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All-optical correlated noisy channel and its application in recovering quantum coherence
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Attenuation and amplification are the most common processes for optical communications. Amplification can
be used to compensate the attenuation of the complex amplitude of an optical field, but is unable to recover
the coherence lost, provided that the attenuation channel and the amplification channel are independent. In this
paper, we show that the quantum coherence of an optical field can be regained if the attenuation channel and
the amplification channel share correlated noise. We propose an all-optical correlated noisy channel relying
on the four-wave mixing process and demonstrate its capability of recovering quantum coherence within
continuous-variable systems. We quantitatively investigate the coherence recovery phenomena for coherent states
and two-mode squeezed states. Moreover, we analyze the effect of other photon losses that are independent from
the recovery channel on the performance of recovering coherence. Different from correlated noisy channels
previously proposed based on electro-optic conversions, the correlated noisy channel in our protocol is all-optical
and thus owns larger operational bandwidths.
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I. INTRODUCTION

Quantum coherence is a basic feature that marks the de-
parture of the quantum realm from the classical world [1–3].
Arising from the superposition principle, quantum coher-
ence embodies the essence of quantum correlations including
quantum entanglement [4–6] and quantum steering [7]. As a
resource for information processing [1–3], quantum coher-
ence is fragile as decoherence inevitably occurs due to the
interaction between a quantum system and its environment.
Much effort has been devoted to mitigating the decoherence in
discrete variable quantum systems, with notable examples in-
cluding dynamical decoupling [8–10], error correcting codes
[11–16], reservoir engineering [17], inversion of quantum
jumps [18], and feedback control [19,20]. In addition to the
discrete variable regime, continuous variable systems, such
as quantum oscillators and optical fields, are also of great
significance in quantum information processing [21].

Quantum correlation can be used against the noise ef-
fect during quantum information processing. When the noise
channel has memory effect or shares correlation [22,23], it is
possible to recover some quantum resources that are damaged
due to decoherence. For example, revival of squeezing [24]
and Einstein-Podolsky-Rosen (EPR) steering [25] have been
observed in the experiment using correlated noisy channels.
Such correlated noisy channels can also be used to implement
some information processing tasks that are impossible by only
using independent channels, e.g., Gaussian error correction
can be fulfilled via correlated noisy channels [26].

Currently, correlated noisy channels are all established
based on the conventional feed-forward techniques. It
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employs the same signal generators to produce the correlated
noise between the quantum system and environment, and then
uses electro-optic modulators to perform the encoding and
decoding procedures in classical channels [24–26]. However,
such conventional correlated noisy channels are limited by
the electrical bandwidth of the modulators. Note that the op-
erational bandwidth is an important factor for the correlated
noisy channel. This is because the quantum properties (e.g.,
quantum coherence) of a quantum system may be distributed
within a large range of the frequency spectrum. To recover the
quantum properties of a quantum system that passes through
a noisy channel, the operational bandwidth of the correlated
noisy channel should match with that of the noisy channel.
Therefore, it is valuable to further enhance the operational
bandwidth of the correlated noisy channel. This leads us to
explore an all-optical version of the correlated noisy channel.

In this paper, we propose an all-optical correlated noisy
channel (ACNC) based on four-wave mixing (FWM) pro-
cesses in hot atomic ensembles and to investigate its capability
of recovering quantum coherence. Different from conven-
tional correlated noisy channels, the ACNC avoids the
electro-optic conversions and its noisy channels are all-
optical. Due to the unique advantage of the all-optical strategy
[27,28], the ACNC owns larger operational bandwidth than
the conventional correlated noisy channels. We use the ACNC
to recover the coherence loss of an optical field, that is caused
by the attenuation modeled by beam splitting. A common
amplification process can compensate the attenuation of the
complex amplitude of an optical field but cannot recover the
loss of coherence. The amplification even brings in excessive
noise [29–32]. We shall show that, utilizing the correlated
noise in the attenuation channel and the amplification channel,
the ACNC can recovery a portion of coherence while compen-
sating the loss of the complex amplitude. We use the Gaussian
relative entropy of coherence [33] as a coherence measure to
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FIG. 1. (a) Energy-level diagram for the FWM process: conj,
conjugate; prob, probe; �, one-photon detunings; δ, two-photon
detuning; �, resonant Rabi frequency. The width of the excited state
represents the Doppler-broadened profile. (b) Design of the ACNC
based on BS and FWM.

quantitatively study the coherence recovery for coherent states
and two-mode squeezed states (TMSSs). In addition, we also
investigate the effect of imperfect factors on the performance
of the ACNC, such as the photon absorption occurring in the
atomic cells and unavoidable losses in the light path.

This paper is organized as follows. In Sec. II, we give the
design of the ACNC and all the relevant input-output relations
for the processes therein. In Sec. III, we give a brief review on
the coherence measure for Gaussian states and then study the
capability of the ACNC for recovering the quantum coherence
of a single-mode coherent state and a TMSS. We also analyze
the the impact of photon loss. We summarize our paper in
Sec. IV.

II. ACNC BASED ON FWM PROCESSES

Figure 1 illustrates the configuration of ACNC, which em-
ploys two FWM processes and a beam splitting process. The
first one (FWM1) generates the correlated noise, while the
second one (FWM2) serves as a decoder that uses the quantum
correlation produced from FWM1 to recover the coherence of
the quantum system. Under the “undepleted pump” approxi-
mation [34], the interaction Hamiltonian of FWM1 is of the
form Ĥ1 = ih̄ξ1(ĉ1d̂1 − ĉ†

1d̂†
1 ), where the parameter ξ1 is the

interaction strength of FWM1, and ĉ1 and d̂1 are the annihila-
tion operators of the probe and conjugate modes, respectively.
This interaction Hamiltonian guarantees that the photons in
modes ĉ1 and d̂1 are produced simultaneously, and therefore
strong quantum correlations will be generated between these
two modes. The input-output relationship of FWM1 is

ĉ1 = G1ĉ0 + g1d̂†
0 , (1)

d̂1 = G1d̂0 + g1ĉ†
0, (2)

where ĉ0 and d̂0 are the annihilation operators for the
two input modes of FWM1, respectively, G1 = cosh (ξ1τ ) is
the amplitude gain of FWM1 with τ being the interaction

timescale, and g1 ≡
√

G2
1 − 1. When the input modes ĉ0 and

d̂0 are in vacuum (i.e., FWM1 is driven by the pump beam
only), the output state is known as the EPR entangled state
[35,36]. It has been shown that both the position and mo-
mentum quadratures of either ĉ1 or d̂1 yield thermal noise.
However, we can use the EPR correlation to reduce such
thermal noise via a joint homodyne measurement [37].

We now consider a single-mode Gaussian optical field,
denoted as â1, that passes through a noisy channel that is
realized by mixing â1 with d̂1 on a linear beam splitter
(BS) with the transmissivity T . The input-output relation of
the BS is

â2 = √
T â1 + √

1 − T d̂1, (3)

d̂2 = √
1 − T â1 − √

T d̂1, (4)

where â2 is taken as the output of the noisy channel and the
other output mode d̂2 of the BS will not be considered. After
the BS, the noise owned by d̂1 is injected into the optical field
â1 and thus may destroy the coherence of the input quantum
state.

To recovery the Gaussian information of mode â1, we then
use â2 as the input mode of FWM2 driven by another pump
beam, while the other port of FWM2 is seeded by the mode ĉ1

with a phase delay φ. The input-output relation of FWM2 is

â3 = G2â2 + g2eiφ ĉ†
1, (5)

ĉ2 = G2e−iφ ĉ1 + g2â†
2, (6)

where G2 is the amplitude gain of FWM2 and g2 ≡
√

G2
2 − 1.

We take â3 as the final output mode. Substituting Eqs. (1)–(3)
into Eq. (7), a3 can be expressed with respect to the initial
modes as

â3 = G2

√
T â1 + (G1G2

√
1 − T + g1g2eiφ )d̂0

+ (G2g1

√
1 − T + G1g2eiφ )ĉ†

0. (7)

To compensate the amplitude loss of a1, we henceforth set
G2 = 1/

√
T so that â3 = â1 for ĉ0 = d̂0 = 0. Moreover, it can

be seen from Eq. (7) that extra noise is introduced by modes d̂0

and ĉ0. To simply this extra noise, we take φ = π throughout
this paper. As a result, Eq. (7) can be rewritten as

â3 = â1 + g2(G1 − g1)(d̂0 − ĉ†
0). (8)

Note that the last term in Eq. (8) vanishes in the limit of G1 �
1, meaning that the additive noise introduced by modes ĉ1 and
d̂1 can be approximately canceled when the intensity gain of
FWM1 is large enough.

The above-mentioned noise cancellation can be qualita-
tively explained as follows. First, recall that the modes ĉ1

and d̂1 share correlated noises. This quantum correlation is
then transferred so that the modes â2 and ĉ1 become cor-
related after the combination of â1 and d̂1 performed in the
BS. Finally, interference-induced quantum noise cancellation
occurs as the internal degree of the amplifier (i.e., FWM2)
is correlated with the input signal mode [38]. Therefore, an
ACNC is established. We can use the ACNC to recover the
quantum information of the state of the initial input mode â1.
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Discussions of experimental feasibility

In the experiment, the FWM process can be realized by
seeding a high-intensity pump beam into a hot Rb-85 [35,39–
41] or CS-133 [42–44] vapor cell. This causes the genera-
tion of correlated probe (prob) and conjugate (conj) photons,
which propagate at small angles with respect to the pump
beam as shown in Fig. 1(b). The phase-matching condition of
the FWM process requires both energy conservation and mo-
mentum conservation as follows: 2ωpump − ωprob − ωconj = 0
and 2�kpump − �kprob − �kconj = 0, where ωi and �ki denote the
frequency and wave vector of the corresponding photon [45].
Take the FWM process based on Rb-85 as an example as
shown in Fig. 1(a). The pump beams are blue detuned about
0.8 GHz (single-photon detuning �) from the Rb-85 D1 line
(5S1/2, F = 2 → 5P1/2) transition at 795 nm, where the res-
onant Rabi frequency � is not resolved due to the Doppler
broadening. The generated probe and conjugate beams are
red detuned about 3 GHz and blue detuned about 3 GHz
from the pump beam, due to the phase-matching condition.
The efficiency of the FWM process is dependent on various
experimental parameters, such as pump power, single-photon
detuning, and temperature of the atomic cell. Take single-
photon detuning � as an example. When � → 0, the FWM
process may be enhanced but its efficiency may also be
limited by the absorptive loss [46,47], due to the electro-
magnetically induced transparency [48,49]. More details of
experimental realizations of the FWM process can be found
in Refs. [50–53].

As shown in Fig. 1(b), it should be noted the input modes
d̂0 and ĉ0 are in vacuum and FWM1 is driven by the pump
beam only. In this way, there are many output modes of
FWM1 meeting the phase-matching condition, which will lead
to the conical emission after FWM1 [54–56]. Nevertheless,
we argue that such conical emission can never affect our
ACNC scheme, due to the interference-induced mode selec-
tion occurring on both BS and FWM2 [57]. The operator ĉ1

(d̂1) in Eqs. (1)–(4) denotes the mode that satisfies the mode
matching condition with â1 (â2). The rest modes in the conical
emission will be abandoned via the interference.

In addition, phase locking technique should be involved
in the ACNC scheme, which controls the phase between
the noisy channel (FWM1) and the correlated noisy channel
(FWM2). In the real implementation, the two FWM processes
can be pumped by the beams from the same sources. And
phase difference between modes ĉ1 and â2 is required to be
π . Since the input modes of FWM1 are in vacuum, its output
modes ĉ1 and d̂1 are of zero quadrature means. Thus, it will
be difficult to control the phase between modes ĉ1 and â2.
Nevertheless, such issue can be solved by the quantum noise
locking (QNL) technique [58], which can lock the relative
phase between a squeezed vacuum state with zero quadrature
means and a coherent state. Besides, it is also interesting to
consider the effect of Doppler broadening of the FWM pro-
cesses on the phase locking. The Doppler broadening, which
is caused by the thermal motion of the atoms inside the hot
vapor cell, will introduce extra noise into the error signal
and thus degrades the stability of the QNL. To reduce the
Doppler broadening, one can reduce the angle between the
probe and pump beams or adjust the two-photon detuning

δ in the experiment [45]. However, this would also degrade
the efficiency of the FWM process. Therefore, there will be a
tradeoff between the reduction of Doppler broadening and the
efficiency of the FWM process in the experiment.

III. RECOVERING QUANTUM COHERENCE VIA ACNC

A. Coherence measure for Gaussian states

We use quantum coherence [1,2] as an evaluating indi-
cator to quantitatively investigate the recovery capability of
the ACNC for the continuous-variable quantum information.
We shall give a brief review on the quantum coherence of
Gaussian states. Baumgratz, Cramer, and Plenio defined the
quantum coherence of a quantum state ρ̂ as the minimum
distance measured by the quantum relative entropy between
the quantum state and an incoherent state in the Hilbert space
[1]. Denote by I the set of all incoherent states whose density
matrices are diagonal in the fixed reference basis. The relative
entropy of coherence is defined as [1]

Cr (ρ̂) = min
σ̂∈I

S(ρ̂||σ̂ ), (9)

where S(ρ̂||σ̂ ) = tr(ρ̂ log2 ρ̂) − tr(ρ̂ log2 σ̂ ) is the quantum
relative entropy between ρ̂ and σ̂ . The relative entropy of
coherence can be expressed as

Cr (ρ̂) = S(ρ̂diag) − S(ρ̂), (10)

where S(ρ̂ ) = −tr(ρ̂ log2 ρ̂) is the von Neumann entropy of
ρ̂ and ρ̂diag denotes the diagonal matrix obtained by re-
moving all off-diagonal elements from ρ̂ in the reference
basis [1]. The relative entropy of coherence also serves as
a well-defined quantifier for quantum coherence in infinite-
dimensional bosonic systems [59].

For Gaussian states of a bosonic system, Xu [33] gave an
alternative coherence measure—the Gaussian relative entropy
of coherence:

C(ρ̂ ) = min
σ̂∈I ′

S(ρ̂||σ̂ ), (11)

where I ′ denotes the set of all incoherent Gaussian states with
respect to the multimode Fock basis. Moreover, Xu showed
that the closest incoherent Gaussian state to a N-mode Gaus-
sian state ρ̂ is the N-mode thermal state:

ρ̂th =
N⊗

j=1

[ ∞∑
n=0

n̄n
j

(n̄ j + 1)n+1
|n〉〈n|

]
, (12)

where n̄ j is the mean number of photons in the jth mode.
Therefore, the Gaussian relative entropy of coherence can be
expressed as

C(ρ̂ ) = S(ρ̂th ) − S(ρ̂ ). (13)

The von Neumann entropy of the N-mode thermal state can
be directly calculated as

S(ρ̂th ) =
N∑

j=1

[(n̄ j + 1) log2(n̄ j + 1) − n̄ j log2 n̄ j]. (14)
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The von Neumann entropy of N-mode Gaussian states can be
expressed as

S(ρ̂ ) =
N∑

j=1

(
ν j + 1

2
log2

νj + 1

2
− νj − 1

2
log2

νj − 1

2

)
,

(15)
where ν j is the symplectic eigenvalue of the covariance matrix
V [60,61]. The entries of V are defined by Vi j = 1

2 〈x̂ix̂ j +
x̂ j x̂i〉 − 〈x̂i〉〈x̂ j〉, where 〈•〉 denotes the quantum expectation
and x̂ = (X̂1, P̂1, . . . , X̂N , P̂N )T with X̂ j = â j + â†

j and P̂j =
i(â†

j − â j ). It can be computed as the absolute value of the

eigenvalues of the matrix i�V , where � = ⊕N
k=1 ( 0 1

−1 0) is
the symplectic transformation matrix.

B. Recovering quantum coherence of a coherent state

We now consider the capability of the ACNC in recovering
the quantum coherence when the input state of the â1 mode is
a coherent state |α〉 and the states of ĉ0 and d̂0 are the vacuum
states. Let us denote by ρ̂a1 , ρ̂a2 , and ρ̂a3 the quantum states
of the modes â1, â2, and â3, respectively. These states are
all Gaussian, so we can use Eqs. (13)–(15) with Eqs. (3) and
(8) to calculate their Gaussian relative entropy of coherence.
Since the input state |α〉 is a pure state whose von Neumann
entropy vanishes, the quantum coherence of the input state is
just S(ρ̂th ) given by Eq. (14) with N = 1 (viz., the single mode
case) and n1 = |α|2. After the noisy channel modeled by the
BS, the mean photon number is

â†
2â2 = T |α|2 + (1 − T )g2

1, (16)

from which we can obtain S(ρ̂th ) via Eq. (14). Meanwhile, the
covariance matrix for (X̂2, P̂2) is given by

V11 = V22 = 1 + 2(1 − T )g2
1, (17)

V12 = V21 = 0. (18)

The symplectic eigenvalue of the covariance matrix is ν1 =
1 + 2(1 − T )g2

1, with which we can obtain the von Neumann
entropy of ρ̂a2 . After the ACNC, the mean photon number in
the â3 mode is

â†
3â3 = |α|2 + g2

2(G1 − g1)2 (19)

and the covariance matrix for (X̂3, P̂3) is given by

V11 = V22 = 1 + 2g2
2(G1 − g1)2, (20)

V12 = V21 = 0. (21)

As shown in Fig. 2, the quantum coherence of ρ̂a2 is smaller
than that of ρ̂a1 and decreases with the increase of G1. It
means that the noisy channel destroys the quantum coherence
of â1 and the decoherence becomes more obvious with the
increase of the thermal noise introduced. On the other hand,
the quantum coherence of ρ̂a2 , which is the output state of
the ACNC, can be partially recovered and approaches to the
quantum coherence of ρ̂a1 with increasing G1. In other words,
the decoherence caused by the noisy channel can be mitigated
by the ACNC. When G1 → ∞, the quantum coherence of â1

can be totally recovered.

FIG. 2. Quantum coherence of a coherent state transmitted in
quantum channels. Here, ρ̂a1 is the initial state, ρa2 is the output state
of the first noisy channel modeled by a beam splitter, and ρa3 is the
output state of the ACNC. The parameters in plotting this figure are
α = 1, G2 = 1/

√
T , and T = 0.9.

Effect of losses

In the above discussions, we have introduced two types
of quantum channels, that is, the noisy channel and the
ACNC. The noisy channel results in decoherence of the input
Gaussian state, while the ACNC is capable of recovering
the quantum coherence of the state that is degraded by the
noisy channel. In the realistic scenario, the performance of
the ACNC will be affected by unavoidable losses, such as
atomic absorption during the FWM processes and losses in
light paths [62,63]. In the following, we study how the losses
affect the performance of the ACNC on coherence recovery.
We model the lossy process as a BS with transmissivity η

and use L ≡ 1 − η to quantify the strength of loss. When an
optical field â j passes through the lossy channel, it becomes
â j → √

η j â j + √
1 − η j v̂ j , where v̂ j is the annihilation oper-

ator for the other input port of the BS. The state of the mode
v̂ j is the vacuum state.

FIG. 3. Quantum coherence of the mode â3 vs G1 under various
losses. The circles denote the quantum coherence of the initial coher-
ent state ρ̂a1 for the convenience of comparison. The parameters in
plotting this figure are α = 1, G2 = 1/

√
T , and T = 0.9.
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FIG. 4. Recovering quantum coherence of a TMSS via ACNC.

To describe the atomic absorption during the FWM pro-
cesses, we assume that each of the modes d̂1, ĉ1, and â3, which
are the relevant outputs of the involved FWMs, undergoes a
lossy channel with the strength LA. We also assume that there
is a photon loss with the strength LB occurring in the propagat-
ing mode â2. We consider the situations where the loss caused
by atomic absorption is of 10–20% and the loss in the light
path is of 5–10%, as they give realistic experimental losses
[63]. We plot in Fig. 3 the quantum coherence of the mode
â3 versus G1 for different loss strengths. Our results show
that the ACNC cannot totally recover the quantum coherence
of the mode â3 from that of the input mode â1 (which is of
value 2) in the presence of losses. This is because the extra
noise added by photon loss is uncorrelated. Different from the
correlated noisy channel, the quantum decoherence caused by
photon loss cannot be mitigated in principle.

C. Recovering quantum coherence of a TMSS

In the above, we have shown that the ACNC is able to
recover the quantum coherence of coherent states undergoing
a noisy channel. We now generalize our model to bipartite
quantum systems. For a two-mode quantum state ρ̂AB, its total
quantum coherence Ct (ρ̂AB) ≡ C(ρ̂AB) can be decomposed
into two parts: the local coherence and the correlated coher-
ence [64]. The local coherence of ρ̂AB is defined as

Cl (ρ̂AB) ≡ C(ρ̂A) + C(ρ̂B), (22)

where C(ρ̂A) and C(ρ̂B) are quantum coherence of the re-
duced density operators of the modes A and B, respectively.

In general, it is not necessary that all quantum coherence of a
bipartite quantum system is stored locally. A part of quantum
coherence may be stored in the correlation between the sub-
systems. The difference between total coherence Ct (ρ̂AB) and
local coherence Cl (ρ̂AB) is defined as correlated coherence
[64], which is denoted by Cc(ρ̂AB), i.e.,

Cc(ρ̂AB) ≡ Ct (ρ̂AB) − Cl (ρ̂AB). (23)

As shown in Fig. 4, we consider a TMSS denoted by ρ̂a1b1

as the input state of the noisy channel. In experiment, the
quantum state ρ̂a1b1 can be generated by a two-beam phase
sensitive FWM process [65] with the input-output relations

â1 = G0â0 + eiθ g0b̂†
0, b̂1 = G0b̂0 + eiθ g0â†

0, (24)

where â0 and b̂0 are the input modes of the FWM process
and are both assumed to be in coherent states, the parameter θ

denotes the phase of the two-beam phase sensitive FWM pro-
cess, G0 is the amplitude gain, and g0 ≡

√
G2

0 − 1. It has been
shown that interference-induced quantum squeezing can be
achieved by such a TMSS. Moreover, the quantum squeezing
reaches its maximum when θ = 0, corresponding to the bright
interference fringe of the output ports of the FWM process.

To study the performance of the ACNC in recovering the
quantum coherence of a TMSS, we first seed mode â1 into
the noisy channel whose output mode is denoted by â2. After
the noisy channel, we seed mode â2 into the ACNC. Similar
with the single-mode case as shown in Fig. 1, the noisy chan-
nel is realized by mixing mode â1 with d̂1 and the associated
ACNC is realized by FWM2, which uses correlated modes â2

and ĉ1 as its input. The output of â3 can be written as

â3 = G0â0 + eiθ g0b̂†
0 + g2(G1 − g1)(d̂0 − ĉ†

0). (25)

We plot in Fig. 5 the total quantum coherence, the local
quantum coherence, and the correlated quantum coherence for
the bipartite state at different stages. As shown in Fig. 5(a),
the effects of the noisy channel and the ACNC on the total
quantum coherence of the TMSS are similar with that of
the single-mode coherent state, which is shown in Fig. 2. It
demonstrates that the ACNC can recover not only the quan-
tum coherence of a single-mode coherent state undergoing
the noisy channel but also the total quantum coherence of

FIG. 5. Different kinds of quantum coherence of a TMSS transmitted via the noise channels and its ACNC. (a) Total quantum coherence.
(b) Local quantum coherence. (c) Correlated quantum coherence. The black dotted line corresponds to the quantum coherence of the initial
TMSS ρ̂a1b1 . The parameters in plotting this figure are θ = 0, G0 = 3, G2 = 1/

√
T , and T = 0.9. The initial state of the FWM that generates

the TMSS is |α〉 ⊗ |α〉 with α = 1.
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FIG. 6. Effect of losses on the performance of the ACNC in recovering the quantum coherence of a TMSS. (a) Total quantum coherence.
(b) Local quantum coherence. (c) Correlated quantum coherence. The circle indicates the quantum coherence of the initial TMSS ρ̂a1b1 for the
convenience of comparison. The parameters in plotting this figure are θ = 0, G0 = 3, G2 = 1/

√
T , and T = 0.9. The initial state of the FWM

that generates the TMSS is |α〉 ⊗ |α〉 with α = 1.

a bipartite system whose subsystem is undergoing the noisy
channel. Comparing Figs. 5(b) and 5(c), it can be seen that
the local coherence of the TMSS is more robust against
the noisy channel than the correlated coherence. Moreover,
the local coherence of the TMSS can be almost recovered
by the ACNC as long as G1 > 1; the correlated coherence of
ρ̂a3b1 , however, can approach to that of the input state ρ̂a1b1

only if G1 is large enough.

Effect of losses

We show in Fig. 6 the effect of losses on the performance
of the ACNC in recovering the quantum coherence of the
TMSS. We first focus on the local coherence. As shown in
Fig. 6(b), the local coherences for different lossy cases are
almost the same and all of them are very close to that of
the input state ρ̂a1b1 . It means that the local coherence of
the TMSS has good robustness against losses. Different from
the local coherence, the correlated coherence is vulnerable to
the losses. As shown in Fig. 6(c), the correlated coherence of
the state ρ̂a3b1 decreases rapidly with the increase of the losses.
The ACNC can never recover the quantum coherence of the
state ρ̂a3b1 to that of the input state ρ̂a1b1 as long as losses are
involved.

IV. CONCLUSION

In this paper, we have proposed an ACNC relying on FWM
processes and showed that the ACNC can utilize the correlated
noise to recover a portion of coherent loss while amplify-
ing the complex amplitude to compensate the attenuation.

The protocol has good performance for not only single-mode
coherent states but also the TMSS. By dividing the total
coherence of the TMSS into the local coherence and the
correlated coherence, we find that the local coherence is more
robust against thermal noise than the correlated coherence.
We have also investigated the effect of imperfect factors on
the performance of the ACNC, such as the photon absorption
occurring in the FWM processes and unavoidable losses in the
light path.

The ACNC has some advantages for recovering quan-
tum coherence. First, its capability for coherence recovery
is universal for any input quantum state. This is because
the recovery capability is based on the operator level in the
Heisenberg picture so the mechanism of recovering coherence
is irrelevant to the input states. Second, the ACNC could
own larger operational bandwidth, compared with the conven-
tional correlated noisy channels proposed experimentally in
Refs. [24–26], which are limited by the electrical bandwidth
of the electro-optic modulators used therein. Different from
these previous works, the ACNC is all optical so that it avoids
the electro-optic conversion. We are hopeful that the ACNC
proposed in this paper could be used to study the decoherence
effect in quantum optics.
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