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Hexapartite coherent feedback control in four-wave mixing with a spatially structured pump
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Quantum coherent feedback control (CFC) has been widely applied to prepare and manipulate nonclassical
beams. In this paper, we utilize an optical beam splitter with tunable reflectivity k as a feedback controller and
theoretically construct a CFC system based on four-wave mixing (FWM) processes with a spatially structured
pump. After considering absorption loss in the atoms, beam propagation loss in the feedback loop, and detection
loss in the detectors, we derive an input-output relationship and theoretically study the manipulation of feedback
strength, gain of the FWM processes, and phase to the degree of hexapartite quantum correlation of the system.
We find that the relative intensity-difference squeezing degree of all the six output fields from this system is
enhanced within a certain range of feedback ratio and phase. Furthermore, there exists an optimal feedback
ratio and phase to maximize the intensity-difference squeezing. In addition, we also study the entanglement
properties of this CFC system by the positivity under the partial transposition criterion and find that the feedback
ratio and phase can tailor the entanglement structure of the hexapartite state. The proposed CFC scheme has
realized quantum correlation enhancement and entanglement manipulation, which can be expanded to a large-
scale quantum network for more practical applications in quantum information processing.
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I. INTRODUCTION

Quantum control theory plays a fundamental role in emerg-
ing quantum technology [1,2], which has been widely studied
and applied in quantum information processing [3]. In a
quantum control field, feedback control [4] is an important
control method, which is divided into two main classes.
Coherent feedback control (CFC) [5,6] is different from
measurement-based feedback control [7,8]. The former non-
measurement-based protocol has been extensively used in
quantum systems [9] to effectively manipulate the quantum
system by feeding the output signal back to the original input,
driving the entirety towards a desired state. For instance, the
CFC has been utilized to prepare and manipulate nonclas-
sical beams [10–13]. The coherence of the system will be
maintained without destroying its quantum properties since
the quantum CFC process is measurement free and does not
introduce additional measurement noise [14,15]. Accordingly,
quantum CFC has been employed in quantum error correction
[16,17], enhancement of quantum squeezing [10,11,18], and
entanglement [19].

Quantum correlation and entanglement are important re-
sources in quantum information processing [20,21]. For this
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reason, it is vital to manipulate and even enhance the quantum
correlation and entanglement [22]. CFC has been shown as
a promising method to effectively enhance quantum correla-
tion of twin beams generated by a single four-wave mixing
(FWM) process [23]. The feedback strategy is also theoret-
ically utilized in cascaded FWM processes [24], and it is
proved that such quantum CFC system can enhance tripartite
quantum correlation. In recent years, our group has ex-
perimentally [25,26] demonstrated reconfigurable hexapartite
entanglement via FWM processes with a spatially structured
pump (SSP) and theoretically [27] investigated its entan-
glement properties using the van Loock–Furusawa criterion
[28] as well as the positivity under the partial transposition
(PPT) criterion [29–31]. Moreover, the Einstein-Podolsky-
Rosen steering characteristics of the hexapartite state [32]
and the ability to generate reconfigurable cluster states [33]
have been demonstrated. Different from prior works, in this
paper, we introduce the CFC system to enhance the intensity-
difference squeezing (IDS) and manipulate the entanglement
of the SSP-based FWM system, which has important applica-
tions in the field of quantum information processing. Such a
CFC system can also be easily extended to other multipartite
states.

This paper is organized as follows. In Sec. II, we briefly
describe the theoretical quantum CFC structure based on SSP-
based FWM processes, and then derive the equations for the
input and output beams produced by this CFC system after
taking three kinds of losses, i.e., absorption loss in the atoms,
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FIG. 1. The conceptional model of hexapartite CFC structure based on FWM processes with a SSP. (a) The two lines in the middle are pump
beams. Cell is the hot 85Rb atomic vapor cell with a length of 12 mm. â10 is the input probe beam. b̂10, b̂30, â20, â30, and v̂30 are vacuum inputs.
â1 is the amplified probe beam. â2 and â3 are generated probe beams. b̂1, b̂2, and b̂3 are generated conjugate beams. (b) Involved double-�
energy-level diagram for the D1 line of 85Rb. � refers to one-photon detuning of the pump from the transition |5S1/2, F = 2〉 → |5P1/2〉 and
δ means two-photon detuning. (c) The spatial location distribution and the interaction structure of the six output beams from the SSP-based
FWM processes. The dots in the first, second, and third rows stand for the probe beams, pump beams, and conjugate beams, respectively.

beam propagation loss in the feedback loop, and detection loss
in the detectors, into consideration. In Sec. III, we investi-
gate how the parameters, i.e., feedback ratio, phase induced
by feedback loop, and interaction time, manipulate and even
enhance the quantum correlation characterized by IDS be-
tween the six output fields. In Sec. IV, the manipulation to
entanglement characterized by the symplectic eigenvalues is
analyzed by tailoring the feedback ratio and phase. Finally,
we summarize briefly the results in Sec. V.

II. FEEDBACK CONTROL STRUCTURE

The theoretical model of the hexapartite CFC configuration
is illustrated in Fig. 1. As shown in Fig. 1(a), there are two
identical strong pumps (lines in the middle) intersecting at
the center of the hot 85Rb atomic vapor cell with an angle
of 8 mrad, each of which simultaneously converges with the
coherent weak probe beam (â10). The angle between the probe
beam and the plane of the two pump beams is approximately
5.7 mrad. To highlight optical spatial position, we draw a
rectangle shaded area. In the SSP-based FWM processes,
the original probe beam is amplified (â1). Two new probe
beams (â2 and â3) and three conjugate beams (b̂1, b̂2, and b̂3)
are generated synchronously [26]. Figure 1(b) depicts the
double-� energy-level diagram for the D1 line of 85Rb in a
single nonlinear FWM process, in which two pump photons
annihilate, and one probe photon and one conjugate photon
are produced at the same time. The spatial location layout
and the nonlinear interaction framework of the six naturally
separated output beams from the system can be seen from
Fig. 1(c) in which the dots in the first, second, and third
rows represent the probe, pump, and conjugate beams, re-
spectively. The links with pump refer to single-pump FWM
interactions, and those without pump mean dual-pump FWM
interactions.

The SSP-based FWM processes contain seven interactions,
i.e., four single-pump FWM interactions and three dual-pump
FWM interactions. The Hamiltonian of such processes can be
expressed as

Ĥ = ih̄[ε1â†
1b̂†

1 + ε2â†
1b̂†

2 + ε3â†
1b̂†

3 + ε4b̂†
2â†

2

+ ε5b̂†
2â†

3 + ε6b̂†
3â†

2 + ε7b̂†
1â†

3] + H.c., (1)

where εi (i = 1, 2, 3, 4, 5, 6, and 7) describes the effective
interaction strength of the SSP-based FWM processes that is
up to the pump power, one-photon and two-photon detuning.
â†

i and b̂†
i (i = 1, 2, 3) denote the bosonic creation operators

of output probe and conjugate beams, respectively. The two-
dimensional intensity pattern of the output fields has been
captured by camera in Ref. [26], from which it can be seen
that the intensity of â1 and b̂2 is relatively strong, indicating a
stronger interaction between them. Therefore, we set the inter-
action of ε2 to be strongest. Owing to the balanced power and
symmetrical structure of the two pump beams, we assume that
ε1 = ε3 = ε4 = ε5 for four single-pump FWM interactions,
and ε6 = ε7 for dual-pump FWM interactions between b̂3 and
â2, as well as between b̂1 and â3, respectively. The interaction
time is denoted as t . Solving Eq. (1), according to the Heisen-
berg equation of motion, the input-output relationship of the
processes can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â1

b̂†
1

b̂†
2

b̂†
3

â2

â3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â10

b̂†
10

b̂†
20

b̂†
30

â20

â30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)
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FIG. 2. The conceptional gain and loss model of hexapartite CFC
structure on the basis of SSP-based FWM processes. Loss1, loss2,
and loss3 emulate three types of losses in atom vapor cell, detectors,
and feedback loop, respectively.

where the matrix element Ai j (i, j = 1, 2, 3, 4, 5, and 6) can
be found in the Appendix. In this CFC structure, a linear beam
splitter (BS) with tunable reflectivity k serves as the feedback
strength controller, which feeds part of the output field back
into the corresponding input port. The created conjugate beam
b̂2 is split into two parts by this BS. One (b̂22) is transmitted
back to the input port of b̂20 and the other (b̂21) is the final
output field, as shown in Fig. 2. The input-output relationship
of the BS controller can be written as

b̂21 = √
1 − kb̂2 +

√
kv̂30,

b̂22 = −
√

kb̂2 + √
1 − kv̂30,

b̂20 = eiφ b̂22, (3)

where k is the reflectivity of the BS, φ is the propagation-
induced phase delay of the feedback path, and v̂30 is the BS-
invited vacuum state. Through Eqs. (2) and (3), the relation
between the six input fields (â10, b̂†

10, v̂†
30, b̂†

30, â20, and â30) and
six output fields (â1, b̂†

1, b̂†
21, b̂†

3, â2, and â3) can be obtained
by eliminating the intermediate operators b̂†

2, b̂†
20, and b̂†

22, and
be restated as ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â1

b̂†
1

b̂†
21

b̂†
3

â2

â3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â10

b̂†
10

v̂
†
30

b̂†
30

â20

â30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where the matrix element Bi j (i, j = 1, 2, 3, . . . , 6) is given in
the Appendix.

In reality, optical loss or imperfect detection efficien-
cies are inevitable; even worse, they undermine multi-
partite quantum correlation and entanglement properties.
Therefore, for practicality, we take the absorption loss in
the atoms, beam transmission loss in the feedback loop,

and detection loss in the detectors into consideration, as
shown in Fig. 2. To simplify calculation, we harness
a BS model to emulate the loss [34] via introducing
a vacuum state into each probe beam and conjugate beam.
The annihilation operators of vacuum states introduced by
the losses from Rb vapor cell absorption are denoted as v̂i

(i = 1, 2, 3, . . . , 6) and that brought in by the feedback path
is tagged as v̂32. Therefore,

â1(t ) →
√

ζ1â1 +
√

1 − ζ1v̂1,

b̂1(t ) →
√

ζ2b̂1 +
√

1 − ζ2v̂2,

b̂2(t ) →
√

ζ3b̂2 +
√

1 − ζ3v̂3,

b̂3(t ) →
√

ζ4b̂3 +
√

1 − ζ4v̂4,

â2(t ) →
√

ζ5â2 +
√

1 − ζ5v̂5,

â3(t ) →
√

ζ6â3 +
√

1 − ζ6v̂6,

b̂22(t ) → √
ηb̂22 +

√
1 − ηv̂32, (5)

where η is the optical propagation efficiency of the feedback
loop, and ζi (i = 1, 2, 3, . . . , 6) is the propagation efficiency
in the Rb vapor cell. Due to the short length of the atomic
vapor cell (≈ 12 mm) and the small angle between each beam
(≈ 8 mrad), the discrepancy in the propagation paths within
the cell is negligible. Consequently, the impact of different
propagation angles on propagation efficiency can be ignored.
However, the different detuning of the three probe beams and
three conjugate beams with respect to the 85Rb D1 line tran-
sition results in different atomic absorption losses. The probe
beams are nearer to the atomic resonance energy level, result-
ing in stronger absorption loss relative to conjugate beams.
Generally, the propagation efficiency of the probe beam is 0.9,
whereas it is 0.95 for the conjugate beam [23]. In this sense,
it can be reasonably approximated that ζ1 = ζ5 = ζ6 = ζa for
the probe beams and ζ2 = ζ3 = ζ4 = ζb for the conjugate
beams. The annihilation operator of the vacuum state given
by the loss from the detector is marked as v̂i (i = 11, 21, 31,
41, 51, and 61). Then

â1(t ) →
√

ξ1â1 +
√

1 − ξ1v̂11,

b̂1(t ) →
√

ξ2b̂1 +
√

1 − ξ2v̂21,

b̂21(t ) →
√

ξ3b̂21 +
√

1 − ξ3v̂31,

b̂3(t ) →
√

ξ4b̂3 +
√

1 − ξ4v̂41,

â2(t ) →
√

ξ5â2 +
√

1 − ξ5v̂51,

â3(t ) →
√

ξ6b̂3 +
√

1 − ξ6v̂61. (6)

Assume that all the detection efficiencies (ξi, i = 1, 2,

3, . . . , 6) each have an equal level ξ . Ultimately, the relation
between the 19 input fields (â10, b̂†

10, v̂
†
30, b̂†

30, â20, â30, v̂1, v̂
†
2,

v̂
†
3 , v̂†

4, v̂5, v̂6, v̂11, v̂†
21, v̂†

31, v̂†
41, v̂51, v̂61, and v̂

†
32) and six output

fields (â1, b̂†
1, b̂†

21, b̂†
3, â2, and â3), via eliminating intermediate
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variables, is presented as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â1

b̂†
1

b̂†
21

b̂†
3

â2

â3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= KcC

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â10

b̂†
10

v̂
†
30

b̂†
30

â20

â30

v̂1

v̂
†
2

v̂
†
3

v̂
†
4

v̂5

v̂6

v̂11

v̂
†
21

v̂
†
31

v̂
†
41

v̂51

v̂61

v̂
†
32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where the coefficient Kc and matrix element Ci j (i = 1, 2,

3, . . . , 6 and j = 1, 2, 3, . . . , 19) are complicated, as shown
in the Appendix.

III. QUANTUM CORRELATION

Now, we focus on the quantum correlation between the
six output fields. For convenience, we label the output probe
beams â1, â2, and â3 of the CFC system as numbers 1, 5, and
6, respectively. Similarly, the output conjugate beams b̂1, b̂21,
and b̂3 are numbered as 2, 3, and 4, respectively. Therefore,
the photon number operators of the six output beams can be
expressed as N̂1 = â†

1â1, N̂2 = b̂†
1b̂1, N̂3 = b̂†

21b̂21, N̂4 = b̂†
3b̂3,

N̂5 = â†
2â2, and N̂6 = â†

3â3, respectively. Hence, the operator
for the photon number sum of the probe and conjugate beams
is

N̂ = N̂1 + N̂2 + N̂3 + N̂4 + N̂5 + N̂6, (8)

and the difference is

Ẑ = N̂1 − N̂2 − N̂3 − N̂4 + N̂5 + N̂6. (9)

The quantum correlation of the six output fields can be
characterized by the degree of the IDS, which can be defined
as the ratio of variance for the intensity-difference photon
number operator of the six output beams to the variance at
the standard quantum limit (SQL). Then the degree of the IDS
(D, in units of dB) can be written as

D123456 = 10 log10
Var(Ẑ )

Var(Ẑ )SQL

= 10 log10
Var(Ẑ )

〈N̂〉 . (10)

Through Eqs. (7)–(10), the D of this CFC system can be
calculated. Subsequently, we can analyze the dependence of
D123456 on the reflectivity k of the BS, phase φ, and FWM
interaction time t .

At first, we set the transmission efficiencies in the vapor
cell ζa = 0.9 and ζb = 0.95, in the feedback loop η = 0.98,
and in the detector ξ = 0.9. The FWM interaction strengths
are set as ε1 = 1, ε2 = 5, and ε6 = 0.4, respectively. Figure 3
describes how the feedback strength k and phase φ affect the
D123456 when interaction time t is set to 0.1, 0.2, and 0.3,
respectively. It is worth noting that the increase in interaction
time t corresponds to increase in pump power in the system.
As shown in Figs. 3(a)–3(c), when the phase φ and feedback
ratio k are set within a suitable range, the value of D123456

is smaller than that of the case with k = 0 (i.e., no feedback),
which indicates that the hexapartite quantum correlation is en-
hanced. However, it can be observed that excessive feedback
leads to the disappearance of hexapartite quantum correlation
enhancement, even the disappearance of hexapartite quantum
correlation. Additionally, as shown in Figs. 3(a)–3(c), the
squeezing enhancement area shrinks with increasing t . This
is because, when D is higher, the whole system will be more
sensitive to loss [35].

Furthermore, the phase introduced by the feedback process
makes the non-phase-sensitive FWM system into a phase-
sensitive one. As shown in Figs. 3(a)–3(c), the minimum of
D123456 is obtained when φ = π before sharp antisqueezing
peaks appear. To verify the reason why minimum occurs at
a phase of π , as shown in Fig. 4, we depict the intensity of
the six output fields (N̂i, i = 1, 2, 3, . . . , 6) of the CFC system
changing with the phase due to the interference effects, and
find that the CFC system obtains the maximum field intensity
gain at φ = π , which is consistent with Ref. [36]. However
vacuum noise v̂30 induced by the controlling BS is also ampli-
fied at this phase.

To analyze the optimal feedback strength, we plot the curve
of D123456 versus reflectivity k when phase is fixed to π , as
shown in Fig. 5(a). For analysis, the giant antisqueezing peaks
as mentioned above and their subsequent curves were omitted
in Fig. 5(b). The traces in different lines represent different
values of t in Figs. 5(a) and 5(b), and the corresponding dotted
horizontal dashed lines represent the feedback-free D123456.

Clearly, there always exists a feedback ratio domain in
which D123456 is reduced, that is, we can adjust reflectivity
to manipulate and even enhance the degree of quantum cor-
relation between the six output beams. Furthermore, there is
always an optimal feedback ratio that maximizes the squeez-
ing under different gain conditions as a result of the balance
between the two mechanisms, feedback gain and the vacuum
noise [24]. In detail, when k is small, the gain mechanism
arising from the feedback of the conjugate beam suppresses
the degradation caused by the vacuum noise from the BS
controller, so the quantum correlation increases as k goes up.
As the growth in k continues, the competition outcome will
be reversed, thus the quantum correlation will decline. At
the competitive equilibrium point, the squeezing enhancement
of hexapartite correlation reaches a maximum of 3.32, 2.47,
and 0.45 dB when k = 0.56, 0.25, and 0.02, respectively, for
the cases of t = 0.1, 0.2, and 0.3, respectively, as shown in
Fig. 5(b).
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FIG. 3. D123456 as a function of feedback ratio k and phase φ is examined when ζa = 0.9, ζb = 0.95, η = 0.98, ξ = 0.9, and interaction
strength ε1 = 1, ε2 = 5, and ε6 = 0.4. (a) The interaction time t = 0.1. The D123456 reaches maximum −5.07 dB when k = 0.56 and φ = π .
(b) The interaction time t = 0.2. The D123456 gets its maximum value of −7.23 dB when k = 0.25 and φ = π . (c) The interaction time t = 0.3.
The maximum of D123456 achieves −7.24 dB when k = 0.02 and φ = π .

In order to better illustrate the relationship between the
correlation enhancement and intensity gain of the system, we
draw the curves of D123456 with intensity gain under the case
without feedback and with feedback, respectively, as shown
in Fig. 6, where the case with feedback takes the minimum
value of D123456 at the corresponding t . Due to the pres-
ence of asymmetric losses in the system, i.e., the disparity in
atomic absorption losses between the probe and the conjugate
beams, D123456 approaches its threshold value of −7.24 dB
as t increases. As can be seen from Fig. 6, the degree of the
correlation enhancement increases first and then decreases,
with a maximum of 3.54 dB at t = 0.14. This is due to the fact
that when the initial nonlinear interaction strength is weak,
i.e., the value of t is small, the feedback effect is predominant,
making the correlation enhancement gradually significant. As
t increases, the D123456 in the absence of feedback becomes
strong, whereas the impact of feedback gradually diminishes
due to the inherent losses within the system.

IV. QUANTUM ENTANGLEMENT

In this section, we turn to investigate the entanglement
characteristics of the CFC system discussed above. A quan-
tum state can be characterized by its amplitude and phase
quadrature operators in the field of continuous variables. We
have derived the relation between the inputs and outputs in
Sec. II. Then the six output beams of this system can be

depicted as

X̂1 = (â1 + â†
1), Ŷ1 = i(â†

1 − â1),

X̂2 = (b̂1 + b̂†
1), Ŷ2 = i(b̂†

1 − b̂1),

X̂3 = (b̂21 + b̂†
21), Ŷ3 = i(b̂†

21 − b̂21),

X̂4 = (b̂3 + b̂†
3), Ŷ4 = i(b̂†

3 − b̂3),

X̂5 = (â2 + â†
2), Ŷ5 = i(â†

2 − â2),

X̂6 = (â3 + â†
3), Ŷ6 = i(â†

3 − â3), (11)

where the amplitude and phase quadrature operators obey
the commutation relation [X̂m, Ŷm] = 2i. The quantum en-
tanglement property of the state can be fully described by
its covariance matrix (CM). The covariance of the ampli-
tude quadrature operator is defined as 〈X̂mX̂n〉 = 〈X̂mX̂n +
X̂nX̂m〉/2 − 〈X̂m〉 〈 X̂n 〉 (m, n = 1, 2, 3, . . . , 6). Similarly, the
covariance of the phase quadrature operator can also be ac-
quired. The CM of this system is equal to⎛

⎜⎜⎜⎜⎜⎜⎝

〈
X̂ 2

1

〉 〈X̂1X̂2〉 · · · 0 0

〈X̂2X̂1〉
〈
X̂ 2

2

〉 · · · 0 0
...

...
. . .

...
...

0 0 · · · 〈
Ŷ 2

5

〉 〈Ŷ5Ŷ6〉
0 0 · · · 〈Ŷ6Ŷ5〉

〈
Ŷ 2

6

〉

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

where 〈X̂mŶn〉 = 0 (m, n = 1, 2, 3, . . . , 6).

FIG. 4. Intensity of six output fields is plotted as a function of phase φ when feedback ratio k = 0.56, interaction time t = 0.1, ζa = 0.9,
ζb = 0.95, η = 0.98, ξ = 0.9, and interaction strength ε1 = 1, ε2 = 5, and ε6 = 0.4. (a) The intensity of â1 and b̂2. (b) The intensity of â2 and
b̂1. (c) The intensity of â3 and b̂3.
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FIG. 5. (a) The value of D123456 varies with the feedback strength
k and interaction time t when the phase is set to π , ζa = 0.9,
ζb = 0.95, η = 0.98, ξ = 0.9, ε1 = 1, ε2 =5, and ε6 = 0.4. (b) A
partial magnified view of (a). The dotted horizontal lines represent
the values of D123456 without feedback.

The PPT criterion [29–31] is a sufficient criterion to
characterize multipartite entanglement. If all the smallest
symplectic eigenvalues of the transposed CMs of a whole
system are smaller than 1, it indicates the existence of mul-
tipartite entanglement in this system. For a N-partite state,
we need to confirm 2N−1 − 1 possible bipartitions. There are
three types of possible partial transposed (PT) operations of
1×5, 2×4, and 3×3 for the hexapartite state generated by
the CFC SSP-based FWM processes, and the total number
of bipartitions is 31. As mentioned earlier, if the smallest
symplectic eigenvalues of the 31 bipartitions are all less than
1, it can be proven that the system produces a fully hexapartite
entangled state. Moreover, the smaller the smallest symplectic
eigenvalue, the stronger the entanglement [37]. Next, we still
set ζa = 0.9, ζb = 0.95, η = 0.98, ξ = 0.9, ε1 = 1, ε2 = 5,
ε6 = 0.4, and t = 0.1 to investigate the smallest symplectic
eigenvalues as a function of phase and reflectivity under the
loss for all of the 31 bipartitions.

First, when applying PT operation to one beam, the results
are shown in Fig. 7. Six 1×5 bipartitions

â1 | (b̂1, b̂21, b̂3, â2, â3), b̂1 | (â1, b̂21, b̂3, â2, â3),
b̂21 | (â1, b̂1, b̂3, â2, â3), b̂3 | (â1, b̂1, b̂21, â2, â3),
â2 | (â1, b̂1, b̂21, b̂3, â3), and â3 | (â1, b̂1, b̂21, b̂3, â2)
are depicted in Figs. 7(a)–7(f), respectively. The value on

each contour represents the smallest symplectic eigenvalue. It
can be concluded that all the six 1×5 bipartitions are fully
inseparable with the increasing reflectivity and phase, as the
smallest symplectic eigenvalues are all smaller than 1. More-
over, as drawn in Fig. 7(a), with the circumstance of φ =
π , the entanglement between â1 and (b̂1, b̂21, b̂3, â2, â3) is
significantly enhanced when the reflectivity is between 0.3
and 0.9 compared to the case without feedback. As shown

FIG. 6. The evolution of D123456 with interaction time t for both
scenarios without feedback (solid line) and with feedback (dashed
line) when the phase is set to π , ζa = 0.9, ζb = 0.95, η = 0.98, ξ =
0.9, ε1 = 1, ε2 =5, and ε6 = 0.4.

in Fig. 7(c), the similar situation can also be seen between
b̂21 and (â1, b̂1, b̂3, â2, â3). In addition, as shown in Figs. 7(e)
and 7(f), when φ = π and k is in the range of 0.3–0.8, there
is also a clear entanglement enhancement in corresponding
bipartitions. However, when phase is equal to π , the entan-
glement between b̂1 and (â1, b̂21, b̂3, â2, â3) is weakened as
the reflectivity increases compared to the no-feedback case,
as shown in Fig. 7(b). A similar case occurs between b̂3 and
(â1, b̂1, b̂21, â2, â3), as shown in Fig. 7(d).

Second, when the PT operation is employed in two beams,
15 2×4 bipartitions

(â1, b̂1) | (b̂21, b̂3, â2, â3), (â1, b̂21) | (b̂1, b̂3, â2, â3),
(â1, b̂3) | (b̂1, b̂21, â2, â3), (â1, â2) | (b̂1, b̂21, b̂3, â3),
(â1, â3) | (b̂1, b̂21, b̂3, â2), (b̂1, b̂21) | (â1, b̂3, â2, â3),
(b̂1, b̂3) | (â1, b̂21, â2, â3), (b̂1, â2) | (â1, b̂21, b̂3, â3),
(b̂1, â3) | (â1, b̂21, b̂3, â2), (b̂21, b̂3) | (â1, b̂1, â2, â3),
(b̂21, â2) | (â1, b̂1, b̂3, â3), (b̂21, â3) | (â1, b̂1, b̂3, â2),
(b̂3, â2) | (â1, b̂1, b̂21, â3), (b̂3, â3) | (â1, b̂1, b̂21, â2),

and (â2, â3) | (â1, b̂1, b̂21, b̂3) are depicted in Figs. 8(a)–8(o),
respectively. When phase is set to π and reflectivity is in
the range of 0.4–0.75, there still exists obvious entangle-
ment enhancement, as shown in Figs. 8(a)–8(f) and 8(h)–8(o).
However, under the same condition, the entanglement be-
tween (b̂1, b̂3) and (â1, b̂21, â2, â3) is weakened, as shown in
Fig. 8(g).

Finally, the PT operation is utilized in three beams. The
corresponding ten 3×3 bipartitions

(â1, b̂1, b̂21) | (b̂3, â2, â3), (â1, b̂1, b̂3) | (b̂21, â2, â3),
(â1, b̂1, â2) | (b̂21, b̂3, â3), (â1, b̂1, â3) | (b̂21, b̂3, â2),
(â1, b̂21, b̂3) | (b̂1, â2, â3), (â1, b̂21, â2) | (b̂1, b̂3, â3),
(â1, b̂21, â3) | (b̂1, b̂3, â2), (â1, b̂3, â2) | (b̂1, b̂21, â3),
(â1, b̂3, â3) | (b̂1, b̂21, â2), and (â1, â2, â3) | (b̂1, b̂21, b̂3)

are depicted in Figs. 9(a)–9(j), respectively. Entanglement
enhancement is witnessed in all 3×3 bipartitions when phase
is equal to π and reflectivity is in the range of 0.55–0.75.

Based on the above analysis, we can see that all of the
31 possible bipartitions are still entangled after feedback
and the entanglement structure characterized by the symplec-
tic eigenvalues can be tailored by adjusting reflectivity and
phase. In our feedback structure, the output conjugate beam
b̂2 from the FWM processes is partially transmitted back
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FIG. 7. Corresponding smallest symplectic eigenvalues of all the six 1×5 bipartitions varying with phase and reflectivity: (a) â1 |
(b̂1, b̂21, b̂3, â2, â3), (b) b̂1 | (â1, b̂21, b̂3, â2, â3), (c) b̂21 | (â1, b̂1, b̂3, â2, â3), (d) b̂3 | (â1, b̂1, b̂21, â2, â3), (e) â2 | (â1, b̂1, b̂21, b̂3, â3), and (f)
â3 | (â1, b̂1, b̂21, b̂3, â2).

into the original FWM vacuum input port, which results in
the enhancement of entanglement between b̂21 and the other
five output beams within the suitable reflectivity and phase
range. However, for the other two conjugate beams b̂1 and
b̂3, entanglement is weakened beneath the same conditions,
as shown in Figs. 7(b), 7(d), and 8(g), corresponding to three
bipartitions: b̂1 | (â1, b̂21, b̂3, â2, â3), b̂3 | (â1, b̂1, b̂21, â2, â3),
and (b̂1, b̂3) | (â1, b̂21, â2, â3). For the three special cases, the
smallest symplectic eigenvalues keep increasing with k when
phase is set to π . Except for the above bipartitions, in the
other 28 bipartitions, with k rising, the smallest symplectic
eigenvalues first decrease and then increase when φ equals to
π . Moreover, when φ = π , and k is in the range of 0.55–0.75,
the smallest symplectic eigenvalue takes the minimum; that is,
under this condition, entanglement between these bipartitions
can be enhanced.

V. CONCLUSIONS

We have theoretically proposed a hexapartite CFC struc-
ture with SSP-based FWM processes by utilizing a BS with
tunable reflectivity k as the feedback controller and char-
acterized the quantum correlation and entanglement of the
hexapartite states under three different kinds of losses. In our
configuration, one of the conjugate beams generated from
the SSP-based FWM processes is partially transmitted back
into the corresponding original vacuum conjugate input port
via the BS controller. We find that in a proper BS reflec-

tivity range, the degree of hexapartite quantum correlation
can be considerably improved when phase induced by the
feedback loop is equal to π . Furthermore, as the intensity
gain increases, the IDS enhancement increases first and then
decreases. Further enhancement of the squeezing is possible
by imputing a squeezed vacuum state at the v̂30 port [38].
In addition, entanglement of the hexapartite state can also be
tailored by manipulating phase and BS reflectivity. Our paper
paves the way for experimental implementation of CFC-based
manipulation of multipartite entangled states for practical
applications.
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FIG. 8. Smallest symplectic eigenvalues of partially transposed CMs for all 15 2×4 bipartitions are plotted as a function of φ

and k: (a) (â1, b̂1) | (b̂21, b̂3, â2, â3), (b) (â1, b̂21) | (b̂1, b̂3, â2, â3), (c) (â1, b̂3) | (b̂1, b̂21, â2, â3), (d) (â1, â2) | (b̂1, b̂21, b̂3, â3), (e) (â1, â3) |
(b̂1, b̂21, b̂3, â2), (f) (b̂1, b̂21) | (â1, b̂3, â2, â3), (g) (b̂1, b̂3) | (â1, b̂21, â2, â3), (h) (b̂1, â2) | (â1, b̂21, b̂3, â3), (i) (b̂1, â3) | (â1, b̂21, b̂3, â2),
(j) (b̂21, b̂3) | (â1, b̂1, â3, â2), (k) (b̂21, â2) | (â1, b̂1, b̂3, â3), (l) (b̂21, â3) | (â1, b̂1, b̂3, â2), (m) (b̂3, â2) | (â1, b̂1, b̂21, â3), (n) (b̂3, â3) |
(â1, b̂1, b̂21, â2), and (o) (â2, â3) | (â1, b̂1, b̂21, b̂3).
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APPENDIX: MATRIX ELEMENTS OF A, B, AND C

The input-output relationship of the SSP-based FWM pro-
cesses can be written as Eq. (2) and the matrix element Ai j
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FIG. 9. Corresponding smallest symplectic eigenvalues of all the ten 3 × 3 bipartitions varying with the value of phase and reflec-
tivity, respectively: (a) (â1, b̂1, b̂21) | (b̂3, â2, â3), (b) (â1, b̂1, b̂3) | (b̂21, â2, â3), (c) (â1, b̂1, â2) | (b̂21, b̂3, â3), (d) (â1, b̂1, â3) | (b̂21, b̂3, â2),
(e) (â1, b̂21, b̂3) | (b̂1, â2, â3), (f) (â1, b̂21, â2) | (b̂1, b̂3, â3), (g) (â1, b̂21, â3) | (b̂1, b̂3, â2), (h) (â1, b̂3, â2) | (b̂1, b̂21, â3), (i) (â1, b̂3, â3) |
(b̂1, b̂21, â2), and (j) (â1, â2, â3) | (b̂1, b̂21, b̂3).

is as follows:

A11 = 1

2θ
[(θ − β ) cosh(θ − α)t + (β + θ ) cosh(α + θ )t],

A12 = 1

4θε1
(θ2 − β2)[sinh(θ − α)t + sinh(α + θ )t],

A13 = 1

2θ
[(β − θ ) sinh(θ − α)t + (β + θ ) sinh(θ + α)t], A14 = A12,

A15 = 1

4θε1
(β2 − θ2)[cosh(θ − α)t − cosh(α + θ )t], A16 = A15,

A21 = ε1

2θ
[sinh(θ − α)t + sinh(α + θ )t],

A22 = 1

4θ
[(β + θ ) cosh(θ − α)t + (θ − β ) cosh(α + θ )t + 2θ cosh ε6t],

A23 = ε1

2θ
[cosh(α − θ )t + cosh(α + θ )t],
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A24 = 1

4θ
[(β + θ ) cosh(θ − α)t + (θ − β ) cosh(α + θ )t − 2θ cosh ε6t],

A25 = 1

4θ
[(β + θ ) sinh(α − θ )t + (θ − β ) sinh(α + θ )t − 2θ sinh ε6t],

A26 = 1

4θ
[(β + θ ) sinh(α − θ )t + (θ − β ) sinh(α + θ )t + 2θ sinh ε6t],

A31 = A13, A32 = A15, A33 = A11, A34 = A15, A35 = A36 = A12,

A41 = A21, A42 = A24, A43 = A23, A44 = A22, A45 = A26, A46 = A25,

A51 = A23, A52 = A25, A53 = A21, A54 = A26, A55 = A22, A56 = A24,

A61 = A23, A62 = A26, A63 = A21, A64 = A25, A65 = A24, A66 = A22, (A1)

where

α = (ε2 + ε6)/2,

β = (ε2 − ε6)/2,

θ =
√

2ε2
1 + β2. (A2)

The relation between inputs and outputs of the CFC system can be restated as Eq. (4). The detailed matrix element Bi j is as
follows:

B11 = 1

2θ

2eiφθ [β + θ coth(tα) coth(tθ )] + √
k[β2 + θ2 − (β2 − θ2) cosh(2tθ )] csch(tα) csch(tθ )√

k[β + θ coth(tα) coth(tθ )] + eiφθ csch(tα) csch(tθ )
,

B12 = − 1

2ε1

(β2 − θ2)[eiφ cosh(tα) + √
k cosh(tθ )] csch(tα)√

k[β + θ coth(tα) coth(tθ )] + eiφθ csch(tα) csch(tθ )
,

B13 =
√

1 − k[β coth(tα) + θ coth(tθ )]√
k[β + θ coth(tα) coth(tθ )] + eiφθ csch(tα) csch(tθ )

, B14 = B12,

B15 = 1

2ε1θ

(β2 − θ2)[−eiφθ + √
kβ csch(tα) sinh(tθ )]√

k[β + θ coth(tα) coth(tθ )] + eiφθ csch(tα) csch(tθ )
, B16 = B15,

B21 = ε1[cosh(tα) + e−iφ
√

k cosh(tθ )] sinh(tθ )

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
,

B22 = 1

4

{
2θ [cosh(ε6t ) + cosh(tα) cosh(tθ )] − 2β sinh(tα) sinh(tθ )

+e−iφ
√

k{θ cosh(2tα) + θ cosh(2tθ ) + 2 cosh(ε6t )[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]}
}

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
,

B23 = ε1e−iφ
√

1 − k sinh(tα) sinh(tθ )

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
,

B24 = 1

4

{ −2[θ cosh(ε6t ) − θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
+e−iφ

√
k{θ cosh(2tα) + θ cosh(2tθ ) − 2 cosh(ε6t )[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]}

}
θ + e−iφ

√
k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]

,

B25 = 1

2

{ −θ sinh(ε6t ) + θ cosh(tθ ) sinh(tα) − β cosh(tα) sinh(tθ )
+e−iφ

√
k{θ cosh(tα)[− cosh(tθ ) sinh(ε6t ) + sinh(tα)] − β[cosh(tθ ) + sinh(ε6t ) sinh(tα)] sinh(tθ )}

}
θ + e−iφ

√
k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]

,

B26 = 1

2

{
θ sinh(ε6t ) + θ cosh(tθ ) sinh(tα) − β cosh(tα) sinh(tθ )

+e−iφ
√

k{θ cosh(tα)[cosh(tθ ) sinh(ε6t ) + sinh(tα)] + β[− cosh(tθ ) + sinh(ε6t ) sinh(tα)] sinh(tθ )}
}

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
,

B31 =
√

1 − k[θ cosh(tθ ) sinh(tα) + β cosh(tα) sinh(tθ )]

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
,

B32 = 1

2ε1

−√
1 − k(β2 − θ2) sinh(tα) sinh(tθ )

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
,
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B33 =
√

kθ + e−iφ[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
, B34 = B32, B35 = B32

cosh(tα)

sinh(tα)
, B36 = B35,

B41 = B21, B42 = B24, B43 = B23, B44 = B22, B45 = B26, B46 = B25,

B51 = 1

θ

ε1 sinh(tθ )[θ sinh(tα) − e−iφ
√

kβ sinh(tθ )]

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
, B52 = B25, B53 = B23

cosh(tα)

sinh(tα)
, B54 = B26,

B55 = 1

4θ

{
2θ [θ cosh(ε6t ) + θ cosh(tα) cosh(tθ ) − β sinh(tα) sinh(tθ )]

+e−iφ
√

k{−β2 + θ2 + θ2 cosh(2tα) + β2 cosh(2tθ ) + 2θ cosh(ε6t )[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]}
}

θ + e−iφ
√

k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
,

B56 = 1

4θ

{ −2θ [θ cosh(ε6t ) − θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
+e−iφ

√
k{−β2 + θ2 + θ2 cosh(2tα) + β2 cosh(2tθ ) − 2θ cosh(ε6t )[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]}

}
θ + e−iφ

√
k[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]

,

B61 = B51, B62 = B26, B63 = B53, B64 = B25, B65 = B56, B66 = B55. (A3)

The ultimate relation between the 19 input fields (â10, b̂†
10, v̂†

30, b̂†
30, â20, â30, v̂1, v̂†

2, v̂†
3, v̂†

4, v̂5, v̂6, v̂11, v̂†
21, v̂†

31, v̂†
41, v̂51, and v̂61)

and six output fields (â1, b̂†
1, b̂†

21, b̂†
3, â2, and â3) in Sec. II is shown as Eq. (7). The coefficient

Kc =
√

ξ

θ + e−iφ
√

ηkζb[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]
.

The detailed matrix element Ci j is as follows:

C11 =
√

ζa

{√
ηkζbe−iφ[θ2 cosh2(θt ) − β2 sinh2(θt )]

θ
+ θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)

}
,

C12 =
√

ζa(β2 − θ2)[−2 sinh(θt ) cosh(tα) − √
ηkζbe−iφ sinh(2θt )]

4ε1
,

C13 =
√

η(1 − k)ζae−iφ[θ cosh(θt ) sinh(tα) + β sinh(θt ) cosh(tα)], C14 = C12,

C15 = C16 =
√

ζae−iφ (β2 − θ2) sinh(θt )[
√

ηkζbβ sinh(θt ) − θeiφ sinh(tα)]

2ε1θ
,

C17 =
√

1 − ζa{
√

ηkζbe−iφ[θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)] + θ},

C18 = 0, C19 = −C13

√
(1 − ζb)k√

1 − k
, C110 = C111 = C112 = 0,

C113 =
√

1 − ξ√
ξ

{θ + e−iφ
√

ηkζb[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]},

C114 = C115 = C116 = C117 = C118 = 0, C119 = C13

√
1 − η√

η(1 − k)
,

C21 = ε1

√
ζb sinh(θt )[cosh(tα) +

√
ηkζbe−iφ cosh(θt )],

C22 =
√

ζb

4

{
2[θ cosh(ε6t ) + θ cosh(θt ) cosh(tα) − β sinh(θt ) sinh(tα)]

+√
ηkζbe−iφ{2 cosh(ε6t )[θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)] + θ cosh(2θt ) + θ cosh(2tα)}

}
,

C23 = ε1

√
η(1 − k)ζbe−iφ sinh(θt ) sinh(tα),

C24 =
√

ζb

4

{ −2[θ cosh(ε6t ) − θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)]
+√

ηkζbe−iφ{−2 cosh(ε6t )[θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)] + θ cosh(2θt ) + θ cosh(2tα)}
}
,

C25 =
√

ζb

4

{ −2[θ sinh(ε6t ) − θ cosh(θt ) sinh(tα) + β sinh(θt ) cosh(tα)] −√
ηkζbe−iφ{2θ sinh(ε6t ) cosh(θt ) cosh(tα) + β[2 sinh(ε6t ) sinh(θt ) sinh(tα) + sinh(2θt )] − θ sinh(2tα)}

}
,

C26 =
√

ζb

4

{
2[θ sinh(ε6t ) + θ cosh(θt ) sinh(tα) − β sinh(θt ) cosh(tα)] +√

ηkζbe−iφ{2θ sinh(ε6t ) cosh(θt ) cosh(tα) + β[2 sinh(ε6t ) sinh(θt ) sinh(tα) − sinh(2θt )] + θ sinh(2tα)}
}
,

C27 = 0, C28 =
√

(1 − ζb){θ + e−iφ
√

ηkζb[θ cosh(tα) cosh(tθ ) + β sinh(tα) sinh(tθ )]},
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C29 = −C23

√
(1 − ζb)k√

1 − k
, C210 = C211 = C212 = C213 = 0,

C214 = C113, C215 = C216 = C217 = C218 = 0, C219 = C23

√
1 − η√

η(1 − k)
,

C31 =
√

(1 − k)ζb[θ cosh(θt ) sinh(tα) + β sinh(θt ) cosh(tα)], C32 = C23
eiφ (−β2 + θ2)

2ε2
1
√

η
,

C33 = θ
√

k +
√

ηζbe−iφ[θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)],

C34 = C32, C35 = C32 coth(tα), C36 = C35, C37 = C38 = 0,

C39 = θ
√

(1 − k)(1 − ζb), C310 = C311 = C312 = C313 = C314 = 0, C315 = C113, C316 = C317 = C318 = 0,

C319 =
√

(1 − η)(1 − k)ζbe−iφ[θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)],

C41 = C21, C42 = C24, C43 = C23, C44 = C22, C45 = C26, C46 = C25, C47 = C48 = 0, C49 = C29, C410 = C28,

C411 = C412 = C413 = C414 = C415 = 0, C416 = C113, C417 = C418 = 0, C419 = C219,

C51 = ε1

√
ζa sinh(θt )

[
sinh(tα) −

√
ηkζbβe−iφ sinh(θt )

θ

]
,

C52 =
√

ζa

2

{ −[θ sinh(ε6t ) − θ cosh(θt ) sinh(tα) + β sinh(θt ) cosh(tα)] −√
ηkζbe−iφ{θ cosh(tα)[sinh(ε6t ) cosh(θt ) − sinh(tα)] + β sinh(θt )[sinh(ε6t ) sinh(tα) + cosh(θt )]}

}
,

C53 = C23

√
ζa√
ζb

coth(tα),

C54 =
√

ζa

4

{
2θ [sinh(ε6t ) + cosh(θt ) sinh(tα)] − 2β sinh(θt ) cosh(tα) +√

ηkζbe−iφ[2θ sinh(ε6t ) cosh(θt ) cosh(tα) + 2β sinh(ε6t ) sinh(θt ) sinh(tα) + θ sinh(2tα) − β sinh(2θt )]

}
,

C55 =
√

ζa

4θ

{
2θ2[cosh(ε6t ) + cosh(θt ) cosh(tα)] − 2βθ sinh(θt ) sinh(tα) +√

ηkζbe−iφ{2θ cosh(ε6t )[θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)] + θ2[1 + cosh(2tα)] + β2[cosh(2θt ) − 1]}
}
,

C56 =
√

ζa

4θ

{ −2θ2[cosh(ε6t ) − cosh(θt ) cosh(tα)] + 2βθ sinh(θt ) sinh(tα) −√
ηkζbe−iφ{2θ cosh(ε6t )[θ cosh(θt ) cosh(tα) + β sinh(θt ) sinh(tα)] − θ2[1 + cosh(2tα)] − β2[cosh(2θt ) − 1]}

}
,

C57 = C58 = 0, C59 = C29

√
ζa√
ζb

coth(tα), C510 = 0, C511 = C17, C512 = C513 = C514 = C515 = C516 = 0,

C517 = C113, C518 = 0, C519 = C219

√
ζa√
ζa

coth(tα),

C61 = C51, C62 = C54, C63 = C53, C64 = C52, C65 = C56, C66 = C55, C67 = C68 = 0, C69 = C59,

C610 = C611 = 0, C612 = C17, C613 = C614 = C615 = C616 = C617 = 0, C618 = C113, C619 = C519, (A4)

where α, β, and θ are defined as Eq. (A2).
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