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Quantum error-correcting codes (QECCs) and decoherence-free subspace (DFS) codes provide active and
passive means, respectively, to address certain types of errors that arise during quantum computation. The latter
technique is suitable to correct correlated errors with certain symmetries and the former to correct independent
errors. The concatenation of a QECC and a DFS code results in a degenerate code that splits into actively
and passively correcting parts, with the degeneracy impacting either part, leading to degenerate errors as well
as degenerate stabilizer operators. The concatenation of the two types of code can aid universal fault-tolerant
quantum computation when a mix of correlated and independent errors is encountered. In particular, we show
that for sufficiently strongly correlated errors, the concatenation with the DFS as the inner code provides better
entanglement fidelity, whereas for sufficiently independent errors, the concatenation with the QECC as the inner
code is preferable. As illustrative examples, we examine in detail the concatenation of a two-qubit DFS code and
a three-qubit repetition code or five-qubit Knill-Laflamme code, under independent and correlated errors.
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I. INTRODUCTION

The loss of quantum coherence, also known as the deco-
herence process, is the biggest obstacle to realizing practical
quantum computation and communication [1]. Errors also
arise because of imperfections and faults in the quantum
communication system or computation circuit. These errors,
due to decoherence and device imperfections, reduce the fi-
delity and reliability of quantum operations [2]. To overcome
these obstacles, a variety of methods have been employed,
among them quantum error-correcting codes (QECCs) [3–6],
decoherence-free subspace (DFS) [7–9], dynamic decoupling
(DD) [10], and error mitigation [11,12]. Quantum error-
correcting codes offer an active method of intervention to
protect quantum information from a wide variety of errors,
including, most generally, independent errors, by correcting
them when they occur. These codes can also be used to charac-
terize quantum dynamics [13,14]. Decoherence-free subspace
is a passive scheme to combat correlated errors and preserves
the coherence of the quantum state by encoding information
in subspaces that are immune to certain types of noise by
virtue of symmetries in the dynamics. An interesting example
of DFS arises in the study of quantum memory for photons,
where a collective reservoir interaction can happen for the
cluster of atoms that make up the memory. This motivates the
construction of a two-dimensional decoherence-free quantum
memory protected from collective errors [15]. Note that this is
an extreme case, and in the other extreme, the atoms may be
subjected to independent errors.
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The practice of concatenating block codes is extensively
employed in the field of quantum information science and
serves as a crucial element in nearly all fault-tolerant strate-
gies [16,17]. The basic concatenated code, even in the
classical context [18], comprises an outer and an inner code.
More generally, concatenation of codes is accomplished by
iterative encoding of blocks of qubits in different levels.
Embedding an inner code in an outer code decreases the
effective error probability of the concatenated code, making
its data qubits more reliable [19]. The establishment of the
accuracy threshold theorem [20–22] relies substantially on
these concatenated codes. There can be multiple layers in the
concatenated quantum code [23–25], where the physical space
of one code behaves as the logical space for the next code. One
can construct an efficient and robust error-correction scheme
using this hierarchical structure.

While recursive concatenation of the same QECC or dif-
ferent QECCs has been extensively studied [24–27], recently
a few authors have explored hybrid concatenation schemes,
such as DD and QECC [28,29], DD and DFS [30,31], and
QECC and DFS [32]. The nature of errors in the given quan-
tum information processor, for example, whether the noise
is “bursty” or independent, will determine the codes to con-
catenate as well the order in which they may be concatenated
[33]. Such a concatenated setup, together with the availability
of transversal gate operations [34,35], enables universal fault-
tolerant quantum computation. In particular, the combination
of QECC and DFS can facilitate fault-tolerance [36] in the
presence of correlated errors [37–39]. The experimental im-
plementation of the hybrid concatenation of active and passive
methods for fighting errors [36] paves the way for practical
quantum computation in the presence of coherent errors [40].
A specific category of DFS-QECC hybrids has been devel-
oped to effectively address spontaneous emission errors and
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FIG. 1. Independent-correlated hybrid error model. Correlated
and independent noise are shown in an array of qubits constituting
a quantum computer such as an optical lattice or trapped ions in a
cavity QED setup. The qubits along a row are subject to correlated
noise, described by a dependent error model. Qubits along a column
are subject to an independent-error model.

collective dephasing specifically intended to be compatible
with the quantum optical and topological implementation of
quantum dots in cavities and trapped ions [41,42]. The ef-
ficiency of concatenated DFS-QECC hybrids is contingent
upon the use of a practical set of universal quantum gates
that can maintain states exclusively within the DFS. It also
depends on the fault-tolerant execution of DFS state prepara-
tion and decoding processes [9].

The present work focuses on the two-layered (and, in
general, multilayered) protection based on the concatenation
of QECC and DFS, in particular comparatively studying the
concatenation of DFS with QECC layer and vice versa. The
need to study such a hybrid concatenation scheme naturally
arises when both correlated and independent errors occur si-
multaneously in the setup of a quantum computer. A basic
situation of this sort is depicted in Fig. 1. Here each row of
qubits may represent, for example, ions in a linear ion trap,
which are subject to correlated errors, for which a DFS is
suitable. The full quantum information processor consists of
an array of such rows such that the ions along the column
are coupled with independent reservoirs and hence subject to
independent errors. In such a case as this, a QECC may be
suitable. For fault-tolerant computation, we would require a
concatenation of QECC and DFS. The question then hinges
on the order of concatenating the two: whether QECC with
DFS or vice versa. It is the issue that this work studies, to
determine situations where one scheme or the other may be
more advantageous according to different criteria.

The remaining article is organized as follows. In Sec. II we
present preliminaries on the DFSs, QECCs, and the construc-
tion of concatenated codes. In Sec. III we study in detail the
concatenation of two or more codes, in both independent and
correlated error models. Specifically, we discuss two schemes
of concatenating a QECC and DFS, one with the latter as
the inner layer and the former as the outer layer (QD code)
and vice versa (DQ code). Specific examples of concate-
nated codes, six-qubit codes concatenating a [[3,1]] repetition
QECC and [[2,1]] DFS, and ten-qubit codes concatenating a
[[5,1]] Knill-Laflamme QECC and [[2,1]] DFS, are studied in
Secs. IV and V, respectively. Passivity and degeneracy of the
DFS are reflected as the passive part of the concatenated code

and the degeneracy in the passive and active parts of the con-
catenated code, respectively. In particular, the degeneracy has
a twofold manifestation: (a) as degenerate equivalence classes
of correctable errors (Secs. IV and V, covering the [[6,1]]
and [[10,1]] codes) and (b) as the corresponding stabilizers
(Sec. VI) of the concatenated code. We summarize and discuss
our results in Sec. VII.

II. PRELIMINARIES

A. Decoherence-free subspace

Decoherence-free subspaces are the subspaces that act as
quiet corners in the total Hilbert space shielded from errors
by a certain symmetry in the system’s interaction with the
environment [43–45]. By encoding quantum information in
these subspaces, the coherence of the quantum system can be
preserved for an extended period. The concatenation of DFS
and QECC gives an additional layer of protection from hybrid
errors, which have elements of symmetry and independence.

The Liouville equation is given by

L[ρ] = ρ̇, (1)

where L is the Liouvillian. A DFS constitutes the degenerate
subspace obtained as a stationary solution to Eq. (1). States in
this subspace are called decoherence-free (DF) states.

For simplicity, we consider a two-qubit system affected by
the collective bit-flip error. The error group is {II, XX }. Since
this group is Abelian, all irreducible representations belonging
to it are one dimensional [43]. It is a result in group theory that
the number of irreducible representations within a group is
equivalent to the number of classes associated with that group
[46].

As there are two classes in this group, II and XX , the
number of irreducible representations of this group is equal
to 2, namely, �+ ≡ {1, 1} and �− ≡ {1,−1}. The character is
obtained by calculating the trace of the irreducible represen-
tation. Since the square of the two elements in the group is an
identity, the character of the irreducible representations can
only take ±1. The DFS can be constructed with the action of
a projection operator belonging to the one-dimensional irre-
ducible representation on the initial states. Here there are two
irreducible representations, which correspond to two DFSs,
given by

�+ ≡ span{|00〉 + |11〉 , |01〉 + |10〉},
�− ≡ span{|00〉 − |11〉 , |01〉 − |10〉}. (2)

The two corresponding operators which project to the given
DFS are

P± = 1
2 (II ± XX ). (3)

For example, we can define our logical DF code states for �+
as (apart from a normalization factor)

|0〉D = |00〉 + |11〉 ,

|1〉D = |01〉 + |10〉 . (4)

The DFS spanned by these states is denoted by HDFS and
it is orthogonal and complementary to the subspace H⊥

DFS,
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spanned by the DFS states defined by �−, namely,

|2〉D = |00〉 − |11〉 ,

|3〉D = |01〉 − |10〉 . (5)

The two DFSs are

HDFS ≡ span{|0〉D , |1〉D},
H⊥

DFS ≡ span{|2〉D , |3〉D}. (6)

Each of these subspaces in Eq. (6) serves as a bona fide DFS.
The superposition of DF states from the same irreducible
representation is also a DF state, that is,

|ψ〉D = α |0〉D + β |1〉D , (7)

with |α|2 + |β|2 = 1, is a DF state. However, one cannot take
states from different irreducible representations to make a DF
state.

It may be noted that the projector of an irreducible rep-
resentation acts as an identity operator for the DF states
corresponding to that irreducible representation, while those
DF states are annihilated by the projectors corresponding to a
different irreducible representation.

B. Quantum error-correcting codes

The QECCs constitute a major approach for combating
errors [47]. In the quantum error-correction scheme, quantum
information is encoded in a larger Hilbert space by adding
redundancy, such that errors only affect the redundancy. The
error-correction process involves the encoding, detection, and
recovery process. Generally, a QECC is a set of orthogonal
states or quantum code words represented by the [[n, k, d]]
code, where k logical qubits are encoded into n physical qubits
with the code distance d .

Considering the code words |ψi〉 for the code C, the neces-
sary and sufficient conditions for the quantum error-correcting
codes are [5,48]

〈ψi| E†
mEn |ψ j〉 = 0 (i �= j),

〈ψi| E†
mEn |ψi〉 = 〈ψ j | E†

mEn |ψ j〉 (8)

for 〈ψi| |ψ j〉 = 0. Here Em and En are the error operator ele-
ments from the correctable errors. Instead of the code words,
the QECC can be represented by the minimal representation
with the help of stabilizer generators.

The set of stabilizer generators Si is a minimal set that can
generate all the elements in the stabilizer S. The action of the
stabilizer generators Si on the code words is written as

Si |ψ j〉 = |ψ j〉 . (9)

The normalizer N of the stabilizer S is a subset of the set
of Pauli operators P such that the stabilizer is closed under
conjugation by the normalizer elements,

NSN† ∈ S, (10)

with N ∈ N ⊂ P. The centralizer C of the stabilizer S is the
set of Pauli operators P that commute with stabilizer elements

CS = SC, (11)

i.e., C = {C : C ∈ P,∀ S ∈ S, [S,C] = 0}. Owing to the fact
that −I �∈ S, the centralizer and normalizer of the stabilizer
are identical, C = N . The physical significance of the nor-
malizer is that N − S corresponds to the set of (nontrivial)
logical operators of the code. Detectable errors E are charac-
terized by the condition E �∈ N − S. A set of errors {Em} is
correctable if and only if E†

mEn �∈ N − S.

C. Construction of concatenated codes

For a simple exposition of the concatenated quantum error-
correcting code construction, we restrict the discussion at first
to two levels of concatenation. Consider two quantum codes
(two QECCs or two DFSs or one of each) for overcoming
errors: Co, an outer [[no, ko]] code, which encodes ko logical
qubits into no physical qubits, and Ci, an inner [[ni, ki]] code,
which encodes ki logical qubits into ni physical qubits. There
are two procedures for the construction of the concatenated
quantum codes [19], depending on whether no is divisible by
ki or not.

The following procedure is suitable when no is divisible by
ki.

(i) Encode ko logical qubits into no physical qubits.
(ii) Since no is divisible by ki, no qubits will be partitioned

into no
ki

blocks with ni qubits in each block.
(iii) This procedure results in a concatenated code given by

[[nCC, kCC]] =
[[

noni

ki
, ko

]]
. (12)

In the case that no is not divisible by ki the following procedure
is employed.

(i) Input a quantum string of length kiko qubits. Encode
each block of ko qubits into no qubits using code Co. This
results in a string of length noki, i.e., no blocks with ki qubits
in each block.

(ii) Encode ki qubits in each block into ni qubits, resulting
in noni qubits.

(iii) This procedure results in a

[[nCC, kCC]] = [[noni, koki]]. (13)

In the present work with a hybrid scenario, the outer code can
be a QECC and the inner code a DFS or vice versa.

III. TWO SCHEMES FOR HYBRID
TWO-LEVEL CONCATENATION

In this work we consider two-level code concatenation,
where one layer employs a QECC and the other a DFS. The
encoding that is first applied (last to be decoded) is the outer
layer and the encoding that is applied last (decoded first) is
the inner layer. We consider two orderings of concatenation:
QECC being the outer code and DFS the inner one (QD code)
and, conversely, DFS being the outer code and QECC the
inner one (DQ code).

Throughout the paper, we will denote a [[n, k]] code by
[[n, k]]Q if it embeds k logical qubits in n physical qubits of a
QECC code word and by [[n, k]]D if it embeds k logical qubits
in n physical qubits of a DFS.

It is natural to consider correlated errors when DFS is
used. We now consider a restricted correlated noise model,

062411-3



DASH, DUTTA, SRIKANTH, AND BANERJEE PHYSICAL REVIEW A 109, 062411 (2024)

namely, a hybrid independent-correlated error model, where
correlation across qubits is allowed within the blocks of the
innermost layer of concatenation, but there are no cross-block
correlations [24]. This is more general than the independent-
error model, but more restricted than the most general
correlated noise.

Let the probability of the single qubit without error and
with errors be given by

p0 = 1 − p,

p1 = p. (14)

Within each block, the conditional probabilities are
expressed as

p(i| j) = (1 − μ)pi + μδi, j, (15)

where i, j = 0, 1 and μ is the strength of the correlation.
Equation (15) implies that

p(0|0) = (1 − μ)(1 − p) + μ, (16a)

p(0|1) = (1 − μ)(1 − p), (16b)

p(1|0) = (1 − μ)p, (16c)

p(1|1) = (1 − μ)p + μ. (16d)

The following result gives the recursion relation that deter-
mines the failure probability pCC

F of the concatenated code in
this model.

Theorem 1. Let C0,C1,C2, . . . ,Ct denote a sequence of
(t + 1) codes that are concatenated, with 0 labeling the outer-
most and t the innermost. The errors are assumed to be subject
to the independent-correlated error model characterized by
the parameters p and μ. Denoting the stand-alone failure
probability of the code labeled C j by pj

F (μ, p), the failure

probability for the concatenated code is

pCC
F (μ, p) = p(0)

F

[
0, p(1)

F

[
0, . . .

[
p(t−1)

F

[
0, p(t )

F (μ, p)
]]

, . . .
]]

.

(17)

Proof. For 1 � j � t − 1, given the block failure probabil-
ity pj

F of each block at level j, this error is propagated to the
next outer level ( j − 1) as the block failure probability given
by p( j−1)

F [μ j, p( j)
F ] ≡ p( j−1)

F [0, p( j)
F ], the equality following

from the assumption of the absence of cross-block correla-
tion. Proceeding thus recursively, we reach the (t − 1)th layer
for which the next inner layer is the physical qubits: Thus
p(t−1)

F = p(t−1)
F [0, p(t )

F ] ≡ pt−1
F [0, p(t )

F (μ, p)]. It follows that
the error in the t-layer concatenated code is given by pCC

F (p) in
Eq. (17). �

As an illustration of Theorem 1, consider the case of
concatenating two codes Co and Ci denoting the outer and in-
ner codes, with failure probabilities p(o)

F (μ, p) and p(i)
F (μ, p).

Then the failure probability of the concatenated scheme in the
hybrid independent-correlated model is

pCC
F (μ, p) = p(o)

F

[
0, p(i)

F (μ, p)
]
. (18)

If cross-block correlations are allowed, then mathematically
the simplest scenario is one where each level has an inde-
pendent correlation parameter μ j ( j �= t), corresponding to
block-block correlation, related to possible correlations that
arise during decoding. If instead we generalize by simply
removing the prohibition on cross-block correlations, then the
dependence of the correlation parameter at the jth level on the
basic parameters μ and p can in general be involved and not
lead to a simple recursion formula in the manner of Eq. (17).

To see this, consider a [[6,1]] code obtained with a [[3,1]]
bit-flip QECC as the outer layer and the above [[2,1]] DFS
as the inner layer. For this QD configuration, the blocks are
(1a, 1b), (2a, 2b), and (3a, 3b). We find the cross-block cor-
relation to be

p(01a1b|02a2b) = p(II∨XX |II∨XX ) = p(II1a1b∨XX1a1b∧II2a2b∨XX2a2b)

p(II2a2b∨XX2a2b)

= 1 − (1 − p)p(1 − μ)[4 − 4p(−1 + μ)2 + 4p2(−1 + μ)2 + (−1 + μ)μ]

[(1 − μ)(1 − p) + μ](1 − p) + [(1 − μ)p + μ]p
, (19)

which clearly does not conform to a simple recursive formula
along the lines of Eq. (16a). For the remaining paper, we
restrict the discussion to the hybrid model, where we assume
vanishing cross-block correlations.

We quantify the performance of the concatenated code us-
ing entanglement fidelity [49,50], which in the present context
can be expressed by the formula [19,51]

Fe = 1 − pCC
F (μ, p), (20)

where p is the error probability on an individual qubit. In
the following two sections, we study examples of concate-
nated codes and their performance under independent and
independent-correlated noise.

We recollect that in a standalone code, errors Ea and Eb

are degenerate if EaEb ∈ S, where S is the stabilizer. Equiv-
alently, ∀|w〉∈CEa |w〉 = Eb |w〉. The DFS code has a special
kind of degeneracy whereby ∀aEa ∈ S, thereby making the
errors Ea passively correctable. Note that the passively cor-
rectable errors may equivalently be referred to as stabilizer
errors [44]. This element of degeneracy with passivity is
inherited by the concatenation that it forms a part of. The
structure of this inherited feature is discussed in the following
result.

Theorem 2. The concatenation of a QECC and DFS code
results in a degenerate code that splits into actively and pas-
sively correcting parts, with the degeneracy impacting either
part, and leading to degenerate errors as well as degenerate
stabilizers.
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FIG. 2. The [[6,1]] block structure: (a) QD configuration and
(b) DQ configuration. The dark orange circles represent the outer
code blocks, while the blue circles represent the inner code qubits.

Proof. We denote the stabilizer groups for QECC and
DFS by 〈Q1, Q2, Q3, . . . , Qq〉 and 〈D1, D2, D, . . . , Dd〉, re-
spectively.

In the QD concatenation, irrespective of whether ki | no or
ki � no, a set of stabilizers 〈D1, D2, D3, . . . , Dd〉 is assigned
to each (ni-sized) block of the concatenated code. By design,
these will constitute a set of passive degenerate stabilizers,
which will be identical to passively corrected errors. If there
are n blocks in the inner layer, then the number of degenerate
passive stabilizer generators will be n × d .

The other part of the stabilizer can be formed by encoding
the elements of 〈Q1, Q2, Q3, . . . , Qq〉 in terms of the logical
operations of the DFS code. Here the active nature of the
QECC is inherited, in that the active stabilizers Q1, Q2, . . .

are applied when the encoded quantum information has been
decoded at the inner layer and brought to the outer layer. This
leads to q stabilizers modulo degeneracy. The degeneracy in
these active stabilizers arises because of possible multiplicity
in the logical operations of the DFS code.

In the DQ concatenation, irrespective of whether ki | no or
ki � no, a set of stabilizers 〈Q1, Q2, Q3, . . . , Qq〉 is assigned to
each (ni-sized) block of the concatenated code. By design,
these will constitute a set of active stabilizers. The number
of (nondegenerate) active stabilizer generators will be n × q.
The other part of the stabilizer can be formed by encoding
the elements of 〈D1, D2, D3, . . . , Dd〉 in terms of the logical
operations of the QECC. This leads to d degenerate passive
stabilizers. �

The following three sections illustrate Theorem 2 in the
context of the two-level concatenation of a [[2,1]] DFS code
(4) and a [[3,1]] bit-flip QECC or a [[5,1]] QECC.

IV. THE [[6,1]] QD AND DQ CODES

Consider the concatenation of the [[3, 1]]Q bit-flip code
and the [[2, 1]]D DFS code (4). In previous works, either the
QD or DQ schemes were considered individually [37–39] but
not comparatively, as we do here. First we consider the QD
scheme, where the former is the outer and the latter the inner
code [Fig. 2(a)]. By Eq. (12), this results in the concatenated
[[6, 1]]QD code, for which the logical code words are

|0〉 −→ |0〉D |0〉D |0〉D = 1

2
√

2
(|00〉 + |11〉)⊗3,

|1〉 −→ |1〉D |1〉D |1〉D = 1

2
√

2
(|01〉 + |10〉)⊗3. (21)

The circuits for encoding in the [[6,1]] QD or DQ states
(Fig. 2) are given in Figs. 3 and 4, respectively.

FIG. 3. Circuit to implement the [[6,1]] QD code. Here qubit q0

stores the encoded information while the remaining (ancillary) qubits
q1–q5 start in the state |0〉. The circuit shows the sequential applica-
tion of the encoding operation, possible bit-flip errors on the physical
qubits, the error-correction step, and finally a decoding operation,
which reverses the encoding to restore the quantum information at
qubit q0.

In the DQ scheme, we concatenate in the reverse order: the
[[3, 1]]Q bit-flip code as the inner code with the [[2, 1]]D DFS
code as the outer code [Fig. 2(b)]. By Eq. (12), this results in
the concatenated [[6, 1]]DQ code, with the logical code words

|0〉 −→ |00〉Q + |11〉Q = 1√
2

|000〉⊗2 + |111〉⊗2 ,

|1〉 −→ |01〉Q + |10〉Q = 1√
2

|000111〉 + |111000〉 . (22)

A. Equivalence classes of correctable Pauli errors

For the QD scheme, we note that the errors protected at the
inner layer are

{II, XX }⊗3 (23)

and the errors protected at the outer layer are

{IDIDID, XDIDID, IDXDID, IDIDXD}, (24)

where the subscript D refers to error operations of the DFS.
For the [[2, 1]]D code, logical bit flip is defined as XD :

FIG. 4. Circuit to implement the [[6,1]] DQ code. Here qubit q0

stores the encoded information while the remaining (ancillary) qubits
q1–q5 start in the state |0〉. The circuit shows the sequential applica-
tion of the encoding operation, possible bit-flip errors on the physical
qubits, the error-correction step, and finally a decoding operation,
which reverses the encoding to restore the quantum information at
qubit q0.
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|0〉D ←→ |1〉D. Letting ID represent any of correctable errors,
and XD, YD, and ZD represent the logical operators for the
[[2, 1]]D code, we have

ID → II, XX, (25a)

XD → XI, IX, (25b)

YD → Y Z, ZY, (25c)

ZD → ZZ,−YY. (25d)

Here we note that all four operations have a multiplicity
of 2.

Each block’s error in the outer code, namely, ID or XD,
in Eq. (24), is represented by a multiplicity (actually, 2) of
realizations in the inner code, given by Eq. (25). Thus, each of
the four correctable errors in Eq. (24) has 23 = 8 degenerate
realizations. Thus there are 32 errors that the [[6, 1]]QD code
can correct, and these can be arranged in an equivalence class
of four sets such that all eight elements within a given set are
mutually degenerate, given by

E [[6,1]]QD

equiv ≡ {{IIIIII, IIIIXX, IIXXII, IIXXXX, XXXXXX, XXIIII, XXIIXX, X X X X II}, {X IIIII, X IIIX X, X IX X II,

XIXXXX, IX IIII, IX IIXX, IXXXII, IXXXXX }, {IIX III, IIX IXX, IIIX II, IIIX X X, X X X III, XXXIXX,

XXIXII, XXIXXX }, {IIIIX I, IIIIIX, IIXXXI, IIXXIX, XXIIXI, XX IIIX, X X X X X I, X X X X IX }}. (26)

The four mutually degenerate sets in this error degeneracy equivalence class correspond to four sets having eight degenerate
elements each. The QD and DQ codes inherently possess an element of passive error correction inherited from the DFS. Here
this is reflected in the fact that elements in the first set of the equivalence class are all passively correctable. Their provenance can
be attributed to the fact that all these errors correspond to the identity operation (IDIDID) on the outer QECC layer. Structurally, we
expect that these error operators are identical to eight stabilizers of the concatenated code and thus commute with the remaining
stabilizers. We will find that these eight stabilizers (or their three generators) play a passive role in that they do not require
measurement, but formally arise as a result of the concatenation.

By contrast, with regard to the DQ scheme [Fig. 2(b)], the errors protected by the outer DFS layer are

{IQIQ, XQXQ}, (27)

where the subscript Q refers to the error operations of the QECC. There are 16 correctable errors that yield the first term in
Eq. (27) when the inner layer is decoded, namely,

{XII, IX I, IIX, III}⊗2. (28)

Each of these has a counterpart corresponding to the second term in Eq. (27), obtained by applying the logical NOT operation on

both blocks, i.e., XXXXXX . Thus, for example, XIIIX I
XXXXXX−−−−−→ IXXXIX .

Accordingly, we have 16 sets of two errors each, yielding 32 correctable errors in all, which can be arranged in the following
equivalence class:

E [[6,1]]DQ

equiv ≡ {{XIIXII, IXXIXX }, {XIIIX I, IXXXIX }, {XIIIIX, IXXXXI}, {XIIIII, IXXXXX },
{IIXXII, XXIIXX }, {IIX IXI, XXIXIX }, {IIX IIX, XXIXXI}, {IIX III, XXIXXX },
{IX IXII, XIXIXX }, {IX IIX I, XIXXIX }, {IX IIIX, XIXXXI}, {IX IIII, XIXXXX },
{IIIX II, XXXIXX }, {IIIIX I, XXXXIX }, {IIIIIX, XXXXXI}, {IIIIII, XXXXXX }}. (29)

The 16 mutually degenerate sets in the equivalence class cor-
respond to 16 sets having two degenerate elements each. As
in the QD case, passively correctable errors arise here too. In
this example, they correspond to the last set in Eq. (29). Their
provenance can be attributed to the fact that they lead, without
syndrome generation, to the DFS correctable errors IQIQ and
XQXQ in the outer layer. Here again, the passively correctable
errors can be shown to coincide with passive stabilizers.

The Hamming bound [52] on a nondegenerate QECC re-
quires that n − k � log2(no. of correctable errors). Thus we
can define the metric of Hamming efficiency as a rough guide
on how efficiently the correction works:

ϕ = log2(no. of correctable errors)

n − k
. (30)

From Eqs. (26) and (29) we have ‖E [[6,1]]QD

equiv ‖ = 4 × 8 = 32

and ‖E [[6,1]]DQ

equiv ‖ = 16 × 2 = 32 as the number of elements
in the equivalence class for respective QD and DQ codes.
Here we adopt the notational convention wherein the symbol
|ECC

equiv| denotes the cardinality of the equivalence class ECC
equiv

(i.e., the number of sets in the class), whereas ‖ECC
equiv‖ denotes

the total number of elements in the equivalence class. Thus,
for both the above [[6,1]] concatenated codes, ϕ = log2(32)

5 =
1, which is appropriate for a perfect code. However, as the
present codes are degenerate, we suggest that in this case it
seems more appropriate to generalize Eq. (30) to the modified
Hamming efficiency

ϕ′ = log2(|error equivalence class|)
n − k

. (31)
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This quantifies the number of distinguishable correctable er-
rors as a fraction of noncoding bits. From Eqs. (26) and (29),
|E [[6,1]]QD

equiv | = 4 and |E [[6,1]]DQ

equiv | = 16, respectively. Thus ϕ′ = 2
5

and 4
5 for the [[6, 1]]QD and [[6, 1]]DQ codes, respectively.

The above examples illustrate the following result, which
is generally true for QD and DQ concatenations.

Theorem 3. All passively correctable errors of a given QD
or DQ code are mutually degenerate, i.e., they constitute a
single set in the error degeneracy equivalence class.

Proof. In the QD case, the passively correctable errors of
the concatenated code decode to the identity error in the outer
QECC layer. In the DQ case, these passively correctable errors
decode syndromelessly to the correctable errors in the outer
DFS layer. In the QD and DQ cases, therefore the passive
correctability criterion fulfills the requirement to constitute an
element of the error degeneracy equivalence class. �

As an illustration of Theorem 3, in a given equivalence
class of correctable errors for a concatenation involving DFS
as one layer of protection, all elements in a set or none will
possess a DFS-like structure.

B. Performance of the [[6,1]] QD and DQ codes
under correlated noise

We now discuss the performance of the [[6,1]] QD and
DQ codes in terms of the failure probability for the hy-
brid independent-correlated noise model. In a correlated error
model, the stand-alone failure probability for [[3, 1]]Q and
[[2, 1]]D codes are given by

p[[3,1]]Q

F (μ, p) = p(0|0) p(0|0) p0 + p(1|0) p(0|0) p0

+ p(0|1) p(1|0) p0 + p(0|0) p(0|1) p1

= (3p2 − 2p3)(μ − 1)2 − p(μ − 2)p, (32a)

p[[2,1]]D
F (μ, p) = p(1|0) p0 + p(0|1) p1

= 2(1 − p)p(1 − μ). (32b)

By Eqs. (18) and (32), the failure probability of the
[[6, 1]]QD code is

p[[6,1]]QD

F = p[[3,1]]Q

F

[
0, p[[2,1]]D

F (μ, p)
]

= 3
[
p[[2,1]]D

F (μ, p)
]2[

1 − p[[2,1]]D
F (μ, p)

]
+ [

p[[2,1]]D
F (μ, p)

]3
, (33)

whereas the failure probability of the [[6, 1]]DQ code is

p[[6,1]]DQ

F = p[[2,1]]D
F

[
0, p[[3,1]]Q

F (μ, p)
]

= 2p[[3,1]]Q

F (μ, p)
[
1 − p[[3,1]]Q

F (μ, p)
]
. (34)

The above two failure probabilities lead to roughly similar
behavior, with the failure probability for the concatenated
code attaining the maximum for p = 1

2 , as should be the case.
The entanglement fidelities [according to Eq. (20)] for the
two concatenated codes, namely, F [[6,1]]QD

e and F [[6,1]]DQ
e , are

plotted in Fig. 5 both for the regime of independent errors
(μ = 0) and for errors with high correlation (μ = 0.75). In the
former case, the DQ code outperforms the QD code, because
the inner layer of the QD code fails to correct many errors that
are independent. In the latter case, the QD code outperforms

FIG. 5. Entanglement fidelities of the codes [[6, 1]]QD and
[[6, 1]]DQ for the independent-error model (μ = 0) and the restricted
correlated error model (μ = 0.75, without cross-block correlation),
respectively, depicted as the blue solid, red dashed, blue dash-dotted,
and red dotted plots. The plots illustrate the idea that QD codes
outperform DQ ones for sufficiently strong correlation of the noise.

the DQ code, because the inner layer of the DQ code fails to
correct many errors that are correlated.

V. THE [[10,1]] QD AND DQ CODES

Here the [[5,1]] Knill-Laflamme QECC [53] is concate-
nated with the [[2, 1]]D code. Such a concatenation may be
useful in situations where independent and correlated errors
coexist [36]. When the latter errors are stronger than the
independent errors, the QD scheme is preferable, whereas the
DQ scheme is preferable when independent errors are stronger
than correlated errors.

The [[10, 1]]QD code is depicted in Fig. 6(a). The logical
code words for this code are

|0〉 → 1
4 (|00000〉D + |10010〉D + |01001〉D + |10100〉D

+ |01010〉D − |11011〉D − |00110〉D − |11000〉D

− |11101〉D − |00011〉D − |11110〉D − |01111〉D

− |10001〉D − |01100〉D − |10111〉D + |00101〉D),

|1〉 → 1
4 (|11111〉D + |01101〉D + |10110〉D + |01011〉D

+ |10101〉D − |00100〉D − |11001〉D − |00111〉D

− |00010〉D − |11100〉D − |00001〉D − |10000〉D

− |01110〉D − |10011〉D − |01000〉D − |11010〉D),
(35)

FIG. 6. The [[10,1]] block structure: (a) QD configuration and
(b) DQ configuration. The dark orange circles represent the outer
code blocks, while the blue circles represent the inner code qubits.
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where the subscript D indicates that there is an inner layer of
encoding where each qubit is replaced by the corresponding
encoded qubit of the DFS. Thus, for example,

|00000〉D = |0〉D |0〉D |0〉D |0〉D |0〉D

= (|00〉 + |11〉)⊗5,

and so forth.
The DQ scheme of the [[10,1]] code is depicted in

Fig. 6(b), for which the logical code words for this ten-qubit
DQ code are

|0〉 −→ |00〉Q + |11〉Q,

|1〉 −→ |01〉Q + |10〉Q , (36)

where |0〉Q and |1〉Q are the logical code words for the five-
qubit QECC.

A. Equivalence classes of correctable Pauli errors

The correctable errors here can be arranged in an equiva-
lence class, given by the collection of 16 sets

E [[10,1]]QD

equiv ≡ {[IIIII]D, [XIIII]D, [IX III]D, [IIX II]D,

[IIIX I]D, [IIIIX ]D, [Y IIII]D, [IY III]D,

[IIY II]D, [IIIY I]D, [IIIIY ]D, [ZIIII]D,

[IZIII]D, [IIZII]D, [IIIZI]D, [IIIIZ]D},
(37)

which correspond the 16 errors correctable by the outer code.
Here [· · · ]D denotes the expansion of the five-qubit operator
string by insertion of corresponding logical operation in the
inner code, e.g., [IIIII]D ≡ {II, XX }⊗5, yielding 32 operators
with a length of ten-qubit operators. Thus Eq. (37) represents

an equivalence class of |E [[10,1]]QD

equiv | = 16 sets having 32 degen-

erate elements each, which yields ‖E [[10,1]]QD

equiv ‖ = 16 × 32 =
512 elements in all. Here all elements in the set [IIIII]D

are passively correctable, in the manner of those in the set
[III]D of E [[6,1]]QD

equiv [Eq. (26)]. In Sec. VI B we will show that
these errors are generated by five passive stabilizer generators.
Therefore, for the [[10, 1]]QD concatenated code, the Ham-
ming efficiency ϕ = log2(512)

9 = 1 and the modified Hamming

efficiency ϕ′ = log2(16)
9 = 4

9 .
For the [[10, 1]]DQ code, in place of Eq. (37), we have

E [[10,1]]DQ

equiv ≡ {[II]Q, [XX ]Q}. There are 16 Pauli errors that are
correctable and thus yield IQ after the inner layer has been
decoded. Correspondingly, there are 16 Pauli errors that result
in XQ after the inner layer has been decoded. These are just the
correctable errors to which the logical NOT operator XXXXX
has been applied, e.g., IIY II → XXZXX . Thus there are 162

sets consisting of a pair of Pauli errors in the set E [[10,1]]DQ

equiv .

We thus have |E [[10,1]]DQ

equiv | = 162 = 256 as the number of sets

in the class and ‖E [[10,1]]DQ

equiv ‖ = 162 × 2 = 512 as the total
number of elements in the equivalence class. Accordingly,
the Hamming efficiency is ϕ = log2(512)

9 = 1 and the modified

Hamming efficiency is ϕ′ = log2(256)
9 = 8

9 . In the manner of
the [[6, 1]]DQ case [Eq. (29)], here too there are only two
passively correctable errors (I⊗10 and X ⊗10), generated by a
passive stabilizer generator (Sec. VI B).

B. Performance of the [[10,1]] QD
and DQ codes under correlated noise

In a correlated error model, the stand-alone failure proba-
bility for the [[5, 1]]Q and [[2, 1]]D code is calculated as

p[[5,1]]Q

F (μ, p) = 1 − p[[5,1]]Q

C (μ, p)

= 1 − 3(1 − p)2 p(1 − μ)2[(1 − p)(1 − μ) + μ]2 − 2(1 − p)p(1 − μ)[(1 − p)(1 − μ) + μ]3

− (1 − p)[(1 − p)(1 − μ) + μ]4, (38a)

p[[2,1]]D
F (μ, p) = 1 − p[[2,1]]D

C (μ, p)

= 1 − (1 − p)[(1 − p)(1 − μ) + μ] − p

3

(
p

3
(1 − μ) + μ

)
, (38b)

where p[[5,1]]Q

C and p[[2,1]]D
C are the probabilities of the

correctable errors for the [[5, 1]]Q and [[2, 1]]D codes, re-
spectively. Here p0 = 1 − p and p1 = p2 = p3 = p

3 . The DFS
failure probability (38b), which includes Y and Z errors, may
be contrasted with Eq. (32b), which includes only X errors.
By Eqs. (18) and (38), the failure probability of the [[10, 1]]QD

code is

p[[10,1]]QD

F (μ, p) = p[[5,1]]Q

F

[
0, p[[2,1]]D

F (μ, p)
]

= 1 − [
1 − p[[2,1]]D

F (μ, p)
]5

− 5
[
1 − p[[2,1]]D

F (μ, p)
]4

p[[2,1]]D
F (μ, p),

(39)

whereas the failure probability of the [[10, 1]]DQ code is

p[[10,1]]DQ

F (μ, p) = p[[2,1]]D
F

[
0, p[[5,1]]Q

F (μ, p)
]

= 2
3

[
p[[5,1]]Q

F (μ, p)
][

1 − p[[5,1]]Q

F (μ, p)
]
.

(40)

Employing Eq. (20), we obtain the entanglement fidelities
F [[10,1]]QD

e and F [[10,1]]DQ
e for the ten-qubit QD and DQ, re-

spectively. These fidelities as a function of single-qubit error
probability p are plotted in Fig. 7. We find that for sufficiently
low correlation of the noise, the DQ code outperforms the QD
code and vice versa when the correlation is sufficiently large,
as discussed earlier in the context of the [[6,1]] code.
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FIG. 7. Entanglement fidelities of the concatenated codes
[[10, 1]]QD and [[10, 1]]DQ under the independent-error model (μ =
0) and the restricted-correlated error model (μ = 0.75), respectively,
depicted as the green solid, magenta dashed, green dash-dotted,
and magenta dotted plots. As in the six-qubit case, for sufficiently
correlated error, QD outperforms DQ and the reverse when the
independent-error model is used.

VI. GENERATOR STRUCTURE
OF THE CONCATENATED CODE

The stabilizer of the concatenated code is a concatenation
of the stabilizers of the constituent codes. A well-known ex-
ample is the Shor code, whose stabilizer generator can be
constructed by concatenating the three-qubit phase-flip and
bit-flip codes [19]. A DFS code is a kind of stabilizer code
[32,44] in that the code space is stabilized by commuting
operators and the errors fulfill the error-correcting condition
(8). However, unlike with a conventional stabilizer code [54],
the stabilizer generators commute with all error operators,
being identical to the error operators. This is reflective of the
fact that DFS is a passive rather than active error-correction
scheme. Therefore, in a broader sense, we expect that the QD
and DQ concatenations also possess a stabilizer structure.

On the other hand, the DFS introduces novel elements
into the stabilizer structure, resulting in the degeneracy of the
correctable errors and also, interestingly, degeneracy of the
stabilizers. Importantly, the stabilizer structure divides into an
active and a passive part, with corresponding errors and sta-
bilizer operators. In the following, we illustrate the stabilizer
structure of QD and DQ codes by means of the [[6,1]] and
[[10,1]] codes considered above.

A. The [[6,1]] codes

Here the [[3, 1]]Q and [[2, 1]]D codes are concatenated,
with stabilizer groups given by

S[[3,1]]Q = 〈Z1Z2, Z1Z3〉 (41)

and

S[[2,1]]D = 〈X 1X 2〉, (42)

respectively. In both the QD and DQ cases, there will be n −
k = 5 stabilizer generators.

In the QD case, we label the qubits blockwise as (1a, 1b),
(2a, 2b), and (3a, 3b). To each block we assign a copy of
stabilizer generator of the DFS (42), yielding three of the
generators

S1 = X 1aX 1b, S2 = X 2aX 2b, S3 = X 3aX 3b. (43)

Note that the elements of the first set in Eq. (26) for E [[6,1]]QD

equiv
are generated by the operators in Eq. (43), in keeping with the
fact that these errors are passively correctable.

It is worth mentioning that the stabilizer generators S1, S2,
and S3 in Eq. (43) automatically stabilize the code space and
do not require measurement. To elaborate the latter point, we
note that, on the one hand, the passively correctable errors
are generated by these generators. For example, the first set
in Eq. (26) is generated by S1, S2, and S3 in Eq. (43). On
the other hand, as for the actively correctable errors, namely,
the last three sets in Eq. (26), they commute with each of the
stabilizer operators S1, S2, and S3. For this reason, these oper-
ators may be referred to as passive. This characteristic feature
of the passive stabilizer operators, namely, of not requiring
measurement, will also be found to hold in the other examples
discussed below.

Interestingly, these stabilizer operators are themselves de-
generate, which is a consequence of the fact that all of them
are passive. Their passivity by design arises from the fact that
they are stabilizers of correctable errors of the inner code, and
the remaining errors correspond to logical operations at the
inner layer that decode to errors corrected at the outer layer.
By virtue of the fact that the passively correctable errors are
stabilizer operators, it follows that they commute with other
stabilizer generators S4 and S5, given below.

The remaining two generators can be obtained by encoding
the qubits that make up the outer code’s stabilizer in terms
of logical operations of the inner code. Accordingly, from
Eqs. (41) and (25) we find

S4 = [Z1][Z2], S5 = [Z1][Z3], (44)

where the terms in the square brackets can each be encoded in
two ways, according to Eq. (25d). Thus, each of the stabilizer
elements in Eq. (44) represents an equivalence class of four
generators that are degenerate in the sense that they produce
the same syndrome for each correctable error. This degener-
acy of the stabilizers should be distinguished from that of the
stabilizers in Eq. (43), which has its origin in the passivity of
their error correction. Thus, the set of five stabilizer generators
for the [[6, 1]]QD code is given by Eq. (43) and selecting any
one element from each of the equivalence classes S4 and S5 of
Eq. (44).

In the DQ case, we label the qubits blockwise as
(1a, 1b, 1c) and (2a, 2b, 2c). To each block we assign a copy
of stabilizer generators of the QECC (41), yielding four of the
five generators

S1 = Z1aZ1b, S2 = Z1aZ1c,

S3 = Z2aZ2b, S4 = Z2aZ2c. (45)

The remaining single generator can be obtained by encoding
the qubits that make up the outer code’s stabilizer in terms
of logical operations of the inner code. Accordingly, from
Eq. (41) and the fact that XL = XXX for the [[3, 1]]Q QECC,
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we find

S5 = (X 1aX 1bX 1c)(X 2aX 2bX 2c). (46)

Note that this generator is passive and generates the two pas-
sively correctable errors I⊗6 and X ⊗6. Summarizing, the set of
five stabilizer generators for the [[6, 1]]QD code are given by
Eqs. (45) and (46).

B. The [[10,1]] codes

The [[5, 1]]Q and [[2, 1]]D codes are concatenated here and
the stabilizer groups are provided by

S[[5,1]]Q = 〈X 1Z2Z3X 4, X 2Z3Z4X 5, X 1X 3Z4Z5, Z1X 2X 4Z5〉
(47)

and Eq. (42), respectively. Here there will be n − k = 9 stabi-
lizer generators for both QD and DQ codes. In the QD case,
the qubits are designated via blockwise labeling as (1a, 1b),
(2a, 2b), (3a, 3b), (4a, 4b), and (5a, 5b). The assignment of a
copy of the stabilizer generators of the DFS (42) to each block
will give five stabilizer generators

S1 = X 1aX 1b, S2 = X 2aX 2b, S3 = X 3aX 3b,

S4 = X 4aX 4b, S5 = X 5aX 5b. (48)

Note that the 32 elements of the error set [IIIII]D in Eq. (37)
are generated by the operators S j in Eq. (48), consistent with
the fact that those errors are passively correctable. As in the
case of the [[6, 1]]QD code, these operators are themselves
passive and thus degenerate.

The remaining four stabilizer generators are the encoded
version of stabilizer generators of the five-qubit code Eq. (47)
in block labels. These four generators, though actively error-
correcting, also involve stabilizer degeneracy, this arising
because of the multiplicity (25):

S6 = [X 1][Z2][Z3][X 4], S7 = [X 2][Z3][Z4][X 5],

S8 = [X 1][X 3][Z4][Z5], S9 = [Z1][X 2][X 4][Z5]. (49)

Each of four stabilizer elements in Eq. (49) represents an
equivalence class of 16 degenerate elements. Thus the set of
nine stabilizer generators for the [[10, 1]]QD code is given
by Eq. (48) and selecting any one element from each of the
equivalence classes S6 through S9 in Eq. (49).

In the DQ case, the resultant concatenated code has two
blocks (1a, 1b, 1c, 1d, 1e) and (2a, 2b, 2c, 2d, 2e). We assign
a copy of stabilizer generators of the inner QECC (47) to each
block, yielding the eight of nine stabilizer generators being
expressed as

S1 = X 1aZ1bZ1cX 1d , S2 = X 1bZ1cZ1d X 1e,

S3 = X 1aX 1cZ1d Z1e, S4 = Z1aX 1bX 1d Z1e,

S5 = X 2aZ2bZ2cX 2d , S6 = X 2bZ2cZ2d X 2e,

S7 = X 2aX 2cZ2d Z2e, S8 = Z2aX 2bX 2d Z2e. (50)

The block label encoding of the generators of outer DFS (42)
will give the remaining one generator

S9 = (X 1aX 1bX 1cX 1d X 1e)(X 2aX 2bX 2cX 2d X 2e). (51)

FIG. 8. Failure probability of the concatenated code [[6, 1]]DQ

with pseudothreshold probability pthres ≈ 0.225 for L = 1, 2, 3, and 4
concatenations, depicted as the red dotted, orange dash-dotted, green
dashed, and blue solid plots, respectively.

Thus the set of stabilizer generators for the [[10, 1]]DQ code
is given by Eqs. (50) and (51). We note that the generator in
Eq. (51) is passive and generates the two passively correctable
errors I⊗10 and X ⊗10, in a manner similar to the case of the
[[6, 1]]DQ code [Eq. (46)].

VII. CONCLUSION

This work studied the codes obtained by concatenating
quantum error-correcting codes and decoherence-free sub-
spaces. This concatenation is suitable when both independent
and correlated errors occur simultaneously. When the errors
are sufficiently strongly correlated, the concatenation with the
DFS as the inner code provides better entanglement fidelity,
whereas for errors that are sufficiently independent, the con-
catenation with QECC as the inner code is preferable. The
concatenation of QECC and DFS results in a kind of stabilizer
structure that splits naturally into passive and active parts.
Whereas the passive part functions like a DFS, the active one
functions like a QECC.

As examples, we studied specifically the concatenation
of a two-qubit DFS code with a three-qubit repetition code
and five-qubit Knill-Laflamme code, under independent and
correlated error models. In these examples, the considered
QECCs are nondegenerate. A degenerate code such as Shor’s
nine-qubit code can also be concatenated with a DFS. In this
case, degeneracy in the actively correctable errors will have
contributions not only from the DFS, but also from the QECC.

Whereas increasing the number of concatenated layers im-
proves resistance to noise (with the asymptotic performance
for the fault-tolerant systems obtained when the number of
layers approaches infinity [24]), the practical implementation
also gets harder. Moreover, the pseudothreshold [defined as
the maximum physical error rate p below which pF (p) <

p] is insensitive to concatenation. In Fig. 8, the probability
of failure (pF ) is plotted as a function of the probability
of the individual qubit error (p) with concatenation depth
L = 1, 2, 3, 4 for the [[6, 1]]DQ code.
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TABLE I. Error type, Hamming efficiency, modified Hamming
efficiency, and pseudothreshold probability of the concatenated
codes.

�������Parameter
Code

[[6, 1]]QD [[6, 1]]DQ [[10, 1]]QD [[10, 1]]DQ

Etype X, XX X, XX X,Y, Z, XX X,Y, Z, XX
ϕ 1 1 1 1
ϕ′ 0.4 0.8 0.444 0.888
pthres 0.1293 0.2252 0.0298 0.0579

The pseudothreshold remains invariant, because when
the innermost code fails, it precipitates the failure of all
outer layers. The pattern is the same for the [[6, 1]]QD

and [[10, 1]]QD/DQ codes, except that the pseudothreshold
is slightly different. For independent errors, typically, the
inner code with the higher pseudothreshold provides better
logical noise suppression [35]. The performance parame-
ters for the four codes discussed in this work, along with
their pseudothresholds, are summarized in Table I. In con-
clusion, the preferred order of concatenation will depend on
both the level of correlation in the noise and the desired
pseudothreshold. Here the concept of the pseudothreshold is
the same as that of the threshold mentioned in Ref. [24].
Note that the pseudothreshold should be distinguished from
the asymptotic threshold relevant to realistic simulations of
fault-tolerant computing [55]. Here different components of
the circuit are allowed to fail at differing rates, so that the

thresholds at different levels of concatenation no longer
match, and an asymptotic analysis would be needed to de-
termine the tolerable error rate p. Given the presence of
correlated noise, here the main task involves identifying the
DFS and the selection of the compatible QECC in a way that
facilitates implementing fault-tolerant quantum computation
with the concatenated code in a given quantum processor.
For example, in a two-dimensional decoherence-free photonic
memory subspace protected from collective errors, if the inde-
pendent errors also occur with nonvanishing probability, then
a QECC can be encoded in it to improve protection. Our work
motivates the study of other types of compatible QECC and
DFS code concatenation.

The QD and DQ codes can be considered as generalizing
stabilizer codes to a new class of hybrid codes, which correct
errors both actively and passively. The QECCs and DFSs form
special cases of such a hybrid code.
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