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Beating one bit of communication with quantum correlations in smaller dimensions
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As a consequence of Bell’s theorem, the statistics of measurements on some entangled states cannot be
simulated with local hidden variables alone. The amount of communication that must be supplied is an intuitive
quantifier of nonclassicality. While it is obvious that this amount can be very large in general, it has been
surprisingly difficult to find simple examples of quantum correlations, whose simulation requires more than
one bit of communication. In this paper, we report the simplest example to date, which lives in the (5,2,5,5)
Bell scenario [the previously known smallest case living in the (7,3,16,16) scenario]. The proof is built on the
observation that finding the largest 1-bit score is equivalent to finding the bipartition of the inputs, in which the

sum of the local scores of the two subgames is maximal.
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I. INTRODUCTION

Since Bell’s seminal theorem, we have known that the
correlations made by some quantum systems cannot be re-
produced solely with local hidden variables (LHVs) [1,2].
Consequently, some have started asking how powerful are
these quantum correlations in contrast to LHVs, and compared
to one another. One way to phrase this question is to ask how
many additional resources are needed to supplement LHVs in
order to simulate these quantum correlations. Some have in-
vestigated the case for nonlocal boxes [3-5], but one resource
that is most intuitive is classical communication, which we
will be focusing on in this paper.

Some work has been done on the average amount of com-
munication needed to simulate the entanglement of a system
of a generic dimension [6-9]. On the other hand, going to a
small, finite dimension, a substantial body of literature has
been written on what could and could not be simulated with
just a single bit of classical communication (1 bit). For two
qubits, 1 bit is provably enough to simulate all the statistics
of the maximally entangled state [6,10-13] and of a whole
range of weakly entangled states [14]; there is numerical ev-
idence supporting the conjecture that all two-qubit states can
be simulated with just 1 bit [15]. Of course, the correlations
achievable with LHVs supplemented by one bit go beyond
two-qubit quantum correlations [16].

Conversely, some have tried to search for a correlation
that could not be simulated by 1 bit. These correlations, or
behaviors, can be sought for in Bell scenarios with m4,/p inputs
and o,4,p outputs for Alice/Bob, denoted (my4, mp, 04, 0p). In
a typical problem in Bell nonlocality, we are usually only
interested in the local set, which forms a polytope in the
full probability space, and the quantum set, which due to the
no-signaling constraint both lie in a subspace of the full prob-
ability space called the no-signaling space. In our problem,
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the set of 1-bit correlations also forms a polytope, akin to
the local set, but obviously includes signaling behaviors and
thus spans outside the no-signaling space. The real dimension
of this full probability space, which we will call the prob-
ability dimension, is given by mamposop [17]. Some have
characterized these polytopes in the simplest scenarios, i.e., up
to (3,3,2,2), and found no violation by quantum correlations
[18-20]. For larger scenarios, the task becomes computation-
ally unfeasible. Using a different technique, Vértesi and Bene
found a quantum correlation that is not simulatable with 1
bit, although it requires an infinite number of settings [21].
Eventually, just recently, Marton et al. found examples of
quantum correlations that are not simulatable with 1 bit in
finite scenarios [22]. Their constructions are based on par-
allel repetition. The smallest scenario in which they found
examples are (7,3,16,16) (probability dimension 5376) for
fixed-directional communication, and (7,7,16,16) (probabil-
ity dimension 12 544) or (63,63,2,2) (probability dimension
15 876) for bidirectional communication. In this paper, we
will present an example of a quantum correlation that is not
simulatable with 1 bit for fixed directional communication,
in the (5,2,5,5) scenario (probability dimension 250). The
statistics of interest can be generated by suitable mea-
surements on the maximally entangled state of two five-
dimensional systems. This comes within the range of chal-
lenging but feasible experimental demonstrations [23-39].

The paper is structured as follows. In Sec. I we will first
present a method to find the 1-bit bound that is faster than
a brute force approach. In Sec. III we will present our Bell
inequality and the corresponding correlation that lies outside
the 1-bit polytope.

II. BELL INEQUALITIES FOR ONE BIT
OF COMMUNICATION

A. Defining the 1-bit polytope
Let us call the local set £, the quantum set Q, and the set

of 1-bit communication strategies £. Similar to £, £, is
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also a polytope, but one that spans outside the no-signaling
space. Since it is a polytope, the maximum value of a linear
inequality achieved by the set must be given by at least one of
its extremum points. This simplifies the problem of finding the
1-bit bound into finding the extremum point which maximizes
the inequality.

Now let us call the set of inputs of Alice (Bob) as X ()))
with size my (mp) and her (his) outputs A (B) with size o
(o). The specific scenario of a game or inequality is de-
noted by the (my, mp, 04, op) notation. In the usual studies of
Bell nonlocality, the nonsignaling constraints on L effectively
reduce the dimension of the probability space under study
to my(oa — 1)mg(og — 1) + ma(0q — 1) + mp(op — 1) [40].
The polytope £ |, however, is not restricted by this constraint:
We must work in the full probability space of dimension
MANMBOAOR.

After receiving her input, Alice has o}}* possible deter-
ministic strategies. She then has (2"+~1 — 1) deterministic
communication strategies. This number is given by Stirling’s
number of the second kind, which gives the number of ways
to partition a set into a fixed number of subsets. Finally,
Bob has o%f”g possible deterministic strategies, where the two
come from Alice’s bit of communication. This number can be
reduced as there are duplicates, with the final number being

I oy + (m=t — 1)(0%]"3 — "))

The number of extremum points grows very quickly with
dimensions and direct facet enumeration is practically im-
possible once we go to (3,3,2,2), where some ingenious
techniques are needed to enumerate the facets [20]. However,
if we are given a Bell inequality, we could still find its 1-bit
bound by calculating the value of the Bell inequality on all
the extremum points using brute force. Once we go above 20
million points or so, however, which is reached in (4,3,4,4),
this also starts becoming unwieldy. This problem can be cir-
cumvented by noting that in order to find the maximum 1-bit
bound of a Bell inequality, we do not need to find the value of
the Bell inequality of every single extremum point of £ ;.

B. A faster computation for the 1-bit bound

A behavior in a given scenario is given by a set of proba-
bilities p(a, b|x, y) for all a, b, x, y, which can be written as a

J

vector. Similarly, a Bell inequality is given by a set of coeffi-
cients V(a, b|x, y) for all a, b, x, y, which can also be written
as a vector. As mentioned, the maximum score achieved by a
polytope is obtained by at least one of its extremum points.
Thus, the task of finding the 1-bit bound of a given Bell
inequality B can be written as

max B-p,
PelPe,,.p}

(D

where {p.,, p} is the set of extremum points of £,;. Each
of the extremum points corresponds to a deterministic strat-
egy. For each point, the output functions of Alice and Bob
are given by A(x) = 87« and B(y, ¢) = 84(),),»» While the
communication function is given by C(x) = p).c, for some
assignment functions f, g, h that assign one value a, b, ¢ to
every input combination.

In a deterministic 1-bit communication strategy, Alice de-
terministically sends a 0 or 1 to Bob depending on her input.
This means that Alice and Bob have agreed on partitioning
Alice’s inputs in two sets,

J = {x € X|C(x) =0}, 2)
and its complement X' /7. When we consider the partitioned
substrategies, they are local, as we have used the bit of
communication. Thus, all deterministic 1-bit communication
strategies can be decomposed into two local parts,

~X/TJ
p[///A'D 5

Peap=p2p® 3)
where @ is the direct addition, £’ is the local polytope in the
smaller scenario of (|J|, mg, 04, 0p), and similarly for L£”.
The two substrategies are local in their respective partitions
and thus are extremum points of the local polytope in the
smaller scenarios. Similarly, we can also partition B into two:
B=B7 ®B*7. 4)
With these in mind, we can rewrite Eq. (1) in the following
way:

Felpey o Bp= A<x>,z%?c)§,cu>§ PLap
- A(x),l%)e,ch),C(x)(E @B (ﬁg’,D ® ﬁg,/g)
= o1 o (B B0 + (B 5]
—max [ (B p)+ max (B9 | )

In the first equality, we rewrite the maximization variables to
be the strategies of the parties. In the second equality, we use
Egs. (3) and (4). In the third equality, we partition the Bell
vector along J and use the distributive property of the dot

(

product and the direct sum. In the final equality, we note that
the two terms are independent of each other, i.e., the local
strategy of the first subinequality does not affect the score of
the second subinequality. Thus, for a given partition 7, we
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can split the maximization into two terms. Here, we write A’
and A” the strategies of Alice to denote that they are defined
on the domain of the partitioned input sets. We can now also
assign a value to the ¢ in the input arguments of B since ¢ has
a fixed value in each of the partitions as defined by Eq. (2).

For a more intuitive description, consider that for a given
Bell game, a deterministic bit of communication allows the
parties to effectively partition the game into two: one where
her input falls in 7, and one where it does not. When she sends
the bit to Bob, Bob now knows which partition of the game
her input is in. In each of these partitions, they now play a
normal Bell game. These two local strategies of the subgames
do not interact with each other, since the strategy in the first
subgame does not affect how they play and how they score
in the second subgame. Thus, a 1-bit strategy is optimum in
the total Bell game if and only if its substrategies are also
optimum in the subgames. Thus, in order to find the maximum
1-bit strategy, one needs only to maximize the two subgames
using local deterministic strategies, for all the possible ways
to partition the Bell game into two subgames.

This rewritten maximization can be run faster than the
original form since finding the local bound of a game is a
relatively fast task compared to enumerating over all 1-bit
deterministic strategies. This speedup comes from the fact that
when we rewrite this optimization, we skip over the extremum
points which are not optimum in the partitioned subgames
defined by the communication strategies. However, note that
the result of the optimization is still analytically exact, and this
allows us to find the exact 1-bit bound in higher dimensions,
which will be useful for the next sections.

III. FINDING QUANTUM CORRELATIONS THAT
VIOLATE L,

A. Five (and beyond)-dimensional Bell-like inequalities for £,

Our Bell inequality is a generalization of a previous cor-
relation found in Ref. [15] to the (5,2,5,5) scenario, shown in
Table I. This game is a truncated version of the XOR-d games
for d = 5 [41-43]. Up to some relabeling, the XOR-d games
can be written as

d—1
Z,(P) = Z [a — b = xy mod d]P(a, b|x, y),

a,b,x,y

(6)

where [-] is the Iverson bracket, which evaluates to 1 when
the expression inside is true and O otherwise. While a, b, x, y
usually runs from {0, 1,...,d — 1}, here we truncate b to
{0, 1}.

This Bell inequality has local bound Sy =6 and no-
signaling bound Syss = 10. More importantly, the 1-bit bound
is Sz, =7 while the quantum bound is in the range of
71777 < So < 7.1788, where the lower bound is obtained
by an explicit example and the upper bound by the NPA hi-
erarchy [44]. The NPA hierarchy gives a series of relaxations
of Q that approaches Q as the level gets higher and higher.
Our upper bound is obtained by the level 1+AB NPA hierar-
chy that is implemented with Ref. [45]. The total dimension
of the probability space of this scenario is 250, signifying
an improvement from the previously reported smallest ex-
ample for fixed directional communication: The (truncated,
asymmetrized) two magic squares found in Ref. [22] by the

TABLE I. The coefficients of the Bell inequality in (5,2,5,5). The
table is written in full probability notation with the dots denoting ze-
ros. The polytope bounds are S = 6 and S, = 7. The maximally
entangled bipartite five-dimensional states violate this with at least a
score of Sg = 7.1777.

y=1 y=2
x=1 1 . 1
1 1 .
1 . 1
1 . . 1
1 . 1
x=2 1 1 .
1 1 .
1 1 .
1 . 1
1 1
x=3 1 1 .
1 1 .
1 . 1
1 . 1 .
1 1
x=4 1 . 1
1 . . 1
1 . 1
1 . 1
1 . 1
x=5 1 . 1
1 . . 1
1 . . 1
1 . 1

method of parallel repetition feature a total dimension of
5376.

This can be further generalized to higher d. For ex-
ample, the d = 6 case in (6,2,6,6) yields S =7, S.,, =
8, and Sys = 12. The maximally entangled bipartite six-
dimensional states violate this with a score of 8.3173 < Sg <
8.3693 (level 1+AB NPA). In general, for a (d, 2, d, d) sce-
nario, Sy =d +1,8,,, =d +2,and Sys = 2d.

B. Violating the inequality with quantum mechanics

The lower bounds of Sg were obtained by numerical opti-
mization using MATLAB, which gave us the violating quantum
correlations. All were obtained by fixing the state to the max-
imally entangled state,

1 d—1
W) =— ) i),
W) ﬁ;m)

where d is the dimension of the output. The corresponding
measurements are obtained numerically (link attached at the
end), but we can still infer some patterns. Note that due to
the nonlinear and heuristic nature of the optimization, the
precision and optimality of the resulting measurements are
significantly limited. In the following inferences we will use
the symbol >~ to denote a rough equality. In most cases, this

(7
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FIG. 1. The plot shows the robustness of the violation against
noise in the state. For each data point, we add Gaussian noise to
the entries of p = |WV)(V| to get a noisy state and optimize the
measurements numerically to obtain the maximum quantum score
for that state. Since the optimization is done heuristically, the points
represent only a lower bound and sometimes the optimization fails
to converge on the global maximum, which gives the outliers. The
fidelity of the noisy state (F') is the x axis, while the score (S) is the
y axis. The dotted line is the local bound S.

rough equality is satisfied within a 10% margin, but in some
cases, especially when the values are close to zero, this margin
is not satisfied.

Let |a})(a’;| T} be Alice’s projector that corresponds to the
ith measurement and jth output. The first observation is that,
Vie XandVj, k € A,

|(a;|al({i+1)modd>|2 ~ |(a§i+l)modd a}({i+2)modd>|2. (8)
That is, the inner products between the jth and kth basis
vectors from two “neighboring” answers are always the same
for every pair of neighboring answers. Second, Bob’s two
measurements form mutually unbiased bases (MUB) with
each other:

1
|(b152)] =~ o VijeB. )

Finally, the resulting behavior is a convex combination of the
nonlocal behavior that maximally violates the inequality and

white noise,
1
P(a, blx,y) >~ wPys(a, blx,y) + (1 — w)d_2’ (10)

where Pys(a, b|lx,y) = V(a, blx,y)/d, i.e., Table I is reinter-
preted as a nonsignaling behavior. For d = 5, w ~0.64, while
ford =6, w ~0.63.

Figure 1 shows the heuristic quantum scores obtained by
numerical optimization for noisy states in d = 5. A fidelity of
around ~0.97 is required to observe a violation. This presents
a possibility for a challenging, but doable, implementation
using a high-dimensional two-qudit state, such as those cre-
ated in photonics, either using orbital angular momentum
(OAM) [24-28], path [29-32], time-bin [33,34], frequency-
bin [35,36], or time-energy encoding [37,38]. Recently,
higher-dimensional entanglement has even been demonstrated
outside of photonics using trapped ions [39].

IV. CONCLUSIONS

Here, we have presented a family of quantum correlations
for d > 5 which cannot be simulated with a fixed directional
communication from Alice to Bob with just a single bit of
information. The d = 5 case is, so far, the smallest example,
both in the dimension of the quantum system and the prob-
ability dimension, of a quantum correlation that cannot be
simulated with a single bit of fixed directional communica-
tion from Bob. Indeed, even if Ref. [22] has examples with
smaller output alphabets, the quantum realizations require
higher-dimensional states. The small Hilbert space of this cor-
relation presents a practical opportunity for an experimental
implementation.

Our example can be extended for bidirectional communi-
cation by doing two of the games in parallel with reversed
rules of Alice and Bob in the second game, resulting in a
(10,10,25,25) game. However, this does not improve on the
two magic squares (7,7,16,16) presented in Ref. [22].

The measurements to obtain the lower bounds of Sg can
be found online [46].
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