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Quantum control for the Zeno effect with noise
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The quantum Zeno effect is a distinctive phenomenon in quantum mechanics, describing the nontrivial effect
of frequent projective measurements on hindering the evolution of a quantum system. However, when subjected
to environmental noise, the quantum system may dissipate, and the quantum Zeno effect no longer works. This
research starts from the physical mechanism for the decay of the quantum Zeno effect in the presence of noise
and investigates the effect of coherent quantum controls on mitigating the decrease of the survival probability
that the system stays in the initial state induced by the noise. We derive the decay rate of the survival probability
with and without coherent quantum controls in general, and show that when the frequency of the projective
measurements is large but finite, proper coherent controls by sufficiently strong Hamiltonians can be designed
to decrease the decay rate of the survival probability. A two-level quantum system suffering from typical unitary
and nonunitary noise is then considered to demonstrate the effect of the proposed coherent quantum control
scheme in protecting the quantum Zeno effect against the noise. The decay rate of the survival probability is
obtained in the presence of noise, and the control Hamiltonian is further optimized analytically to minimize
the decay rate by a variational approach. The evolution paths of the quantum system with the optimal coherent
controls are illustrated numerically for different scenarios to explicitly show how the coherent control scheme
works in lowering the decay of survival probability.
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I. INTRODUCTION

The quantum Zeno effect is the quantum version of the
classical Zeno effect, initially proposed by the ancient Greek
philosopher Zeno, who is known for the famous paradoxes
such as the “flying arrow” and “Achilles and the tortoise”
[1]. Interestingly, while the Zeno effect is a paradox in the
classical world hypothesizing that frequent observation can
freeze the evolution of a system, which is certainly not pos-
sible in real life, the capability of quantum measurements to
project quantum systems onto specific states [2] opens up the
possibility for realizing the Zeno effect in the quantum realm.
As early as 1967, Beskow and Nilsson observed that frequent
measurements of the positions of unstable particles in a cloud
chamber effectively prevented the decay of the particles [3].
This discovery sparked widespread interest among physicists
and mathematicians in the feasibility of the Zeno effect in
quantum mechanics, leading to subsequent confirmations of
the quantum Zeno effect with different experimental setups
and physical systems [4–11] and extensive intriguing theoret-
ical explorations [12–15].

The standard mechanism for realizing the quantum Zeno
effect is to freeze the evolution of a quantum system through
frequent projective measurements [16–18], similar to the phe-
nomenon in the classical Zeno effect known by the old saying
“A watched pot never boils.” With further research, Kofman
found that the anti-Zeno effect, accelerating the evolution of a
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quantum system proposed by Kaulakys and Gontis in 1997 in
the context of quantum chaos [19], would be a more common
phenomenon in the quantum regime [20], in contrast to the
quantum Zeno effect. This has made the relation and crossover
between quantum Zeno and anti-Zeno effects a hot topic in
quantum mechanics [17,18,21]. Moreover, the quantum Zeno
effect has been generalized to the quantum Zeno dynamics
through performing frequent projective measurements on a
proper subspace of a quantum system known as the Zeno sub-
space, where nontrivial unitary evolution is allowed inside the
Zeno subspace while the evolution outside the Zeno subspace
is suppressed [18,22–24].

Currently, various approaches to the quantum Zeno effect
have been proposed. Based on the characteristic timescales
of quantum operations that realize the quantum Zeno effects
compared to the timescales of quantum system free evolu-
tions, the quantum Zeno effects can be broadly categorized
into pulsed quantum Zeno effects and continuous quantum
Zeno effects [7,18,25]. The pulsed quantum Zeno effects are
realized through frequent projective measurements as men-
tioned above or strong unitary operations (often known as
unitary kicks), which can be unified with bang-bang control
and dynamical decoupling in suppressing the decoherence of
open quantum systems [26–28], both equivalent in the Zeno
limit [29]. The continuous quantum Zeno effect describes
the quantum Zeno effect induced by continuous strong cou-
pling between the main and ancillary systems [22,30], by
large dissipations that leads the quantum system to decay
into a stable subspace [31,32], by continuous partial measure-
ments [33,34], or by nonselective continuous measurements
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[35–40]. In recent years, intensive research has been dedi-
cated to the connections and unified theoretical frameworks
between different manifestations of the quantum Zeno effects
[18,22,25,29,41–43]. At the same time, attempts to explore
the competition between different methods simultaneously
applied in the quantum Zeno effects, e.g., involving both
nonselective continuous measurements and large dissipation,
has started to emerge [37].

In analogy to many other quantum effects, an essential
ingredient to realize the quantum Zeno effect is the coher-
ence of the quantum system, which ensures the probability
that the system stays in the initial state decays quadrati-
cally with time in a short time interval. However, practical
quantum systems are inevitably disturbed by the noise from
the environments, and quantum coherence is vulnerable to
the detrimental effects such as decoherence, relaxations,
and dissipations [44,45] which can spoil the quantum Zeno
effects and quantum Zeno dynamics [37,39,46,47]. To pro-
tect quantum systems against the noise, quantum techniques
such as decoherence-free subspaces [48–50], coherent con-
trol schemes [51,52], and quantum error correction codes
[53,54] have been developed, and in fact, the quantum Zeno
effect is essential to some quantum error correction techniques
[29,55–58] underscoring its significance in the realm of quan-
tum information science. The quantum Zeno effect, including
the quantum Zeno dynamics, has found versatile applications
due to its simplicity and diversity in realization, ranging from
realization of decoherence-free subspaces for quantum gates
[59] to utilization of classical noise and engineering of non-
Markovianity in quantum simulation [60,61], diagnosis of
noise correlations between photon polarizations [62], real-
ization of universal quantum control between noninteracting
qubits [63], and optimization of quantum algorithms [64], etc.

The reservoir correlation time is critical to the effect of
noise on the quantum Zeno effect. For example, Gurvitz [39]
found that quantum system can still be frozen if the reservoir
correlation time is finite, i.e., the noise is non-Markovian,
while the Zeno effect vanishes in the short correlation limit,
i.e., the noise is Markovian. In recent years, there has been
an increasing interest in research devoted to the quantum
Zeno effect in the presence of large Markovian dissipations
[37,65,66]. For instance, Popkov et al. derived that the effect
of strong local dissipation in the Zeno limit is equivalent to
Markovian quantum dynamics featuring a renormalized effec-
tive Hamiltonian and weak dissipation.

As Markovian noise can spoil the quantum Zeno effect and
the survival probability of the initial state decays exponen-
tially with time in the presence of noise, it is an intriguing
question whether it is possible and how to decrease the noise-
induced decay of the quantum Zeno effect by modulating the
dynamics of the quantum system.

In this work, we study these questions in detail by involv-
ing Markovian noise in the dynamics of a quantum system.
The influence of the noise on the quantum Zeno effects and
the decay of quantum systems with noise in the Zeno limit are
investigated in general, revealing the potential for decreasing
the decay rate of survival probability that the system stays in
the initial state by quantum controls. We consider controls
on the Hamiltonian of the system to protect the Zeno effect
against the noise in this paper, and show that the Hamiltonian

control needs to be strong with a strength proportional to the
measurement frequency, which is large but finite in order to
decrease the influence of noise on the quantum Zeno effect.
We obtain the decay rate of the survival probability in the
presence of noise with strong control Hamiltonians in general,
and show the conditions on the control Hamiltonian as well as
on the frequency of the projective measurements to mitigate
the disruption on the quantum Zeno effect caused by the
noise. This Hamiltonian control scheme is then applied to a
two-level system with typical unitary and nonunitary noise
to illustrate the general results. We consider the dephasing
and the amplitude damping noise as examples, and obtain the
minimum decay rate of the survival probability by optimizing
the Hamiltonian controls. The results show that the survival
probabilities of the initial state can indeed be increased by
the optimized Hamiltonian controls on the quantum system.
The evolution paths of the two-level system engineered by
the Hamiltonian controls are visualized on the Bloch sphere
by numerical simulations to illustrate how the control scheme
protects the survival probability against the two types of noise.

The paper is organized as follows. In Sec. II we provide
preliminaries for the theory of open quantum systems and
the quantum Zeno and anti-Zeno effects. In Sec. III we
study the decay of quantum Zeno effect in the presence of
Markovian noise, and derive the effective decay rate of the
survival probability in the presence of Hamiltonian control,
which further shows the conditions on the control Hamilto-
nian to reduce the decay of the survival probability caused by
Markovian noise. Section IV considers a strong Hamiltonian
control scheme for a two-level system in the presence of
two different types of noise, and obtain the effective decay
rate and the optimal Hamiltonian controls for the two types
of noise respectively. The optimal control Hamiltonians are
further derived analytically, and the physical mechanism for
the optimal coherent control schemes to suppress the noise
influence on the survival probability is illustrated numerically
and analyzed in detail. The paper concludes in Sec. V.

II. PRELIMINARIES

In this section, we briefly introduce the preliminary knowl-
edge of the open quantum system theory and the quantum
Zeno effect relevant to the current research.

A. Dynamics of open quantum systems

In a closed quantum system, the evolution of a quantum
state is generally described by a unitary transformation,

E[ρ] = UρU †, (1)

where U is the unitary evolution operator,

U = exp(−iHt ), (2)

determined by the Hamiltonian H of the system and the evo-
lution time t , However, for an open quantum system exposed
to the environment, the dynamics of the system can no longer
be described by unitary evolutions because of the inevitable
coupling between the system and the environment.

For an open quantum system, by treating the system and
environment as a closed joint system, the total Hamiltonian of
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the system and the environment can be written as

Htot = HS + HE + HSE, (3)

where HS and HE are the local Hamiltonians which rule the
dynamics of system and environment, respectively, and HSE

stands for the interaction Hamiltonian between the system and
the environment.

Suppose that the system and the environment are initially
uncorrelated. The initial joint state of the system and the en-
vironment can be written as ρSE = ρS ⊗ ρE, where ρS and ρE

are the density operators of the system and the environment,
respectively, and the unitary evolution of the joint state can be
written as

E(t,0)[ρSE] = U (t )(ρS ⊗ ρE)U †(t ). (4)

When one is interested in the system only, the joint evo-
lution of the system and environment can be reduced to the
system alone by tracing over the degrees of the freedom of the
environment,

E(t,0)[ρS] = TrE[U (t )(ρS ⊗ ρE)U †(t )]. (5)

The quantum evolution E(t,0) obtained in Eq. (5) gives the gen-
eral dynamical process of an open quantum system coupled to
the environment.

An important property of a quantum process is the Marko-
vianity based on the completely positive and trace-preserving
(CPTP) divisibility of the process. If a quantum process satis-
fies the CPTP divisibility condition,

E(tn,t0 ) = E(tn,tn−1 )E(tn−1,tn−2 ) · · · E(t1,t0 ), (6)

where tn � tn−1 � · · · � t0 are arbitrary time points and each
E (tk+1, tk ) is a CPTP quantum map, the quantum process
E (tn, t0) is called Markovian, otherwise non-Markovian. The
Markovianity of quantum dynamics is closely related to the
reservoir correlation time, which determines the memory
effects of the environment, and dependent on various ingredi-
ents such as the dimension of the environment and the strength
of interaction between the system and environment [67–69].

According to the open quantum system theory that the
Markovian dynamics of an open quantum system can always
be described by a Gorini-Kossakowski-Lindblad-Sudarshan
master equation [70,71],

dρ(t )

dt
= Lt[ρ(t )] = −ih̄[H, ρ(t )] +

∑
k

μk (t )D[Vk]ρ(t ),

(7)
where H is the Hamiltonian of the system and D[Vk] denotes
the Lindblad infinitesimal generator for dissipative process
induced by the kth noise channel generally in the form

D[Vk] = Vk (·)V †
k − 1

2 {V †
k Vk, ·}, (8)

with the Born-Markov approximation [69], where [·, ·] and
{·, ·} denote the commutator and the anticommutator, respec-
tively. It can be proven that a quantum process is Markovian
if and only if it can be described by a master equation (7) with
all coefficients μk (t )’s non-negative for any time t [72]. When
Markovian noise is considered in the following sections, we
use the master equation (7) to involve the noise in the evolu-
tion of the quantum system.

B. Zeno and anti-Zeno effect

In this subsection we will briefly introduce the fundamental
knowledge about the quantum Zeno and anti-Zeno effects.

Suppose a closed quantum system ruled by a Hamiltonian
H is initially prepared in a pure state |ψ〉. One can perform a
projective measurement after an evolution time t of the system
to verify whether the system is still in its initial state, and the
survival probability is given by

p(t ) = |〈ψ |e−iHt |ψ〉|2. (9)

If the projective measurement is carried out repetitively at
time interval τ during an evolution time t , the final survival
probability of the system in the initial state at time t reads

P(t ) = p(τ )t/τ , (10)

which can be rewritten as an exponential decay with time t ,

P(t ) = exp [−γeff (τ )t], (11)

and γeff (τ ) is the effective decay rate given by

γeff (τ ) = − ln p(τ )

τ
. (12)

If the interval τ between two consecutive measurements is
short, the probability p(τ ) can be approximated to the second
order of τ ,

p(τ ) ≈ 1 − τ 2〈�2H〉, (13)

where 〈�2H〉 = 〈ψ |H2|ψ〉 − 〈ψ |H |ψ〉2 is the variance of the
Hamiltonian H with respect to the initial state |ψ〉. If the time
interval τ is so short that τ

√
〈�2H〉 � 1, the effective decay

rate (12) becomes

γeff (τ ) ≈ τ 〈�2H〉. (14)

It is interesting to observe from Eq. (13) that when the
frequency of measurements ν = τ−1 is sufficiently large, i.e.,
τ → 0,

γeff (τ ) → 0. (15)

This is the limit of “continuous observation,” named by
Misra and Sudarshan [16], and the survival probability in this
case turns out to be

P(t ) → 1, (16)

implying that the state of the quantum system almost does not
change with time and the quantum evolution freezes. This is
the quantum Zeno effect.

Instead, if the frequency of measurements is large but
still finite, the effective decay rate will be small but finite,
which means that the final survival probability of the initial
state will slowly decrease with the evolution time t . If the
exponential decay of the survival probability is faster than the
natural decay of the quantum system induced by noise, e.g.,
the amplitude damping, without repetitive measurements, it is
called quantum anti-Zeno effect.

In the past few years, it has been extensively investigated
how the effective decay rate γeff (τ ) is influenced by the
measurement interval τ in various systems and whether it is
possible to restore the natural decay rate γfree given by the
Fermi golden rule. The ratio of γeff (τ ) to γfree is a critical
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factor to distinguish between the quantum Zeno effect and the
quantum anti-Zeno effect [73,74]: the quantum Zeno effect
occurs if γeff (τ )/γfree < 1, and the quantum anti-Zeno effect
occurs if γeff (τ )/γfree > 1.

III. COHERENT QUANTUM CONTROL SCHEME

In this section we consider a general quantum system
with a free Hamiltonian H0, suffering from Markovian noise
and being repetitively observed by a projective measurement.
Starting with the most general Markovian noise and its impact
on the quantum Zeno effect, our aim is to pursue a quantum
control scheme to suppress the influence of noise.

Generally, if the dimension of the system is large enough
to prepare a quantum error correction code for the given noise
and the initial state of the system happens to live in the code
subspace, one can use the syndrome detection and unitary
recover operations of the quantum error correction code to
protect the Zeno effect. For more general scenarios, this is not
always the case, and one needs to resort to other methods to
suppress the influence of noise on the Zeno effect. Inspired by
the dynamical decoupling method, we explore coherent quan-
tum controls such as Hamiltonian controls to protect the Zeno
effect against noise in this paper. The dynamical decoupling
requires that the control pulses are performed sufficiently fre-
quently so that the interval between two consecutive control
pulses is shorter than the correlation time of the noise. The
requirement for the Hamiltonian control to protect the Zeno
effect is similar here: as the magnitude of the change of a
quantum state by Markovian noise is O(τ ) while the change
by a Hamiltonian is of order O(τ 2) for a short time interval τ

between two measurements, the Hamiltonian control needs to
be as strong as of order O(τ−1) to suppress the influence of
the noise when the frequency of the measurements is large but
finite, i.e., τ is small but nonzero. So we will mainly consider
strong Hamiltonian controls in this section.

This section provides the necessary conditions for a co-
herent quantum control scheme to be capable of suppressing
the effects of Markovian noise on the quantum Zeno effect
and obtain general analytical results for the decay rate of the
survival probability in the presence of noise with the Hamil-
tonian control. Moreover, we propose the ensemble average
fidelity as a metric to evaluate the overall performance of the
Hamiltonian control in protecting the quantum Zeno effect
against noise over all possible initial states of the quantum
system.

It is known by the theory of open quantum systems that the
evolution of a general quantum system with a Hamiltonian
and Markovian noise can be described by the master equation

∂tρ(t ) = Ltot[ρ(t )] = LH [ρ(t )] + Lμ[ρ(t )], (17)

where Ltot is the total generator of the system evolution and
LH [·], Lμ[·] are the generators of the Hamiltonian evolution
and the dissipation process, respectively,

LH [·] = − i[H, ·],

Lμ[·] =
∑

k

μkD[Vk](·) =
∑

k

μk

[
Vk (·)V †

k − 1

2
{V †

k Vk, ·}
]
.

(18)

The dissipation rates μk’s are assumed to be non-negative to
guarantee the Markovianity of the noise [72]. For the sake of
simplicity, we assume that both H and Vk in Eq. (17) are time-
independent.

The master Eq. (17) can be formally solved by exponenti-
ating the total Liouvillian Ltot = LH + Lμ,

ρ(t ) = eLtott [ρ(0)], (19)

and the survival probability of the initial state of the quantum
system after an evolution of time t under the Hamiltonian
and the noise between two consecutive measurements in the
quantum Zeno effect is given by

p(t ) = 〈ψ0|ρ(t )|ψ0〉, (20)

where |ψ0〉 is the initial state of the quantum system and ρ(0)
is the density matrix of the initial state, ρ(0) = |ψ0〉〈ψ0|.

A. Control-free scheme

Before introducing quantum controls to reduce the impact
of noise on the quantum Zeno effect, a general quantum sys-
tem with a free evolution Hamiltonian is considered in this
subsection to see the behavior of the final survival probability
of the quantum system to stay in the initial state after repet-
itive projective measurements in the Zeno limit without the
protection by quantum control against the noise.

The survival probability after an evolution of τ under the
master Eq. (17) followed by a single measurement can be
written as

pn(τ ) = 〈ψ0|eL
(n)
tot τ [ρ0]|ψ0〉

= 〈ψ0|e(LH0 +Lμ )τ [ρ0]|ψ0〉, (21)

where the subscript “n” denotes the absence of quantum con-
trol to distinguish from the case with quantum control below.

When the time interval τ between two consecutive mea-
surements is short, the short-time behavior of pn(τ ) can be
obtained by Taylor expansion to the second order of τ ,

pn(τ ) = 1 + 〈ψ0|Lμ[ρ0]|ψ0〉τ
+ 1

2 〈ψ0|(LH0 + Lμ)2[ρ0]|ψ0〉τ 2 + O(τ 3). (22)

There should have been another term 〈ψ0|LH0 [ρ0]|ψ0〉 in the
first-order coefficient, but it has been dropped as it is always
zero considering LH0 is a commutator and ρ0 = |ψ0〉〈ψ0|.
When the projective measurement is performed repetitively,
the final survival probability of the system in the initial state
after an evolution time t can be obtained as

Pn(t ) = pn(τ )t/τ = exp [−γeff (τ )t], (23)

where the subscript “n” in Pn(t ) also denotes the absence of
quantum control and γeff (τ ) is the effective decay rate of the
system,

γeff (τ ) = − ln p(τ )

τ
. (24)

Substituting Eq. (22) into γeff (τ ), one can obtain the ap-
proximation of γeff (τ ) to the first order of τ as

γ
(n)

eff (τ ) = −〈Lμ〉 − 1
2

〈
�2
(
LH0 + Lμ

)〉
τ + O(τ 2). (25)
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The superscript “(n)” denotes the absence of quantum control,
and 〈Lμ〉, 〈�2(LH0 + Lμ)〉 denotes the mean and the variance
of the superoperator L in the Liouville space, respectively
[75], with

〈�2L〉 ≡ 〈L2〉 − 〈L〉2 (26)

and

〈Lk〉 = 〈ψ0|Lk[ρ0]|ψ0〉 = Tr(ρ0Lk[ρ0]) = 〈−→ρ0 |Lk|−→ρ0 〉,
(27)

where the operator L in the Roman font and the ket |−→ρ0 〉
denotes the matrix form of the superoperator L and the vector
form of the density operator ρ0 in the Liouville space, re-
spectively. Note this variance of the superoperator L does not
always remain non-negative as L is not necessarily Hermitian.

It can be further seen from Eq. (25) that when the frequency
of measurements ν = τ−1 is sufficiently large,

ν 	
∣∣∣∣∣
〈
�2
(
LH0 + Lμ

)〉
2〈Lμ〉

∣∣∣∣∣, (28)

the linear term of γeff (τ ) in Eq. (25) becomes negligible
and the effective decay rate becomes independent of τ . Note
that the condition (28) does not diverge as 〈ψ0|Lμ[ρ0]|ψ0〉 is
generally nonzero. Consequently, the final survival probability
after an evolution of time t can be approximated as

Pn(t ) = e−γ
(n)
eff t , (29)

where

γ
(n)

eff ≈ −〈ψ0|Lμ[ρ0]|ψ0〉
=
∑

k

μk[〈ψ0|V †
k Vk|ψ0〉 − 〈ψ0|V †

k |ψ0〉〈ψ0|Vk|ψ0〉].
(30)

Note that γ
(n)

eff is always non-negative due to the Cauchy-
Schwarz inequality and the non-negativity of μk’s.

An important feature of the effective decay rate γ
(n)

eff (30)
is its independence of the time interval τ between two con-
secutive projective measurements due to the appearance of
the linear term in the expansion of pn(τ ), which implies that
the decay rate does not vanish when τ → 0 and the survival
probability always decays with time in this case. This is in
sharp contrast to the quantum Zeno effect where the effective
decay rate (14) is proportional to τ and vanishes when τ → 0.
It results in the failure to freeze the evolution of the quantum
system in the presence of Markovian noise, implying the
quantum Zeno effect vanishes in this case, which is consistent
with the results in the existing literature, e.g., [38,39,46].

B. Coherent control scheme

As Markovian noise makes the survival probability of the
system to stay in the initial state to decay exponentially even
with frequent projective measurements, it is desirable to pro-
tect the Zeno effect against the noise with proper quantum
control method. From the results in the preceding subsection,
it can be seen that the key to the exponential decay of the
survival probability lies in the the linear term of the survival
probability in the Taylor expansion introduced by the noise
after a single step of evolution and projective measurement.
So the aim of the quantum control is to decrease the linear

FIG. 1. Scheme of the coherent-control-enhanced quantum Zeno
effect in the presence of Markovian noise. In the absence of quantum
control, the quantum system undergoes a free unitary evolution and
noise simultaneously. At the end of each time interval τ , a projec-
tive measurement is performed to observe if the system remains
in its initial state. The projective measurement is assumed to be
instantaneous, implying no evolution occurs during the measurement
process. This process repeats every time interval τ . In the presence of
a coherent quantum control, a proper additional control Hamiltonian
is applied on the quantum system to engineer the dynamics of the
system so that the effective decay rate of the survival probability can
be decreased. The projective measurement is denoted by M, and the
evolution of free Hamiltonian, the noise and the control Hamiltonian
are denoted by LH0 , Lμ, and LHc , respectively.

term in the survival probability of a single step of evolution
and measurement.

In this subsection, we consider a coherent quantum control
scheme to suppress the influence of noise on the quantum
Zeno effect and decrease the decay rate of the survival prob-
ability of the system in the initial state. The evolution of
the quantum system with a coherent control scheme in the
presence of noise is illustrated in Fig. 1.

It should be noted that within a short but finite time interval
τ , the change of the survival probability by a Hamiltonian
is O(τ 2) (13) but the change of the survival probability by
Markovian noise is O(τ ) (22), so if the purpose of a control
Hamiltonian is to suppress the effect of noise on the survival
probability, the control Hamiltonian needs to be sufficiently
strong. As shown in the following, the control Hamiltonian
actually needs to be as strong as O(τ−1) to slow the decay of
the survival probability, which means the total change of the
system induced by the control Hamiltonian over the short time
interval τ is approximately O(1), which is similar to those
fast pulse controls such as dynamical decoupling and quantum
control by reverse optimized pulse sequences [26,47,76].

Suppose a control Hamiltonian gHc is performed on the
quantum system in the presence of noise, where g is the
strength parameter. When the measurement interval is τ , the
short-time survival probability of the initial state with the
Hamiltonian control after a single measurement reads

pc(τ ) = 〈ψ0|eLtotτ [ρ0]|ψ0〉
= 〈ψ0|e(LH0 +Lμ+gLHc )τ [ρ0]|ψ0〉, (31)

where the subscript “c” in pc(τ ) denotes the presence of
coherent quantum control.
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To explore how strong the control Hamiltonian needs to be
to suppress the influence of the Markovian noise, we try the
ansatz g = ωτ k , and the task is to find appropriate choices of
k to increase the higher-order terms of the short-time survival
probability to the first order of τ . Note that in this case Ltot

will be dependent on τ , so in the following we will denote Ltot

as L(c)
tot (τ ) to explicitly indicate its dependence on τ with the

control Hamiltonian applied. But L(c)
tot (τ ) is still independent

of the instantaneous time points during the evolution as τ

is just the time interval between two consecutive projective
measurements which can be taken as a parameter, so the
evolution under L(c)

tot (τ ) between two measurements can still
be written as eτL(c)

tot (τ ).
It is difficult to directly expand pc(τ ) with respect to τ by

the Taylor expansion of the evolution superoperator eτL(c)
tot (τ )

analogous to Eq. (22),

eτL(c)
tot (τ ) =

∑
j

(
LH0τ + Lμτ + ωτ k+1LHc

) j

j!
, (32)

since LH0τ + Lμτ + ωτ k+1LHc is not proportional to τ here,
and all the terms of this expansion include the lowest-order
terms of τ . Therefore, we turn to compute the first few deriva-
tives of eτL(c)

tot (τ ) with respect to τ to give the leading terms in
the expansion of pc(τ ). In this case the evolution superopera-
tor eτL(c)

tot (τ ) can be expanded at τ = 0 as

eτL(c)
tot (τ ) = eτL(c)

tot (τ )
∣∣
τ=0 + τ∂τ

(
eτL(c)

tot (τ ))∣∣
τ=0

+ τ 2

2
∂2
τ

(
eτL(c)

tot (τ )
)∣∣

τ=0 + O(τ 3). (33)

Substituting g = ωτ k into the evolution superoperator
eτL(c)

tot (τ ) (33) in the Liouville space, the first-order derivative
of eLτ [77] can be derived as

∂τ eτL(c)
tot (τ ) =

∫ 1

0
eτL(c)

tot (τ )(1−η)∂τ

[
τL(c)

tot (τ )
]
eτL(c)

tot (τ )η dη. (34)

At τ = 0 where the evolution superoperator eτL(c)
tot (τ ) is ex-

panded,

τL(c)
tot (τ )

∣∣
τ=0 = ωLHcτ

k+1
∣∣
τ=0,

∂τ

[
τL(c)

tot (τ )
]∣∣

τ=0 = (k + 1)ωLHcτ
k
∣∣
τ=0 + Lμ + LH0 .

(35)

It can be observed that if k > 0, τL(c)
tot (τ )|τ=0 = 0 and

∂τ [τL(c)
tot (τ )]|τ=0 = Lμ + LH0 , so Eq. (34) can be simplified

to

∂τ

(
eτL(c)

tot (τ )
)∣∣

τ=0 = ∂τ

[
τL(c)

tot (τ )
]∣∣

τ=0 = Lμ + LH0 . (36)

In this case the first-order terms of eτL(c)
tot (τ ) and of the short-

time survival probability pc(τ ) are independent of the control
Hamiltonian Hc, so Hc cannot help decrease the decay rate of
the survival probability in the long-term evolution.

If −1 < k � 0, τL(c)
tot (τ )|τ=0 is still zero, but

∂τ [τL(c)
tot (τ )]|τ=0 includes the control Hamiltonian now.

It seems that the Hamiltonian control is possible to decrease
the decay rate of the survival probability in this case.

Nevertheless, it can be verified that for any arbitrary initial
state |ψ0〉,

〈ψ0|LHc [ρ0]|ψ0〉 = 0, (37)

so the decay rate can still not be lowered by the Hamiltonian
control in this case.

If k < −1, it can be immediately inferred from Eq. (35)
that both τL(c)

tot (τ ) and ∂τ [τL(c)
tot (τ )] diverge at τ = 0. So the

only possible choice of k to make the Hamiltonian control
scheme to work is k = −1, i.e., the strength parameter of the
control Hamiltonian is

g = ωτ−1. (38)

In this case,

τL(c)
tot (τ )

∣∣
τ=0 = ωLHc ,

∂τ

[
τL(c)

tot (τ )
]∣∣

τ=0 = Lμ + LH0 ,
(39)

where τL(c)
tot (τ )|τ=0 includes the control Hamiltonian now, so

it is possible to modulate the first-order derivative of eτL(c)
tot (τ )

by the coherent control scheme. Hence, within the frame-
work of coherent control schemes, the strength of the control
Hamiltonian needs to be proportional to the frequency of the
repetitive projective measurements. This means that the total
change of the system made by the control Hamiltonian is of
order O(1), which is analogous to the pulse controls employed
in other quantum control tasks. And while the measurement
frequency is large in the Zeno effect, it is still finite in practice,
so it provides the feasibility of implementing this coherent
control scheme in experiments.

Substituting the strength of coherent control g = ωτ−1 into
the Liouvillian superoperator L(c)

tot , the total evolution superop-
erator in the coherent control scheme can be simplified as

eτL(c)
tot (τ ) = eωLHc +(Lμ+LH0 )τ . (40)

The survival probability after a single measurement can be
expanded at τ = 0 as

pc(τ ) = pc(0) + ∂τ pc(τ )|τ=0τ

+ ∂2
τ pc(τ )|τ=0

τ 2

2
+ O(τ 3), (41)

where ∂k
τ pc(τ ) is the kth derivative of survival probability

pc(τ ) at τ = 0,

∂k
τ pc(τ ) = 〈ψ0|

(
∂k
τ eτL(c)

tot (τ )
)
[ρ0]|ψ0〉. (42)

We first compute the zeroth-order term in the Taylor ex-
pansion of pc(τ ) (41),

pc|τ=0 = 〈ψ0|eωLHc [ρ0]|ψ0〉. (43)

By the definition of LHc , LHc [·] = −i[Hc, ·], pc|τ=0 can be
written as

pc|τ=0 = |〈ψ0|e−iωHc |ψ0〉|2. (44)

To ensure that the zeroth-order term of pc|τ=0 remains 1
for an arbitrary initial state |ψ0〉, e−iωHc needs to satisfy

e−iωHc = eiθ I, (45)
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where eiθ is an arbitrary phase and I is the identity operator.
This requires that

ω
(
E (c)

i − E (c)
j

) = 2nπ, n = ±1,±2, . . . , ∀i �= j, (46)

where E (c)
i and E (c)

j are two arbitrary eigenvalues of the con-
trol Hamiltonian Hc, which immediately leads to a necessary
condition for the control Hamiltonian to preserve the initial
state in the limit τ → 0,

�E (c)
i j

/
�E (c)

i′ j′ ∈ Q, ∀i �= j, i′ �= j′, (47)

where �E (c)
i j = E (c)

i − E (c)
j and Q is the set of all rational

numbers. When this condition is satisfied, eωLHc can be sim-
plified to

eωLHc = I, (48)

where I is the identity superoperator in the Liouville space.
Back to the derivatives of the evolution superoperator

eL
(c)
tot τ , by substituting Eqs. (39) and (48) into Eq. (34), the

first-order derivative of eτL(c)
tot (τ ) at τ = 0 can be rewritten as

∂τ eτL(c)
tot (τ )

∣∣
τ=0 =

∫ 1

0
e−ωLHc η

(
Lμ + LH0

)
eωLHc η dη, (49)

and the second-order derivative of eτL(c)
tot (τ ) can also be ob-

tained,

∂2
τ eτL(c)

tot (τ )
∣∣
τ=0

=
∫ 1

0
dη2

∫ η2

0
e−ωLHc η2

(
Lμ + LH0

)
eωLHc (η2−η1 )

× (
Lμ + LH0

)
eωLHc η1 dη1, (50)

which will be useful in deriving the condition for the fre-
quency of the measurements below.

It can be straightforwardly verified that

e−ωLHc ηLH0 eωLHc η = L̃(η)
H0

= LH̃0(η),

e−ωLHc ηLμeωLHc η = L̃(η)
μ =

∑
k

μkD[Ṽk (η)],
(51)

where

H̃0(η) = eiωHcηH0e−iωHcη,

Ṽk (η) = eiωHcηVke−iωHcη. (52)

The derivation of the above representation transformations
of the superoperators LH0 and Lμ in the Liouville space
is presented in Appendix A. So the first- and second-order
derivatives of eLcτ can be simplified as

∂τ eτL(c)
tot (τ )

∣∣∣
τ=0

=
∫ 1

0

(
L̃(η)

H0
+ L̃(η)

μ

)
dη, (53)

∂2
τ eτL(c)

tot (τ )
∣∣∣
τ=0

=
∫ 1

0
dη2

∫ η2

0

(
L̃(η2 )

H0
+ L̃(η2 )

μ

)
× (

L̃(η1 )
H0

+ L̃(η1 )
μ

)
dη1. (54)

The first-order derivative of survival probability (42) can
then be derived by substituting Eq. (53) into (42) with k = 1,

∂τ pc(τ )|τ=0 =
∫ 1

0
〈ψ0|L̃(η)

μ [ρ0]|ψ0〉 dη, (55)

where the fact that the average of a commutator over any
quantum state is zero, i.e., 〈ψ0|LH̃0(η)[ρ0]|ψ0〉 = 0, has been
considered. Hence, the effective decay rate of survival prob-
ability γeff (τ ) can be found by substituting Eq. (41) into (12)
as

γ
(c)

eff (τ ) = −∂τ pc(τ )|τ=0

− 1
2

{
∂2
τ pc(τ ) − [∂τ pc(τ )]2

}∣∣
τ=0τ + O(τ 2). (56)

Similarly, the second-order derivative of pc(τ ) can be de-
rived by Eq. (54) as

∂2
τ pc(τ )|τ=0 =

∫ 1

0
dη2

∫ η2

0
〈ψ0|

(
L̃(η2 )

H0
+ L̃(η2 )

μ

)
× (

L̃(η1 )
H0

+ L̃(η1 )
μ

)
[ρ0]|ψ0〉 dη1.

(57)

If the frequency of measurements ν = τ−1 is required to be
sufficiently large to drop the second- and higher-order terms
in γ

(c)
eff (τ ), i.e., to reach the Zeno limit, the frequency of the

projective measurements needs to satisfy

ν 	
∣∣∣∣∣∂

2
τ pc(τ ) − [∂τ pc(τ )]2

2∂τ pc(τ )

∣∣∣∣∣
τ=0

. (58)

In this case the survival probability in the long-term evolution
of time t can be written as

Pc(t ) ≈ e−γ
(c)
eff t , (59)

where γ
(c)

eff is the simplified effective decay rate on the condi-
tion (58),

γ
(c)

eff = −∂τ pc(τ )|τ=0 = −
∫ 1

0
〈ψ0|L̃(η)

μ [ρ0]|ψ0〉 dη, (60)

with L̃(η)
μ given by Eq. (51).

Obviously, for a given initial state |ψ0〉, different control
Hamiltonians will lead to different effective decay rates γ

(c)
eff ,

so it is desirable to optimize the control Hamiltonian to reach
the minimum effective decay rate. To benchmark the perfor-
mance of the coherent control scheme on protecting the Zeno
effect, we define the following ratio to quantify the extent to
which the control scheme can decrease the effective decay rate
of the survival probability in the presence of noise:

κ ≡ γ
(c)

eff

γ
(n)

eff

. (61)

When the control slows the decay of the quantum state, κ is
smaller than 1, and vice versa. And the smaller the ratio κ is,
the better the coherent control scheme works.

Moreover, for given noise, the ensemble average fidelity
F , which is the average fidelity between the initial state of
the system and the final state evolved by the noisy quantum
process over all possible initial states [78], can be invoked to
characterize the overall performance of the coherent control
scheme in lowering the effective decay rate for all possible
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initial states |ψ0〉 of the quantum system with a probability
distribution q(|ψ0〉),

F (t ) =
∫

q(|ψ0〉)P|ψ0〉(t )d|ψ0〉. (62)

The ensemble average fidelity F (t ) decreases with time t
as the survival probability P|ψ0〉(t ) of each initial state |ψ0〉
decreases exponentially with time, and the slower F (t ) decays
with time, the better the protection effect is.

The ratio κ and the ensemble average fidelity F (t ) defined
above will be employed in the next section to quantify the
performance of the coherent control scheme for a two-level
system with typical Markovian noise.

IV. COHERENT QUANTUM CONTROL SCHEME
FOR TWO-LEVEL SYSTEMS

To illustrate how the influence of noise on the Zeno effect
can be suppressed by coherent quantum controls, we consider
a two-level quantum system as an example in this section.

We derive the detailed necessary condition for a coherent
control scheme to preserve the Zeno effect of a two-level
system in the presence of Markovian noise and obtain the
effective decay rates of the survival probability with frequent
repetitive projective measurements in both control-free and
controlled scenarios. For the typical Markovian noise de-
phasing and amplitude damping, we find the optimal control
Hamiltonians analytically and show the improvement of slow-
ing the decay of survival probability by the coherent control
scheme. Additionally, we investigate the performance of the
coherent control scheme for initial states, and show the rela-
tion between the improvement of survival probability and the
initial state by numerical illustrations.

A. Control-free scheme

First of all, we denote the excited state and the ground state
of the two-level system, which is subject to free Hamiltonian
evolution along with dissipative process, as |1〉 and |0〉, re-
spectively. The density matrix of a two-level quantum system
can generally be written as

ρ = (I + r · σ )/2, (63)

where r = (rx, ry, rz ) is called the Bloch vector with |r| � 1
and σ = (σx, σy, σz ) is the collection of the three Pauli opera-
tors as a vector. The excited and ground states |1〉 and |0〉 are
the eigenstates of σz with eigenvalues −1 and 1, respectively.

In the Zeno effect, we start with a pure state |ψ0〉 for the
system, the density matrix of which can be denoted as

ρ0 = |ψ0〉〈ψ0| = I + r0 · σ

2
, (64)

where r0 must be a unit vector and can be written as

r0 = (sin α cos β, sin α sin β, cos α). (65)

The specific form of the dissipative term Lμ[ρ] in the
master equation (17) for general Markovian noise on a single

qubit can be written as

Lμ[ρ] =
∑

i j

μi j

(
σiρσ j − 1

2
{σ jσi, ρ}

)
, i, j = x, y, z,

(66)
where the coefficient matrix consisting of μi j as its elements,

(�)i j = μi j, (67)

needs to be positive semidefinite in order to guarantee the
Markovianity of the noise.

According to Sec. III A, the effective decay rate of the final
survival probability after an evolution of time t with noise (66)
and frequent projective measurements in the Zeno limit could
be obtained as

γ
(n)

eff = −〈ψ0|Lμ[ρ0]|ψ0〉
= −rT

0 �r0 + Tr� + ν · r0. (68)

ν is a vector determined by the imaginary parts of the off-
diagonal elements of the dissipation coefficient matrix �,

ν = 2(Imμ23, Imμ31, Imμ12), (69)

where Im denotes the imaginary part of a complex number.
The derivation of Eq. (68) is given in Appendix C.

B. Coherent control scheme

In this subsection, we consider a two-level system under-
going a general Hamiltonian H0 and general Markovian noise
described by the dissipative term (66), and apply a control
Hamiltonian gHc with strength g = ωτ−1 to suppress the in-
fluence of the noise, where Hc = nc · σ and nc is a unit vector
denoted as

nc = (sin θc cos φc, sin θc sin φc, cos θc), (70)

which is the direction of the control Hamiltonian in the Bloch
representation.

According to Sec. III, a necessary condition (46) is im-
posed on the control Hamiltonian gHc to ensure the zeroth
order of the survival probability p(τ ) remaining 1. Specifi-
cally for a two-level quantum system, this condition turns to
be

ω = nπ, n = ±1,±2, . . . . (71)

With the specific form of the dissipative superoperator Lμ

for a two-level system given in Eq. (66), the effective decay
rate of the survival probability after a single projective mea-
surement with a coherent quantum control can be obtained
from Eqs. (55) and (60) as

γ
(c)

eff = − ∂τ pc(τ )|τ=0,

= −
3∑

i, j=1

μi j

∫ 1

0
Tr
[
ρ0σ̃

(η)
i ρ0σ̃

(η)
j − ρ0σ̃

(η)
j σ̃

(η)
i

]
dη,

(72)

where σ̃
(η)
i = eiωHcησie−iωHcη denotes the ith Pauli operator in

the framework rotated by e−iωHcη dependent on the parameter
η.

When the necessary condition (71) is met and the measure-
ment frequency reaches the Zeno limit, the effective decay rate
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of the survival probability can be worked out by Eq. (72) as

γ
(c)

eff = − 3
2 (nc · r0)2nT

c �nc + 1
2 (nc · r0)

(
nT

c �r0 + rT
0 �nc

)
− 1

2 rT
0 �r0 − 1

2 (nc × r0)T�(nc × r0)

+ Tr� + (nc · r0)(ν · nc ), (73)

where ν is the vector defined in Eq. (69) and the superscript
“T” denotes the matrix transposition. The details of derivation
are provided in Appendix C.

It can be observed that when nc · r0 = ±1, i.e., the direc-
tion of the Hamiltonian nc is parallel or antiparallel with that
of the initial state r0 since both nc and r0 are unit vectors,
the effective decay rate γ

(c)
eff in Eq. (73) will coincide with

γ
(n)

eff without quantum control in Eq. (68), which means the
coherent control does not have any effect on the decay rate
in this case, leading to another necessary condition for the
validity of the coherent control scheme on a two-level system,

nc �= ±r0. (74)

By evaluating the ratio κ defined in Eq. (61) with the results
for γ

(n)
eff and γ

(c)
eff in Eqs. (68) and (73), one can determine the

effect of the coherent control scheme on the two-level system.
In particular, if κ > 1, the decay of the survival probability
accelerates, and if κ < 1, the decay slows down.

It can be observed from Eq. (73), that for given noise
Lμ’s and an initial state ρ0, the effective decay rate γ

(c)
eff

of a two-level system varies with different quantum control
Hamiltonian Hc, so one can optimize the control Hamiltonian
to minimize the decay rate of the survival probability. The
optimization for the control Hamiltonian Hc can be formally
solved by a variational approach, with the Lagrangian func-
tion constrained by the normalization condition nc = 1 as

L(Pn,�) = γ
(c)

eff + Tr
[(

P2
n − Pn

)
�
]
, (75)

where the Lagrange multiplier � is an arbitrary matrix and
Pn ≡ ncnT

c is the projection operators on to the unit vector nc
in the three-dimensional Bloch space.

To obtain the optimal control Hamiltonian to minimize the
effective decay rate γ

(c)
eff of the two-level quantum system,

the variation of the Lagrangian function (75) needs always
to be zero for any δPn and δ� according to the principle of
variation approach, leading to the optimization equation for
the projector Pn onto the unit vector nc along the direction of
the control Hamiltonian,

− 3
2�PnPr − 3

2 PrPn� + 1
2�Pr + 1

2 Pr�

− 1
2 RT�R + r0ν

T + Pn� + �Pn − � = 0, (76)

with the constraint condition P2
n = Pn, where Pr = r0rT

0 is the
projection operators onto the vector r0 in the Bloch space and
R is an antisymmetric matrix,

R =
⎡
⎣ 0 z0 −y0

−z0 0 x0

y0 −x0 0

⎤
⎦, (77)

with r0 = (x0, y0, z0). The detail of derivation is provided in
Appendix B. Once the optimization Eq. (76) is solved, the di-
rection of the optimal control Hamiltonian can be determined,
and the optimal control Hamiltonian can be obtained by this
direction with the leading factor given in Eq. (71).

C. Examples

To illustrate the above general theoretical results, we in-
vestigate the effect of coherent quantum controls on two-level
quantum systems with two typical types of Markovian noise,
the dephasing and the amplitude damping. By deriving the
effective decay coefficients γ

(n)
eff and γ

(c)
eff under these specific

noise channels, we find the optimal coherent controls tai-
lored for different initial states of two-level quantum systems.
Furthermore, we devote to unveiling the physical pictures
underlying the optimal coherent control strategy for each type
of noise. Through a comparative analysis of the decay rate and
the ensemble average fidelity between the cases with or with-
out the optimal coherent control in the presence of noise, we
demonstrate the advantage of this coherent control scheme in
protecting the Zeno effect both analytically and numerically.

In addition, we will also consider the impact of different
initial states of the quantum system the improvement of the
effective decay rates brought by the coherent quantum con-
trols, and study the relation between the initial state and the
extent to which the decay rate can be decreased by coherent
control in detail through numerical computation.

1. Dephasing

The dephasing noise is a typical unitary noise described by
a dissipative term D[σz] in a quantum master equation, and
has been extensively studied in the theory of open quantum
systems, with the noise coefficient matrix (67) as

�z =
⎛
⎝0 0 0

0 0 0
0 0 μ

⎞
⎠. (78)

The evolution of a two-level quantum system under a free
Hamiltonian H0 and the dephasing noise with an intensity μ

is determined by the master equation

dρt

dt
= −i[H0, ρt ] + μD[σz]ρt , (79)

where D[σz]ρt = σzρtσz − ρt and ρt is the density matrix of
the system at time t . When a control Hamiltonian gHc is
introduced to the system, the master equation becomes

dρt

dt
= −i[H0 + gHc, ρt ] + μD[σz]ρt . (80)

The effect of the dephasing noise on a two-level system
is plotted in Fig. 2. It shows that the Bloch sphere, which
includes all possible density matrices of a two-level system,
is “compressed” towards the z axis by the dephasing noise.
And the compression is symmetric about the equatorial plane
as the dephasing noise does not change the σz component of
any density matrix and rotationally symmetric around the z
axis as the dephasing noise affects the σx and σy components
of all density matrices uniformly.

When the frequency of the projective measurement is large
enough and the condition (71) is satisfied in the Zeno limit
τ → 0, by substituting the r0 (65) and �z (78) into the Eqs.
(68) and (73), one can obtain the effective decay rates of
survival probability without the coherent control,

γ
(n)

eff = μ

2
(1 − cos 2α), (81)
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FIG. 2. Transformation of the Bloch sphere under the dephasing
noise. The dephasing noise results in the invariance of z components
of the Bloch vectors and uniform contraction of the x and y towards
the z axis. Parameter: μt = 1/2.

and with the coherent control,

γ
(c)

eff = μ

64
[39 − 2 cos 2α(1 + 3 cos 2θc)2

− 3 cos 4θc − 8 cos 2� sin2 α sin2 θc

− 4 cos 2θc(1 + 6 cos 2� sin2 α sin2 θc)

− 4 cos � sin 2α(2 sin 2θc + 3 sin 4θc)], (82)

where � = β − φc.
From the result of γ

(n)
eff (81), it is evident that the decay

rate of survival probability induced by the dephasing noise
is independent of the azimuthal angle β and solely depen-
dent on the polar angle α between the initial state and the
z axis, and is symmetric about α = π/2, in agreement with
the symmetries of the impact of the dephasing noise on the
Bloch sphere shown in Fig. 2. When the angle α is zero or
π , the initial state remains unaffected by the noise as it lies
along the compression axis, i.e., the z axis, so no decay occurs
in the survival probability in this case. However, when the
polar angle α is π/2, the effect of noise becomes maximal,
and the effective decay rate increases to μ/2. An intriguing
discovery emerges from Eq. (82): the ratio κ = γ

(c)
eff /γ

(n)
eff with

the coherent control optimized is independent of the noise
intensity μ, suggesting the coherent control scheme is robust
against different strengths of the dephasing noise, which is a
desirable property for application of this control scheme in
real environments.

Due to the different impacts of the dephasing noise on
different initial states of the two-level system, the extent to
which the decay of the survival probability can be decreased
by coherent quantum controls is also different. Obviously,
when the Bloch vector of the initial state lies along the z
axis, i.e., α = 0, π , the dephasing noise does not change the
initial state, so any coherent quantum control cannot improve
the probability for the system to stay in the initial state if
it does not even worsen the decay of survival probability.
Note that the free Hamiltonian may rotate the initial state
from the z axis to another direction that suffers from the
dephasing noise, but as repetitive projective measurements are
performed on the system with a sufficiently large frequency,
the change of the system induced by the free Hamiltonian is
much slower than the Zeno effect induced by the frequent
projective measurements. So in the Zeno limit τ → 0, the

impact of the free Hamiltonian on the decay of the survival
probability can be neglected. This is also the reason why the
free Hamiltonian does not appear in the effective decay rate of
survival probability (82).

On the contrary, when the Bloch vector of the initial state
stays on the equator of the Bloch sphere, i.e., α = π/2, the
impact of the dephasing noise is most significant and the prob-
ability for the system to survive in the initial state is worst. In
this case, any Bloch vector other than those on the equator can
suffer less from the dephasing noise, so any coherent quantum
control can improve the survival probability of the system
in the presence of dephasing noise though the improvement
can differ by different control Hamiltonians. And, similar as
above, the impact of the free Hamiltonian is negligible as we
are considering the Zeno limit here.

The initial states along the z axis and on the equator of the
Bloch sphere are the two limiting cases regarding the influ-
ence of the dephasing noise on the survival probability and the
extent to which coherent quantum controls may help. For any
other intermediate cases, the initial states can suffer from the
dephasing noise but not as much as those on the equator of the
Bloch sphere, and accordingly coherent quantum controls can
improve the survival probability of system to stay in the initial
states but not as much as for the initial states on the equator.
And actually coherent quantum controls may even worsen the
survival probability if the control Hamiltonian is not chosen
properly in this case.

To gain an intuitive picture of how different choices of
the initial state affect the impact of the dephasing noise and
the extent that coherent quantum controls can improve the
survival probability, the effective decay rates of the survival
probability in the above three cases are depicted in Fig. 3 for
three typical initial states,

|ψa〉 = |0〉,

|ψb〉 = 1√
2

(|0〉 + |1〉),

|ψc〉 = cos
π

8
|0〉 + sin

π

8
|1〉,

(83)

which belong to the three different cases respectively.
Figures 3(a1) and 3(a2) depict the effective decay rate for

the initial state |ψa〉 with α = 0, lying along the z axis of
the Bloch sphere. It can be seen that γ

(c)
eff � γ

(n)
eff , i.e., any

coherent control can only induce the decay of survival prob-
ability or keep it unchanged at most, since the initial state is
already in the most favorable direction which is free from the
impact of dephasing, and any coherent control scheme may
not reduce the decay in this case. As a contrast, Figs. 3(b1)
and 3(b2) depict the decay rate for the initial state |ψb〉 with
α = π/2, β = 0, lying on the equator of the Bloch sphere. It
can be seen from the figure that γ

(c)
eff � γ

(n)
eff , i.e., any control

Hamiltonian can improve the survival probability or keep it
unchanged at least, since the initial state experiences the most
severe impact of the dephasing noise, and thus any coherent
control scheme cannot do worse than without the control.
Figures 3(c1) and 3(c2) depict the intermediate case for the
initial state |ψc〉 with α = π/4, β = 0, lying along a direction
between the z axis and the equator of the Bloch sphere. It can
be observed that some choices of the control Hamiltonian can
improve the decay of survival probability while the others may
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FIG. 3. Illustration of effective decay rate γeff for different initial states: (a) αa = 0, (b) αb = π/2, and (c) αc = π/4, with and without
quantum control against dephasing noise. The decay rate γ

(n)
eff without the coherent control is plotted by the blue surface, and the decay rate

γ
(c)

eff with the coherent control is plotted by the orange surface. When the initial state is α = 0, the direction of the optimal quantum control is
parallel to that of the initial state θc = 0 or π , which is a trivial control. When the initial state is α = π/2, the directions for the most optimal
controls can be obtained as {θc = π/2, φc = π/2, 3π/2}, the effective decay rates under which are indicated by points A and B in subfigure
(b2). When the initial state is α = π/4, the optimal controls can be found as {θc = π/8, φc = 0; θc = 7π/8, φc = π} and effective decay rate
is indicated by the three annotated points A, B, and C in subfigure (c2). Parameters: β = 0, ω = π , and μ = 1.

worsen it, as there exist both directions that suffer more or
less from the dephasing noise on the Bloch sphere and the
control Hamiltonian may rotate the system to either of them
in this case. As shown by Fig. 3, different directions of the
control Hamiltonian have different capabilities to improve the
survival probability given the initial state of the system, so
in the following our objective is to find the optimal direction
of the control Hamiltonian that minimizes the effective decay
rate γ

(c)
eff to protect the Zeno effect.

According to the general variation Eq. (76) for a two-level
system along with the positive definiteness of the Hessian
matrix [79] for γ

(opt)
eff with respect to direction parameters θc

and φc of the control Hamiltonian to ensure the minimization
(not the maximization) of the decay rate γ

(c)
eff , we have the

following optimization equations for θc and φc:

∂θcγ
(c)

eff = 0,

∂φcγ
(c)

eff = 0,

A > 0, C > 0,

AC − B2 < 0,

(84)

where A = ∂2
θc
γ

(c)
eff , C = ∂2

φc
γ

(c)
eff , and B ≡ ∂θc∂φcγ

(c)
eff .

One can obtain the optimal directions of the control Hamil-
tonian in the presence of dephasing noise given the Bloch
vector r0 of the initial state of the two-level quantum system
by solving Eq. (84),

θc = α
2 , φc = β, arccos

(
1
3

)
< α � π,

θc = π+α
2 , φc = β, 0 � α < arccos

(− 1
3

)
,

θc = π
2 , φc = β + π

2 .

(85)

Note that the solutions in Eq. (85) include all the local
optimal points for the direction of the control Hamiltonian. To
find the global optimal point for the control Hamiltonian, one
needs to substitute this solution into the effective decay rate
γ

(c)
eff (82) and compare the results corresponding to the three

scenarios in Eq. (85). The global minimum effective decay
rate turns out to be

γ
(opt)

eff =

⎧⎪⎪⎨
⎪⎪⎩

− μ

16 (−7 + 4 cos α + 3 cos 2α), 0 � α < α0,

μ

2 , α0 � α < α1,

−μ

4 cos2 α(−5 + 3 cos α), α1 � α � π,

(86)
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FIG. 4. Illustration of effective decay rates of the survival prob-
ability with or without the coherent control in the presence of
dephasing noise for different initial states. The decay rate γ

(n)
eff with-

out the coherent control is plotted by the blue dashed line, and the
minimum decay rate γ

(opt)
eff with the optimized coherent control is

plotted by the red dot-dashed line. The ratio κmin = γ
(opt)

eff /γ
(n)

eff is
also plotted by the black solid line, which shows the stability of
the optimization performance of this coherent control scheme over
different initial states of the system. Parameters: ω = π and μ = 1.

where α0 ≡ 2 arccos
√

2, α1 = π − α0 and μ is the noise
strength introduced in the master Eq. (80).

It can be observed that the optimal effective decay rate
γ

(opt)
eff with the coherent quantum control and the decay rate

γ
(n)

eff without any control are both independent of the azimuthal
angle β of the Bloch vector of the initial state. This character-
istic arises from the rotational symmetry of dephasing noise
about the z axis.

The relations between the decay rates γ
(opt)

eff , γ
(n)

eff and the
polar angle α of the Bloch vector of the initial state as well
as the optimal ratio κ for different initial states are depicted
in Fig. 4. In the figure, one can observe that the optimized
effective decay rate γ

(opt)
eff always remains lower than the decay

rate without control γ
(n)

eff , indicating the effectiveness of the
coherent control scheme. It can also be observed from the
figure that the coherent control scheme is robust against the
change of the polar angle α as the optimized ratio κ has only
minor fluctuation over the whole range of α, achieving the
minimum value 1/2 near the poles (α = 0 or π ) of the Bloch
sphere where the influence of the dephasing noise is negligible
and on the equator (α = π/2) where the influence of the
dephasing noise is most significant. The optimization perfor-
mance is poorest at α = α0 and π − α0, where κ = 9/16. So
the ratio κ changes only slightly over the range of α.

To characterize the overall performance of the above opti-
mized coherent quantum control scheme over different initial
states of the system, we consider the ensemble average fidelity
F (62) over uniformly distributed initial states, which turns
out to be

F (t ) = 1

4π

∫ 2π

0
dβ

∫ π

0
dαe−γeff t sin α, (87)

for a two-level system. The spherical integral is due
to the distribution of initial states on the Bloch sphere

FIG. 5. Plots of the ensemble average fidelity F with respect to
μt in the presence of dephasing noise with the optimal coherent
control scheme and without any quantum control, respectively.

with a radius |r0| = 1, and 1
4π

is the normalization
coefficient.

By substituting Eqs. (81) and (86) into (87), one can obtain
the decay of the ensemble average fidelity F with respect to
μt in both the control-free and optimally controlled cases,
as shown in Fig. 5. It is evident from the figure that the
ensemble average fidelity F with the optimal coherent con-
trol is always greater than that in the control-free scenario,
indicating a slower decay of the survival probability with the
optimal coherent control given the same noise intensity μ.
This observation explicitly demonstrates the effectiveness of
the above coherent quantum control strategy in protecting the
quantum Zeno effect against the dephasing noise.

It is helpful to pause and ponder the physical mechanism
behind the optimization effect of the above coherent control
scheme. For the dephasing noise, the z axis is the direction
that is not disturbed by the noise, so it would be beneficial to
rotate a quantum state towards the z axis during the evolution
by quantum control to reduce the influence of the dephas-
ing noise. As the Hamiltonian control is a coherent control
scheme which preserves the purity of a quantum system, one
actually wants to rotate the quantum system towards the |0〉 or
|1〉 state, i.e., the north or south pole of the Bloch sphere.

This is indeed what the above Hamiltonian control scheme
does, as illustrated by Fig. 6. From the three colored lines in
Fig. 6 which represent the evolution paths of the quantum sys-
tem with the optimal control Hamiltonians, it can be seen that
the Hamiltonian control drags the quantum system towards
the |0〉 state (as the initial state is chosen to be in the upper
hemisphere in the figure, which is closer to |0〉) and then turns
it back to the vicinity of the initial state (as the purpose is to
preserve the initial state), which is the physical significance of
the condition (71). The joint effect of the Hamiltonian control
and the dephasing noise is to approximately rotate the state of
quantum system between the initial state and the north/south
pole of Bloch sphere along a spiral path towards the z axis,
realizing the decrease of decay caused by the dephasing noise.
As a contrast, the quantum system evolves along the black
paths without quantum control which decays to the z axis
faster.
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FIG. 6. Illustration for the evolution paths of a two-level quantum system initially prepared on different pure states with and without the
protection by the optimal coherent control between two consecutive projective measurements in the presence of dephasing noise. In each
subfigure, the gray, translucent sphere is the Bloch sphere consisting of all density matrices of a single qubit, the orange, translucent ellipsoid
is the set of all density matrices after the disturbance of the dephasing noise on the system, and the arrow indicates the direction of optimal
control Hamiltonian. Point A represents the initial state, and points B and C represent the final states at the end of each time interval without
and with the Hamiltonian control, respectively. The black lines depict the evolution paths of the system without quantum controls, whereas the
colored lines represent the evolution paths engineered by the optimal controls. The solid arcs of the colored lines depict the actual evolution
paths between two consecutive projective measurements, while the dashed arcs of the colored lines depict the following evolution paths if the
evolution is not interrupted by the projective measurement. Typical initial states of the quantum system are chosen for the three different regimes
given by Eq. (86), respectively: (a) α � α0 (b) α � 1 − α0, and (c) α0 < α < 1 − α0. Parameters: H0 = σz, β = 0, μ = 1, ω = π, τ = 0.01.

It is worth noting that the system cannot perfectly return
to the initial state at the end of each cycle in spite of the
Hamiltonian control, due to the existence of nonzero first-
order term in the survival probability which can be lowered
by the coherent control scheme but not eliminated. But it can
be seen from Fig. 6 that the distance between the initial state
(point A) and the final state with the quantum control (point
C) is always shorter than that between the initial state and the
final state without the quantum control (point B), indicating
the effectiveness of the above quantum control scheme.

It is also worth mentioning that while the unitary noise
considered in this subsection is the dephasing noise, the above
optimal control scheme can be generalized for arbitrary uni-
tary noise, since the effect of a unitary noise other than the
dephasing is equivalent to a new free Hamiltonian with the
dephasing noise in a rotated picture, which can be included
above due to the arbitrariness of free Hamiltonian assumed in
the above study.

2. Amplitude damping

The amplitude damping is another typical noise on a
two-level system, usually describing the energy loss from
a quantum system, known as energy dissipation. The noise
coefficient matrix (67) of amplitude damping is

�ad = μ

4

⎛
⎝1 −i 0

i 1 0
0 0 0

⎞
⎠, (88)

and the master equation for the evolution of the sys-
tem with a free Hamiltonian and the amplitude damping

noise is

dρt

dt
= −i[H0, ρt ] + μD[σ−]ρt , (89)

where D[σ−]ρt = σ−ρtσ+ − 1
2 {σ+σ−, ρt } and ρt is the den-

sity matrix of the system at time t . When a control
Hamiltonian gHc is applied on the system, the master equa-
tion becomes

dρt

dt
= −i[H0 + gHc, ρt ] + μD[σ−]ρt . (90)

The effect of the amplitude damping noise on a two-level
system is depicted in Fig. 7. It shows that the amplitude
damping noise compresses the Bloch sphere towards the north
pole, i.e., the state |0〉 which is the unique stationary state of

FIG. 7. Effect of the amplitude damping noise on a two-level
system. The amplitude damping noise compresses the Bloch sphere
towards the north pole, i.e., the quantum state |0〉, which is the
stationary state of the amplitude damping noise. Parameter: μt = 1.
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the amplitude damping noise. The compression is rotationally
symmetric around the z axis as the amplitude damping noise
affects the σx and σy components of all density matrices uni-
formly, but in contrast to the dephasing noise discussed above,
it is not symmetric about the equatorial plane as the amplitude
damping noise also changes the σz component of a density
matrix, and this change varies with the σz component of the
density matrix.

When the projective measurement is performed sufficiently
frequently and the condition (71) to preserve the initial state
is satisfied in the Zeno limit τ → 0, by substituting r0 (71)
and �ad (88) into the Eqs. (68) and (73), one can obtain
the effective decay rate of survival probability without the
Hamiltonian control as

γ
(n)

eff = μ

8
(3 − 4 cos α + cos 2α) = μ sin4 α

2
, (91)

and the effective decay rate with the control Hamiltonian as

γ
(c)

eff = μ

512
{178 + 12 cos 2(α − θc) + cos 2(α − �)

+ cos 2(α + �) − 256 cos α cos2 θc + 8 cos 2θc

+ 6 cos 4θc + 2 cos 2α(11 + 6 cos 2θc + 9 cos 4θc)

+ 2 cos 2�(−1 + 2(4 cos 2θc − 3 cos 4θc) sin2 α)

+ 4[−32 cos � sin α + (4 cos �(1 + 3 cos 2θc)

− 3) sin 2α] sin 2θc}, (92)

where � = β − φc.
From the result of γ

(n)
eff (91) without Hamiltonian control,

it’s apparent that the decay rate of the survival probability
induced by the amplitude damping noise is independent of the
azimuthal angle β and solely depends on the polar angle α

between the initial state and the z axis. This is in accordance
with the rotational symmetry of the compression effect of the
amplitude damping noise around the z axis shown in Fig. 7.
However, an additional term, cos α, is introduced in γ

(n)
eff (91),

which is not symmetric about α = π/2, so the decay rate
is not symmetric about the equatorial plane and the decay
increases with α, which also agrees with Fig. 7. The north
pole of the Bloch sphere, i.e., the state |0〉, is a stationary state
of the amplitude damping noise, so it remains unaffected by
the amplitude damping noise, and no decay of the survival
probability occurs when the system is initially in this state.
On the contrary, the south pole of the Bloch sphere, i.e., the
state |1〉, is the state whose Bloch vector is compressed most
by the amplitude damping noise, so when the initial state of
the system resides at the south pole, the survival probability
decays most significantly with time.

When coherent quantum control is applied on the system,
similar as the dephasing noise discussed above, the impact
of the amplitude damping noise differs with the initial state
of the two-level system. When the initial state of the system
is |0〉, i.e., α = 0, the north pole of the Bloch sphere, the
amplitude damping noise does not change the system as |0〉
is the stationary state of the amplitude damping noise and the
survival probability does not decay. So applying any control
Hamiltonian on the system can only induce decay on the sur-
vival probability. On the contrary, when the system is initially
in the state |1〉, i.e., α = π , the south pole of the Bloch sphere,

the system suffers the most disturbance from the amplitude
damping noise and the survival probability decays fastest.
So in this case, introducing any control Hamiltonian to the
system can help slow the decay of survival probability. When
the system initially stays at any state other than |0〉 or |1〉, a
control Hamiltonian may decrease or increase the decay rate
of the survival probability, as one can always find another
state that is better or worse than the initial state in suffering
the amplitude damping noise, which is an intermediate case
between the states |0〉 and |1〉.

To visualize the effects of the Hamiltonian controls on
different initial states of the system in the presence of am-
plitude damping noise, the effective decay rate of the survival
probability γ

(c)
eff (92) with all possible directions of the control

Hamiltonian is plotted in Fig. 8 for three typical initial states
of the system,

|ψa〉 = |0〉,
|ψb〉 = |1〉,

|ψc〉 = 1√
2

(|0〉 + |1〉),

(93)

which falls into the three different categories of the states
discussed above respectively.

Figures 8(a1) and 8(b1) depict the effective decay rate
for the state |ψa〉, i.e., α = 0. It shows that γ

(c)
eff � γ

(n)
eff for

all directions of the control Hamiltonian, i.e., any coherent
control can only induce decay in the survival probability or
keep it unchanged at most, as the system is not affected by the
amplitude damping noise and the survival probability cannot
benefit from the control Hamiltonian in any direction in this
case. Figures 8(a2) and 8(b2) depict the case for the state |ψb〉,
i.e., α = π , and show that γ

(c)
eff � γ

(n)
eff for all directions of the

control Hamiltonian, i.e., any coherent control can help slow
the decay of survival probability or keep it unchanged at least,
as |1〉 is the state most adversely affected by the amplitude
damping noise, and thus the Hamiltonian control in an arbi-
trary direction can mitigate this situation. Figures 8(a3) and
8(b3) consider the intermediate case with the initial state |ψc〉,
i.e., α = π/2, β = 0, demonstrating that the possibilities for
coherent quantum controls to reduce or increase the decay rate
of the survival probability exist simultaneously, as both states
that are less or more disturbed by the amplitude damping noise
exist on the Bloch sphere in this case.

As the improvement in the decay rate of the survival
probability differs among different directions of the con-
trol Hamiltonian, it is desirable to find the lowest decay
rate by optimizing the control Hamiltonian over all possible
directions.

Substituting Eq. (92) into Eq. (84), one can work out the
optimal control for the amplitude damping noise, which re-
veals that for an initial state with a Bloch vector r0 (65) the
effective decay rate reaches the minimum when

θc = α

2
, φc = β. (94)

The evolution trajectory of the Bloch vector of the system with
the control Hamiltonian in the optimal direction (94) is plotted
in Fig. 9.
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FIG. 8. Illustration of effective decay rates γeff for different initial states (a) αa = 0, (b) αb = π , and (c) αc = π/2 in the presence of
amplitude damping noise, with the Hamiltonian controls of all possible directions vs without a Hamiltonian control. The decay rates γ

(n)
eff

without the controls are plotted by the blue surface, and the decay rates γ
(c)

eff with the coherent control are plotted by the orange surface. When
the initial state is α = 0, the optimal quantum control direction is parallel to the initial state direction θc = 0 or π , which is trivial control.
When the initial state is α = π , the direction of the most optimal control can be identified as {θc = π/2}, and the corresponding effective
decay rates are represented by the dashed line AB in subfigure (b2). When the initial state is α = π/2, the optimal controls can be found as
{θc = π/4, φc = 0; θc = 3π/4, φc = π}, and the effective decay rates are represented by the three annotated points A, B, and C in subfigure
(c2). Parameters: β = 0, ω = π , and μ = 1.

Similar to the case of dephasing noise, the mechanism of
the Hamiltonian control against the amplitude damping noise
can be understood from the evolution paths of the quantum
system with and without the optimal control, which is illus-
trated in Fig. 9. The evolution of the system without control
is plotted by the black path of Fig. 9, which shows that the
quantum system would directly approach the ground state
|0〉 under the influence of amplitude damping noise in this
case. However, the rotation under the combined influence of
coherent control and amplitude damping noise, shown by the
blue path of Fig. 9, suggests that the effect of the coherent
control drags the state towards |0〉, i.e., the north pole of
the Bloch sphere, which is the state least influenced by the
amplitude damping noise, and then turns it back to the vicinity
of the initial state. The result of such a Hamiltonian-controlled
evolution ensures the distance between the initial state (point
A) and the final state with the control (point C) shorter than
that between the initial state and the final state without the
control (point B) and thus achieves the purpose of delaying
the decay of the quantum system.

With the optimal coherent control scheme in Eq. (94), the
effective decay rate of survival probability induced by the

amplitude damping noise for any arbitrary initial state can
reach its minimum, which turns out to be

γ
(opt)

eff = 3

8
μ sin4 α

2
, (95)

implying that the ratio κ (61) optimized by the coherent
control scheme is the same for all initial pure states, which
is κ = γ

(opt)
eff /γ

(n)
eff = 3/8. This demonstrates the effectiveness

and stability of this optimized coherent quantum control ap-
proach. The optimal effective decay rate with the optimal
coherent control γ

(opt)
eff and that without any control γ

(n)
eff are

both independent of the azimuthal angle β of the initial state
due to the rotational symmetry of amplitude damping noise.
Their relations with the polar angle α of the initial state as
well as the best ratio κ is depicted for different initial states in
Fig. 10.

If the above optimization approach of the coherent quan-
tum control is applied to each initial state, one can obtain the
decay of the ensemble average fidelity F (62) with respect to
μt without any quantum control and with the optimal coherent
control by substituting Eqs. (91) and (95) into Eq. (87). The
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FIG. 9. Evolution paths of a two-level quantum system initially
prepared on a pure state with and without the protection of the
optimal coherent control between two consecutive projective mea-
surements. The gray, translucent unit sphere represents the set of all
density matrices of a two-level system. The deformed, translucent,
orange ellipsoid is set of all final density matrices transformed by the
amplitude damping noise on the system, and the arrow indicates the
direction of optimal coherent control. Point A represents the initial
state of the system, and points B and C represent the respective final
states after the evolution between two consecutive measurements
without and with the optimal coherent quantum control. The black
line depicts the evolution path without the control, and the blue line
represents the evolution path engineered by the optimal control. The
solid arc of the blue line denotes the actual evolution path between
two consecutive projective measurements, while the dashed arc of
the blue line denotes the future evolution path if the evolution is not
interrupted by the repetitive projective measurements. Parameters:
H0 = σz, μ = 1, ω = π, τ = 0.25.

ensemble average fidelity is plotted in Fig. 11. It is evident
from this figure that the ensemble average fidelity F with
the optimal coherent control is always greater than than that
without any quantum control, indicating, a decrease in the
decay rate of the survival probability by the optimal coherent
control. This observation manifests the validity of employing
this coherent control scheme to protect the survival probability
against the amplitude noise.

Finally, we would like to remark that with the development
of quantum technologies in recent years, two-level quantum
systems as well as the quantum operations on them have been
realized in a variety of physical systems with high precisions,
e.g., quantum dots [80], ion traps [81], superconducting quan-
tum circuits [82], etc. We refer the readers to Ref. [83] for
a comprehensive review of physical systems that can real-
ize two-level systems and the relevant quantum operations.
The coherent controls proposed in the current scheme are
essentially unitary rotations of two-level systems on the Bloch
sphere, so they can also be implemented on those physical
systems.

FIG. 10. Illustration of effective decay rates of the survival prob-
ability with or without the coherent control in the presence of
amplitude damping noise for different initial states. The decay rate
γ

(n)
eff without the coherent control is plotted by the blue dashed line,

and the minimum decay rate γ
(opt)

eff with the optimized coherent con-
trol is plotted by the red dot-dashed line. The ratio κ = γ

(opt)
eff /γ

(n)
eff is

also plotted by the black solid line, showing the stability of the opti-
mization performance of this coherent control scheme over different
initial states of the system. Parameters: ω = π and μ = 1.

V. CONCLUSION

In this work, we consider the quantum Zeno effect in the
presence of noise and study the survival probability that a
general quantum system stays in its initial state by repetitive
projective measurements in this situation. Starting from the
master equation with general dissipative terms, we discuss the
physical mechanism underlying the vanishing of the quan-
tum Zeno effect and the decay of the survival probability.
In order to suppress the influence of the noise, a coherent
control scheme with a strong Hamiltonian is introduced to the
quantum system. As the noise induces a nonzero first-order
term in the expansion of the survival probability of the ini-
tial state which leads the decay of the survival probability, a
detailed analysis shows that coherent quantum control with

FIG. 11. Ensemble average fidelity F with respect to μt in the
presence of amplitude damping noise with or without the optimal
coherent quantum control scheme, respectively.
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a Hamiltonian as strong as the frequency of the projective
measurements can reduce the decay rate of the survival proba-
bility. The effective decay rate of the survival probability with
the coherent quantum control is obtained, and the conditions
on the control Hamiltonian to protect the quantum Zeno effect
are established.

A two-level system is then investigated as an example
to illustrate the general results. The decay rate of the sur-
vival probability is derived with and without the coherent
control scheme respectively, and the results indicate that the
coherent quantum control scheme performs well in lowering
the decay rate in the presence of dephasing and amplitude
damping noise. As different control Hamiltonians lead to dif-
ferent suppression effects on the decay of survival probability,
the control Hamiltonian is further optimized to minimize the
decay rate. An optimization equation for the control Hamilto-
nian is formally obtained by a variational method and solved
analytically for the two types of noise respectively. The mech-
anism of how the optimal control Hamiltonian protects the
system against the noise and mitigates the decay of survival
probability is numerically illustrated by visualizing the noisy
evolution paths of the quantum system in the Bloch sphere.
The results show that the effect of the optimal Hamiltonian
control is to rotate the system towards the direction that is least
influenced by the noise and then turns it back to the vicinity of
the initial state, so that the final state with the optimal control
can be closer to the initial state than without the control, and
thus the survival probability of the system to stay in the initial
state can be increased.

We hope this work can contribute a novel quantum control
strategy to mitigate the influence of Markovian noise on the
quantum Zeno effect and stimulate future research in this
direction.
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APPENDIX A: DERIVATION OF REPRESENTATION
TRANSFORMATION OF SUPEROPERATORS

IN LIOUVILLE SPACE

In this Appendix, we briefly demonstrate how the transfor-
mations of superoperators LH0 and Lμ are derived in Eq. (51).

According to the definition of LH0 , LH0 = −i[H0, ·],
and the definition of eωLHc η, eωLHc η[·] = e−iωHcη(·)eiωHcη, the
transformation of the commutator LH0 into a representation
rotated by e−ωLHc η is

e−ωLHc ηLH0 eωLHc η[·]
= −ieiωHcη[H0e−iωHcη(·)eiωHcη − e−iωHcη(·)eiωHcηH0]e−iωHcη

= −i[eiωHcηH0e−iωHcη, ·]
= −i[H̃0(η), ·] = L̃(η)

H0
, (A1)

where H̃0(η) = eiωHcηH0e−iωHcη is the transformed free
Hamiltonian in the rotated representation dependent on
the parameter η, and the transformation of the dissipative

superoperator Lμ is

e−ωLHc ηLμeωLHc η[·]
=
∑

k

μke−ωLHc ηD[Vk]eωLHc η(·)

=
∑

k

μkeiωHcη

{
Vk[e−iωHcη(·)eiωHcη]V †

k

− 1

2
V †

k Vk[e−iωHcη(·)eiωHcη]

− 1

2
[e−iωHcη(·)eiωHcη]V †

k Vk

}
e−iωHcη

=
∑

k

μk

[
Ṽk (η)(·)Ṽk

†
(η) − 1

2
{Ṽk

†
(η)Ṽk (η), ·}

]

=
∑

k

μkD[Ṽk (η)], (A2)

where Ṽk (η) = eiωHcηVke−iωHcη is the transformed noise oper-
ator Vk in the framework rotated by e−iωHcη dependent on the
parameter η.

It can be observed that the transformations of the super-
operators LH0 and Lμ are essentially the transformations of
the free Hamiltonian H0 and the noise operators Vk under
the control Hamiltonian Hc, respectively, while the forms of
LH0 and Lμ, regardless of H0 and Vk , remain unchanged.

APPENDIX B: DERIVATION OF OPTIMIZATION
EQUATION FOR CONTROL HAMILTONIAN

In this Appendix, we derive the equation that determine the
optimal control Hamiltonians to minimize the effective decay
rates of survival probability γ

(c)
eff for a two-level quantum

system.
We start from the general result for γ

(c)
eff ,

γ
(c)

eff = − 3
2 (nc · r0)2nc�nc+ 1

2 nc · r0(nc�r0+r0�nc )− 1
2 r0�r0

− 1
2 (nc × r0)�(nc × r0) + Tr� + (nc · r0)(g · nc ),

(B1)

which is provided by Eq. (73) in Sec. IV B.
Denote the Bloch vector of the initial state as r0 and the

normalized directional vector of the control Hamiltonian as
nc, i.e., Hc = nc · σ. The cross product between the vectors
nc and r0 can be represented as a linear transformation of nc,
given by

nc × r0 = Rnc. (B2)

If r0 is denoted as

r0 = (x0, y0, z0), (B3)

the transformation matrix R is antisymmetric and defined as

R =
⎡
⎣ 0 z0 −y0

−z0 0 x0

y0 −x0 0

⎤
⎦. (B4)
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In this case, the effective decay rate of survival probability
γ

(c)
eff can be rewritten as

γ
(c)

eff = −3

2

(
rT

0 nc
)(

nT
c �nc

)(
nT

c r0
)+ 1

2

(
rT

0 nc
)(

nT
c �r0

)
+ 1

2

(
rT

0 �nc
)(

nT
c r0

)− 1

2
rT

0 �r0

− 1

2
(Rnc )T�(Rnc ) + Tr� + (νTnc )

(
nT

c r0
)

= Tr

(
−3

2
Pn�PnPr + 1

2
Pn�Pr + 1

2
�PnPr

− 1

2
�Pr − 1

2
RT�RPn + � + Pnr0ν

T

)
, (B5)

where Pn and Pr are defined as Pn = ncnT
c and Pr = r0rT

0 ,
respectively, and the superscript “T” denotes the transposition
of a column vector.

Considering the normalization of the vector nc, i.e., ‖nc‖ =
1, Pn is actually a projection operator, satisfying P2

n = Pn, so
the Lagrangian function should include this property of Pn as
a constraint condition,

L(Pn,�) = γ
(c)

eff + Tr
[(

P2
n − Pn

)
�
]
, (B6)

where � is an arbitrary matrix, representing the Lagrange
multiplier.

To obtain the optimal control Hamiltonian Hc that min-
imizes the effective decay rate γ

(c)
eff , we perform variational

calculus on the Lagrangian function (B6), yielding

δL = Tr

[
δPn

(
−3

2
�PnPr − 3

2
PrPn� + 1

2
�Pr + 1

2
Pr�

− 1

2
RT�R + r0ν

T + Pn� + �Pn − �

)]
+ Tr

[
δ�

(
P2

n − Pn
)]

. (B7)

According to the principle of the variational approach, the
variation δL in Eq. (B7) should be zero for any δPn and
δ�, leading to the following conditions for minimizing the
effective decay rate γ

(c)
eff :

− 3
2�PnPr − 3

2 PrPn� + 1
2�Pr + 1

2 Pr�

− 1
2 RT�R + r0ν

T + Pn� + �Pn − � = 0, (B8)

P2
n − Pn = 0, (B9)

where the bold symbol 0 denotes the zero matrix.

APPENDIX C: DERIVATION OF EFFECTIVE DECAY RATE
OF SURVIVAL PROBABILITY FOR TWO-LEVEL SYSTEM

This Appendix focuses primarily on the coherent control
scheme for two-level system, specifically the derivations dis-
cussed in Sec. IV. We start from the general results of effective
decay rates γ

(n)
eff (29) without quantum control and γ

(c)
eff (60)

with coherent quantum controls in Sec. III, and apply them to
a two-level system in the presence of Markovian noise with
and without the coherent control scheme respectively.

The dissipative superoperator Lμ induced by Markovian
noise for a two-level system can be generally expressed as

Lμ[·] =
∑

i j

μi j

(
σi(·)σ j − 1

2
{σ jσi, ·}

)
, (C1)

which is given in Eq. (66). By substituting this equation into
γ

(n)
eff (29), one can derive the effective decay rate for a noisy

two-level quantum system without quantum control as

γ
(n)

eff = −〈ψ0|Lμ[ρ0]|ψ0〉

= −
∑

i, j=1,2

μi j Tr

(
ρ0σiρ0σ j − 1

2
ρ0{σ jσi, ρ0}

)

= −
∑

i, j=1,2

μi j[Tr(σiρ0)Tr(σ jρ0) − Tr(σ jσiρ0)],

= −rT
0 �r0 + Tr� − i

∑
i jk

μi jεi jk (r0)k

= −rT
0 �r0 + Tr� + ν · r0, (C2)

where the third line of the derivation results from the assump-
tion that ρ0 is the density matrix of a pure state, ν is a vector
related to the imaginary parts of the off-diagonal elements of
the noise coefficient matrix �, defined as

ν = 2(Imμ23, Imμ31, Imμ12). (C3)

In the coherent control scheme, we assume that the control
Hamiltonian can be written as

Hc = nc · σ, (C4)

where nc describes the direction of the control Hamiltonian,

nc = (sin θc cos φc, sin θc sin φc, cos θc). (C5)

The eigenvalues and the associated eigenstates of the control
Hamiltonian Hc can be straightforwardly obtained as

E (c)
1 = 1,

∣∣ψ (c)
1

〉 = e−iφc cos
θc

2
|0〉 + sin

θc

2
|1〉

E (c)
2 = −1,

∣∣ψ (c)
2

〉 = −e−iφc sin
θc

2
|0〉 + cos

θc

2
|1〉

, (C6)

where E (c)
1 , E (c)

2 are the eigenvalues and |ψ (c)
1 〉, |ψ (c)

2 〉 are the
eigenstates.

Correspondingly, an arbitrary initial state |ψ0〉 in the basis
of the Hamiltonian’s eigenstates can be expressed as

|ψ0〉 = a1

∣∣ψ (c)
1

〉+ a2

∣∣ψ (c)
2

〉
, (C7)

where the coefficients a1, a2 satisfy the normalization condi-
tion |a1|2 + |a2|2 = 1.

Now, let us derive the effective decay rate γ
(c)

eff for a
two-level system within scheme with the coherent quantum
control. The first consideration pertains to the necessary con-
ditions for the validity of the coherent control scheme in a
two-level system. Substituting the eigenvalues from Eq. (C6)
into the zeroth-order term of survival probability pc(τ ) in
Eq. (41), one can have

pc|τ=0 = |〈ψ0|eiωHc |ψ0〉|2
= |a1|4 + |a2|4 + 2|a1|2|a2|2 cos 2ω, (C8)
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indicating that when ω = nπ for n = ±1,±2,±3, . . . ,
pc|τ=0 = 1 by the normalization condition of a1, a2.

With the specific form of Lμ for a two-level system given in
Eq. (C1) and the representation transformation of superoper-
ator Lμ, L̃(η)

μ = e−ωLHc ηLμeωLHc η, in Eq. (A2), the first-order
term of Eq. (41) can be written as

p(1)
c |τ=0 =

∫ 1

0
〈ψ0|L̃(η)

μ [ρ0]|ψ0〉 dη

=
3∑

i, j=1

μi j

∫ 1

0
Tr
[
ρ0σ̃

(η)
i ρ0σ̃

(η)
j − ρ0σ̃

(η)
j σ̃

(η)
i

]
dη,

(C9)

where σ̃
(η)
i ≡ eiωHcησie−iωHcη denotes the Pauli operator σi

in the transformed framework. As Hc is a normalized
Pauli matrix defined in (C4), satisfying H2

c = I , one can
have

e±iωHcη = cos (ωη)I ± i sin (ωη)Hc. (C10)

Considering the necessary condition ω = nπ, n = ±1,

±2,±3, . . . , substituting the above equation, Hc = nc · σ, and
ρ0 = (I + r0 · σ )/2 into Eq. (C9) and using the identity

(a · σ )(b · σ) = (a · b) I + i(a × b) · σ, (C11)

for two arbitrary vectors a and b, one can obtain

p(1)
c

∣∣
τ=0 =

3∑
i, j=1

μi j

∫ 1

0
Tr(ρ0eiωHcησie

−iωHcηρ0eiωHcησ je
−iωHcη − ρ0eiωHcησ jσie

−iωHcη )dη (C12)

=
3∑

i, j=1

μi j

{∫ 1

0
Tr
(
ρ0[cos (ωη) I + i sin (ωη) nc · σ]σi[cos (ωη) I − i sin (ωη) nc · σ]ρ0

× [cos (ωη) I + i sin (ωη) nc · σ]σ j[cos (ωη) I + i sin (ωη) nc · σ]dη
)

−
∫ 1

0
Tr
(
ρ0[cos (ωη) I + i sin (ωη) nc · σ]σ jσi[cos (ωη) I − i sin (ωη) nc · σ]dη

)}
(C13)

=
3∑

i, j=1

μi j

{
3

2
(nc · r0)2(nc )i(nc ) j − 1

2
nc · r0

[
(nc )i(r0) j + (r0)i(nc ) j

]+ 1

2
(r0)i(r0) j

+ 1

2
(nc × r0)i(nc × r0) j − δi j + i(nc · r0)

∑
k

εi jk (nc )k

}
, (C14)

where (nc )k , (r0)k , and (nc × r0)k denote the kth elements of vectors nc, r0, and nc × r0, respectively.
Substituting the real vector ν defined in Eq. (C3) into the above equation, one can finally arrive at

p(1)
c

∣∣
τ=0 = 3

2 (nc · r0)2nT
c �nc − 1

2 (nc · r0)
(
nT

c �r0 + rT
0 �nc

)+ 1
2 rT

0 �r0

+ 1
2 (nc × r0)T�(nc × r0) − Tr� − (nc · r0)(ν · nc ), (C15)

which is Eq. (73).
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