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Enhanced observable estimation through classical optimization of informationally overcomplete
measurement data: Beyond classical shadows
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In recent years, informationally complete measurements have attracted considerable attention, especially in
the context of classical shadows. In the particular case of informationally overcomplete measurements, for which
the number of possible outcomes exceeds the dimension of the space of linear operators in Hilbert space, the
dual positive operator-valued measure operators used to interpret the measurement outcomes are not uniquely
defined. In this paper, we propose a method to optimize the dual operators after the measurements have been
carried out in order to produce sharper, unbiased estimations of observables of interest. We discuss how this
procedure can produce zero-variance estimations in cases where the classical shadows formalism, which relies
on so-called canonical duals, incurs exponentially large measurement overheads. We also analyze the algorithm
in the context of quantum simulation with randomized Pauli measurements, and show that it can significantly
reduce statistical errors with respect to canonical duals on multiple observable estimations.
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I. INTRODUCTION

The study of quantum physics and the development of
quantum technologies are based on our ability to extract useful
information from quantum systems. In particular, quantum
simulation on quantum computers typically requires per-
forming measurements from which we can infer physical
properties such as energy, magnetization, entropy, or corre-
lations. A standard procedure is to perform quantum state
tomography and obtain a description of the quantum state,
from which we can estimate any observable or quantum-
information-theoretical quantity. However, the number of
parameters needed for such a task generally grows exponen-
tially with the number of constituents of the system. This
implies that the measurement cost (either in terms of measure-
ment settings or shots) required to reach a certain precision,
and the classical memory to store the data, become unattain-
able even for small system sizes.

An efficient way to estimate the mean value of different
observables without the need to reconstruct the full quantum
state is to apply an informationally complete measurement,
given by informationally complete positive operator-valued
measures (IC-POVMs), and classically postprocess the data
using the dual effects of the measurement [1,2]. This idea
recently attracted significant attention after the realization that
particular choices of IC-POVMs and dual effects (called clas-
sical snapshots in the framework of shadow estimation [3])
can lead to efficient estimations in the number of measure-
ment shots and qubits [3]. Several works have proposed other
classes of IC-POVMs [4–9], and even on-the-fly optimization
procedures [9–11].
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While previous works on this type of estimation focused
on proposing different IC-POVMs (which correspond to dif-
ferent measurement setups), Refs. [1,2,12] recognized that
the accuracy of the estimations depends on the dual POVM
effects used in the estimator as well. Here, we make this idea
practical and introduce a method to optimize the dual effects
of a POVM in a practical scenario where one has access
to a finite sample of measurement data. We show that this
method can provide exponential advantages in measurement
overhead with respect to local shadow estimation, and apply
it to physically relevant problems ranging from spin chain
dynamics to quantum chemistry calculations.

II. MULTIPLE OBSERVABLE ESTIMATION WITH
INFORMATIONALLY COMPLETE MEASUREMENTS

Let us first review the idea of observable estimation
through informationally complete POVMs. A POVM is de-
scribed by positive operators (also called POVM effects) �i �
0 (i = 0, . . . , r − 1) that add up to identity, i.e.,

∑r−1
i=0 �i = I.

Upon measuring a state ρ with a POVM we obtain an outcome
i with probability pi = Tr[�iρ], so that we have r possible
results, or outcomes. A particularly important set of POVMs
is informationally complete POVMs (IC-POVMs), for which
the POVM effects span the space of linear operators in the
Hilbert space, L(H). This means that an IC-POVM needs to
have r � d2 effects, where d2 effects are linearly independent.
Thus, we can write any operator O ∈ L(H) as O = ∑

i ci�i.
If an IC-POVM is IC and has exactly r = d2 linearly indepen-
dent effects, it is called a minimal IC-POVM.

As mentioned above, IC-POVMs can be used to estimate
the mean value of different observables while bypassing the
explicit reconstruction of the quantum state [1]. This is done
by first noticing that every IC-POVM can be associated with
a set of dual effects Di (i = 0, . . . , r − 1) that are defined by
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operators satisfying

O =
∑

i

Tr[ODi]�i =
∑

i

Tr[O�i]Di (1)

for every operator O. This means that {Di}r
i=1 also form the

dual operator basis in L(H) (consequently, they are some-
times called dual frames). If we choose O to be a quantum
state ρ the second equality in Eq. (1) gives ρ = ∑

i piDi.
This means that ρ can be recovered as an average over dual
POVMs, where the average is taken with respect to the mea-
surement outcome probabilities pi = Tr[ρ�i]. Thus, in a real
experiment where we have access to S experimental shots of
an IC-POVM, we can construct an unbiased estimator of ρ as
ρ = ∑

i fiDi, where fi is the observed frequency of outcome i
[13]. Furthermore, we can also define unbiased estimators of
different observables as

O = Tr[Oρ] =
∑

i

fi Tr[ODi]. (2)

These estimators are also consistent, that is, they converge to
〈O〉 in the limit of S → ∞ since fi → pi.

Classical shadows [3] can be seen as a special case of the
above estimation method where the dual effects are defined as

Di = �−1(�i ), (3)

with

�(·) =
∑

i

Tr[·�i]�i. (4)

Such dual effects are also called canonical dual frames or
covariant dual frames [2].

III. PARAMETRIZING DUAL EFFECTS

We can also construct a POVM that is IC, but have it
be composed of more than d2 effects, so that it would be
overcomplete (an OC-POVM for short). Consequently, some
of the effects are linearly dependent on the others in a POVM
of this form. As we will show next, the duals of OC-POVMs
are not uniquely determined, and this freedom of choice can
be used to improve the estimation.

To find the duals of an r-outcome OC-POVM, let us first
choose d2 linearly independent effects among the ones of the
POVM (the chosen effects are arbitrary for the functionality
of our method). We will call these linearly independent effects
the basis effects, and denote them by {�i}d2−1

i=0 . The remaining
r − d2 effects will be called the redundant effects, and will
be denoted by {�̃i}r−1

i=d2 . Similarly, to these effects we will

associate the basis dual effects {Di}d2−1
i=0 and the redundant

dual effects {D̃i}r−1
i=d2 . Using this notation, Eq. (1) reads

O =
d2−1∑
i=0

Tr[ODi]�i +
r−1∑
j=d2

Tr[OD̃j]�̃ j . (5)

Notice that the basis effects form an (unnormalized) minimal
IC-POVM, so we can write �̃ j = ∑d2−1

i=0 Tr[D�
i �̃ j]�i, where

we have used the symbol � to denote the unique duals to said

minimal basis. Thus, we get

O =
d2−1∑
i=0

(
Tr[ODi] +

r−1∑
j=d2

Tr[OD̃j]Tr[D�
i �̃ j]

)
�i

=
d2−1∑
i=0

Tr[OD�
i ]�i. (6)

The last term in the expression is the unique decomposition of
O in terms of the basis dual effects. Since this equality must
hold for any operator O, the dual effects must fulfill

Di +
r−1∑
j=d2

D̃ j Tr[D�
i �̃ j] = D�

i . (7)

This constraint between basis and redundant dual effects can
be automatically satisfied by writing the former in terms of
the latter, so we can parametrize the full set of duals of an
OC-POVM as

D�
i −

r−1∑
j=d2

Tr[D�
i �̃ j]D̃ j, i = 0, . . . , d2 − 1,

D̃ j, j = d2, . . . , r − 1, (8)

where D̃ j are Hermitian matrices that can be chosen freely.

IV. REDUCING STATISTICAL ERROR BY OPTIMIZING
DUAL EFFECTS

We may exploit the freedom of choice presented in the
parametrization in Eq. (8) to find the dual effects in such a
way that the variance of the estimator of an observable O is
minimized. The per-shot variance when estimating O from the
POVM outcomes is given by

Var[O] =
∑

i

pi(Tr[ODi])
2 −

(∑
i

piTr[ODi]

)2

, (9)

where pi is the probability of obtaining the ith outcome. While
the second term does not depend on the choice of dual effects,
as long as these satisfy Eq. (7), the first term—the second
moment of Tr[ODi] with respect to the probability distribution
of the outcomes—does. Therefore, by choosing dual effects
that minimize the second moment, the statistical errors in the
estimation of the expectation value of the operator O may be
significantly smaller than with, e.g., the canonical duals, even
when using the same measurement outcome data.

As a simple example of how optimizing the duals of OC-
POVMs can provide an advantage over the canonical duals,
consider the task of estimating the average value of the Pauli-
Z observable for the state |0〉 using a random measurement
on the Pauli basis, i.e., measuring Z , X , or Y with equal
probability. The POVM effects are given by

�0 = 1

3
|0〉〈0|, �1 = 1

3
|1〉〈1|, �2 = 1

3
|+〉〈+|

�3 = 1

3
|−〉〈−|, �4 = 1

3
| + i〉〈+i|, �5 = 1

3
| − i〉〈−i|,

(10)
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where |±〉 = 1/
√

2(|0〉 ± |1〉) and | ± i〉 = 1/
√

2(|0〉 ± i|1〉).
One can readily see that the probabilities to obtain the dif-
ferent outcomes are p0 = 1/3, p1 = 0, p2 = p3 = p4 = p5 =
1/6. The canonical duals read

D0 = 1

2
(I + 3Z ), D1 = 1

2
(I − 3Z ), D2 = 1

2
(I + 3X ),

D3 = 1

2
(I − 3X ), D4 = 1

2
(I + 3Y ), D5 = 1

2
(I − 3Y ).

(11)

This choice of duals provides a variance Var[Z] =∑
i pi(Tr[DiZ])2 − (

∑
i piTr[DiZ])2 = 2. We can now fol-

low the previously discussion to minimize the variance
with respect to the choice of dual effect. In order to
do so we first choose the basis effects to be the set
{�0,�1,�2,�4}. The corresponding basis duals are then
fixed to be {D0, D1, D2, D4}. If we now optimize the vari-
ance duals to minimize the variance in Eq. (9) using the
parametrization in Eq. (8), we find Var[Z] = 0 with the choice
of duals

Dopt
0 = 1

2
(I + Z ), Dopt

1 = 1

2
(I − 5Z ),

Dopt
2 = 1

2
(I + 3X + Z ), Dopt

3 = 1

2
(I − 3X + Z ),

Dopt
4 = 1

2
(I + 3Y + Z ), Dopt

5 = 1

2
(I − 3Y + Z ).

Notice that in the case of a multiqubit state |0〉⊗N and an ob-
servable Z⊗N , the canonical duals in Eq. (11) in Ref. [3] result
in an exponential overhead, with variance Var[Z] = 3N − 1,
while the optimal duals result in zero-variance estimations.
This shows that optimizing the dual effects can provide an
exponential advantage in terms of measurement overhead with
respect to canonical duals.

In this particular example one could claim that it is better
to estimate the observable directly instead of using an OC-
POVM. Our main point here is to illustrate the power of
duals and show that we can still use IC measurements and
recover the optimal variance. Moreover, dual optimization is a
general-purpose approach that can be used with more complex
OC-POVMs as well, for which no simple and efficient data
postprocessing strategy may be obvious. This is particularly
relevant in schemes in which one optimizes overcomplete
measurement setups, as in Ref. [11].

V. DUAL OPTIMIZATION IN THE CASE OF FINITE
STATISTICS

While the above discussion introduces the basic idea of
dual optimization and its potential, its practical implementa-
tion poses additional challenges. In general, the probability
distribution of the outcomes {pi} is not knowable since its
characterization is exponentially hard, and we only have
access to the experimental frequencies { fi} obtained after re-
peating the measurement a finite number of times. In this case
we can estimate the second moment of the estimator as

Tr[ODi]2 =
∑

i

fi(Tr[ODi])
2. (12)

We can then minimize this quantity using the parametrization
in Eq. (8).

Notice, however, doing so may introduce statistical bi-
ases: If the dual effects {Di} are modified as to minimize∑

i fi(Tr[ODi])2, then the duals and the measurement data fi

are no longer statistically independent, which means that we
cannot guarantee that the estimator of the mean

∑
i fi Tr[ODi]

is unbiased. In order to prevent this, our procedure consists in
splitting the measurement data evenly into two disjoint sets,
A and B, so that for a total of S measurements each subset
will have S/2 measurement outcomes (the way in which the
data are split is somewhat arbitrary and we leave as a point
for further investigation how to optimally choose the sizes of
sets A and B). We first optimize the duals using a training data
set A, and then evaluate the mean and the variance using the
optimized duals in an estimation data set B. Since A and B are
disjoint, the optimized duals and the frequencies used in the
final estimation are statistically independent. We then repeat
the procedure swapping the roles of A and B, hence producing
another pair of estimations of the mean and the variance
that are then combined with the former ones, so no data are
left unused.

In our simulations the optimization of the duals is per-
formed in the following way: We start by considering local
random Pauli measurements (10) from which the measure-
ment frequencies are obtained. We then fixed the canonical
duals (11) for N − 1 qubits and use the parametrization in
Eq. (8) to optimize the variance of the estimator as a function
of the free parameters for the remaining qubit. Finally, we
sweep this procedure over all qubits until we find convergence
of the variance. Each single-qubit optimization is carried
out using the limited memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimizer. Notice that this qubit-by-qubit
procedure scales linearly with the number of qubits.

VI. EXAMPLES

In order to test the approach, we consider two physically
motivated problems: the estimation of the real part of 2-
reduced density matrix (2-RDM) operator elements of the
H2O and LiH molecules, and the quantum simulation of a spin
chain performed in Ref. [14]. Notice that while we optimize
the second moment (12), the first moment Ō = ∑

i fi Tr[ODi]
can also get affected (contrary to the infinite statistics where
Ō = 〈O〉 is independent of the choice of duals). Since the
variance of the estimator decreases upon the optimization, we
expect that the absolute error of the estimation ε = |〈O〉 − O|
also decreases. In what follows we explicitly show that this is
the case by comparing ε with and without dual optimization
for various physically motivated examples.

We first consider the problem of estimating the real part
of fermionic 2-reduced density matrix (2-RDM) operator ele-
ments a†

i a†
j akal , where ai are fermionic annihilation operators.

To that end, we consider the H2O and LiH molecules in
a minimal basis set. Their second quantized Hamiltonians
and 2-RDM elements are mapped to qubit space using the
Jiang-Kalev-Mruczkiewicz-Neven (JKMN) fermion-to-qubit
mapping [15], resulting in 12-qubit operators. We then use
pretrained hardware-efficient variational quantum eigensolver
(VQE) states [16] to approximate their ground states, and
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(a)

(b)

FIG. 1. Distribution of absolute errors ε = |〈O〉 − O| over the
real parts of fermionic 2-RDM elements for the (a) H2O and (b) LiH
molecules. Pretrained VQE states are measured using the POVM in
Eq. (10). The resulting 2 × 106 shot data set is then used to evaluate
all the 2-RDM expectation values with the canonical duals, as well as
to optimize the duals using the protocol introduced in the main text
and produce the corresponding estimations.

measure these states with the randomized Pauli measurements
in Eq. (10) to obtain 2 × 106 shots. The resulting data set is
then used to evaluate all the 2-RDM elements with canonical
duals, as well as to optimize them and produce the correspond-
ing estimations. As it can be seen in Fig. 1, where we depict
the distribution of ε over RDM elements, the optimization has
the overall effect of significantly reducing statistical errors.

As a second application, in Fig. 2, we show the results for
the simulation of the Trotter evolution of a 10-spin transverse-
field Ising model performed in Ref. [14]. The Hamiltonian that
drives the evolution reads

H = −J
∑

i

Zi ⊗ Zi+1 + h
∑

i

Xi, (13)

with J = 0.5236 and h = 1, with initial state |0〉⊗10. The
estimated observable is O = Z⊗10. For each Trotter step, we
repeat the simulation 1000 times, sampling 2 × 106 shots per
simulation.

(a)

(b)

FIG. 2. (a) Estimated standard error σ = √
Var[O]/S, where S is

the number of shots used in the estimation, and (b) absolute error ε =
|〈O〉 − O| of the observable O = Z⊗10 for different Trotter steps in a
10-qubit system. At each time step, the state is measured 1000 times
using 2 million measurement shots per repetition. In each repetition,
the data set is split in two 1-million-shot data sets A and B. First, data
set A is used for optimization and data set B for estimation, and then
vice versa. The values shown here are averaged over the estimation
values between the two data sets. For these results, we performed
20 sweeps over the qubits during the optimization. The average and
standard deviation over repetitions.

As we can see, dual optimization provides a reduced error
for steps 0, 1, and 3. In particular, at step 0, the procedure con-
sistently achieves a zero-variance estimation. This is possible
because the state and observable are |0〉⊗N and Z⊗N , respec-
tively, which is precisely the aforementioned example of an
exponential overhead with canonical duals. However, notice
that the algorithm consistently finds optimal duals based only
on the provided measurement data, assuming the canonical
duals as a starting point. For steps 2 and 4, the optimization
procedure leads to higher σ and ε This is a direct consequence
of overfitting: While the optimized duals reduce the second
moment Eq. (12) for the training data set, they increase it for
the estimation data set. In order to mitigate this overfitting,
one can simply monitor the value for the estimation set and
stop the optimization as soon as the training and estimation
data-set values differ significantly. In any case, notice that
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the estimated standard error σ is an observable quantity that
does not require previous knowledge of 〈O〉 (as opposed to
the absolute error ε) and, as Fig. 2 shows, σ is a good proxy
of the actual estimation error ε. Therefore, one can always
use the estimation provided by the duals with the smallest
standard error on the estimation data set.

In this paper, we have shown that the estimation of physical
properties by means of informationally overcomplete POVMs
can be greatly improved by the optimization of the dual effects
used in the estimator. This improvement comes in the form
of a reduced estimation variance, which in turn provides an
advantage in terms of measurement overhead (that is, the
number of shots required to achieve a certain precision). Fur-
thermore, this optimization is purely classical, and can be
performed in postprocessing, thus not requiring any modifi-
cation of the physical setup.

We have demonstrated the feasibility of our optimization
procedure in physically relevant problems, such as the Trotter
evolution of a spin system, and different physical properties
of molecular systems. We believe that our method can be
of great help not only for the estimation of physical prop-
erties, but also for subroutines of quantum computing and
simulation protocols. For instance, in some VQE approaches,
one needs to estimate a great number of commutators [17],
which typically results in a prohibitive measurement cost.
Another example is the estimation of stabilizer observables
for error correction codes and other applications such as
one-way quantum computation. This method can also be

used in conjunction with adaptive POVMs [10], where the
POVM is first optimized with respect to some state and op-
erators, and the duals are then optimized in postprocessing
as well.

Finally, the numerical simulations presented here only con-
sidered as starting points local POVMs and local canonical
duals. We leave as a further investigation the possibility of
starting from more general initial conditions and going be-
yond product duals.

Note added. Recently, we became aware of a related work
by Fischer et al., in which they also observe estimation
improvements using dual optimization for randomly chosen
states and observables [18]. We also became aware of a related
work by Caprotti et al., in which they demonstrate that dual
frame optimization for local measurements can achieve the
same efficiency as global Clifford shadows [19].
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