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The reduction and distortion of quantum correlations in the presence of classical noise leads to varied levels
of inefficiency in the availability of entanglement as a resource for quantum information processing protocols.
While generically minimizing required entanglement for mixed quantum states remains challenging, a class
of many-body Gaussian quantum states (denoted N IC) is here identified that exhibits two-mode bipartite
entanglement structure, resembling that of pure states, for which the logarithmic negativity entanglement
measure remains invariant upon inclusion of the classical correlations and optimal entanglement resources can
be clearly quantified. This subclass is found to be embedded within a broader class of many-body Gaussian states
(denoted N -SOL) that retain two-mode entanglement structure for detection processes. These two entanglement
classes are relevant in theoretical and experimental applications from the scalar field vacuum to the local axial
motional modes of trapped ion chains. Utilizing the subspace that heralds inseparability in response to partial
transposition, a minimum noise filtering process is designed to be necessary, sufficient, and computable for
determining membership in these classes of entanglement structure. Application of this process to spacelike
regions of the free scalar field vacuum is found to improve resource upper bounds, providing new understanding
of the entanglement required for the quantum simulation of quantum fields as observed by arrays of local
detectors.
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I. INTRODUCTION

Beyond an intriguing feature of nature, the unique correla-
tions of entanglement expressed by quantum particles [1–5]
and quantum fields [6–11] have been identified as a key
resource in quantum information processing [12–15], inspir-
ing opportunities for exploring previously inaccessible phases
of matter and dynamical properties of quantum many-body
systems upon their incorporation into computational archi-
tectures [12,16–19]. For pure quantum states, in which all
deviation from purity observed in a reduced density matrix,
ρA = TrB(ρ), arises from entanglement spanning the asso-
ciated bipartition, entanglement can be directly quantified
by the eigenspectrum of ρA [20–25]. However, for mixed
states, in which entropy is preexisting either due to partial
measurements or noisy environments, perspectives of several
entanglement measures are required to understand the quan-
tum correlations, e.g., the entanglement of formation (EOF)
[26], logarithmic negativity [27–32], and distillable entan-
glement [26], among others [26,33–36], many of which are
computationally formidable [37,38]. The lack of degeneracy
between such measures can be appreciated from a physical
perspective by noting that classical correlations may obscure
access to quantum correlations, and thus entanglement re-
sources required for the creation of a mixed state are lower
bounded by, i.e., can exceed, the entanglement resource of
the mixed state itself [39–42]. Though entanglement in two-
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body and highly symmetric states is relatively well understood
amid this complexity, challenges and open questions arise
upon reductions of symmetry even in few-body contexts
[43–50]. Focusing on general many-body bipartite Gaussian
mixed states, this paper identifies two physically relevant and
computable entanglement classes that have clear two-body
entanglement structure in the crucial contexts of entanglement
detection and state preparation.

Continuous variable (CV) quantum states [47,51–56] are
both experimentally accessible, e.g., Refs. [57–64], and the-
oretically valuable, with the Gaussian subset commonly
serving as a basis of physically motivated leading-order ap-
proximations [65] that offer greater tractability for exploring
many-body features of quantum correlations. In the many-
body context, inspired in part by the ability to transform
pure bipartite Gaussian states into a tensor-product series
of (1A × 1B) two-mode entangled pairs with local unitaries
[45,66], several transformations have been devised to in-
vestigate properties of Gaussian mixed-state entanglement
structure [29,30,44,46,67,68]. Among these, Ref. [68] iden-
tified a local unitary applicable to disjoint pairs of scalar
field vacuum regions that produces a complete entanglement
detection process through a tensor-product series of (1A × 1B)
entangled mode pairs. In the present paper, a deeper under-
standing of this transformation is developed and leveraged
to generalize its performance to all possible many-body bi-
partite Gaussian states. The transformed state is found to
be further conducive to the identification of the entangle-
ment class of states composed entirely of optimal (1A × 1B)
resources. These observations reinforce the practical value of
complementary perspectives provided by local-unitary-based
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FIG. 1. Gaussian entanglement classifications, N -SOL and
N IC, identified in the present paper with trajectories depicting the
change of entanglement structure for increasing separation between
two regions in the latticed free scalar field vacuum [69–71] and in
the Gaussian approximation of local ion-chain axial motional modes
symmetrically distributed in a quadratic trap [72,73]. In order to
quantify minimal resources for state formation, Nmin

p is defined as
the convex roof extension [54] of pure-state logarithmic negativity.
Classifications are also shown for the cases of symmetric [44,46] and
asymmetric [46,48–50] two-mode Gaussian states.

entanglement rearrangements in the understanding of quan-
tum correlations in many-body mixed states.

The landscape of entanglement in mixed Gaussian states,
as shown in Fig. 1, can be divided into two sectors of neg-
ative and positive partial transpose (NPT and PPT) by the
logarithmic negativity entanglement measure. For a subset
of states, optimal convex decompositions exist in which the
negativity remains invariant upon inclusion of the classical
correlations (N IC), i.e., can be constructed by the introduc-
tion of noise to a pure state with the same negativity. States
in this entanglement class can be determined through a mini-
mum noise filtering (MNF) procedure that is here designed to
systematically construct an optimal underlying pure Gaussian
state for N IC-decomposable states by removing the minimum
amount of noise that both aligns the negativity-contributing
subspace (VN ) and maintains physicality. Separability in the
remaining system after this VN alignment process is found
to be a necessary and sufficient condition for determining the
availability and explicit form of a N IC decomposition, sim-
plifying the entirety of the entanglement into a tensor-product
series of two-mode pairs. While asymmetric two-mode NPT
Gaussian states belong to a broader class [46,48–50], their
symmetric counterparts [44,46] and regions of the scalar vac-
uum sensitive to the lattice at long distances are found to be
N IC decomposable, and thus their optimal Gaussian decom-
positions calculable. For pure states, as the entanglement is

completely captured by two mode structure [45,66] with a
clear entanglement quantification, all states are either N IC
decomposable or separable.

The N IC entanglement class is found to be embedded
within a broader class of multimode Gaussian states—those
with local symplectic orthogonality in their VN (N -SOL)—
that generalizes applicability of a connection between neg-
ativity and separability structure originally observed in the
specific context of disjoint regions in the free lattice scalar
field vacuum [68]. The N -SOL property is found to be both
necessary and sufficient to consolidate the accessible en-
tanglement into (1A × 1B) entangled pairs. Furthermore, the
resulting separability among the entangled pairs and with the
rest of the system can be analytically proven with the MNF
procedure. From the perspective of two-mode Gaussian dis-
tillability [74,75], this entanglement structure indicates that
N -SOL states are particularly conducive to accessing avail-
able quantum correlations.

The organization of this paper first establishes the N -SOL
and N IC entanglement classes and techniques for their iden-
tification in Secs. II and III, followed by application to the
scalar field vacuum in Sec. IV. After defining the N -SOL
property from the PT symplectic structure, Sec. II A presents a
local transformation that consolidates such entanglement into
a form conducive to two-body detection. The PT-guided MNF
procedure is presented in Sec. II B to establish the separability
structure of postconsolidated N -SOL states, and is subse-
quently utilized to identify N IC as a subclass in Sec. III. The
pure-state identification process provided by MNF is applied
to spacelike separated regions of the free lattice scalar field
vacuum in Sec. IV, identifying a stronger upper bound of
entanglement resources for state formation than previously
established.

II. GAUSSIAN ENTANGLEMENT CONSOLIDATION

The phase space of n CV modes [47,51,52,52–56] is
spanned by n pairs of position and momentum operators, r̂ ≡
(x̂1, p̂1, . . . , x̂n, p̂n)T , with canonical commutation relations
(CCRs) forming a symplectic matrix,

� =
n⊕

j=1

(
0 1

−1 0

)
, (1)

such that [r̂, r̂T ] = i�. Being unitary in the Hilbert space,
symplectic transformations maintain the phase-space CCRs,
and thus satisfy S�ST = �. Symplectic orthonormality,

〈vi|�|v j〉 = �i j, (2)

holds for all row and column vectors, |v j〉, of a valid symplec-
tic transformation.

Gaussian states can be fully described by first moments,
r̄, of these phase-space operators and their covariance matrix
(CM):

σ = Tr[ρG{(r̂ − r̄), (r̂ − r̄)T }], (3)

where ρG is the density matrix of the Gaussian state. Any
CM can be diagonalized to Williamson normal form [76] via
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global symplectic transformation, S:

SσST =
n⊕

j=1

(
ν j 0

0 ν j

)
= D, (4)

where ν j is the jth positive symplectic eigenvalue. For pure
states, ν j = 1, while for mixed states ν j � 1. Methods for
calculating S from a CM can be found in, for example,
Appendix B 2 of this paper or Appendix D of Ref. [77].

A necessary and sufficient condition for σ to represent
a physical Gaussian state is that it satisfies the uncertainty
principle, expressed as the positive semidefinite (PSD) matrix
property:

σphys + i� � 0. (5)

For bipartite Gaussian systems,

r =
(

rA

rB

)
, σ =

(
σA σAB

σ T
AB σB

)
, (6)

the reduced density matrix TrB(ρAB) is also Gaussian [56] with
first moments rA and CM σA.

For Gaussian states, all information of quantum and clas-
sical correlations between modes resides in the CM. One
informative quantifier of bipartite entanglement for mixed
quantum states is the logarithmic negativity [27,31,32], N =
log2 ‖ρ̃‖1, where ρ̃ is the partially transposed (PT) density
matrix and ‖ · ‖1 is the trace norm summing the absolute value
of eigenvalues. In the phase-space formalism, this translates to
the sum of n− PT-symplectic eigenvalues less than 1:

N = −
n−∑
j=1

log2 ν̃ j, (7)

where ν̃ j are the positive symplectic eigenvalues of the PT
CM, σ̃ = �σ�, and the PT operator � is the local momentum
reflection operator, p̂{nb} → −p̂{nb}, in one party [29],

� =
(

nA⊕
j=1

I

)
⊕

(
nA+nB⊕
j=nA+1

σz

)
, (8)

with I and σz the identity and Pauli-z matrix and nA,B the
number of modes in space A, B of the A-B bipartition, n =
nA + nB. As such, the logarithmic negativity heralds entan-
glement by identification of an invalid quantum state when
locally transforming by a symmetry that is globally respected.
Since Gaussianity is preserved under the PT operation [31],
the transformation that diagonalizes the PT CM, S̃, is also
symplectic,

S̃σ̃ S̃T =
n⊕

j=1

(
ν̃ j 0
0 ν̃ j

)
= D̃, (9)

and provides a normal-mode decomposition for the PT CM.
This also gives a concrete definition of VN and the non-
negativity-contributing subspace (VN/) as the subspaces with
ν̃ j < 1 and ν̃ j � 1, respectively, spanned by corresponding
vectors of the symplectic transformation S̃.

Beyond its role in the negativity entanglement measure,
the PT space will be here shown to carry further information
of entanglement structure that informs broader properties of

Gaussian quantum correlations and separability. The CM can
be written in the PT basis as

σ = ��

{
2n∑
j=1

ν̃ j |ν̃ j〉〈ν̃ j |
}

�T �, (10)

with |ν̃ j〉 the corresponding row vectors of S̃, which also
satisfy symplectic orthonormality, 〈ν̃i|�|ν̃ j〉 = �i j . As seen
in Eq. (10), transformation by �� transfers the PT infor-
mation of S̃ to the CM structure. This transformation will
be employed throughout the present paper, allowing the PT
information to guide entanglement reorganizations.

A. N -SOL: Symplectic orthogonality of local VN

For some physically relevant mixed Gaussian quantum
states, there exists a local unitary transformation, SA ⊕ SB,
that consolidates bipartite negativity in multimode contexts
into a tensor product series of (1A × 1B) pairs, each with a
two-mode squeezed vacuum state (TMSVS) origin [68]. In
the following, the property of N -SOL—defined here as

〈ν̃i,A|�|ν̃ j,A〉 = 〈ν̃i,B|�|ν̃ j,B〉 = �i j/2, (11)

where |ν̃ j,A〉 are the local A-space row or column vectors
of S̃ in VN —is identified as a necessary and sufficient con-
dition for the availability of such a local unitary. As such,
the N -SOL criterion extends understanding of the multimode
entanglement reorganization beyond the free scalar field.

Applying local symplectic transformations SA,B on a CM,
σ , produces σ ′ = (SA ⊕ SB)σ (SA ⊕ SB)T . Because local sym-
plectics do not modify the PT-symplectic eigenvalues, D̃′ =
D̃. The PT diagonalizing operator after local symplectic op-
erations, S̃′, can thus be related to the original S̃ through the
equality S̃′σ̃ ′S̃′T = S̃σ̃ S̃T to find

S̃′ = S̃�(SA ⊕ SB)−1�. (12)

Note that the symplecticity of S̃′ follows from �(SA ⊕ SB)−1�

being symplectic for arbitrary SA,B.
For an example of N -SOL, consider symmetric two-mode

Gaussian states. When calculating (G)EOF in this subset of
quantum states, Refs. [44,46] applied local squeezings to
identify classical correlations that leave the pure-state negativ-
ity invariant. As will be discussed in Sec. III, this is a defining
characteristic that the N IC entanglement class extends to
multimode states, and thus identifies symmetric two-mode
Gaussian states as members of N -SOL (see Fig. 1). The fol-
lowing alternatively demonstrates the N -SOL property from
the perspective of the PT space, which is the perspective that
will prove useful for subsequent multimode generalizations.
Upon application of single-mode symplectic operations, any
symmetric two-mode CM may be reduced to normal form
[29,30,41,78]:

σ =

⎛
⎜⎜⎝

n 0 kq 0
0 n 0 kp

kq 0 n 0
0 kp 0 n

⎞
⎟⎟⎠, (13)

with kq � kp without loss of generality. Additional con-
straints for this CM including physicality and entanglement
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conditions are discussed in Refs. [29,30].1 As a consequence
of the physicality condition, n � |kq,p| in order for σ to
be PSD. The VN subspace is characterized by symplec-
tic eigenvalue ν̃− = √

(n + kp)(n − kq) and corresponding

S̃ row vectors |ν̃−〉1 = (−( n+kp

4n−4kq
)1/4, 0, ( n+kp

4n−4kq
)1/4, 0)T and

|ν̃−〉2 = (0,−( n−kq

4n+4kp
)1/4, 0, ( n−kq

4n+4kp
)1/4)T . For these S̃ vec-

tors, the two-dimensional A- and B-space N -SOL condi-
tions, Eq. (11), can each be analytically confirmed. With
Eq. (12), applying a single mode squeezing operation, Sλ =
diag(λ, λ−1) with λ = [(n + kp)/(n − kq)]1/4, to each CV
mode transforms the VN subspace of S̃ into that of a simple
TMSVS, with two-mode squeezing parameter2, r = − 1

2 ln ν̃−.
Extending such alignment of the VN subspace is an integral
element in establishing the present entanglement classes for
multimode (nA,B > 1) Gaussian states.

For bipartite Gaussian systems in N -SOL, the local VN
is spanned by 2n− symplectically orthonormal row vectors
of S̃. Symplectic transformations SA and SB can be designed
from these row vectors with a symplectic Gram-Schmidt (GS)
procedure as

SA ⊕ SB = �
(
SπGS

[
S̃VN ,A

] ⊕ GS
[
S̃VN ,B

])
�. (14)

The notation GS[S̃VN ,A] indicates that the GS procedure starts
with the VN subspace and completes the local symplectic
with 2(nA − n−) additional vectors, e.g., from VN/, resulting
in symplectic orthonormality, Eq. (2). Details of this GS pro-
cedure can be found, for example, in Appendix A of Ref. [68].
Consistent with previous terminology [68], each (1A × 1B)
TMSVS space, governed by two vectors in VN spanning a
degenerate ν̃− subspace, will be referred to as a core pair,
while the complementary space of (n − 2n−) CV modes will
be referred to as the halo. Among the postconsolidation prod-
uct of core pairs, if a negative squeezing pair—for which S̃
row vectors in VN (VN/) are A-B symmetric (antisymmetric), as
shown in Appendix A—is found, Sπ = −I2 applies a single-
mode phase operation by angle π to one of the modes in the
core pair. The resulting structure of positive squeezing cores
will be utilized throughout subsequent derivations. While the
central component of Eq. (14) is consistent with procedures
established in Ref. [68] from |i�σ̃ |, Eq. (14) generalizes ap-
plicability of the procedure to the entire N-SOL entanglement
class, including when x-p mixing is present in the CM.3

Because support of each postconsolidated S̃ row vector in
VN is isolated to the associated TMSVS, accessing individual
core pairs upon tracing the rest of the system recovers all the
PT symplectic eigenvalues in VN . Therefore, after consolida-
tion, the entirety of the negativity in the original mixed state
is simplified to two-mode form. An example of entanglement

1Note that conditions of Ref. [44] deviate from Refs. [29,30].
2Note the square root updating Ref. [46].
3For the special case of A-B symmetric PT CMs, σ̃A = σ̃B, with

symmetric off-diagonal block, σ̃AB = σ̃ T
AB, and vanishing x-p matrix

elements, relevant to physical applications of fields and trapped
ions, a local consolidating transformation with SA = SB may also
be directly calculated through forthcomong techniques as the S that
diagonalizes σ̃A − σ̃AB.

consolidation for a general numerical CM can be found in
Appendix C 1.

From Eq. (12), note that the N -SOL classification is pre-
served under local symplectic transformations. Because the
TMSVS structure in VN of the postconsolidation CM is a
member of N -SOL, the original state must be as well. There-
fore, N -SOL classification is a necessary condition for a
Gaussian state to have VN -consolidatable entanglement struc-
ture. Because the N -SOL property provides sufficient linear
independence to align each core TMSVS individually, it is
also a sufficient condition for Gaussian entanglement consol-
idation. Thus, the N -SOL classification serves as a necessary
and sufficient condition that may be directly calculated to
determine whether a mixed Gaussian state’s negativity may
be consolidated into a tensor-product series of TMSVSs.

B. MNF and separability

Though serving as a measure of mixed state entangle-
ment, the logarithmic negativity is not generically a complete
separability criterion when both parties in a bipartition are
multimode CV systems. However, for states in the N -SOL
entanglement class, the PT-guided local unitary transforma-
tions of Sec. II A simplify the many-body entanglement. In
particular, the negativity-contributing subspace, VN , can be
organized into a set of cores that are both separable from each
other and from the halo. This available separability structure
for N -SOL states will be presented in the following sec-
tion, recovered systematically by first developing the MNF
technique.

For mixed Gaussian states, pure Gaussian convex de-
compositions have nonvanishing support in the classical
probability distribution only for pure states with correlations
that decay faster than those of the mixed state [46], i.e.,
σp � σm. Furthermore, a decomposition requiring the mini-
mum entanglement resources may be composed of a single
CM [46], thus taking the form of Gaussian classical mixing:

σm = σp + Y, (15)

with Y a PSD matrix representing classical noise, e.g., an
ensemble of Gaussian distributed first-moment displacements.

The first step of MNF is to strategically identify noise for
each core. For any entangled core, there exists a Gaussian
classical mixing decomposition with noise present solely in
the VN/ subspace. As discussed in Appendix A, noise isolated
to VN/ of a TMSVS will uniquely have the form

Yc1 = 1

2

⎛
⎜⎜⎝

y11 y12 y11 −y12

y12 y22 y12 −y22

y11 y12 y11 −y12

−y12 −y22 −y12 y22

⎞
⎟⎟⎠ � 0, (16)

where y11 � 0, y22 � 0 and y11y22 � y2
12. For the noise

identified here, A-B symmetry is preserved up to local trans-
formations.

The second step of MNF subtracts the minimum amount
of noise in the rest of the system that maintains the core-
halo structure given Eq. (16) identified in the first step. For
ease of the following matrix notation, first permute modes
of the consolidated CM, σ ′, into core-halo ordering, r̂ch =
(r̂c1 , r̂c2 , . . . , r̂cn− , r̂h) where r̂c j = (x̂A, p̂A, x̂B, p̂B)c j and r̂h
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captures the remaining halo modes. With the connection
established in Eq. (10), the off-diagonal block of the CM
between the first core and the rest of the system, σc1r , can
be expressed with the outer product of S̃′ row vectors from
the corresponding subspaces. As an extension of Eq. (A4) to
the entire core-halo system, entanglement consolidation with
positive-squeezed underlying TMSVSs respects A-B symmet-
ric (antisymmetric) S̃′ row vectors of VN/ (VN ) in the core
subspace. Due to the postconsolidation VN row vectors hav-
ing support only in the corresponding core subspace, the
A-B antisymmetric vectors do not contribute to σc1r . The ��

transformation on the remaining A-B symmetric contributions
produces A-B symmetry (antisymmetry) in the x (p) com-
ponents, resulting in σc1r column vectors of the form |l〉 ≡
(li,−l j, li, l j )T .

In order to construct a matrix, Y , with Yc1 and Yr diagonal
blocks and Yc1r off-diagonal blocks, Y � 0 is equivalent to
[79] (

I − Yc1Y
−1

c1

)
Yc1r = 0, Yr � Y T

c1rY
−1

c1
Yc1r, (17)

where Y −1
c1

denotes the pseudoinverse. The first condition
requires every column vector of Yc1r to be in the kernel of
I − Yc1Y

−1
c1

. Consulting Eq. (16), Yc1r is thus required to have
the same |l〉 structure as σc1r . In order to both retain a physical
CM and explicitly produce separability between the core and
the rest of the system upon identification of Y , the saturation
of Yr = Y T

c1rY
−1

c1
Yc1r will be accompanied by Yc1r = σc1r to

define the MNF process. To see that this filtration retains a
physical CM, note that the expression of σc1 established in
Appendix A leads to 〈l|Y −1

c1
|l〉 = 〈l|(σc1 + i�)−1|l〉, indepen-

dent of the squeezing parameter of σc1 . Therefore,

Y T
c1rY

−1
c1

Yc1r = Y T
c1r

(
σc1 + i�

)−1
Yc1r . (18)

From the physicality, Eq. (5), of the postconsolidation CM,(
σc1 + i� σc1r

σ T
c1r σr + i�

)
� 0. (19)

The Schur complement [79] reads

σr − σ T
c1r

(
σc1 + i�

)−1
σc1r + i� � 0. (20)

With the MNF choices above, the second term is recognized
as Yr , indicating the filtered system remains physical. In sum-
mary, removing one core through this filtering procedure will
be defined as identifying Yc1 to be that isolated from a TMSVS
with the same negativity as the dominant PT symplectic
eigenvalue, Yr = Y T

c1rY
−1

c1
Yc1r and Yc1r = σc1r . The latter choice

clearly reveals the separability between the core and the rest
of the system.

The final step of the MNF algorithm is to iteratively repeat
this noise-identifying filtration process. Such iteration is pos-
sible because the filtration does not affect the VN subspace
of the remaining CM, relative to that of the original. To see
this independence, consider the off-diagonal block of the CM
between two cores, σc1c2 , which has the structure of |l〉 em-
bedded in both the columns and rows. Because σc1c2�� is
composed of rows each with A-B symmetry, a vanishing result
is found when acting on the two VN row vectors of the second
core, which are A-B antisymmetric. Furthermore, because the

postconsolidation |ν̃−〉c2
for the second core have support only

in the two-mode c2 subspace, from the connection between S̃
and the CM structure established in Eq. (10), subtracting the
minimum noise Y T

c1rY
−1

c1
Yc1r does not alter |ν̃−〉c2

:

〈ν̃−|c2
�T �Y T

c1rY
−1

c1
Yc1r��|ν̃−〉c2

= 0. (21)

In other words, the chosen Yr , transformed via Eq. (10) to
impact the PT space of S̃, has no support in the remaining
VN subspace of the original CM.

Applying MNF sequentially for every core leads to post-
consolidation separability both among the core pairs and with
the halo:

σ ′ =
( ⊕

f

σ ′
c f

)
⊕ σ ′

h +
∑

f

Yf , (22)

with each filtration, f , identifying PSD noise Yf . Through
the iteration, the set {σ ′

c f
} of TMSVS pure states can recover

n− core pairs associated with the VN subspace of the CM,
along with possible additional cores due to the subtraction
of Yr in the rest of the system.4 The iteration stops when the
identified σ ′

h is NPT without core structure or PPT, being ei-
ther completely bound entangled [41] or separable across the
A-B bipartition, e.g., distinguished by the separability flow of
Ref. [78]. With the separability of Eq. (22) identified through
MNF, operations on individual core pairs, σ ′

c f
, do not alter the

quantum correlations in the rest of the core-halo system.

III. GAUSSIAN NEGATIVITY INVARIANT
CLASSICAL CORRELATIONS

The subclass of states for which σ ′
h is separable after n−

iterations of the MNF procedure has physical properties of
particular interest. For such states, the minimum negativity
of the Gaussian-classical-mixing pure-state decomposition,
Nmin

p , saturates the basic lower bound, i.e., is equal to the
negativity of the original mixed state, Nmin

p = N > 0. Ex-
pressing this invariance of the negativity upon incorporation
of classical correlations capable of relating the pure and mixed
CMs, these states are here referred to as N IC decomposable.
As seen from the separability structure, Eq. (22), a collection
of n− TMSVS states with squeezing parameters governed by
the PT symplectic eigenvalues of σm is capable of preparing
such states. The entanglement of N IC-decomposable states
is thus completely captured by two-mode structure, a feature
shared with all pure Gaussian states [45,66]. For this reason,
the N IC entanglement class may be regarded as a mixed-state
generalization of pure-state entanglement.

With the darker shading of Fig. 1 expressing the simple
pair of pure-state entanglement classes, the fact that N IC
decompositions are not available for all NPT mixed Gaussian
states, Nmin

p > N > 0, parallels the existence of bound entan-
glement in PPT mixed states. In general, the minimization of
Nmin

p remains a computationally challenging task. However,
determining whether a state is N IC decomposable, and cal-
culating a saturating σp if so, can be systematically achieved

4Note that choosing to identify separability with these additional
cores can alter VN of the CM.
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through the developed MNF procedure. The following ex-
plores the entanglement structure of the N IC entanglement
class, showing that the framework of VN alignment and noise
isolated to the VN/ subspace is required for a state to be N IC
decomposable. Thus, the designed MNF provides a complete
and computable classifier in the identification of N IC states
and their optimal pure-state decompositions.

Structure and optimality of N IC decompositions

Derived through Weyl’s inequality [80] in Appendix B 1,
negativity-invariant Gaussian classical mixing (Nmin

p = N ) is
equivalent to four conditions:

specVN (−�σ̃p�σ̃p) = specVN (−�σ̃m�σ̃m), (23)

vecVN (−�σ̃p�σ̃p) = �σ̃mvecVN (−�σ̃m�σ̃m), (24)

specVN (−�σ̃p�σ̃p) = specVN (−�σ̃m�σ̃p), (25)

vecVN (−�σ̃p�σ̃p) = vecVN (−�σ̃m�σ̃p), (26)

where specVN (·) and vecVN (·) are eigenvalues and eigen-
vectors in the VN subspace of the corresponding matrix.
Because the negativity-contributing eigenvalues are smallest
in the spectrum of a symmetric PSD matrix, noise can only be
present in VN/ to produce negativity-invariant PSD mixing.

Eigenvectors of −�σ̃�σ̃ can be constructed from linear
combinations of pairs of |i�σ̃ | eigenvectors, which are com-
plex and arise in complex conjugate pairs with degenerate
eigenvalues. As a result, �σ̃ in Eq. (24) rotates eigenvec-
tors within each two-dimensional degenerate subspace. As
discussed in Appendix B 2, the conditions of Eqs. (25) and
(26) provide sensitivity to orientations in the single-mode
subspaces that are otherwise degenerate from the −�σ̃�σ̃

perspective. After accounting for normalizations, Eqs. (23)–
(26) indicate that alignment of VN between the pure and
mixed CMs is necessary for a multimode bipartite Gaussian
state to have a N IC decomposition. Hence, all Gaussian N IC-
decomposable states are members of N -SOL.

As members of N -SOL, postconsolidation N IC states
have a VN subspace organized in the tensor product of
TMSVS form, i.e., described by a direct sum of subspaces of
the form S̃VN = 1√

2
(−I2 I2) in Eq. (A1). The VN alignment

required for a N IC decomposition extends to the pure-state
normal-form symplectics, S̃VN ,p = S̃VN ,m. From Eq. (12) and
the two-mode equivalence [45,66], a general parametrization
of the normal-form PT symplectic transformation for Gaus-
sian pure states has the form

S̃p = 1√
2

(
S′

A S′
B

−S′
A S′

B

)
. (27)

As such, alignment also fixes each subspace of VN/, via
negation of row vectors in A, to be of the form S̃VN/ ,p =

1√
2
(I2 I2). Therefore, optimal underlying pure Gaussian

states of postconsolidated N IC states respect the tensor prod-
uct of TMSVS form.5

Finally, because the negativity of the original CM is equal
to that of the n− TMSVS core pairs, VN alignment and sep-
arability of the consolidated and filtered σ ′

h after fmax = n−
iterations are determined to be necessary and sufficient condi-
tions for the N IC classification. Thus, all N IC-decomposable
states are identifiable through a three-step process: consoli-
dating the entanglement through Eq. (14), applying MNF to
isolate the noise in VN/, and checking the separability of σ ′

h,
e.g., with the techniques of Ref. [78]. Beyond identifying all
two-mode symmetric states to be in the N IC entanglement
class, consistent with the observations of Refs. [44,46], this
procedure is applicable for Gaussian systems with any number
of modes. A four-mode example from the free lattice scalar
field vacuum is provided in Appendix C 2.

From Weyl’s inequality [66,80], noise identified solely
in VN/ maximizes VN symplectic eigenvalues, and hence
minimizes entanglement for the TMSVS pairs of an under-
lying pure Gaussian state. Therefore, for Gaussian N IC-
decomposable states, alternate entanglement measures, e.g.,
GR2 [81] and GEOF [46], will minimize to comparable pure
states.

IV. MNF PURE-STATE IDENTIFICATION

For mixed Gaussian states outside the N IC entanglement
class, the minimum negativity of the Gaussian-classical-
mixing pure-state decomposition is conclusively excluded
from saturating the lower bound of the mixed-state negativ-
ity, Nmin

p > N > 0. Numerical searches designed to identify
optimal decompositions above this bound are subject to non-
trivial constraints with free parameters scaling quadratically
with the number of CV modes [46,48,50]. Alternatively, the
MNF process provides a systematic method for identifying
an underlying pure state when σ ′

h of Eq. (22) is separable.
Though no longer ensured to result in an optimal value of
Nmin

p (as it does within the N IC entanglement class), the
resulting upper bound is capable, due to Eq. (21), of identi-
fying noise isolated to VN/ for the n− core pairs of all N -SOL
mixed states. When applied to pairs of spatial regions in the
free lattice scalar field vacuum, this feature allows the MNF
process to produce an upper bound to Nmin

p that is lower
than those of known procedures (e.g., canonical purifica-
tion [82], mixed-state normal-form symplectic transformation
σp = SmST

m [56], or volume measurement [77]), commonly by
significant orders of magnitude at long distances where the
N IC entanglement structure arises.

Application: Lattice scalar field vacuum

The free lattice scalar field vacuum is a Gaussian state with
CM elements that are analytic in the infinite volume limit.
Upon isolating a pair of spatially separated regions (diameter
d and separation r̃) of the field—as might be observed by a

5Inspired by EOF results of Refs. [44,48], the TMSVS structure
derived here may provide opportunity for extension of this analysis
to non-Gaussian entanglement resources.
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pair of spacelike separated local detectors—calculations ex-
trapolated to the continuum in up to three dimensions indicate
exponentially decaying negativity with increasing separation
[69–71], i.e., an exponentially decaying bound for the entan-
glement distillable from the vacuum, even for a massless field
with polynomially and logarithmically decaying correlation
functions. However, cutting through the noise of local de-
tection by classically communicating measurements from the
infinite volume has shown that the amount of entanglement
fundamentally present between these regions of the massless
field indeed scales as the polynomial and logarithmic two-
point functions [77]. In the context of these observations, a
fundamental question relevant to the quantum simulation of
quantum fields becomes whether the required entanglement
for representing a pair of free scalar field vacuum regions
follows their negativity or their underlying entanglement, i.e.,
whether an exponential amount of entanglement must be sup-
pressed when quantumly simulating observations of detector
arrays, or whether there might be an exponentially more
efficient design of quantum resources. In this section, employ-
ment of the MNF pure-state identification will conclusively
answer this question at large separations where the lattice arti-
facts are strongest, and provide insight into the corresponding
behavior toward the field continuum limit.

Extending the observation of entanglement consolidation
in Ref. [68], regions of the scalar field vacuum are deter-
mined to be members of the N -SOL entanglement class.
In the latticized field at long distances near the vanishing
negativity [69–71,83–89] transition to separability [71], the
MNF process allows further identification of a small layer
of N IC-decomposable states.6 This layer appears as the
gray shaded region of Fig. 2 for d = 10, is demonstrated in
Appendix C 2 for the four-mode system of (d, r̃) = (2, 1),
and has diminishing extent relative to d for increasing system
sizes toward the field continuum as documented in Table I of
Appendix D. As such, the continuum limit of the scalar field
vacuum is found to be outside the N IC entanglement class,
requiring Nmin

p > N as indicated by the teal shading in Fig. 2
for current possible values of Nmin

p .
For entangled regions of the lattice scalar field vacuum

outside the N IC regime, the MNF pure-state identification
provides a new upper bound to Nmin

p as a function of r̃, shown
by the teal line of Fig. 2. Note that the developed MNF is a
direct procedure, such that no optimization process is involved
in the production of this upper bound. With NMNF

p ∼ N at
long distances, the N IC entanglement structure is found to
provide effective leading-order guidance for the decompo-
sition of a range of N -SOL states surrounding the N IC
regime. However, at reduced r̃ where impacts of incompati-
bility with the N IC entanglement structure built into the MNF
accumulate, NMNF

p becomes comparable to the polynomially
decaying pure-state negativities of previous techniques, e.g.,
the field-basis volume measurement [77] shown by the black
line.

6It is observed that this transition from N -SOL to N IC entangle-
ment structure coincides with the vanishing of negativity between the
postconsolidated A- or B-space halo and the rest of the system.

FIG. 2. Entanglement quantified by the logarithmic negativity N
as a function of separation r̃ between two regions (d = 10) of the
infinite one-dimensional free lattice scalar field vacuum in the mass-
less limit (m = 10−10). Curves show the mixed-state negativity and
the negativities of underlying pure states identified with field-basis
volume measurement [77], N φ

p , or with MNF that creates TMSVS
structure for dominant cores arising in the iteration, NMNF

p . Vertical
lines indicate transitions between the labeled numbers of cores in the
mixed state (solid, gray) and the MNF-identified pure state (dashed,
teal). Transitions of the three entanglement classes—N -SOL, N IC,
and separable—occur at r̃ = 95 and 98.

While the present results indicate that Nmin
p ∼ N at long

distances, the multicore regime from which the contin-
uum emerges remains to be determined. Beyond the MNF
procedure, preliminary numerical optimizations of Nmin

p in-
tentionally deviating from the entanglement structure of
Eq. (22) further support a conjecture that Nmin

p ∼ N , falling
exponentially throughout the continuum regime of the field.

V. SUMMARY AND OUTLOOK

A complete understanding of mixed-state entanglement
cannot be encapsulated in a single number, due to its mul-
tifaceted operational forms and varied relations to quantum
information processing protocols. To highlight a few key
properties, this paper identifies two structural entanglement
classes for which mixed-state Gaussian many-body entangle-
ment may exhibit reduced two-body structure in the context
of entanglement detection (N -SOL) as well as in state prepa-
ration with clear entanglement resources that need not be
increased by the present classical correlations (N IC). The
entanglement and separability organizations associated with
such simplifications of the distributed quantum information
are guided by the complete substructure of the PT sym-
plectic eigensystem, a frame usually synthesized to calculate
the single negativity entanglement witness that imperfectly
heralds the presence of many-body inseparability. While the
N -SOL classification is shown to be determined by inspec-
tion of the PT symplectic eigenvectors, development of a
filtering procedure (MNF) that systematically isolates noise
outside the negativity-contributing subspace was required in
order to similarly provide a constructive technique for de-
termining membership within the N IC entanglement class.
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With N -SOL entanglement structure connecting spacelike
regions of the continuum free scalar field vacuum as well
as between symmetric collections of local axial motional
modes in trapped ion chains (transitioning to a N IC regime
in the presence of strong lattice artifacts at large separations),
early observations indicate these entanglement classes are
prominent in fundamental physical quantum systems of both
theoretical and experimental relevance.

Beyond future verification of the conjectured exponential
decay of the Gaussian entanglement of formation with respect
to the separation between spacelike regions of the free mass-
less scalar field vacuum, the present paper supports several
directions of advancing understanding and practical applica-
tions of quantum correlations. Expanding upon the current
filtration process designed to produce optimal N IC decom-
positions, alternate filtration strategies may be designed, e.g.,
governed by the substructure of other entanglement wit-
nesses or the conclusive separability flow known for Gaussian
quantum states [78], to identify improved pure-state decom-
positions of N -SOL states not perturbatively close to the N IC
regime, e.g., those appearing between free scalar field vac-
uum regions in the continuum limit. Though the techniques
and calculations of this paper have focused on the subset of
Gaussian CV states, Gaussian approximations and extensions
to the non-Gaussian scope will be important to address the
entanglement properties of interacting quantum fields.

Mixed-state entanglement is central to both quantum in-
formation processing in noisy environments and quantum
simulations of quantum fields observed by arrays of local
detectors, as are frequently utilized in experimental nuclear
and particle physics. As techniques emerge for incorporat-
ing entanglement structure of physical systems in associated
quantum simulation design [17,90–92], understanding of nat-
ural quantum information [93–106] becomes also a source of
guidance in the creation of efficient quantum simulations.
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APPENDIX A: GAUSSIAN CLASSICAL MIXING
CHANNEL FOR A SINGLE CORE

Section II A established the N -SOL entanglement class
with symplectic transformation S̃ that diagonalizes the PT
CM. After the VN entanglement is consolidated in the core
via the calculable local transformation, Eq. (14), noise in VN/
may be identified through a Gaussian classical mixing chan-
nel [44,46]. This Appendix provides the corresponding noise
parametrization, and shows its equivalence to parametriza-
tion of S̃ in the core. This noise parametrization is utilized

in Sec. II B to show postconsolidation separability between
TMSVS pairs in N -SOL states.

For TMSVS with squeezing parameter r, the PT CM can
be diagonalized via

D̃TMSVS = S̃σ̃TMSVSS̃T = 1

2

(
I2 I2

−I2 I2

)
σ̃TMSVS

(
I2 −I2

I2 I2

)

=

⎛
⎜⎜⎝

e2r 0 0 0
0 e2r 0 0
0 0 e−2r 0
0 0 0 e−2r

⎞
⎟⎟⎠. (A1)

In this basis with r � 0, the VN/ and VN subspaces are orga-
nized into the first two and last two dimensions, respectively.
Adding noise, Yc1 , isolated to VN/ through a Gaussian classical
mixing channel in the form of σc1 = σTMSVS + Yc1 will result
in a N IC-decomposable CM:

σc1 =

⎛
⎜⎜⎝

cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r

⎞
⎟⎟⎠

+ 1

2
�

(
I2 −I2

I2 I2

)⎛
⎜⎜⎝

y11 y12 0 0
y12 y22 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

(
I2 I2

−I2 I2

)
�.

(A2)

The first term in Eq. (A2) is the CM for the TMSVS with
squeezing parameter r and the second term represents noise,
Yc1 , introduced via Gaussian classical mixing [56]. The off-
diagonal blocks of Yc1 in the diagonalized PT space are chosen
to be zero in order to ensure all contributions in VN vanish.
For the CM to remain physical, the noise must be PSD,(

y11 y12

y12 y22

)
� 0 ⇒ Yc1 � 0, (A3)

such that y11 � 0, y22 � 0 and y11y22 � y2
12.

In the following, the translation is illustrated between
the framework of Eq. (A2) confining noise to VN/ and the
language of S̃ that is utilized in the main text to inform trans-
formations and alignment of entanglement structure. From
Sec. II A, postconsolidated cores have VN subspaces aligned
with that of the TMSVS such that the general expression of
S̃′

c1
reads

S̃′
c1

=

⎛
⎜⎜⎜⎝

a1 a2 a1 a2

a3 a4 a3 a4

− 1√
2

0 1√
2

0

0 − 1√
2

0 1√
2

⎞
⎟⎟⎟⎠, (A4)

with real a’s and 2a1a4 − 2a3a2 = 1 for symplectic orthonor-
mality, Eq. (2). Because of symplectic orthogonality and
positive squeezing assumed for the underlying TMSVS, S̃′

c1

exhibits A-B symmetry in VN/. With PT symplectic eigenvalues
denoted by {ν̃ ′

+, ν̃ ′
+, ν̃ ′

−, ν̃ ′
−}, the CM of this single core can

be constructed via Eqs. (A4) and (10). Physicality of this CM
leads to constraints ν̃ ′

+ � 1, and the state is entangled if and
only if ν̃ ′

− < 1 [29–31,56]. The CM associated with Eq. (A4)
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thus relates to that of Eq. (A2) by

y11 = 2ν̃ ′
+
(
a2

2 + a2
4

) − 1

ν̃ ′−
, y22 = 2ν̃ ′

+
(
a2

1 + a2
3

) − 1

ν̃ ′−
,

y12 = −2ν̃ ′
+(a1a2 + a3a4), r = −1

2
ln ν̃ ′

−. (A5)

For a CM with PT symplectic transformation given by
Eq. (A4), there hence exists a decomposition in a Gaussian
classical mixing channel specified by Eqs. (A2) and (A5),
where the PSD constraints of Yc1 follow from physicality of
the CM.

APPENDIX B: GAUSSIAN N IC DECOMPOSITION
DERIVATIONS

1. Negativity invariant Gaussian classical mixing

This Appendix derives the four conditions of negativity-
invariant Gaussian classical mixing discussed in Sec. III.

Mirroring their counterparts in the physical phase space,
PT-symplectic eigenvalues, ν̃, of a CM, σ , may be calculated
as eigenvalues of the product |i�σ̃ |. Given the invariance of
eigenvalues under cyclic permutation of a matrix product, this
expression can be expanded as the spectrum of a real positive
symmetric matrix:√

spec(−�σ̃�σ̃ ) =
√

spec(σ̃ 1/2�T σ̃�σ̃ 1/2), (B1)

where −� = �T and the square root is well defined due to
the physicality of CMs, Eq. (5). After partial transposition,
Gaussian classical mixing of Eq. (15) becomes

σ̃m = σ̃p + Ỹ . (B2)

Because the positive semidefiniteness of Y is not altered by
the PT coordinate transformation, σ̃p � σ̃m. Furthermore, as
shown in Ref. [66] through Weyl’s inequality [80], each eigen-
value of the mixed-state PT-symplectic spectrum is greater
than or equal to the sequentially corresponding one of the
pure state. These relations are expressed in the following
inequalities:

σ̃ 1/2
p �T σ̃p�σ̃ 1/2

p � σ̃ 1/2
p �T σ̃m�σ̃ 1/2

p , (B3)

σ̃ 1/2
m �T σ̃p�σ̃ 1/2

m � σ̃ 1/2
m �T σ̃m�σ̃ 1/2

m , (B4)

spec
(
σ̃ 1/2

p �T σ̃p�σ̃ 1/2
p

)
� spec

(
σ̃ 1/2

m �T σ̃m�σ̃ 1/2
m

)
. (B5)

The latter relation, considered specifically for the VN sub-
space of PT-symplectic eigenvalues less than 1, indicates that
N IC-decomposable mixed states (Nmin

p = N ) must saturate
Eq. (B5) in VN , i.e., {ν̃}VN must be invariant upon the intro-
duction of Y classical correlations.

For NIC-decomposable CMs, the invariance of eigenvalues
in VN is accompanied by invariance also in the associated
eigenvectors. To see this relationship, consider a real positive
symmetric matrix, M, and positive semidefinite perturbation,
δM, serving the role of Y . If the smallest eigenvalue (largest
contribution to the negativity for NPT states) is constrained to
be invariant,

〈m|0M|m〉0 = 〈m′|0M|m′〉0 +��������0
〈m′|0δM|m′〉0, (B6)

where |m〉0 and |m′〉0 denote the ground state before and
after δM perturbation. Due to the positive semidefiniteness of
δM and the fact that the expectation value is minimized on
the left-hand side, the expectation value of δM must vanish.
Note that the symplectic eigenvalues are doubly degenerate,
hence |m′〉0 can be any vector in the degenerate subspace of
the ground state. Applying Eq. (B6) a second time selects
the vector orthogonal to the first one, and sequentially re-
peating the process gives eigenvectors that are equivalent to
those of the original matrix, modulo the presence of local
symplectic phase rotations aligning each mode. Thus, PT-
symplectic eigenvectors of the VN subspace that are invariant
between the pure and mixed CM can be constructed for N IC-
decomposable states, such that

vecVN

(
σ̃ 1/2

p �T σ̃p�σ̃ 1/2
p

)
= vecVN

(
σ̃ 1/2

p �T σ̃m�σ̃ 1/2
p

)
= σ̃ 1/2

p �σ̃ 1/2
m vecVN

(
σ̃ 1/2

m �T σ̃p�σ̃ 1/2
m

)
= σ̃ 1/2

p �σ̃ 1/2
m vecVN

(
σ̃ 1/2

m �T σ̃m�σ̃ 1/2
m

)
, (B7)

with eigenvalue equalities

specVN

(
σ̃ 1/2

p �T σ̃p�σ̃ 1/2
p

)
= specVN

(
σ̃ 1/2

p �T σ̃m�σ̃ 1/2
p

)
= specVN

(
σ̃ 1/2

m �T σ̃p�σ̃ 1/2
m

)
= specVN

(
σ̃ 1/2

m �T σ̃m�σ̃ 1/2
m

)
. (B8)

By noting veck (σ̃ 1/2�T σ̃�σ̃ 1/2) = σ̃ 1/2veck (−�σ̃�σ̃ ), this
leads to Eqs. (23)–(26).

2. Normal-form symplectic transformation

This section presents an alternative construction (differing
from those introduced in Refs. [56,77]) of the normal-form
symplectic transformation, S of Eq. (4), diagonalizing the
CM. This will contribute to understanding of the four condi-
tions of negativity-invariant Gaussian classical mixing derived
in Appendix B 1 and discussed in Sec. III. Because the proce-
dures here are valid regardless of whether a given CM satisfies
the physicality condition, the CM σ appearing throughout
this section may be replaced by σ̃ for calculations of S̃
in Eq. (9).

Because the CCRs are invariant under symplectic transfor-
mation, S�ST = �, the form −�σ�σ admits

−�σ�σ = −ST �D�DS−T

= −ST

[⊕
i

(
0 di

−di 0

)][⊕
i

(
0 di

−di 0

)]
S−T

= ST

[⊕
i

(
d2

i 0
0 d2

i

)]
S−T , (B9)

hence ST diagonalizes −�σ�σ by similarity. Reversely,
denoting L as the similarity transformation that diago-
nalizes −�σ�σ (i.e., −L�σ�σL−1 = D2), methods for
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determining L−T = S do not generically satisfy the sym-
plectic requirement. To enforce this property, the following
procedure can be followed.

Without modewise degeneracy of symplectic eigenvalues,
symplectic orthogonality in Eq. (2) is automatically satisfied.
This is because L−T is the stack of right eigenvectors of
−�σ�σ , and � has block-diagonal structure that only rotates
eigenvectors in the degenerate subspace. If a degeneracy is
present in the symplectic spectrum, linear combinations of
the L−T row vectors within the degenerate subspace can be
arranged to produce symplectic orthogonality. For the normal-
ization, there exists the freedom,

L′ = D′L, −L′�σ�σL′−1 = −L�σ�σL−1, (B10)

for arbitrary diagonal matrix D′. Similar to procedures in Ap-
pendix D of Ref. [77], the normalization can be achieved by
tuning D′−1 such that L′−T = D′−1L−T is a valid symplectic

transformation:

L−T �L−1 = D′�D′ =
⊕

i

αi

(
0 1

−1 0

)
,

D′ =
⊕

i

(√|αi| 0
0 sgn(αi )

√|αi|
)

. (B11)

Because the similarity transform of Eq. (B9) produces a ma-
trix proportional to the identity for each mode, an additional
freedom is present in the inclusion of arbitrary single-mode
operations, S(1)

i . Therefore, the final step adds single-mode
operations such that S completely diagonalizes the CM:

S =
[⊕

i

S(1)
i

]
D′−1L−T , SσST = D. (B12)

Note that the S(1)
i operations can be determined via stan-

dard single-mode normal form techniques, e.g., based on the
symplectic eigenvectors of i�σ , which retain a relative sign
breaking the phase-space degeneracy.

APPENDIX C: EXAMPLES—FOUR-MODE GAUSSIAN STATES

1. General entanglement consolidation

Section II A indicates that membership in the N -SOL subset of NPT states allows local symplectic consolidation of
negativity into a tensor product TMSVS entanglement structure. This extends understanding of the availability of entanglement
consolidation beyond regions of the scalar field vacuum. Here, this will be illustrated through an example with x-p mixing, no
reflection symmetry, and no connection to the scalar field. The following example is a selected four-mode member of the N -SOL
entanglement class along the (2A × 2B) bipartition.

Consider a four-mode position-momentum correlated mixed Gaussian state with ordering (A1, A2, B1, B2):

σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.89562 1.86324 1.20668 3.63702 0.388124 0.199187 −1.61365 0.752206
1.86324 6.90690 0.936903 −4.22060 0.531462 −0.263280 −2.15507 1.90189
1.20668 0.936903 1.23135 2.42264 1.21851 2.45543 −0.213628 0.763726
3.63702 −4.22060 2.42264 26.1167 4.64899 2.47557 1.78513 5.15944

0.388124 0.531462 1.21851 4.64899 3.26789 5.95046 2.06324 1.95927
0.199187 −0.263280 2.45543 2.47557 5.95046 20.1834 6.99689 0.447081
−1.61365 −2.15507 −0.213628 1.78513 2.06324 6.99689 4.90273 0.681893
0.752206 1.90189 0.763726 5.15944 1.95927 0.447081 0.681893 4.20990

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

where the VN has one PT symplectic eigenvalue, ν̃− = 0.213940, hence the logarithmic negativity is N = 2.22472. The VN
row vectors of S̃ are governed by the symplectic orthonormality condition, 1〈ν̃−|�|ν̃−〉2 = 1, and are calculated to be

|ν̃−〉1 = (0.325739 0.00171586 1.00356 − 0.148923 0.362151 0.497660 0.816754 0.315735)T (C2)

and

|ν̃−〉2 = (−0.70301 0.475514 0 0.342682 − 0.729204 − 0.249817 − 0.181575 0.208441)T . (C3)

Confirming this CM is a member of N -SOL via Eq. (11), a local transformation (SA ⊕ SB) that consolidates the many-body
negativity into TMSVS pairs can be designed through a symplectic GS procedure starting from the VN row vectors of S̃ as
described in Eq. (14):

SA =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−0.906105 −0.588806 2.46527 −0.176266
0.581021 −0.381514 −0.0235654 0.128324
0.460665 0.00242659 1.41924 −0.210609

−0.994206 0.672478 0 0.484625

⎞
⎟⎟⎠, (C4)

SB = (σz ⊕ σz )

⎛
⎜⎜⎝

−0.851396 0.0275469 −0.489418 −0.720178
−1.78259 −0.476916 0.219893 −0.789690
0.512159 0.703799 1.15507 0.446517
−1.03125 −0.353295 −0.256786 0.294780

⎞
⎟⎟⎠(σz ⊕ σz ). (C5)
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The entanglement consolidated CM, σ ′ = (SA ⊕ SB)σ (SA ⊕ SB)T , rearranged in core-halo form with ordering (cA, cB, hA, hB), is

σ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.6920 −0.38369 3.4781 0.38369 −0.60432 −0.054119 −0.073460 −0.24042
−0.38369 3.3723 −0.38369 −3.1583 0.16689 −0.57620 0.23274 −0.95387

3.4781 −0.38369 3.6920 0.38369 −0.60432 −0.054119 −0.073460 −0.24042
0.38369 −3.1583 0.38369 3.3723 −0.16689 0.57620 −0.23274 0.95387

−0.60432 0.16689 −0.60432 −0.16689 5.1245 0.27367 −2.9693 0.28105
−0.054119 −0.57620 −0.054119 0.57620 0.27367 2.5123 −0.31802 0.51894
−0.073459 0.23274 −0.073460 −0.23274 −2.9693 −0.31802 5.0281 −0.33108
−0.24042 −0.95387 −0.24042 0.95387 0.28105 0.51894 −0.33108 2.6272

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C6)

where the upper diagonal 4 × 4 block, σc1 , captures all the negativity and available entanglement.

2. Scalar field N IC decomposition

Section III identifies entanglement consolidation as the first step in determining a N IC decomposition, followed by MNF and
a separability check [78] of the minimum noise subtracted halo. This process is illustrated by the following example for the free
lattice scalar field vacuum discussed in Sec. IV.

For two regions of the lattice scalar field vacuum in the massless regime characterized by (d, r̃, m) = (2, 1, 10−10), the
postconsolidation CM with mode ordering (cA, cB, hA, hB) is

σ ′
d=2,r=1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7.65761 0 6.72931 0 5.22809 0 5.22809 0
0 1.02441 0 −0.096102 0 0.047747 0 −0.047747

6.72931 0 7.65761 0 5.22809 0 5.22809 0
0 −0.096102 0 1.02441 0 −0.047747 0 0.047747

5.22809 0 5.22809 0 5.18827 0 4.10771 0
0 0.047747 0 −0.047747 0 1.11078 0 −0.026938

5.22809 0 5.22809 0 4.10771 0 5.18827 0
0 −0.047747 0 0.047747 0 −0.026938 0 1.11078

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C7)

From Eq. (16), noise isolated to VN/ of the core may be identified as

Yc1 =

⎛
⎜⎜⎝

6.65484 0 6.65484 0
0 0.021637 0 −0.021637

6.65484 0 6.65484 0
0 −0.021637 0 0.021637

⎞
⎟⎟⎠. (C8)

The minimum noise subtracted halo is identified, as discussed in Sec. II B, to be σh − Y T
c1rY

−1
c1

Yc1r , with Yc1r = σc1r . Hence, an
underlying state with the same negativity as the mixed state organized in pure TMSVS form is

σ ′
d=2,r=1 −

(
Yc1 Yc1r

Y T
c1r Y T

c1rY
−1

c1
Yc1r

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00277 0 0.074465 0 0 0 0 0
0 1.00277 0 −0.074465 0 0 0 0

0.074465 0 1.00277 0 0 0 0 0
0 −0.074465 0 1.00277 0 0 0 0
0 0 0 0 1.08269 0 0.000490 0
0 0 0 0 0 1.00389 0.078307
0 0 0 0 0.000490 0 1.08269 0
0 0 0 0 0 0.078307 0 1.00389

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C9)

Because the minimum noise subtracted halo (lower right block) is two-mode PPT, and thus separable [29,30], σd=2,r=1 is
Gaussian N IC decomposable.
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TABLE I. Entanglement structure transitions from N -SOL to
N IC to separable for r̃-separated regions of the one-dimensional
free lattice scalar field vacuum in the massless limit (m = 10−10)
with a nearest-neighbor (leading order) lattice action. The left and
right columns, r̃N IC and r̃sep, report the smallest r̃ for which the
lattice vacuum regions are members of the N IC entanglement class
or separable, respectively.

d r̃N IC r̃sep r̃sep/r̃N IC

1 0 1 N/A
2 1 2 2.000
3 4 9 2.250
4 11 13 1.182
5 19 26 1.368
6 30 32 1.067
7 42 52 1.238
8 58 61 1.052
9 74 87 1.176
10 95 98 1.032
11 116 131 1.129
12 140 144 1.029
13 166 184 1.108
14 195 199 1.021
15 225 245 1.089
16 259 264 1.019
17 293 316 1.078
18 331 337 1.018
19 370 395 1.068
20 413 419 1.015

APPENDIX D: NUMERICAL TABLES

In Tables I and II, numerical values are provided for N IC
transitions in the free massless scalar field vacuum and for the
calculations presented in Fig. 2.

TABLE II. Numerical values for calculations in Fig. 2. Transi-
tions between the labeled numbers of cores for the mixed states are
r̃ = (1, 2, 5, 10, 18, 30, 98) and for the MNF identified pure states
are r̃ = (19, 33, 46, 51, 64, 67, 80, 82, 95, 98).

r̃ N N φ
p NMNF

p

0 1.214 1.252 1.464
1 3.915 × 10−1 4.297 × 10−1 5.912 × 10−1

2 1.907 × 10−1 2.715 × 10−1 2.950 × 10−1

3 1.079 × 10−1 1.977 × 10−1 2.082 × 10−1

4 6.725 × 10−2 1.540 × 10−1 1.434 × 10−1

5 4.597 × 10−2 1.249 × 10−1 1.174 × 10−1

6 3.353 × 10−2 1.040 × 10−1 1.503 × 10−1

7 2.546 × 10−2 8.845 × 10−2 1.652 × 10−1

8 1.981 × 10−2 7.637 × 10−2 1.600 × 10−1

9 1.563 × 10−2 6.676 × 10−2 1.007 × 10−1

10 1.243 × 10−2 5.896 × 10−2 4.696 × 10−2

11 9.889 × 10−3 5.252 × 10−2 7.663 × 10−2

12 7.837 × 10−3 4.712 × 10−2 9.036 × 10−2

13 6.154 × 10−3 4.255 × 10−2 8.883 × 10−2

14 4.766 × 10−3 3.864 × 10−2 8.370 × 10−2

15 3.619 × 10−3 3.527 × 10−2 1.000 × 10−1

16 2.680 × 10−3 3.233 × 10−2 5.441 × 10−2

TABLE II. (Continued.)

r̃ N N φ
p NMNF

p

17 1.926 × 10−3 2.975 × 10−2 6.248 × 10−2

18 1.340 × 10−3 2.748 × 10−2 7.596 × 10−2

19 9.046 × 10−4 2.547 × 10−2 2.858 × 10−2

20 6.024 × 10−4 2.367 × 10−2 6.465 × 10−2

21 4.061 × 10−4 2.206 × 10−2 7.834 × 10−2

22 2.836 × 10−4 2.062 × 10−2 6.978 × 10−2

23 2.065 × 10−4 1.931 × 10−2 4.716 × 10−2

24 1.560 × 10−4 1.813 × 10−2 1.428 × 10−2

25 1.213 × 10−4 1.705 × 10−2 1.044 × 10−2

26 9.624 × 10−5 1.607 × 10−2 2.434 × 10−2

27 7.746 × 10−5 1.517 × 10−2 6.606 × 10−2

28 6.292 × 10−5 1.435 × 10−2 8.724 × 10−2

29 5.134 × 10−5 1.359 × 10−2 8.413 × 10−2

30 4.193 × 10−5 1.289 × 10−2 6.499 × 10−2

31 3.415 × 10−5 1.225 × 10−2 3.827 × 10−2

32 2.763 × 10−5 1.165 × 10−2 9.426 × 10−3

33 2.212 × 10−5 1.110 × 10−2 1.105 × 10−3

34 1.744 × 10−5 1.058 × 10−2 8.656 × 10−4

35 1.346 × 10−5 1.010 × 10−2 4.049 × 10−4

36 1.011 × 10−5 9.655 × 10−3 1.730 × 10−4

37 7.349 × 10−6 9.237 × 10−3 8.390 × 10−4

38 5.142 × 10−6 8.846 × 10−3 8.614 × 10−4

39 3.458 × 10−6 8.479 × 10−3 6.552 × 10−4

40 2.241 × 10−6 8.134 × 10−3 3.774 × 10−4

41 1.408 × 10−6 7.811 × 10−3 4.855 × 10−4

42 8.743 × 10−7 7.506 × 10−3 9.986 × 10−4

43 5.563 × 10−7 7.220 × 10−3 8.976 × 10−4

44 3.735 × 10−7 6.949 × 10−3 5.458 × 10−4

45 2.659 × 10−7 6.693 × 10−3 1.638 × 10−4

46 1.987 × 10−7 6.452 × 10−3 3.271 × 10−4

47 1.539 × 10−7 6.223 × 10−3 5.814 × 10−4

48 1.224 × 10−7 6.006 × 10−3 6.424 × 10−4

49 9.914 × 10−8 5.801 × 10−3 4.937 × 10−4

50 8.134 × 10−8 5.606 × 10−3 1.857 × 10−4

51 6.731 × 10−8 5.420 × 10−3 8.195 × 10−7

52 5.598 × 10−8 5.244 × 10−3 2.353 × 10−6

53 4.664 × 10−8 5.076 × 10−3 4.603 × 10−6

54 3.883 × 10−8 4.917 × 10−3 5.806 × 10−6

55 3.220 × 10−8 4.764 × 10−3 5.374 × 10−6

56 2.652 × 10−8 4.619 × 10−3 4.509 × 10−6

57 2.160 × 10−8 4.480 × 10−3 3.667 × 10−6

58 1.732 × 10−8 4.348 × 10−3 2.614 × 10−6

59 1.360 × 10−8 4.221 × 10−3 2.730 × 10−6

60 1.036 × 10−8 4.100 × 10−3 3.020 × 10−6

61 7.589 × 10−9 3.983 × 10−3 2.782 × 10−6

62 5.291 × 10−9 3.872 × 10−3 2.102 × 10−6

63 3.493 × 10−9 3.766 × 10−3 8.517 × 10−7

64 2.197 × 10−9 3.663 × 10−3 9.238 × 10−7

65 1.332 × 10−9 3.565 × 10−3 7.732 × 10−7

66 7.805 × 10−10 3.471 × 10−3 2.168 × 10−7

67 4.374 × 10−10 3.381 × 10−3 4.768 × 10−9

68 2.378 × 10−10 3.294 × 10−3 5.772 × 10−9

69 1.353 × 10−10 3.210 × 10−3 5.944 × 10−9

70 8.533 × 10−11 3.129 × 10−3 5.588 × 10−9

71 5.912 × 10−11 3.052 × 10−3 5.053 × 10−9

72 4.375 × 10−11 2.977 × 10−3 4.449 × 10−9

73 3.385 × 10−11 2.905 × 10−3 3.745 × 10−9

74 2.701 × 10−11 2.836 × 10−3 2.851 × 10−9
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TABLE II. (Continued.)

r̃ N N φ
p NMNF

p

75 2.201 × 10−11 2.769 × 10−3 1.632 × 10−9

76 1.821 × 10−11 2.704 × 10−3 1.420 × 10−9

77 1.522 × 10−11 2.642 × 10−3 2.227 × 10−9

78 1.282 × 10−11 2.582 × 10−3 1.900 × 10−9

79 1.084 × 10−11 2.524 × 10−3 3.832 × 10−10

80 9.189 × 10−12 2.468 × 10−3 2.785 × 10−10

81 7.784 × 10−12 2.413 × 10−3 1.923 × 10−10

82 6.576 × 10−12 2.361 × 10−3 6.659 × 10−12

83 5.526 × 10−12 2.310 × 10−3 5.588 × 10−12

84 4.607 × 10−12 2.261 × 10−3 4.657 × 10−12

85 3.794 × 10−12 2.213 × 10−3 3.840 × 10−12

86 3.073 × 10−12 2.167 × 10−3 3.117 × 10−12

87 2.429 × 10−12 2.122 × 10−3 2.477 × 10−12

88 1.855 × 10−12 2.079 × 10−3 1.911 × 10−12

89 1.343 × 10−12 2.037 × 10−3 1.417 × 10−12

TABLE II. (Continued.)

r̃ N N φ
p NMNF

p

90 8.972 × 10−13 1.996 × 10−3 1.001 × 10−12

91 5.314 × 10−13 1.956 × 10−3 6.898 × 10−13

92 2.774 × 10−13 1.918 × 10−3 5.099 × 10−13

93 1.404 × 10−13 1.881 × 10−3 3.859 × 10−13

94 7.384 × 10−14 1.844 × 10−3 1.464 × 10−13

95 3.873 × 10−14 1.809 × 10−3 3.873 × 10−14

96 1.791 × 10−14 1.775 × 10−3 1.791 × 10−14

97 4.351 × 10−15 1.742 × 10−3 4.351 × 10−15

98 0 1.710 × 10−3 0
99 0 1.678 × 10−3 0
100 0 1.648 × 10−3 0
101 0 1.618 × 10−3 0
102 0 1.589 × 10−3 0
103 0 1.561 × 10−3 0
104 0 1.534 × 10−3 0
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