the optimal choice of p′
is p′ = 1, but in this case the value is

√
qp(1) � √

qp(1) +√
(1 − q)p(2), i.e., the optimal choice is lower bounding the

optimal local unitary strategy. It follows this is never optimal.
This completes the proof. �

2. LU and LO inequivalence for states with
Schmidt rank greater than 2

If there is equivalence for two-qubit seed or target states,
it is natural to ask if this property persists. One might expect
that this is a special property of qubit systems as are found
throughout quantum information science results. Indeed, gen-
erally this property does not hold, which we will prove via
example.

Theorem 3. For seed and target state with Schmidt rank �
3, the optimal LO strategy may be better than the optimal LU
strategy.

Proof. We construct an example for Schmidt rank 3. By
continuity of the fidelity, one can embed the target and seed
in bigger spaces with arbitrarily small perturbations for it to
hold in higher dimensions, which is why this is sufficient.
Consider target state |ψ〉 = 0.85|00〉 + 0.08|11〉 + 0.07|22〉
and seed state |φ〉 = 0.45(|00〉 + |11〉) + 0.1|22〉. Then, the
optimal LU strategy fidelity is

F (P↓, Q↓) =
(√

0.45(
√

0.85 +
√

0.08) +
√

0.1(0.07)
)2

<0.796.

In contrast, if we consider P′ = [0.55, 0.28, 0.17], then

F ((P ⊗ P′)↓, Q↓)

= (
√

0.45
√

0.4675 +
√

0.45
√

0.238 +
√

0.1
√

0.1445)2

> 0.82.

As we maximize over P′, the optimal LO strategy achieves a
value that is strictly above the LU strategy. This completes the
proof. �

E. Inefficiency of optimal LOSR fidelity and computable
upper bounds

In the above we have constructed an example where the
local operations strategy outperforms the local unitary strat-
egy (though we have not shown what the strategy itself is). A
natural question would then be how easy it is to solve for the
optimal fidelity value or even a bound. By Theorem 1, we can
conclude the optimal local unitary strategy is polynomial time
to solve as all one needs to do is sort the Schmidt coefficients
and calculate the fidelity. Indeed, one could solve for the
ordering of the Schmidt coefficients using the linear program
for sorting a vector.

In contrast, for optimizing LO strategies, we have no such
luck. In effect this is because there are two things to optimize
over at once. Indeed, recall from Theorem 2 that

FLO(|ψ〉, |φ〉) = max
P′∈P (�)

F ((P ⊗ P′)↓, Q↓).

Then the problem is that one must first tensor P onto variable
P′ and then reorder the vector. One cannot even in general
order an optimization variable, which we will refer to as
“sorting,” as sorting is in general nonconvex. In sorting a
vector using a linear program, one relaxes to bistochastic
channels and considers a linear function so that the optimizer
is an extreme point which by the Birkhof–von Neumann the-
orem is a specific permutation. However, we are many levels
of involvement above that: we want the distribution P′ such
that its product distribution P ⊗ P′ when sorted optimizes
the fidelity with Q↓. Therefore, we need to optimize over
P′ and the permutation at the same time. It is not clear that
we can actually relax to bistochastic strategies because of the
joint concavity of fidelity. That is to say, for any bistochastic
channel E ,

F (E (P ⊗ P′), Q↓) = F

(∑
π

r(π )Vπ (P ⊗ P′), Q↓
)

�
∑
π

F (r(π )Vπ (P ⊗ P′), r(π )Q↓)

=
∑
π

r(π )F (Vπ (P ⊗ P′), Q↓),

where the first line is Birkhoff–von Neumann theorem,
the second is joint concavity using Q↓ = ∑

π r(π )Q↓ as r
is a probability distribution, and the last line is because
F (λP, Q) = λF (P, Q) = F (P, λQ). Thus, any bistochastic
channel may strictly do better than the average of its extreme
points. Moreover, even if we could optimize over bistochas-
tic channels, we would have a nonconvex objective function
as the bistochastic channel, an optimization variable, would
be applied to P ⊗ P′ which is also partially an optimization
variable.

Given the above, it seems likely the best option if one were
to try and find a (near) optimum would be to use gradient
descent from random initial P′, realizing it will only work
locally and will break down at “kinks” where the ordering
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changes. Otherwise, more sophisticated nonconvex optimiza-
tion techniques might be used.

Computable upper bound methods. Perhaps even worse
than our inability to calculate the exact fidelity, is that it is
not clear in general how to determine good bounds. Certainly,
we have the following result.

Theorem 4. Unless the target state is (up to local unitaries)
|ψ〉 = |φ〉 ⊗ |ζ 〉 for some pure state |ζ 〉 where |φ〉 is the seed
state, there exists ε > 0 such that there does not exist local
operations that will take |φ〉 to |ψ〉.

Proof. Theorem 2 states that

FLOSR(|ψ〉, |φ〉) = max
P′∈P (�)

F ((R ⊗ P′)↓, T ↓
embed) .

Item 1 of Proposition 1 states that fidelity between two
normalized states (and thus distributions) is one if and
only if the two arguments are the same. Thus, the max-
imization obtains one if and only if there exists P′ ∈
P (�) such that (R ⊗ P′)↓ = T ↓

embed. This means the Schmidt
coefficients of |φ〉 are {ri p′

k}(i,k). That is (up to local uni-
taries) |φ〉 = ∑

(i,k) ri p′
k|(i, k)〉|(i, k)〉. Defining local isometry

UA→A0A1 |(i, k)〉A = |i〉A0 |k〉A1 , we have

(U ⊗ U )|ψ〉 =
∑
i,k

ri p
′
k (|i〉A0 |k〉B0 |i〉A1 |k〉B1 )

=
(∑

i

ri|i〉A0 |i〉B0

)
⊗
(∑

k

pk|k〉A1 |k〉B1

)
=: |ψ〉 ⊗ |ζ 〉,

where we defined |ζ 〉 as the second state. This completes the
proof. �

The above theorem, while derived from a very different
strategy than Proposition 2, does not seem to give us much
more information as to at what point communication is neces-
sary. What we would want to efficiently improve this would be
to establish upper bounds on the equation given in Theorem 2
that have a closed form that does not depend on P′. One option
is to use the data processing inequality for fidelity. This can be
seen in the following proposition.

Proposition 9. Consider (possibly unnormalized) target
state |ψ〉 and seed state |φ〉 with corresponding Schmidt dis-
tributions p, q, respectively. If pmax � qmax, then

FLO(|ψ〉, |φ〉) � F (p, q),

where p = pmax|0〉〈0| + (1 − pmax)|1〉〈1| and likewise for q.
Proof. Without loss of generality let d be the

maximum local dimension. Let E (·) = |0〉〈0||0〉〈0| +∑
i∈{1,,d−1} |1〉〈i||i〉〈1|. That is, E coarse grains a probability

distribution to the Bernoulli distribution with its first element
untouched and the sum of all the others as the other
outcome. Then using data processing of fidelity (item 3 of
Proposition 1),

max
P′∈P (�)

F ((P ⊗ P′)↓, Q↓) � max
P′∈P (�)

F (E[(P ⊗ P′)↓], E (Q↓))

= max
p′∈[0,1]

F (P̃(p′), E (Q↓)),

where P̃(p′) := pmax p′|0〉〈0| + (1 − pmax p′)|1〉〈1| and
E (Q↓) = qmax|0〉〈0| − (1 − qmax)|1〉〈1|. Now note that by

assumption pmax � qmax. As the fidelity will only decrease as
pmax p′ moves away from qmax, the optimal choice is p′ = 1.
This completes the proof. �

The problem with the above bound is that there will be
cases where pmax > qmax. Why the inequality in the other
direction was required was to know for a fact what ele-
ment of p was relevant, namely, pmax and that any choice of
p′ �= 1 would be suboptimal. In general this strategy would
require q↓( j) is sufficiently large relative to p↓( j). This can
be determined in some cases. Here we provide a simple
example.

Example 4. Let

p↓ = [3/4, 1/8, 1/8]T, q↓ = [1/2, 1/2]T.

Then (p ⊗ p′)↓[1 : 2] = p′(1)[ 3
4 , 1

8 ]T, and so we can coarse
grain on the second element to obtain P(p′) = 1/8p′|0〉〈0| +
(1 − 1/8p′)|1〉〈1| and Q = Q↓. Then as 1/8p′ < 1

2 , the upper
bound is F ( 1

8 |0〉〈0| + 7
8 |1〉〈1|, 1

21) ≈ 0.83.
The above shows that while data processing can be suf-

ficient in certain cases, it does not provide an easy general
method. Another common alternative in quantum information
theory is semidefinite relaxations of optimization problems
because semidefinite programs are efficient to evaluate. In
Appendix B, we establish the following upper bound and
show it may be expressed as a semidefinite program, which,
as everything is in terms of probability distributions, is
due to the nonlinearity of fidelity and nothing particularly
quantum.

Theorem 5. Consider (possibly unnormalized) target state
|ψ〉 and (possibly unnormalized) seed state |φ〉. Let SR(ψ ) =
d and SR(φ) = d ′. Define A = Cd , B = Cdd ′

. Then,

FLOSR(|ψ〉, |φ〉) � max F (R, Q↓
embed)s.t. TrB[R] = P↓

× R ∈ P↓(d2d ′), (11)

where P and Q are the distributions defined by |ψ〉 and |φ〉’s
Schmidt coefficients, respectively. Moreover, this admits the
following simple semidefinite program over the reals:

max
∑

i∈[d2d ′]

x(i)s.t.

(
diag(r) diag(x)
diag(x) diag(q↓

embed)

)
� 0

× TrB[diag(r)] = P↓r ∈ P↓([d2d])x ∈ Rd2d ′
. (12)

Physically, this relaxation may be seen as relaxing the
isometric representation of the optimal LOSR strategy to
one where one allows the ancillary environment start off
entangled with the local system. Mathematically, this is not
too loose because we require this entangled pure quantum
state has a notion of “local Schmidt coefficients” that per-
tain to the original target state, although this physically does
not seem to have a clean interpretation. Nonetheless, we
can see that (11) will not achieve unity unless there ex-
ists a joint distribution Q = R, which would require Q↓

embed
to have P↓ as it is marginal, which seems highly restric-
tive. Therefore, (11) should provide an upper bound that
is nontrivial.
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V. MANY-COPY PURE STATE CONVERSION WITH ZERO
COMMUNICATION

Having established what happens for single copies, we
consider many copies. We provide two motivations for doing
this. First, we note that it is not clear what the limit-
ing behavior will be even in the LU setting. A reader
may recall from other works that the fidelity is multi-
plicative so if F (P, Q) < 1, then limn→∞ F (P⊗n, Q⊗n) =
limn→∞ F (P, Q)n → 0. However, we lose the multiplicativity
as we are considering limn→∞ F ((P⊗n)↓, (Q⊗n)↓). This issue
is further aggravated if we consider local operations and the
ancillary variable.

The second motivation is that what was initially considered
in the literature, albeit with LOCC [33], was the conversion
of many copies of states. A particular focus in the referenced
work and subsequent ones is the case where either the tar-
get or seed state is the maximally entangled state, known as
distillation and dilution, respectively. With LOCC, we know
there are “rates” in the conversions. By [6] along with pre-
vious results in this work, we would not expect there to be
non-negative rates without the communication assuming the
error is required to be vanishing, i.e., ε → 0.

In this section we establish convex optimization prob-
lems for dilution and distillation in the zero-communication
setting. These results are established in terms of the not-
actually-a-norm ‖ · ‖(k,1/2), which we remind the reader is the
(k, p)-norms extended to p < 1 introduced in Sec. III with the
choice of p = 1

2 . We also look at the limiting behavior as the
number of copies grows. In particular, we find a closed form
when trying to convert n-fold two-qubit states to a different
n-fold two-qubit state. Moreover, we prove the fidelity goes to
zero in this case. We discuss the extension of this to entangled
states with larger Schmidt rank.

1. Dilution under local operations

We begin by determining the limits of dilution. For in-
tuition, we begin with local unitaries where there is no
optimization. Recall that the Schmidt coefficients of the max-
imally entangled state are all

√
d−1, so they correspond to

the maximally mixed distribution under our bijection between
Schmidt coefficients and probability distributions.

Proposition 10. For local unitary strategies the optimal di-
lution fidelity is given by

FLU
(|ψ〉, |�+

d 〉⊗n
) = d−n‖P‖(dn,1/2) .

Proof. Generally, if |ψ〉 �= |�+
d 〉,

1 > F
(
P↓, π⊗n

d

)↓
) = F

(
P↓, π⊗n

d

) =
[

d−n/2
∑

i∈[dn]

√
P↓(i)

]2

= d−n

[ ∑
i∈[dn]

√
P↓(i)

]2

= d−n‖P‖(dn,1/2),

where the first equality is because π⊗n
d is invariant under

ordering, the second is using the definition of fidelity and
that π⊗n

d has uniform coefficients, and the final equality is
the definition of the (k, p)-norms. In particular, note we have
dropped the sorting. �

We remark we could have set |φ〉 = |φ′〉⊗m to get a trade-
off, but this does not seem to provide any insight. Just as in

the one-shot setting, we know the above result is not as useful
in general because it cannot throw out resources, so we now
present the general result.

Proposition 11. The optimal fidelity of converting n d-
local dimensional EPR pairs to |ψ〉 under local operations is
given by

FLO(|ψ〉, |�+
d 〉⊗n) = d−n max

P′∈P (�)
‖(P ⊗ P′)‖(dn,1/2) ,

where ‖ · ‖(k,p) is (k, p)-norm generalized to p � 0. Moreover,
for fixed n, this is a convex optimization problem.

Proof. Starting from the result of Theorem 2,
max

P′∈P (�)
F ((P ⊗ P′)↓, (π⊗n

d )↓)

= max
P′∈P (�)

F ((P ⊗ P′)↓, π⊗n
d )

=
⎡⎣ 1

dn/2
max

P′∈P (�)

∑
i∈[dn]

√
(P ⊗ P′)↓(i)

⎤⎦2

(�)

= 1

dn
max

P′∈P (�)
‖P ⊗ P′‖(dn,1/2),

the first inequality is invariance of π⊗n
d under sorting, the

second is definition of fidelity and that each element of π⊗n
d is

the same, the last is the definition of (k, p)-norm extended to
p � 0.

To show this is a convex optimization problem, note that
�P(·) := P ⊗ · is linear, −√· is operator convex, and the sum
of the k largest eigenvalues of a PSD P, which we will denote
�k (P) is convex. Thus, starting from (�),⎡⎣d−n/2 max

P′∈P (�)

∑
i∈[dn]

√
P ⊗ P′↓(i)

⎤⎦2

=
[
−d−n/2 min

P′∈P (�)
�dn (−

√
�P(P′))

]2

,

where we have used maxx∈C f (x) = − minx∈C − f (x) and our
definitions. Then ignoring the −d−n/2 factor and the square,
the optimization problem is over the probability simplex,
which is a convex subset of the positive-semidefinite matrices,
and the objective function is convex over the positive-
semidefinite cone as −√

�P(·) is operator convex and �dn is
a convex function over the space of Hermitian operators. This
completes the proof. �

Unfortunately, while this gives computable bounds, it
is not clear how one could determine the optimal value
analytically.

2. Distillation under local operations

We now present the same results in the distillation case,
where we take some state to many EPR states. For complete-
ness, we state the local unitaries case.

Proposition 12. The fidelity of distillation under local uni-
taries and zero communication is given by

FLU(|�+
d 〉⊗m, |ψ〉⊗n) = d−m‖P⊗n‖|S|,1/2 ,

where S = [min{dm, rank(P)n}].
Proof. The proof is effectively identical to the dilution case

by symmetry of the fidelity. �
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In contrast to the local unitary case, the symmetry is broken
when one considers local operations.

Theorem 6. For fixed d, m, n the optimal fidelity for distil-
lation under local operations is given by

FLO(|�+
d 〉⊗m, |ψ〉⊗n) = d−m

[
min

P′∈P↓(�)
−
∑
i∈I

αi

√
p′(i)

]2

,

where P↓(�) is the set of decreasing distributions as
defined in Sec. III, I ≡ [�rank(P)n/dm�], and αi :=∑

j∈[(i−1)dm:min{i·dm,rank(P)n}]
√

p↓
n (i). Note the minimization is

a convex optimization program.
Proof. Yet again, we use the square-root fidelity and then

take the square at the end. Then, using Theorem 2, we have

FLO((�+
d )⊗m, ψ⊗n)

= max
P′∈P (�)

F ((π⊗m
d ⊗ P′)↓, (P⊗n)↓)

=
[

max
P′∈P (�)

∑
i∈S

√
(π⊗m

d ⊗ p′)↓(i)
√

p↓
n (i)

]2

.

Next, note (
π⊗m

d ⊗ P′)↓ = d−m/2
∑
i′∈�

p↓(i′)1Cdm ,

where we have just used that π⊗m
d is invariant under ordering.

It follows that if we let I ≡ [�rank(P)n/dm�], we can rewrite

FLO((�+
d )⊗m, ψ⊗n) = d−m

[
max

P′∈P (�)

∑
i∈I

√
(p′)↓(i)

×
∑

j∈[(i−1)dm:min{idm,rank(P)n}]

√
p↓

n (i)

]2

.

Now first define αi := ∑
j∈[(i−1)dm:min{idm,rank(P)n}]

√
p↓

n (i) as
these coefficients may be precomputed. Second, note that
the probability simplex restricted to descending distributions
P↓(�) is itself convex as r↓

λ := λp↓ + (1 − λ)q↓ satisfies

λp↓(i) + (1 − λ)q↓(i) � λp↓(i + 1) + (1 − λ)q↓(i),

for all i ∈ [|r|]. Thus we have

FLO(|�+
d 〉⊗m, |ψ〉⊗n) =

[
− d−m min

P′∈P↓(�)
−
∑
i∈I

αi

√
p′(i)

]2

.

The minimization is a convex optimization problem because
if we consider f (p′) := −∑

i αi
√

p′(i), then its Hessian is
∇2 f = ∑

i[αi/4p′(i)−3/2]|i〉〈i|, which is positive semidefinite
on the interior of the probability simplex [i.e., when p′(i) > 0
for all i]. This completes the proof. �

3. Two-qubit setting

We have now seen that even in the basic dilution and dis-
tillation setting, while we can determine convex optimization
programs, we cannot seem to get clean analytic results. In this
section we consider an even more tractable setting to attempt
to resolve this: many-copy two-qubit seed and target states.
We show in this setting under certain assumptions the local

unitary strategy is optimal and lobby this to show in particular
that the optimal fidelity of converting n copies of |φ〉 to n
copies |ψ〉 goes to zero as n goes to infinity. We note that
this setting is more manageable because we effectively only
have to reason about Bernoulli distributions.

Lemma 3. Given Bernoulli distribution P = p|0〉〈0| +
(1 − p)|1〉〈1|, then P⊗n is such that the sequence xn with
(n − k) zeros has probability pn−k (1 − p)k . Moreover, there
are

(n
k

)
sequences with probability pk (1 − p)n−k and the same

for pn−k (1 − p)k .
Proof. The claim that xn with (n − k) zeros has probability

pn−k (1 − p)k is straightforward. The second point actually
just follows from the fact there are

(n
k

)
sequences with k

zeros, which could be proven by induction in a straightforward
manner. �

We can now use the above lemma along with Theorem 1
to get the optimal LU fidelity as a function of the number of
copies n.

Corollary 2. Consider entangled states |ψ〉, |φ〉 ∈ C2 ⊗
C2. Then,

FLU(ψ⊗n, φ⊗n) =
∑
k∈[n]

(
n

k

)
(pq)(n−k)/2[(1 − p)(1 − q)]k/2.

Proof. By Theorem 1 we can reduce to the Bernoulli
distributions from the Schmidt coefficients |ψ〉⊗n �→ P⊗n,
|φ〉⊗n �→ Q⊗n. Since these are Bernoulli distributions, if we
assume without loss of generality p � (1 − p), we can order
the probabilities simply by the exponent, e.g., pj−k (1 − p)k �
pj−k−k′

(1 − p)k+k′
for any 0 � k′ � j − k. Moreover, the car-

dinality of each set of sequences will be the same for both P⊗n

and Q⊗n because |ψ〉, |φ〉 are only entangled if their Schmidt
rank is 2. Therefore,

F ((P⊗n)↓, (Q⊗n)↓)=
∑
k∈[n]

(
n

k

)
(pq)(n−k)/2[(1−p)(1−q)]k/2,

(13)

where the sum is over the number of zeros in the string, the
cardinality was proven in the previous lemma, and the last
term is just a rewriting of

√
pn−k (1 − p)k

√
qn−k (1 − q)k . �

We note it is straightforward to generalize the above re-
sult to the case where you have the number of states differ
between the seed and the target, but the form would be
ugly as one would need to count how many sequences of
a given probability there are and keep track of this in the
sum. Indeed, at this point the problem is elaborate enough
that there is no advantage with dealing with two-qubit states
as it is a question of the type classes [34]. We state this as
a remark.

Remark 1. Consider states |ψ〉, |φ〉, respectively, with or-
dered probability distributions corresponding to their Schmidt
coefficients P and Q, respectively. FLU(|ψ〉⊗n, |φ〉⊗m) can
be computed. This is because the probability of a given
sequence drawn in i.i.d. form from a distribution has a
closed form [34, Theorem 11.1.2]. It follows that as long
as one determines the type of classes exactly and takes
into account that the sizes of the type of classes may dif-
fer between P and Q, the computation is possible, albeit
tedious.
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Rather than dealing with the computational nightmare of
generalizing beyond two-qubit states, we now show that the
term in Corollary 2 always goes to zero as n goes to infinity.

Proposition 13. Consider entangled states |ψ〉, |φ〉 ∈
C2 ⊗ C2:

lim
n→∞ FLU(|φ〉⊗n, |ψ〉⊗n) = 0 .

Proof. Let the probability distributions corresponding to
their Schmidt coefficients be parametrized by p� 1

2 and
1
2 �q = p + ε where ε ∈ [− 1

2 , 1
2 ]. Therefore, using Corollary

2, we have

FLU(|ψ〉⊗n, |φ〉⊗n) =
∑
k∈[n]

(
n

k

)
(p2 + pε)(n−k)/2

× [(1 − p)2 − ε(1 − p)]k/2. (14)

Now note p2 + pε= pq < 1 as otherwise both states would be
product. Define α := (p2 + pε)1/2 < 1. Then we have(

n

k

)
(p2 + pε)(n−k)/2[(1 − p)2 − ε(1 − p)]k/2

�
(ne

k

)k
αn−k[(1 − p)2 − ε(1 − p)]k/2

=
( e

k
α−1

)k
[(1 − p)2 − ε(1 − p)]k/2nkαn

= O[poly(n)]O[exp(−n)]

→ 0,

where the inequality uses a standard upper bound on the bino-
mial coefficient, in the first equality we have grouped terms by
scaling. The second equality uses asymptotic notation, where
we remind the reader g(n) = O[ f (n)] means for sufficiently
large n, g(n) � C f (n) for some constant C and poly(n) [re-
spectively exp(n)] denote the sets of functions polynomial
(respectively exponential) in integer n. To make this conver-
sion, we have used that everything but αn is a polynomial in
n and that α < 1, so αn scales inverse exponentially in n. The
limiting factor is then because an inverse exponential times a
polynomial goes to zero. We also remark that the term where
k = n will also go to zero as [(1 − p)2 − ε(1 − p)]k/2 will go
to zero as k goes to infinity as its magnitude will be bounded
by 1.

Therefore, each term in the sum goes to zero as n goes to
infinity, so the entire sum will go to zero. This completes the
proof. �

We note our proof tells us nothing about the scaling as a
function of the difference between p and q nor does it tell us
how fast it goes to zero compared to F (P⊗n, Q⊗n). These are
shown numerically for specific cases in Fig. 4.

It is then natural to ask if what we have seen so far is some-
thing special to local unitaries. We show that under sufficient
conditions, just like in the single-copy case, when two-qubit
seed states are involved, local unitary strategies are optimal.

Theorem 7. Let |ψ〉 ∈ C2 ⊗ C2 and the target state be
|ψ〉⊗n. Let the seed state |φ〉 satisfy SR(|φ〉) � nSR(|ψ〉).
Then the optimal local operations strategy is the optimal local
unitary strategy.

FIG. 4. Comparison of F (|ψ〉⊗n, |φ〉⊗n) and FLU(|ψ〉⊗n, |φ〉⊗n)
as a function of how different the Schmidt coefficients are and
as a function of the number of copies. Here we consider many
copies of |ψ〉 = √

0.55|0〉|0〉 + √
0.45|1〉|1〉 being converted into

the same number of copies of |φ〉 = √
q|0〉|0〉 + √

1 − q|1〉|1〉
where q := p + ε for choices of ε denoted in the legend. Dotted
lines denote when there are no local unitaries applied to reorder the
Schmidt coefficients where as straight lines are the case where the
local unitary strategy is applied.

Proof. By Theorem 2,

FLO(|ψ〉⊗n, |φ〉) = max
P′∈P (�)

F ((P⊗n ⊗ P′)↓, Q↓)

=
∑
i∈|Q|

√
Q↓(i)

√
(P⊗n ⊗ P′)↓(i).

We will show that P′ should be the delta distribution. If p �= 1
2 ,

p′(1) < 1, then for any 0 � k � n, we have the inequalities

pn−k (1 − p)k > pn−k (1 − p)k p′(1)

> pn−k (1 − p)k p′(2)

and

pn−k (1 − p)k >pn−k (1 − p)k p′(1)

>pn−(k+1)(1 − p)k+1 p′(1)

>pn−(k+1)(1 − p)k+1 p′(2).

As square root is a monotone, this holds when we take the
square root. Note that by assumption P⊗n has enough entries
by itself for there to be one corresponding to each q↓. There-
fore, given the inequalities above, it follows if p′(1) �= 1, each
term in the sum only decreases. Therefore, p′(1) is optimal
for every n and k. Thus, when p �= 1

2 , the optimal value is
obtained by P′ being a delta distribution, which means it is
equivalent to the local unitary strategy.

Finally, if p = 1
2 , then pn−k (1 − p)k = 2−n for all k. There-

fore, if p′(1) < 1, the inequalities simplify for all 0 � k � n:

pn−k (1 − p)k p′(1) = pn−(k+1)(1 − p)k+1 p′(1)

> pn−(k+1)(1 − p)k+1 p′(2)

and

pn−k (1 − p)k p′(1) > pn−k (1 − p)k p′(2).

Again because each q term is paired up already, this means if
p′(1) �= 1, the value decreases. Therefore, we again conclude
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the optimal strategy is the LU strategy. This completes the
proof. �

We note that a trivial example of why we need the Schmidt
rank constraint in the previous theorem is our original exam-
ple for the advantage of LO strategies: if |φ〉⊗n+� where � � 1,
then there is a better LO strategy than an LU strategy. Finally,
we note it immediately follows from these previous results
that

Corollary 3. If |φ〉, |ψ〉 ∈ C2 ⊗ C2 are both entangled,
then

lim
n→∞ FLO(|ψ〉⊗n, |φ〉⊗n) = 0 .

VI. ON GENERALIZED EMBEZZLING CONVERSION

We now have established a rather robust theory of pure
state transformations under local operations. It is natural to
return to the topic of conversion of one state to another using
an ancillary entanglement, i.e., catalytic transformations and
their embezzling relaxation. Of course, it is immediate from
our results so far that we know the optimization program that
determines the optimal pure embezzling state as we state in
the following proposition.

Proposition 14. For any Schmidt rank d , the optimal pure
state embezzler for state conversion |φ〉 to |ψ〉 is the quantum
state |ζ 〉 = vec(

√
R) that is determined via the optimization

max
R∈P (d ),P′∈P (�)

F ((P ⊗ P′)↓, (Q ⊗ R)↓). (15)

Proof. This immediately follows from the input being
|φ〉 ⊗ vec(

√
R) and then applying Theorem 2. Note this means

|�| scales as function of d . �
However, as we have already addressed, even without a

free variable for the embezzling state, the optimization in
Theorem 2 seems unmanageable directly. While in principle
one could use the relaxation in Theorem 5 to obtain efficient
upper bounds, it is less obvious how often these will be non-
trivial given that R is a free variable.

The next most natural setting would be that of approximate
catalytic state conversion under local unitaries, i.e., we con-
sider transformations of the form

|φ〉|ζ 〉≈LU
ε |ψ〉|ζ 〉, (16)

where |ζ 〉 is an embezzling state and ≈LU
ε denotes reversible

equivalence under local unitary transformation up to error ε as
measured under fidelity. This may be seen as a generalization
of traditional embezzlement where |φ〉 = |0〉A|0〉B and |ζ 〉 =
|μ(n)〉.2

Now as noted in the background, embezzling is known to
be in effect optimal for sufficiently small ε. It follows for
sufficiently small error ε > 0, the strategy that embezzles out
the seed state and then embezzles in the target state is roughly
optimal, i.e.,

|φ〉|μ(n)〉≈LU
ε |0〉|0〉|μ(n)〉≈LU

ε |ψ〉|μ(n)〉 (17)

is effectively optimal where we remind the reader |μ(n)〉 is
the van Dam–Hayden embezzling family n pertains to the

2We refer the reader to Proposition 3 if the notation has been
forgotten.

Schmidt rank of the given state in the family (see Proposition
3). Nonetheless, we may explore at what point this becomes
necessary.

Using Theorem 1, we know the optimal strategy is
given by3

max
R∈P (d )

F ((P ⊗ R)↓, (Q ⊗ R)↓).

Even in the case P, Q, R ∈ P (2) this technically cannott be
solved using gradient methods as one has to sort the p(1 − r)
and (1 − p)r terms of p ⊗ r and likewise for q ⊗ r. Nonethe-
less, it is hopefully clear that r ∈ [min{p, q}, max{p, q}], as it
is trying to make the distributions be more similar. Nonethe-
less, this issue will only grow in difficulty with the dimension
and it is unclear how one would prove an ansatz is optimal
in general. Therefore, we provide two-qubit examples which
characterizes the general insights.

Example 5 (Resource gap between van Dam–Hayden em-
bezzling state and optimal embezzler). Consider Bernoulli
distributions P, Q, R parametrized by p = 0.5, q = 0.7 and
we leave r unspecified for now. In other words, one of the
states is the maximally entangled states and the other is, up to
local unitaries,

√
0.7|00〉 + √

0.3|11〉. Therefore, depending
on which way one runs the transformation, we are considering
entanglement dilution or distillation with a catalytic resource.
Without the resource,

FLO(|ψ〉, |φ〉) = F (P↓, Q↓) ≈ 0.958.

One can verify that the optimal choice of r� ≈ 0.6 in this case.
For this choice

FLU(|ψ〉|ζ 〉, |φ〉|ζ 〉) = F ((P ⊗ R�)↓, (Q ⊗ R�)↓) > 0.979.

The first problem is that 0.979 is not an acceptably high
fidelity even by contemporary standards. Nonetheless, note
that to get this state via embezzling (and ignoring that embez-
zling out the initial state introduces error), it would require
generating |μ(n)〉 where n > m1/(1−0.979) = 2 × 1014. That is,
even to embezzle a two-qubit pure quantum state would re-
quire generating an inconceivable amount of entanglement.
For this reason, specially engineered embezzling states seem a
significant improvement up to any error that can be achieved.

On the other hand, one might note that if we could generate
R where r = 0.55, then we may as well have just used this
state to begin with as

F (P↓, R↓) = 0.98989 > F ((P ⊗ R�)↓, (Q ⊗ R�)).

From a practical perspective we agree with this critique.
Nonetheless, from a basic science perspective, if we are in-
terested in local unitary conversions under embezzling states
and catalysts, then the above tells us there are better choices in
general than van Dam–Hayden embezzlement, although van
Dam–Hayden embezzling has the special property of being
universal and optimal for sufficiently small ε.

We close this consideration with two final remarks. First, if
one picks two states that are more similar to begin with, then
the scaling of the embezzling state will be even larger. Second,

3We stress that by the correspondence of Schmidt coefficients to
probability distributions as discussed at the start of the work, even
without Theorem 1, this would be a legitimate strategy, we simply
would not know analytically it was optimal.
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FIG. 5. Plots pertaining to the dimension scaling of embezzling
states motivated by Example 5. (a) Depicts a lower bound on the
achievable fidelity of converting one two-qubit entangled state to
another under local unitaries using an embezzling state with a given
local dimension (equivalently, Schmidt rank) where the two-qubit
states are parametrized by probability distributions [p 1 − p] and
[q 1 − q]. These lower bounds were achieved via brute search as
described in the main text. (b) We plot the order (i.e., the power of 10)
of the Schmidt rank of the van Dam–Hayden embezzling state |μ(n)〉
to obtain the same maximum fidelity. This is calculated using 21/(1−F̃ )

following Proposition 3. See the main text for further information
on this calculation. All chosen embezzling states are provided in
Appendix C in Tables I–VI for verification by direct calculation.

we have not presented how the fidelity for this example scales
as the local dimension of |ζ 〉 grows. Both the dimension
scaling and two states that are more similar are considered in
Fig. 5. There, in Fig. 5(a), we find lower bounds on the optimal
fidelity achieved for a given size of embezzling state. To do
this, we searched over the discretized (ordered) probability
simplex where the discretization was over five-thousandths
(i.e., 0.005 intervals in each entry) for dimensions up to 6.
For dimensions 7 and 8, due to the time it takes to optimize
over such intervals, we would upper bound the search of the
(d + 1)th entry by the dth entry of the previous dimensions
optimizer. This heuristic seems natural as the approximate
ordered distributions in each dimension decrease entrywise
almost all the time (see Appendix C which includes all data
for the plot). In some low-dimensional cases, we are able
to verify our solutions are near optimal by seeing that the
optimizer is achieved over a discretization in only hundredths.
To compare to the carefully designed embezzling states of
Fig. 5(a), we consider the sufficient Schmidt rank of the
van Dam–Hayden universal embezzling family according to
Proposition 3. This is done via the following calculation. If a
fidelity F̃ is achieved using the specific embezzling state we
found, then we are interested in a van Dam–Hayden universal
embezzling state |μ(n)〉 with Schmidt rank n > m1/ε such that
1 − ε � F̃ . Thus, we are interested in n > 21/(1−F̃ ) where we

have used that in our case the state we are embezzling in and
out has Schmidt rank m = 2. As one would expect, this is a
large number so in Fig. 5(b), we merely plot the order (power
of 10) of the Schmidt rank. The data for generating this plot is
provided in Tables I-IV in Appendix C.

VII. ON EXTENSIONS OF THE THEORY

As a final consideration, we discuss the application of our
results beyond bipartite pure quantum states. First we remark
upon extensions to multipartite pure quantum states. In this
case the problem is that in establishing all of the results, we
have used that local unitaries can take the Schmidt decom-
position of the state to one of a canonical form. However,
in the multipartite case, the Schmidt decomposition does not
even exist in general [35]. As such, this argument immediately
breaks down. Furthermore, in the proof of Theorem 1 we
used Uhlmann’s theorem, which requires partitioning the state
into two pieces, one of which is the purification. Therefore, it
seems no multipartite extension of this work holds.

Similarly, there are issues with approaching mixed states.
One issue is to note that all relationships we have been able to
establish have stemmed from the fidelity under local unitaries
of pure states. Even in the case where local operations made
a pure quantum state no longer pure, we purified operations
so that the states were pure. We simply cannot do this if
we start with mixed states in both arguments of the fidelity.
We also cannot purify the states as by data processing, any
optimization without tracing off the purifying space only gets
us a lower bound. Moreover, this lower bound would require
establishing results for tripartite systems, which returns to the
issues with the multipartite pure state case. Therefore, we
believe in effect these are the most general settings where
these proof methods will be of use.

All code used to generate Figs. 4 and 5 may be found at
this Git repository [36] for transparency and scrutiny.
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APPENDIX A: RANDOMNESS EMBEZZLING PROOF
AND DISCUSSION ON LOCALITY

In this Appendix we provide the proof of Proposition
7 and then briefly discuss how it differs from quantum
embezzlement.

Proof. The proof is largely the same as for embezzlement
of quantum states [14]. Let P = ∑

i p(i)|i〉〈i|. Define Wn as
Rn ⊗ P except with probabilities in decreasing order. Note

Rn ⊗ P = 1

Hn

∑
i, j

p(i)

j
|i〉〈i| ⊗ | j〉〈 j| ,

so there exists a relabeling on {(i, j)} that will take this to Wn.
In particular, letting f : [m] × [n] → [mn] be a bijection, we
have |i〉| j〉 → | f (i, j)〉 ≡ |i′〉| j′〉 such that {z f (i, j) := p(i)

jHn
}(i, j)

satisfy zk � zk+1 for all k ∈ [mn]. Therefore, it suffices to
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approximate Wn, which means we want to bound the overlap
of this with Rn ⊗ P.

For fixed t and i, we let

Nt
i :=

∣∣∣∣{(i, j) :
p(i)

jHn
>

1

tHn

}∣∣∣∣ .

The inequality may be manipulated to imply 1 � j < p(i)t .
It follows that Nt

i < p(i)t . From this we obtain
∑m

i=1 Nt
i <∑m

i=1 p(i)t < t , where we have used
∑

i p(i) = 1. As z1 �
z2 � . . ., it follows z j � 1

jHn
for all 1 � j � n. We may re-

state this as for 1 � j � n, there are at most t ′ − 1 pairs
(i, j) such that p(i)/( jHn) > 1/(t ′Hn). Recalling z1 � z2 �
. . ., this means that z1 < 1/Hn and that there is at most one
pair (i, j) pair such that p(i)/( jHn) < 1/(2Hn), which, since
z1 � z2, means if such a pair exists, it is z1. By applying this
argument in effect recursively, we see that for t ′, there are at
most t ′ − 1 (i, j) pairs such that p(i)/( jHn) > 1/(t ′Hn) and
since zk � zk+1, if all of these pairs exist, then it must be
z1, . . . , zt ′−1. Therefore, z j � 1/( jHn) for all 1 � j � n. We
can now use this to bound the fidelity:

F (Rn ⊗ |0〉〈0|,Wn) =
⎛⎝ n∑

j=1

√
z j

jHn

⎞⎠2

�

⎛⎝ n∑
j=1

√
z j

⎞⎠2

�
n∑

j=1

z j,

where in the equality we have used the definition of fidelity,
in the second we used our established inequality, and in the
third we have used

√
x + √

y � √
x + y for x, y � 0 to pull

the square root out around the sum and cancel with the square.
Now we want to lower bound this sum, which requires

managing the z j terms. We consider Tn = Rn ⊗ πm with prob-
abilities t ( j) where πm := 1

m

∑m
i=1 |i〉〈i|. Now note that zk �

tk for all k ∈ [mn], and this is independent of what the distri-
bution P is. We can then bound the relevant sum by the sum
for Tn. It follows

n∑
j=1

t j =
�n/m�∑

j=1

m∑
i=1

1

jHnm
=

�n/m�∑
j=1

1

jHn
= H�n/m�

Hm

� ln(n/m)

ln(n)
= 1 − log2(m)

log2(n)
,

where the second inequality is using Hn � ln(n) and the
final form is converting from ln to log2 in both the nu-
merator and denominator so it cancels. Finally, letting 1 −
log2(m)/ log2(n) > 1 − ε will result in n > m1/ε, which com-
pletes the proof. �

With the proof established, we expand upon the distinc-
tion between the entangled and classical distribution cases
of embezzlement in terms of locality briefly mentioned in
the main text. In the classical case, one party embezzles
a distribution locally by themselves, whereas in the entan-
gled case two parties act locally on a nonlocal distribution.
Mathematically, this simply follows from the fact the vec(·)
map and its inverse converts between bipartite states and a
probability distribution. However, it is also physically inter-
esting that these are the two cases that align as it is clear other

variations are either classically or quantumly impossible as we
now explain.

The first reasonable variation would be if there is a nonlo-
cal classical case where two parties try and construct some
joint distribution pXY using classical embezzler rX ′Y ′ . It is
easy to see that they cannot in general satisfy the decou-
pling condition that is satisfied in quantum embezzlement,
i.e., they cannot satisfy pXY ⊗ rX ′Y ′ in this setting. This
is because without loss of generality the state will be of
the form

qXY X ′Y ′ =
∑

x,x′,y,y′
q(x|x′)q′(y|y′)r(x, y)

× |x, y, x′, y′〉〈x, y, x′, y′|.
This form means that X will be correlated to X ′ and Y to Y ′
unless qXY may be generated nonlocally without a seed state
to correlate the two which means they are (up to the allowed
error) independent, i.e., qXY ≈ε qX ⊗ qY . In this sense, there
cannot be a classical nonlocal equivalent of quantum embez-
zlement.

On the other hand, if one does not require the decoupling,
then this is a task that is possible in the classical setting and
is known as distributed source simulation, where the question
is the minimal needed shared randomness as the seed state to
generate the target state up to an (arbitrary) error [37]. This
was determined asymptotically in the classical case by Wyner
[8], extended to separable states by Hayashi [9], and recently
generalized to the one-shot setting for separable states in [10].
However, as in this setting variation there is no communi-
cation between the acting parties and the embezzler acts as
the seed state, it follows from Proposition 2 that distributed
source simulation cannot admit an entangled state equivalent.
For these reasons, not only does the vec bijection specify the
correspondence of embezzlement in the classical and quan-
tum setting, but deviating from it makes either a quantum or
classical version impossible.

APPENDIX B: SEMIDEFINITE PROGRAM RELAXATION
OF MAX FIDELITY OF PURE STATE TRANSFORMATION

UNDER LOSR

In this Appendix we prove Theorem 5. We begin by estab-
lishing (11) is true.

Lemma 4. Consider target state |ψ〉 and seed state |φ〉.
Let SR(ψ ) = d and SR(φ) = d ′. Define A = Cd , B = Cdd ′

.
Then,

FLOSR(|ψ〉, |φ〉) � max F (R, Q↓
embed)s.t. TrB[R] = P↓

× R ∈ P↓(d2 · d ′) ,

where P and Q are the distributions defined by |ψ〉 and |φ〉’s
Schmidt coefficients respectively.

Proof. The above seems intuitively true from Theorem 2
as we have just relaxed the tensor product structure with the
partial trace constraint. The technical issue is the ordering
operation ·↓ is defined in terms of a permutation of a fixed
basis, so we need to make sure this works with the partial
trace.

Note the feasible set, the set we can optimizer over, in
Theorem 2 is S1(P) := {(P ⊗ P′)↓ : P′ ∈ P (�)}. Now note
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this is the same as the set

S2(P) := {(P↓ ⊗ P′↓)↓ : P′ ∈ P (�)}
because the ordering applied to the tensor product will result
in the same thing regardless of whether or not P, P′ were
ordered. Therefore, we can focus on P↓ ⊗ P′↓ to make the
explanation clearer.

In general, in terms of vectors,

(p↓ ⊗ p′↓)↓ =

⎛⎜⎜⎜⎝
p↓(1)p′↓

p↓(2)p′↓
...

p↓(d )p′↓

⎞⎟⎟⎟⎠ ,

where p(i) � p(i + k) for k � 0. Formally, we also have

p↓(i)p′↓(1) � p↓(i + k)p′↓( j)

for all i ∈ [d], k ∈ {0, . . . , d − i}, and j ∈ �. In particular,
what this means is that without loss of generality for any
i ∈ [d], p↓(i)p′↓(1) appears before any element that is not of
the form p↓(i − �)p′↓( j) for some 0 < � � i − 1. It follows
that under the ordering of (p↓ ⊗ p′↓)↓, when the partial trace
marginalizes to the A space, the induced ordering on the local
space will be the ordering based on p↓. Formally, this can be
expressed as

TrC|�| [(P↓ ⊗ P′↓)↓] =
∑
j∈�

1A ⊗ 〈 j|(P↓ ⊗ P′↓)↓| j〉

=
∑
i∈[d]

p↓(i)|i〉〈i|,

where the first equality is a representation of the partial trace
and the second is using the property noted of the ordering on
the joint ordered distribution.

Thus, if X ∈ S2(P), TrC|�| (X ) = P↓ and X ∈ P↓(d|�|).
Noting that |�| = dd ′, this is the feasible set we have defined
in the proposition. This completes the proof. �

The remaining point is to prove this is the semidefinite pro-
gram given in (12). There is much to the theory of semidefinite
programs for quantum information [27], but for our purposes
all we will need is the following definition.

Definition 4. A semidefinite program may be expressed as

max Tr(AX )s.t. �(X ) = BXCd � 0 ,

where � ∈ T(Cd ,Cd ′
) is a Hermitian-preserving map, A ∈

Herm(Cd ), B ∈ Herm(Cd ′
), and Herm(·) is the space of

Hermitian operators on a given Hilbert space.
The fidelity is known to be a semidefinite program [27], so

we are really just verifying all of our constraints work and that
we can write the SDP simply by making use of that.

Lemma 5. The optimization program in the previous
lemma may be expressed as the following semidefinite
program over the reals:

max
∑

i∈[d2d ′]

x(i)s.t.

(
diag(r)diag(x)

diag(x) diag(q↓
embed)

)
� 0

× TrB[diag(r)] = P↓r ∈ P↓([d2d])x ∈ Rd2d ′
,

where d, d ′ are defined in the previous lemma.

Proof. We begin by expressing the objective function of
the previous lemma, which is in terms of fidelity, using the
primal problem for the SDP for fidelity from [27, Theorem
3.17]:

max
1

2
[Tr(X ) + Tr(X †)]

(
R X

X †Q↓
embed

)
� 0X ∈ L(C[d2·d ′] ) .

Now our goal is to reduce X to the diagonal of a real vector.
Note that R, Q↓

embed are always invariant under pinching
onto the computational basis of C[d2·d ′], which we can denote

. Note that this pinching is a CPTP, so by the CP property,

(idC2 ⊗ 
)

(
R X

X † Q↓
embed

)
=
(

R 
(X )

(X †) Q↓

embed

)
� 0.

It also then follows as a positive-semidefinite operator is al-
ways Hermitian that(

R 
(X †)

(X ) Q↓

embed

)
� 0.

Thus, by taking these two cases and averaging them, we have
that (

R 1
2

(

(X + X †)

)
1
2

(

(X + X †)

)
Q↓

embed

)
� 0.

Define X := 1
2 (
(X + X †)). Then note

1
2 (Tr(X ) + Tr(X †)) = 1

2 (Tr[
(X )] + Tr[
(X †)])

= 1
2 (Tr(X ) + Tr(X

†
)) = Tr(X ),

where the first equality is because the pinching is trace pre-
serving, the second is by definition of X , as is the final
equality. Thus, for any X that satisfies the positivity constraint,
we could replace it with X without loss of generality as
we are considering a maximization. Finally, note that X is
a real diagonal matrix by the pinching along with the fact
a + a∗ = 2 Rea. Thus, X = diag(x) for some x ∈ Rd2d ′

. Com-
bining all these points and using Tr(X ) = ∑

i∈[d2d ′] x(i), we
have reduced to considering

max
∑

i∈[d2d ′]

x(i)

(
diag(r) diag(x)
diag(x) diag(q↓

embed)

)
� 0x ∈ Rd2d ′

.

This argument works for any choice of diagonal r, so this is
the major reduction.

What remains is to prove all the constraints are Hermitian
maps. One can write the constraints for r ∈ P↓ as r(i) �
r(i + 1) for all i, which are semidefinite constraints and can
be written as Hermitian-preserving maps on the variables r, x.
diag is a Hermitian-preserving map as is the partial trace, so
TrC[diag(r)] is a Hermitian-preserving map. Likewise is the
block-matrix mapping if one allows for the complex conju-
gate in the lower left block, but noting diag(x)† = diag(x),
we can leave it as written. Thus, all the maps are Hermitian
preserving.

The conversion to actual standard form we then omit as it
provides no insight. This completes the proof. �

The above two proofs establish Theorem 5.
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APPENDIX C: DATA FOR EMBEZZLING STATE FIGURE

In this Appendix, we provide all the embezzling distribu-
tions used to generate Fig. 5.

TABLE I. Data for the near-optimal catalyst results presented in
Fig. 5 in the case p = 0.5 and q = 0.55. d stands for the dimension of
the distribution. Each distribution r was found via numerical search
as described in the main text.

d Lower bound embezzling distribution r

1 n/a
2 [0.5,0.5]
3 [0.3,0.33,0.37]
4 [0.215,0.235,0.26,0.29]
5 [0.16,0.18,0.2,0.22,0.24]
6 [0.13,0.145,0.155,0.17,0.19,0.21]
7 [0.105,0.115,0.125,0.14,0.155,0.17,0.19]
8 [0.085,0.095,0.105,0.115,0.13,0.115,0.13,0.145,0.155,0.17]

TABLE II. Data for the near-optimal catalyst results presented in
Fig. 5 in the case p = 0.5 and q = 0.6. d stands for the dimension of
the distribution. Each distribution r was found via numerical search
as described in the main text.

d Lower bound embezzling distribution r

1 n/a
2 [0.5,0.5]
3 [0.27,0.33,0.4]
4 [0.18,0.22,0.27,0.33]
5 [0.13,0.16,0.195,0.235,0.28]
6 [0.095,0.115,0.14,0.175,0.215,0.26]
7 [0.075,0.09,0.11,0.13,0.16,0.195,0.24
8 [0.055,0.065,0.08,0.1,0.125,0.155,0.19,0.23]

TABLE III. Data for the near-optimal catalyst results presented
in Fig. 5 in the case p = 0.5 and q = 0.7. d stands for the dimension
of the distribution. Each distribution r was found via numerical
search as described in the main text.

d Lower bound embezzling distribution r

1 n/a
2 [0.5,0.5]
3 [0.21,0.32,0.47]
4 [0.12,0.185,0.28,0.415]
5 [0.075,0.115,0.175,0.26,0.375]
6 [0.05,0.075,0.11,0.165,0.245,0.355]
7 [0.03,0.045,0.07,0.105,0.16,0.24,0.35]
8 [0.05,0.065,0.085,0.095,0.13,0.14,0.19,0.245]

TABLE IV. Data for the near-optimal catalyst results presented in
Fig. 5 in the case p = 0.6 and q = 0.65. d stands for the dimension of
the distribution. Each distribution r was found via numerical search
as described in the main text.

d Lower bound embezzling distribution r

1 n/a
2 [0.5,0.5]
3 [0.19,0.31,0.5]
4 [0.1,0.165,0.275,0.46]
5 [0.055,0.095,0.155,0.26,0.435]
6 [0.07,0.11,0.12,0.185,0.2,0.315]
7 [0.04,0.065,0.105,0.115,0.175,0.19,0.31]
8 [0.035,0.06,0.065,0.1,0.11,0.165,0.18,0.285]

TABLE V. Data for the near-optimal catalyst results presented in
Fig. 5 in the case p = 0.6 and q = 0.7. d stands for the dimension of
the distribution. Each distribution r was found via numerical search
as described in the main text.

d Lower bound embezzling distribution r

1 n/a
2 [0.5,0.5]
3 [0.24,0.275,0.485]
4 [0.08,0.15,0.27,0.5]
5 [0.04,0.075,0.14,0.26,0.485]
6 [0.055,0.095,0.11,0.18,0.205,0.355]
7 [0.03,0.055,0.09,0.11,0.17,0.2,0.345
8 [0.03,0.05,0.055,0.09,0.1,0.165,0.185,0.325]

TABLE VI. Data for the near-optimal catalyst results presented
in Fig. 5 in the case p = 0.6 and q = 0.8. d stands for the dimension
of the distribution. Each distribution r was found via numerical
search as described in the main text.

d Lower bound embezzling distribution r

1 n/a
2 [0.5,0.5]
3 [0.21,0.29,0.5]
4 [0.09,0.175,0.24,0.495]
5 [0.05,0.095,0.16,0.23,0.465]
6 [0.035,0.065,0.09,0.155,0.215,0.44]
7 [0.02,0.04,0.065,0.09,0.15,0.21,0.425]
8 [0.015,0.03,0.04,0.065,0.09,0.145,0.205,0.41]
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