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One-shot and asymptotic classical capacity in general physical theories
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With the recent development of quantum information theory, some attempts have been made to construct
information theory beyond quantum theory. Here, we consider hypothesis-testing relative entropy and one-shot
classical capacity, that is, the optimal rate of classical information transmitted by using a single channel under
the constraint of a certain error probability, in general physical theories where states and measurements are
operationally defined. Then we obtain the upper bound of the one-shot classical capacity by generalizing the
method given by Wang and Renner [Phys. Rev. Lett. 108, 200501 (2012)]. Also, we derive the lower bound of
the capacity by showing the existence of a good code that can transmit classical information with a certain error
probability. Applying the above two bounds, we prove the asymptotic equivalence between classical capacity
and hypothesis-testing relative entropy in any general physical theory.
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I. INTRODUCTION

Since Shannon invented information theory [1], it has been
increasingly important (see e.g., Ref. [2]). The goal of infor-
mation theory is basically to express the optimal efficiency for
some tasks, and the optimal efficiencies for different tasks are
sometimes equivalent or directly related through some infor-
mation quantities like mutual information; a typical example
is the asymptotic equivalence between the exponential rate of
hypothesis testing and the classical information-transmission
capacity [3].

Recently, because quantum information theory (see, e.g.,
Refs. [4,5]) has flourished, similar relations have become
known in quantum theory. In particular, the same relationship
between hypothesis testing and channel capacity also holds in
quantum theory [6–11]. These facts imply that an information
theory should possess such relations between the optimal ef-
ficiencies for some tasks independently of the mathematical
structure of its background physical systems.

However, when we establish an information theory that
stands by the operationally minimum principles, possible
models of background physical systems are not restricted to
classical and quantum theory. Such theories are called general
probabilistic theories [12–49], or GPTs (for a review, see,
e.g., Refs. [12–15]). The framework of GPTs is a kind of
generalization of classical and quantum theory whose states
and measurements are operationally defined, and studies of
GPTs have been widespread recently.

Even in such general models, some properties of informa-
tion theory also hold like in quantum theory. One such result
of preceding studies of GPTs is the no-cloning theorem in
GPTs [50]. It clarified that no model except for classical the-
ory can copy any information freely, similar to the no-cloning
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theorem in quantum theory, which means that quantum theory
is not a special theory with no cloning but classical theory is
a special theory with cloning.

On the other hand, some properties of information theory
are drastically changed in GPTs. A typical example is entropy.
In quantum theory, there are several methods to characterize
von Neumann entropy S(ρ) := −Tr[ρ log2 ρ] [51] based on
the classical Shannon entropy, but the von Neumann entropy
is well defined without a choice of the method of classi-
calization [4,5]. On the other hand, it is known that such
well-definedness is not valid in GPTs; i.e., there is no simple
way to define entropy similar to the von Neumann entropy
in GPTs [26–28,44,49]. A certain generalization of von Neu-
mann entropy is not even concave [26,28].

Because entropy is not generalized straightforwardly in
GPTs, we cannot easily obtain a similar result for optimal
efficiency for certain information tasks. Therefore, whether
the relations between optimal efficiencies for different tasks
are the same as the relations in classical and quantum theory
is a difficult question. If the answer is positive, i.e., rela-
tions between different information tasks are independent of
the mathematical structure of physical systems even though
entropies do not behave the same, we can reach a new foun-
dational perspective on information theory: Efficiencies for
information tasks give more robust definitions of information
quantities than entropies in GPTs because of the independence
of the mathematical structure of physical systems.

In this paper, we discuss hypothesis testing and classical
information transmission in GPTs in the same way as in
classical and quantum theory following Ref. [52]. Next, we
estimate the upper and lower bounds of one-shot classical ca-
pacity with hypothesis-testing relative entropy [53] in GPTs.
As a result, we obtain upper and lower bounds similar to
those of quantum theory. Moreover, due to the construction of
the achievable case of our bound, our result for the one-shot
case can be applied to the asymptotic case even though the
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asymptotic scenario is complicated in GPTs. Consequently,
we show the asymptotic equivalence between the above two
efficiencies even in GPTs.

The structure of this paper is as follows. In Sec. II, we
introduce basic notions of GPTs. In Sec. III, we introduce
hypothesis-testing relative entropy in GPTs. In Sec. IV, we
derive the one-shot classical capacity theorem in GPTs. In
Sec. V, we introduce the asymptotic setting and show the
asymptotic equivalence between one-shot classical capacity
and hypothesis-testing relative entropy in GPTs.

II. GENERAL PROBABILISTIC THEORIES

Here, we introduce the mathematical basics of GPTs fol-
lowing Refs. [12,14,15,40]. Let V be a finite-dimensional real
vector space and the subset K ⊂ V be a positive cone, i.e.,
a set satisfying the following three conditions: (1) λx ∈ K
holds for any x ∈ K and any λ � 0. (2) K is convex and has a
nonempty interior. (3) K ∩ (−K ) = {0}. The dual cone of K ,
denoted K∗, is defined as follows:

K∗ := {y ∈ V ∗ | 〈y, x〉 � 0 ∀x ∈ K}, (1)

where 〈·, ·〉 is the inner product of the vector space V . In
addition, an inner point u ∈ K∗, called the unit effect, is fixed
for a model. Then, a state in this model is defined as an
element ρ ∈ K satisfying 〈ρ, u〉 = 1. The state space, i.e., the
set of all states, is denoted as S(K ). Due to the convexity of
K , the state space S(K ) is also convex.

Also, a measurement is defined as a family e := {e j} j∈J

satisfying e j ∈ K∗ for any j ∈ J and
∑

j∈J e j = u. The mea-
surement space, i.e., the set of all measurements with finite
outcomes, is denoted as M(K ). Here, 〈e j, ρ〉 corresponds
to the probability of obtaining an outcome j ∈ J when we
perform a measurement e to a state ρ ∈ S (K ). Next, we define
an order relation � on K∗. We say that f � e if f − e ∈ K∗.
This means that for any element x ∈ K , 〈 f , x〉 � 〈e, x〉. Here,
we remark that a family {e, u − e} is a measurement in M(K )
if and only if the element e ∈ K∗ satisfies 0 � e � u using the
above order relation.

Next, we give examples of positive cones and models of
GPTs. The simplest example of positive cones is the positive
part of the vector space Rn, defined as

Rn
+ := {(xi )

n
i=1 ∈ Rn | xi � 0 ∀i}. (2)

Considering the standard inner product on Rn, the dual Rn∗
+

is equivalent to itself. We fix a unit u = (1, 1, . . . , 1). Then,
the state space S (Rn∗

+ ) is given as the set of all ensembles∑
j∈J p jc j , where {p j} is the probability vector and c j :=

(c j
i )n

i=1 is a vector such that c j
i = δi j , with δi j being the Kro-

necker delta, which corresponds to a classical bit. In this
paper, we denote c j as | j〉〈 j|. Also, a measurement is given as
a family {e j} j∈J of e j ∈ Rn

+ such that
∑

j e j = u, which cor-
responds to a strategy to obtain information from an ensemble
of the classical n-level system.

This model corresponds to the theory of classical informa-
tion and classical operations, i.e., classical theory. Quantum
theory is also a model of a GPT in the case V = LH(H),
〈x, y〉 = Trxy, K = L+

H (H), and u = 1. Here, LH(H) denotes
the set of Hermitian matrices on a Hilbert space H, and L+

H (H)
denotes the set of positive-semidefinite matrices on H. Also,

1 is the identity matrix on H. In this model, a state is given
as a density matrix, and a measurement is given as a positive
operator-valued measure (POVM).

Next, we define a measurement channel associated with a
measurement e as the following map Ee from S (K ) to S (Rn

+)
[14]:

Ee(ρ) :=
∑
j∈J

〈e j, ρ〉 | j〉〈 j| . (3)

We also define an adjoint map of a measurement channel Ee as
the following map E†

e from Rn∗
+ = Rn

+ to K∗ for any f ∈ Rn
+:

E†
e ( f ) :=

∑
j∈J

〈 f , | j〉〈 j|〉e j . (4)

Note that the following equation holds for any f ∈ Rn
+ and

any ρ ∈ S (K ):

〈E†
e ( f ), ρ〉 =

〈∑
j∈J

〈 f , | j〉〈 j|〉e j, ρ

〉

(a)=
∑
j∈J

〈e j, ρ〉〈 f , | j〉〈 j|〉

(b)=
〈

f ,
∑
j∈J

〈e j, ρ〉 | j〉〈 j|
〉

= 〈 f , Ee(ρ)〉. (5)

Equalities (a) and (b) hold because of the linearity of the inner
product. In addition, if 0 � f � u, it holds that 0 � E†

e ( f ) �
u because 0 � 〈 f , | j〉〈 j|〉 � 1 holds. As a result, if f is an
effect of a measurement { f , u − f }, then E†

e ( f ) is also an
effect of the measurement {E†

e ( f ), u − E†
e ( f )}.

Finally, we define a composite system of classical theory
and a general model of the positive cone K in GPTs [12,14].
The vector space of the composite system is given by Rn ⊗ V .
The corresponding positive cone is given as

Rn
+ ⊗ K := Conv({|x〉〈x| ⊗ ρ | x ∈ Rn

+, ρ ∈ K}), (6)

where Conv(S) is the convex hull of the set S. The unit is
given as the tensor product of units in each system. A state
in the composite system is given as an ensemble of tensor
products |x〉〈x| ⊗ ρ of a classical bit |x〉〈x| and a general state
ρ ∈ S (K ). For a bipartite state ρAB, the marginal states ρA and
ρB are defined as the unique states satisfying the following
relations for any pair of a classical measurement {eA

i } and a
general measurement {eB

j }, respectively [12]:∑
j

〈
eA

i ⊗ eB
j , ρ

AB
〉 = 〈

eA
i , ρA

〉
, (7)

∑
i

〈
eA

i ⊗ eB
j , ρ

AB〉 = 〈
eB

j , ρ
B〉

. (8)

Here, we note that the marginal states are given as
follows if the bipartite state is given as the ensemble∑

j, j′ p j, j′ | j〉〈 j|A ⊗ ρB
j′ :

ρA =
∑
j, j′

p j, j′ | j〉〈 j|A , (9)

ρB =
∑
j, j′

p j, j′ρ
B
j′ . (10)
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III. HYPOTHESIS-TESTING RELATIVE
ENTROPY IN GPTs

Next, we introduce hypothesis-testing relative entropy in
general models. In quantum theory, hypothesis-testing relative
entropy is defined for 0 � ε � 1 as follows [52,54–56]:

Dε
H(ρ||σ ) := − log2 min

E :0�E�1,
Tr{Eρ}�1−ε

Tr{Eσ }, (11)

where 1 is an identity operator. This definition comes from the
hypothesis testing of two quantum states (see, e.g., Ref. [57]).
We discriminate states ρ and σ by performing a two-valued
measurement with the POVM {E ,1 − E}. There are two
kinds of error probabilities, type-I error probability Tr{(1 −
E )ρ} and type-II error probability Tr{Eσ }. Definition (11)
corresponds to the optimization of the type-II error probability
Tr{Eσ } under the constraint that the type-I error probability
has an upper bound ε, that is, Tr{(1 − E )ρ} � ε.

As a generalization of this definition, we can introduce
hypothesis-testing relative entropy in GPTs as follows [58].

Definition 1. Hypothesis-testing relative entropy in GPTs.
Let ρ, σ ∈ � be states and q be an effect where 0 � 〈q, ρ〉 �
1 holds for any state ρ ∈ �. Let 0 � ε � 1 be a real value. We
define hypothesis-testing relative entropy as follows:

Dε
H,G(ρ||σ ) := − log2 min

q: 0�q�u,
〈q,ρ〉�1−ε

〈q, σ 〉. (12)

As the following lemma shows, measurement channels do
not increase the hypothesis-testing relative entropy, which is
important for the following discussion.

Lemma 1. Data-processing inequality for a measure-
ment channel. Let Ee : S (K ) → S, defined as Ee(·) :=∑

j∈J〈e j, ·〉 | j〉〈 j|, be a measurement channel corresponding
to the measurement e = {e j} j∈J . We have

Dε
H,G(ρ||σ ) � Dε

H,G(Ee(ρ)||Ee(σ )). (13)

IV. ONE-SHOT CLASSICAL CAPACITY IN GPTs

Here, we consider one-shot classical capacity in GPTs
based on the setup given by Ref. [52]. First, we describe our
setup of one-shot classical information transmission from the
sender in system A to the receiver in system B.

The sender and receiver share a channel � from X to
S (K ), defined as �(|x〉〈x|) = σ B

x , where X is an alpha-
bet. The sender encodes an n-length bit string j ∈ 	 :=
{0, 1, 2, . . . , 2n − 1} to x ∈ X by using the function g( j) = x,
called the encoder. The set G = g(	) and the element g( j) are
called the codebook and codeword, respectively. The receiver
performs a measurement mB := {mB

j } j∈	 on the arrived state
σ B

g( j), where mB
j � 0 and

∑
j∈	 mB

j = u. The error probability
for a given message j ∈ 	, encoder g, and measurement mB

is defined as

Pr(error| j, g, mB) = 〈
u − mB

j , σ
B
g( j)

〉
. (14)

This setting is illustrated in Fig. 1.
The sender and receiver aim to maximize the size of the

bit strings under the condition that the average error is small
enough. In order to define the rate of this task and the capacity
of the channel, we define a code that fulfills this aim.

FIG. 1. The setup for sending classical information. The dashed
arrows indicate transmissions of classical information. The solid line
indicates a transmission of a state in the general theory. The sender
chooses the message j ∈ 	 and encodes it using the function g : 	 →
X . Classical information g( j) is transformed into state σg( j) by a
channel � whose input is the classical information and whose output
is the state of the GPT of the receiver’s system. Then the receiver
performs a measurement M to σg( j) and decodes that result to obtain
classical information j ′. We say that the measurement decodes the
message j correctly when j′ = j.

Definition 2. (2n, ε) code. Let 	 = {0, 1, . . . , 2n − 1} be an
n-length bit string. A (2n, ε) code for a map � : |x〉〈x| �→ σ B

x
consists of an encoder g : 	 → X and decoding measurement
mB := {mB

j } j∈	 , whose average error probability when the
message j ∈ 	 is chosen uniformly at random is bounded
from the above by ε, with the formula

Pr(error|g, mB) := 1

2n

∑
j∈	

Pr(error| j, g, mB) � ε. (15)

Then, we define the rate and capacity in the same way as
they are defined in the quantum case [52,59].

Definition 3. One-shot ε-achievable rate. A real number
R � 0 is a one-shot ε-achievable rate for one-shot classical
information transmission through � if there is a (2R, ε) code.

Definition 4. One-shot ε-classical capacity. The one-shot
ε-classical capacity of a map �, Cε (�), is defined as

Cε (�) := sup{R | R is a one-shot ε-achievable rate}. (16)

Now, we define the following ensemble:

πAB
PX

:=
∑
x∈X

PX (x) |x〉〈x|A ⊗ σ B
x , (17)

where PX (x) is the probability distribution of a random vari-
able associated with the alphabet X . The marginal states with
respect to A and B are

πA
PX

=
∑
x∈X

PX (x) |x〉〈x|A , (18)

πB
PX

=
∑
x∈X

PX (x)σ B
x , (19)

respectively.
In quantum theory, the ε-one-shot classical capacity is

asymptotically equivalent to the optimal hypothesis-testing
relative entropy between the above ensemble πAB and the
product of its marginal states. This paper shows that the equiv-
alence also holds even in GPTs.

First, we show the converse part, i.e., the upper bound of
Cε (�), by applying Lemma 1.

Theorem 1. The ε-one-shot classical capacity of a map � :
|x〉〈x| �→ σ B

x is bounded as follows:

Cε (�) � sup
PX

Dε
H,G

(
πAB

PX

∣∣∣∣πA
PX

⊗ πB
PX

)
, (20)
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where the supremum is taken over all probability distributions
PX and πA

PX
and πB

PX
are marginal states of πAB

PX
with regard to

systems A and B, respectively.
We give a proof of Theorem 1 in the Appendix.
Next, we show the achievable part, which gives the lower

bound of Cε (�).
Theorem 2. The ε-one-shot classical capacity of a map � :

x ∈ X → σ B
x satisfies the following inequality for any ε′ ∈

(0, ε), any s > 1, and any t > s satisfying ε > sε′:

Cε (�) � sup
PX

Dε′
H,G

(
πAB

PX

∣∣∣∣πA
PX

⊗ πB
PX

) − log2
t

ε − sε′ . (21)

To show Theorem 2, we give the following lemma.
Lemma 2. Let K be a positive cone, and let Y be a finite

set. Let {Ay}y∈Y be a family of effects in K∗ satisfying 0 �
Ay � u for all y ∈ Y . Then, for any real numbers s > 1 and
t > s, there is a measurement {Ey}y∈Y ∈ M(K ) that satisfies
the following inequalities for each Ey:

u − Ey � s(u − Ay) + t
∑
z∈Y
z =y

Az. (22)

We give proofs of Theorem 2 and Lemma 2 in the Ap-
pendix. Simply speaking, an achievable code is obtained with
Lemma 2 that is associated with the achievable measurement
of hypothesis-testing relative entropy.

Here, we remark on the construction of the measurement in
the proofs of Lemma 2 and Theorem 2. In classical-quantum
channel coding [9,10,52], the measurement is chosen to be a
pretty good measurement [60] determined by the square roots
of the original family {Ay}y∈Y . On the other hand, our con-
struction is trivial, but it needs information about the unique
index y0 ∈ Y satisfying a certain property. The construction in
Refs. [9,10,52] is valid without such information, and there-
fore, we can apply the construction in [9,10,52] to actual
information tasks, in contrast to our construction. However,
this paper aims to estimate the value Cε (�). For this aim,
we have to show only the existence of an optimal measure-
ment, and thus, our construction is sufficient even though our
method is not helpful for actual information tasks.

V. ASYMPTOTIC INDEPENDENT AND IDENTICAL
DISTRIBUTION CASE

In this section, we consider how the capacity is expressed
when a channel is used m (m is a positive integer) times in an
independent and identical distribution.

We express an m-length sequence consisting of alphabet X
as x1 · · · xm. Let us fix the probability of occurrence for each
symbol as PX (x). Then, when a channel � is used m times, the
sender and receiver can share the following state:

πAB
PXm :=

∑
x1···xm∈Xm

PX m (x1 · · · xm) |x1 · · · xm〉〈x1 · · · xm|A

⊗ σ B
x1···xm

. (23)

Here, Xm indicates that the set of all m-length sequences
consists of the alphabet X , and σ B

x1···xm
is the abbreviation

of σ B
x1

⊗ σ B
x2

⊗ · · · ⊗ σ B
xm

. We denote the above map from
|x1 · · · xm〉〈x1 · · · xm|A to σ B

x1···xm
as �⊗m.

Here, we remark on the composition of the model of GPTs.
In the standard setting of GPTs, i.e., the case when we assume
no signaling and local tomography [23,61], an n-composite
model of a model defined by K is defined by a positive cone
Kn satisfying

n⊗
i=1

Ki ⊂ Kn ⊂
(

n⊗
i=1

K∗
i

)∗
, (24)

where the set
⊗n

i=1 Ki is defined as

n⊗
i=1

Ki := Conv{⊗ρi|ρi ∈ Ki}. (25)

As shown in Refs. [45,46], an n-composite model of a non-
classical single model is not uniquely determined in GPTs.
Therefore, we need to be more careful in GPTs when we
consider an asymptotic scenario. However, in the above
asymptotic scenario, we need to consider only m uses of a
channel �, which is a channel from a classical m-length bit to
an m-partite product state σ B

x1···xm
. Due to the inclusion relation

(24), an m-partite product state can be regarded as a state
in any composite model of a single system, and therefore,
the map �⊗n is well defined even in GPTs. Hence, we can
apply the results in the single-shot scenario to the asymptotic
scenario.

Now we consider the situation where we encode a message
j ∈ 	 to an m-length sequence x1 · · · xm by an encoder gm,
that is, gm( j) = x1 · · · xm. Here, notice that the size of the
set of all messages 	 depends on m, and we denote it as
|gm|. Also, let us denote the decoding error εm when the
message j appears uniformly at random. Then, like in the
single-shot scenario, we define an ε-asymptotic achievable
rate as a real number R � 0 if a sequence of (m, |gm|, ε)
codes satisfying lim infm→∞ 1

m log2 |gm| = R exists. Finally,
we define ε-asymptotic classical capacity [3].

Definition 5. ε-asymptotic classical capacity. The ε-
asymptotic classical capacity of � is defined as follows:

C̃ε (�) := sup{R | R is an ε-achievable rate for �}. (26)

By the definitions of one-shot ε-classical capacity and ε-
classical capacity, we have

C̃ε (�) = lim inf
m→∞

1

m
Cε (�⊗m). (27)

Because the map �⊗m can be regarded as a channel in a
model of GPTs, we can apply Theorem 1. Also, in the proof
of Theorem 2, the decoding measurement is a trivial mea-
surement with information about a given channel. A trivial
measurement is also well defined in any composite system of
the single system, and therefore, we can also apply Theorem 2.
As a result, the ε-asymptotic classical capacity of � satisfies

lim
m→∞

1

m
sup
PXm

Dε′
H,G

(
πAB

PXm

∣∣∣∣πA
PXm ⊗ πB

PXm

)
� C̃ε (�)

� lim
m→∞

1

m
sup
PXm

Dε
H,G

(
πAB

PXm

∥∥πA
PXm ⊗ πB

PXm

)
, (28)
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where ε′ ∈ (0, ε). Here, the hypothesis-testing relative en-
tropy Dε (ρ||σ ) is left continuous over ε (see Lemma 3 in the
Appendix). As a result, we obtain the following theorem.

Theorem 3. In any model of GPTs and any ε ∈ (0, 1), a
channel � satisfies

C̃ε (�) = lim
m→∞

1

m
sup
PXm

Dε
H,G

(
πAB

PXm

∥∥πA
PXm ⊗ πB

PXm

)
. (29)

In other words, the classical capacity and the hypothesis-
testing relative entropy are asymptotically equivalent even in
GPTs.

Here, we remark on the dependence of ε. In quantum
theory, because of the quantum Stein’s lemma [6,7], we have
the following equality [52]:

∀ε ∈ (0, 1), lim
n→∞

1

n
Dε

H(ρ⊗n||σ⊗n) = D(ρ||σ ).

In other words, there is no ε dependence in quantum the-
ory, and the rates are equal to Umegaki’s relative entropy
D(ρ||σ ) [62,63]. Thus, both the asymptotic classical capacity
and asymptotic hypothesis-testing relative entropy are deter-
mined independently from ε. Therefore, we often consider
the case ε → 0, which provides the Holevo-Schumacher-
Westmoreland (HSW) theorem [9,10] as stated in Ref. [52].
In contrast to quantum theory, it is not yet known whether

they are independent of ε in GPTs, which is still an important
open problem. However, whether they are dependent or inde-
pendent, this paper has clarified the asymptotic equivalence
between classical capacity and hypothesis-testing relative en-
tropy for each ε even in GPTs.

VI. CONCLUSIONS

We introduced classical information transmission in GPTs,
and we showed the lower and upper bounds of the one-shot
classical capacity theorem in any physical theory given by
hypothesis-testing relative entropy. In addition, we showed
that the lower and upper bounds are asymptotically equivalent.
In other words, we showed the equivalence between asymp-
totic classical capacity and asymptotic hypothesis-testing
relative entropy in any physical theory.

In classical and quantum theory, the above rates of different
information tasks are connected by entropies, but in general,
entropies do not possess properties similar to classical and
quantum theory in GPTs. Our contribution is to clarify the
equivalence of two rates of different information tasks without
entropies in any physical theory.

Note that the asymptotic equivalence of the capacity and
hypothesis-testing relative entropy given by Theorem 3 de-
pends on ε. The open problem is then the HSW theorem in
GPTs. By virtue of Theorem 3, this problem can be reduced
to the following two problems: (1) Are asymptotic classical
capacity and asymptotic hypothesis-testing relative entropy
independent of ε even in GPTs? (2) If so, are asymptotic
classical capacity and asymptotic hypothesis-testing relative
entropy related to standard relative entropy even in GPTs?
The answers to both problems should give an important new
operational perspective of entropies and information rates.
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APPENDIX: LEMMAS AND PROOFS

1. Proof of Lemma 1

Proof. Let 0 � q � u be a classical effect that attains the
minimization in the definition of classical hypothesis-testing
relative entropy Dε

H,G(Ee(ρ)||Ee(σ )). In other words, q satis-
fies the following relations:

〈q, Ee(ρ)〉 � 1 − ε, (A1)

− log2〈q, Ee(σ )〉 = Dε
H,G(Ee(ρ)||Ee(σ )). (A2)

Because of Eq. (5), we have 〈E†
e (q), ρ〉 = 〈q, Ee(ρ)〉. The

combination of this with Eqs. (A1) and (A2) leads to the
following relations, respectively:

〈E†
e (q), ρ〉 � 1 − ε, (A3)

− log2〈E†
e (q), σ 〉 = Dε

H,G(Ee(ρ)||Ee(σ )). (A4)

Equation (A3) implies that the effect E†
e (q) satisfies the con-

dition of the minimization of Dε
H,G(ρ||σ ) [but not necessarily

the optimal effect that achieves Dε
H,G(ρ||σ )], which implies

the desired inequality (13) [64]. �

2. Proof of Theorem 1

Proof. Let R := Cε (�) be the maximum ε-achievable rate.
Take an (2R, ε) code, i.e., an encoder g : 	 → X and a mea-
surement mB := {mB

j } j∈	 satisfying

1

2R

∑
j∈	

〈
u − mB

j , σ
B
g( j)

〉
� ε. (A5)

To show inequality (20), we consider the concrete probability
distribution PX as a uniform distribution, and we define the
bipartite state πAB

uni as

πAB
uni := 1

2R

∑
j∈	

|g( j)〉〈g( j)|A ⊗ σ B
g( j). (A6)

The marginal states of πAB
uni are given as

πA
uni = 1

2R

∑
j∈	

|g( j)〉〈g( j)|A , (A7)

πB
uni = 1

2R

∑
j∈	

σ B
g( j). (A8)
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We will show inequality (20) by showing the inequality

R � Dε
H,G

(
πAB

uni

∣∣∣∣πA
uni ⊗ πB

uni

)
(A9)

as discussed later.
Next, take a classical measurement {λA

j } j∈	 such that
〈λA

j , |g( j′)〉〈g( j′)|〉 = δ j, j′ . Then, we define a product mea-
surement m′ := {λ j ⊗ mj′ } j, j′∈	 , and the measurement chan-
nel Em′ associated with the product measurement, i.e., Em′ , is
given as

Em′ (ρ) =
∑
j, j′∈	

〈λ j ⊗ mj′ , ρ〉 | j〉〈 j| ⊗ | j′〉〈 j′| . (A10)

From Lemma 1, we obtain the following inequality:

Dε
H,G

(
Em′

(
πAB

uni

)∣∣∣∣Em′
(
πA

uni ⊗ πB
uni

))
� Dε

H,G

(
πAB

uni

∣∣∣∣πA
uni ⊗ πB

uni

)
. (A11)

To calculate the left-hand side of (A11), we define the classi-
cal state PAB := Em′ (πAB

uni ). Then, the marginal states of PAB

are given as

PA =
∑
j, j′∈	

〈
λ j ⊗ mj′ , π

AB
uni 〉 | j

〉〈 j|A (A12)

=
∑
j,∈	

〈
λ j ⊗ u, πAB

uni

〉 | j〉〈 j|A (A13)

=
∑
j,∈	

〈
λ j, π

A
uni〉 | j

〉〈 j|A , (A14)

PB =
∑
j, j′∈	

〈
λ j ⊗ mj′ , π

AB
uni 〉 | j′

〉〈 j′|B (A15)

=
∑
j′,∈	

〈
u ⊗ mj′ , π

AB
uni

〉 | j′〉〈 j′|B (A16)

=
∑
j′,∈	

〈
mj′ , π

B
uni

〉 | j′〉〈 j′|B . (A17)

With these forms of marginal states PA and PB, we obtain the
following relation:

PA ⊗ PB =
∑
j, j′∈	

〈
λ j, π

A
uni

〉〈
mj′ , π

B
uni

〉 | j〉〈 j|A ⊗ | j′〉〈 j′|B

(A18)

=
∑
j, j′∈	

〈
λ j ⊗ mj′ , π

A
uni ⊗ πB

uni

〉 | j〉〈 j|A ⊗ | j′〉〈 j′|B

(A19)

= Em′
(
πA

uni ⊗ πB
uni

)
. (A20)

Therefore, to show the desirable inequality (A9), we need to
show the inequality

R � Dε
H,G(PAB||PA ⊗ PB), (A21)

which will be shown below.
To estimate the value Dε

H,G(PAB||PA ⊗ PB), take a concrete
classical two-outcome measurement {q, u − q} to distinguish
classical states PAB and PA ⊗ PB such that q = (qi )i∈	2 ∈ R	2

and qi = δ j, j′ for i = ( j, j′). Then, the type-I error probability

〈q, PAB〉 is given as

〈q, PAB〉 =
∑
j= j′

〈
λ j ⊗ mj′ , π

AB
uni

〉
(A22)

=
∑
j∈	

∑
k∈	

1

2R
〈λ j, |g(k)〉〈g(k)|A〉〈mj, σ

B
g(k)

〉
(A23)

(a)= 1

2R

∑
j∈	

〈mj, σg( j)〉 (A24)

= 1 − 1

2R

∑
j∈	

〈u − mj, σg( j)〉 (A25)

(b)
� 1 − ε. (A26)

The equality (a) holds because 〈λ j, |g(k)〉〈g(k)| = δ j,k . The
inequality (b) holds because of inequality (A5). Also, the
type-II error probability 〈q, PA ⊗ PB〉 is given as

〈q, PA ⊗ PB〉 =
∑
j= j′

〈
λ j ⊗ mj′ , π

A
uni ⊗ πA

uni

〉
(A27)

=
∑
j∈	

〈
λ jπ

A
uni

〉〈
mjπ

B
uni

〉
(A28)

=
∑
j∈	

(
1

2R

∑
k∈	

〈λ j |g(k)〉〈g(k)|A〉
)

×
(

1

2R

∑
k′∈	

〈
mj, σ

B
k′
〉)

(A29)

(a)= 1

22R

∑
j∈	

∑
k′∈	

〈
mj, σ

B
k′
〉

= 1

22R

∑
k′∈	

〈
u, σ B

k′
〉 = 1

2R
. (A30)

The equality (a) holds because 〈λ j, |g(k)〉〈g(k)| = δ j,k . Rela-
tions (A22) and (A27) imply inequality (A21). As a result, we
obtain inequality (20) as follows:

Cε (�) = R � Dε
H,G(PAB||PA ⊗ PB) (A31)

= Dε
H,G

(
Em′

(
πAB

uni

)∣∣∣∣Em′
(
πA

uni ⊗ πB
uni

))
(A32)

� Dε
H,G

(
πAB

uni

∣∣∣∣πA
uni ⊗ πB

uni

)
(A33)

� sup
PX

Dε
H,G

(
πAB

PX

∣∣∣∣πA
PX

⊗ πB
PX

)
. (A34)

Here, we remark that this proof is an operational general-
ization of the proof of the converse part given in Ref. [52].

3. Proof of Theorem 2

First, we prove Lemma 2.
Proof of Lemma 2. Let us denote u′ := ∑

y∈Y Ay. Also, let
us define

By := −(s − 1)u − tu′ + (s + t )Ay (A35)

for each y ∈ Y . Then the desired inequality (22) is rewritten
as By � Ey.
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Next, we show that at most one element y0 ∈ Y satisfying
By0 � 0 by contradiction exists. Assume that two different
elements y0, y1 ∈ Y satisfy By0 � 0 and By1 � 0, respectively.
Then we have the following two inequalities:

(s + t )Ay0 � (s − 1)u + tu′, (A36)

(s + t )Ay1 � (s − 1)u + tu′. (A37)

Therefore, we have

(s + t )u′ � (s + t )
(
Ay0 + Ay1

)
(A38)

� 2(s − 1)u + 2tu′ (A39)

> (s + t )u′. (A40)

The first inequality is from Ay0 + Ay1 � u′. The second in-
equality is from inequalities (A36) and (A37). The final
inequality holds because s > 1 and t > s. However, this is
a contradicting relation, and thus, at most one y0 such that
By0 � 0 exits.

Finally, we define a measurement. Let y0 ∈ Y be a unique
element satisfying By0 � 0 if it exists. If such a y0 does not
exist, we choose a fixed element y0 ∈ Y . Then, we define a
measurement {Ey}y∈Y as

Ey := 0 (y = y0),

Ey := u (y = y0). (A41)

As discussed above, Bi < 0 holds for all i except y0, and
therefore, Bi < Ei holds for any i = y0. Therefore, what we
need to show is By0 � Ey0 , which is shown as follows:

Ey0 − By0 = u − [−(s − 1)u − tu′ + (s + t )Ay0 ] (A42)

= s
(
u − Ay0

) + t
(
u′ − Ay0

)
� 0. (A43)

As a result, the measurement defined as (A41) satisfies
By � Ey for all y ∈ Y , and thus, the desired inequality (22)
holds. �

Now, we prove Theorem 2 by applying Lemma 2.
Proof of Theorem 2. The structure of this proof is also es-

sentially the same as the method given in Ref. [52].
To show inequality (21), we fix an arbitrary parameter

ε′ ∈ (0, ε) and an arbitrary probability distribution PX (x).
Then, we take an effect e that achieves the optimization

Dε′
H,G(πAB

PX
||πA

PX
⊗ πB

PX
). Therefore, the effect e satisfies 0 �

e � u and 〈e, πAB
PX

〉 � 1 − ε′. Then, we need to show the
existence of a (2R, ε) code satisfying

R � − log2

〈
e, πA

PX
⊗ πB

PX

〉 − log2
t

ε − sε′ , (A44)

which can be rewritten as

ε � sε′ + 2Rt
〈
e, πA

PX
⊗ πB

PX

〉
. (A45)

To show this, we need to show the existence of the code with
size R, i.e., the existence of a measurement mB such that

Pr(error|mB) � sε′ + 2Rt
〈
e, πA

PX
⊗ πB

PX

〉
. (A46)

Now, we consider the situation in which we send an R-
length bit string j ∈ 	. We generate an encoder g : 	 → X by
choosing a codeword g( j) = x j ∈ X at random, where each x j

is chosen according to the distribution PX independently. Also,
let us define 0 � Ax � u as an effect such that

〈Ax, ρ
B〉 = 〈e, |x〉〈x|A ⊗ ρB〉 (A47)

for any ρB ∈ S (KB). By applying Lemma 2, we choose a de-
coding measurement mB := {mB

j } j∈	 for which the following
inequality holds for any s > 1 and t > s:

u − mB
j � s

(
u − Ag( j)

) + t
∑
i∈	
i = j

Ag(i). (A48)

Therefore, an upper bound of the error probability with re-
spect to a message j ∈ 	 with an encoder g is bounded as
follows:

Pr(error| j, g, mB) � s
〈
u − Ag( j), σ

B
g( j)

〉 + t
∑
i∈	
i = j

〈
Ag(i), σ

B
g( j)

〉
.

(A49)
Next, for an arbitrary fixed bit string j, we consider the

average of the error probability Pr(error| j, g, mB) over all
the encoders g. We denote the probability to generate g and
the average value as P(g) and Pr(error| j, g, mB), respectively.
Also, we denote the set of all encoders and the set of encoders
satisfying g( j) = x as G and Gx, respectively. Then, the value
Pr(error| j, g, mB) is bounded as follows due to the method to
generate g:

Pr(error| j, g, mB) :=
∑
g∈G

P(g) Pr(error| j, g, mB) (A50)

(a)
�

∑
g∈G

P(g)

⎛
⎜⎜⎝s

〈
u − Ag( j), σ

B
g( j)

〉 + t
∑
i∈	
i = j

〈
Ag(i), σ

B
g( j)

〉
⎞
⎟⎟⎠ (A51)

=
∑
x∈X

∑
g∈Gx

P(g)

⎛
⎜⎜⎝s

〈
u − Ag( j), σ

B
g( j)

〉 + t
∑
i∈	
i = j

〈
Ag(i), σ

B
g( j)

〉
⎞
⎟⎟⎠ (A52)

(b)=
∑
x∈X

∑
g∈Gx

P(g)s
〈
u − Ax, σ

B
x

〉 + ∑
x∈X

∑
g∈Gx

P(g)t
∑
i∈	
i = j

〈
Ag(i), σ

B
x

〉
(A53)
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(c)=
∑
x∈X

PX (x)s
〈
u − Ax, σ

B
x

〉 + ∑
x∈X

∑
g∈Gx

P(g)t
∑
i∈	
i = j

〈
Ag(i), σ

B
x

〉
(A54)

(d )=
∑
x∈X

PX (x)s
〈
u − Ax, σ

B
x

〉 + ∑
x∈X

t
∑
i∈	
i = j

〈
PX (x)

∑
x′∈X

PX (x′)Ax′ , σ B
x

〉
(A55)

(e)= s

(
1 −

∑
x∈X

PX (x)
〈
Ax, σ

B
x

〉) + t (2R − 1)

〈∑
x′∈X

PX (x′)Ax′ ,
∑
x∈X

PX (x)σ B
x

〉
(A56)

( f )
� s

(
1 −

∑
x∈X

PX (x)
〈
Ax, σ

B
x

〉) + t2R

〈∑
x′∈X

PX (x′)Ax′ ,
∑
x∈X

PX (x)σ B
x

〉
. (A57)

The inequality (a) is derived from (A49). The equality (b)
is derived from the definition of Gx. The equality (c) holds
because the first term is independent of g and the average
over g ∈ Gx is given by PX (x) due to the method to generate
g. Because each codeword g(i) is chosen at random with
probability PX independent of the choice of g( j) = x in the
second term, the average of Ag(i) over g ∈ Gx is given as
PX (x)

∑
x′∈X PX (x′)Ax′ . Therefore, the equality (d ) holds. The

equality (e) holds because the second term is independent
of j. The inequality ( f ) is shown from the trivial inequality
2R − 1 � 2R and the positivity of the inner product.

By applying the above upper bound, the average of
Pr(error|g, mB) over all of the encoders g is bounded as fol-
lows:

Pr(error|g, mB) :=
∑
g∈G

P(g)
∑

j

1

2R
Pr(error| j, g, mB)

=
∑

j

1

2R

∑
g∈G

P(g)Pr(error| j, g, mB)

�
∑

j

1

2R

[
s

(
1 −

∑
x∈X

PX (x)
〈
Ax, σ

B
x

〉)

+ t2R

〈∑
x′∈X

PX (x′)Ax′ ,
∑
x∈X

PX (x)σ B
x

〉]

(a)=s

(
1 −

∑
x∈X

PX (x)
〈
Ax, σ

B
x

〉)

+ t2R

〈∑
x′∈X

PX (x′)Ax′ ,
∑
x∈X

PX (x)σ B
x

〉
.

(A58)

The equality (a) holds because the summation part is indepen-
dent of j.

Finally, by using Eq. (A47) and the linearity of the inner
product, we have∑

x∈X
PX (x)

〈
Ax, σ

B
x

〉 =
∑
x∈X

PX (x)〈e, |x〉〈x∣∣A ⊗ σ B
x

〉

=
〈

e,
∑
x∈X

PX (x) |x〉〈x|A ⊗ σ B
x

〉

= 〈
e, πAB

PX

〉
� 1 − ε′. (A59)

Also, we have〈∑
x′

PX (x′)Ax′ ,
∑

x

PX (x)σ B
x

〉

=
∑

x′
PX (x′)

〈
Ax′

∑
x

PX (x)σ B
x

〉

(a)=
∑

x′
PX (x′)

〈
e, |x′〉〈x′|A ⊗

∑
x

PX (x)σ B
x

〉

=
〈

e,
∑

x′
PX (x′) |x′〉〈x′|A ⊗

∑
x

PX (x)σ B
x

〉

= 〈
e, πA

PX
⊗ πB

PX

〉
. (A60)

The equality (a) is derived directly from (A47). Substituting
(A59) and (A60) for (A58), we obtain the inequality

Pr(error|g, mB) � sε′ + 2Rt
〈
e, πA

PX
⊗ πB

PX

〉
. (A61)

Due to the same logic as Shannon’s random encoding, at
least one encoder and decoder satisfying the desired inequal-
ity (A46) exist. As a result, we show the existence of the
(2R, ε) code satisfying (A44), which implies the statement of
Theorem 2. �

4. Proof of Theorem 3

The remainder of the proof of Theorem 3 is the following
lemma.

Lemma 3. For any states ρ, σ ∈ S (K ) and ε > 0, the ε-
hypothesis-testing relative entropy is left continuous over ε.

Proof of Lemma 3 Due to the definition (12), we need to
show only the continuity of the function D(ε), defined as

D(ε) := min
q: 0�q�u,
〈q,ρ〉�1−ε

〈q, σ 〉 (A62)

for any ρ, σ ∈ S (K ). Because the effect (1 − ε)u satisfies the
condition of the minimization in (A62), 0 � D(ε) � 1 − ε

holds. Let η > 0 be an arbitrary parameter for the so-called
ε − δ discussion. We need to show only the existence of δ for
any 0 < η < 1 − D(ε) such that any ε′ < ε with ε − ε′ < δ

satisfies |D(ε) − D(ε′)| < η. We take an argument-minimum
effect q0 := argmin D(ε), and we choose δ to be δ := εη

1−D(ε) .
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In addition, we take an effect q1 as

q1 := δ

ε
u +

(
1 − δ

ε

)
q0. (A63)

Because 0 < δ
ε
� 1, the effect q1 satisfies 0 � q1 � u and the

following inequality:

〈q1, ρ〉 =
(

1 − δ

ε

)
〈q0, ρ〉 + δ

ε
〈u, ρ〉

�
(

1 − δ

ε

)
(1 − ε) + δ

ε

=1 − ε + δ � 1 − ε′. (A64)

Then, we obtain the following inequality:

|D(ε) − D(ε′)| (a)= D(ε′) − D(ε) (A65)

= min
q′: 0�q′�u,
〈q′,ρ〉�1−ε′

〈q′, σ 〉 − D(ε) (A66)

(b)
� 〈q1, σ 〉 − D(ε) (A67)

= δ

ε
[1 − D(ε)] = η. (A68)

The equality (a) holds because ε′ < ε. The inequality (b)
holds because of inequality (A64). As a result, D(ε) is left
continuous, and therefore, ε-hypothesis-testing relative en-
tropy is also left continuous over ε. �

[1] C. E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J. 27, 379 (1948).

[2] T. M. Cover and J. A. Thomas, Elements of Information The-
ory, 2nd ed., Wiley Series in Telecommunications and Signal
Processing (Wiley, New York, 2006).

[3] S. Verdú and T. S. Han, A general formula for channel capacity,
IEEE Trans. Inf. Theory 40, 1147 (1994).

[4] M. M. Wilde, Quantum Information Theory, 2nd ed.
(Cambridge University Press, Cambridge, 2017).

[5] J. Watrous, The Theory of Quantum Information (Cambridge
University Press, Cambridge, 2018).

[6] F. Hiai and D. Petz, The proper formula for relative entropy and
its asymptotics in quantum probability, Commun. Math. Phys.
143, 99 (1991).

[7] T. Ogawa and H. Nagaoka, Strong converse and Stein’s lemma
in quantum hypothesis testing, in Asymptotic Theory of Quan-
tum Statistical Inference: Selected Papers (World Scientific,
Singapore, 2005), pp. 28–42.

[8] B. Schumacher, Quantum coding, Phys. Rev. A 51, 2738
(1995).

[9] B. Schumacher and M. D. Westmoreland, Sending classical
information via noisy quantum channels, Phys. Rev. A 56, 131
(1997).

[10] A. S. Holevo, The capacity of the quantum channel with general
signal states, IEEE Trans. Inf. Theory 44, 269 (1998).

[11] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal,
Entanglement-assisted capacity of a quantum channel and the
reverse Shannon theorem, IEEE Trans. Inf. Theory 48, 2637
(2002).

[12] P. Janotta and H. Hinrichsen, Generalized probability theories:
What determines the structure of quantum theory? J. Phys. A
47, 323001 (2014).

[13] G. M. D’Ariano, G. Chiribella, and P. Perinotti, Quantum
Theory from First Principles: An Informational Approach
(Cambridge University Press, Cambridge, 2017).

[14] M. Plávala, General probabilistic theories: An introduction,
Phys. Rep. 1033, 1 (2023).

[15] M. P. Müller, Probabilistic theories and reconstructions of quan-
tum theory, SciPost Phys. Lect. Notes, 28 (2021).

[16] G. Ludwig, Versuch einer axiomatischen grundlegung der
quantenmechanik und allgemeinerer physikalischer theorien,
Z. Angew. Phys. 181, 233 (1964).

[17] G. Ludwig, Attempt of an axiomatic foundation of quantum
mechanics and more general theories, II, Commun. Math. Phys.
4, 331 (1967).

[18] E. B. Davies and J. T. Lewis, An operational approach
to quantum probability, Commun. Math. Phys. 17, 239
(1970).

[19] S. Gudder, Convex structures and operational quantum mechan-
ics, Commun. Math. Phys. 29, 249 (1973).

[20] M. Ozawa, Optimal measurements for general quantum sys-
tems, Rep. Math. Phys. 18, 11 (1980).

[21] S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom,
Found. Phys. 24, 379 (1994).

[22] L. Hardy, Quantum theory from five reasonable axioms,
arXiv:quant-ph/0101012.

[23] J. Barrett, Information processing in generalized probabilistic
theories, Phys. Rev. A 75, 032304 (2007).

[24] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A.
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