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Quantum multigraph states and multihypergraph states
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In this paper we propose two classes of multiparticle entangled states: multigraph and multihypergraph
states. Two types of operations are designed to correspond to the edges and hyperedges to prepare the states.
Furthermore, multigraph and multihypergraph states contain qudit graph and hypergraph states, respectively.
More interestingly, we demonstrate the one-to-one correspondence between the proposed multihypergraph states
and the generalized real equally weighted states when the dimension of the states is an odd prime.
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I. INTRODUCTION

Multiparticle entangled states are crucial in the fields
of quantum computing and quantum information. Hillery
et al. [1] first proposed a secret sharing scheme using the
Greenberger-Horne-Zeilinger state. Briegel and Raussendorf
[2] introduced the cluster state, a specific type of multiparticle
entangled state. Subsequently, they proposed a new quantum
computing approach based on cluster state measurements [3].
Around the same time, cluster states were used to design
quantum error-correcting codes [4], which employed graph
representations to describe these quantum states for the first
time. Raussendorf et al. [5] formally employed the term
graph state to explore measurement-based quantum comput-
ing. Graph states are characterized by connections through
controlled-Z (CZ) gates, which can facilitate the simulation
of any unitary gate through specific measurement bases and
sequences [5]. Rossi et al. [6] and Qu et al. [7] extended graph
states to hypergraph states, and a one-to-one correspondence
was discovered between hypergraph states and real equally
weighted states (REWSs). Hypergraph states are notable for
their Pauli universality in measurement-based computation
[8], which enables the simulation of universal unitary gates
solely through Pauli measurements of particles. Graph and
hypergraph states have been extensively studied [9–22] and
are widely used in the fields of quantum computing [23–34]
and quantum information [35–38].

The study of two-dimensional quantum systems naturally
led to expanding research into d-dimensional quantum sys-
tems. Studies have been conducted on qudit graph states
[39–41]. The subsequent investigations into qudit hypergraph
states [42–44] followed. Xiong et al. [43] illuminated the
quantitative relationship between qudit hypergraph states and
generalized real equally weighted states (GREWSs) and noted
that qudit hypergraph states are contained within GREWSs
and are significantly fewer in number. The existing research
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on graph and hypergraph states [6–44] has primarily em-
ployed simple and weighted graphs (hypergraphs) [45–47].
However, there are also other classes of graphs in graph
theory, such as multigraphs and multihypergraphs, where dif-
ferent edges can connect the same vertices. In this paper
we propose quantum states corresponding to this kind of
multigraph and multihypergraph and the quantum states are
referred to as the multigraph state and the multihypergraph
state, respectively. Compared to qudit graph states [39–41]
and qudit hypergraph states [42–44], more information can
be encoded into multigraph states and multihypergraph states.
More interestingly, a one-to-one correspondence exists be-
tween the proposed multihypergraph states and the GREWSs
when d is an odd prime.

The structure of this paper is outlined as follows. In Sec. II
the review of essential graph theory concepts and the def-
initions of qudit graph and hypergraph states are provided.
In Sec. III the definitions of multigraph and multihypergraph
states are proposed. In Sec. IV the association between mul-
tihypergraph states and GREWSs is detailed. In Sec. V a
summary and an outlook for future research are given.

II. PRELIMINARIES

In this section we briefly overview the foundational aspects
of graph theory and the definitions of graph and hypergraph
states.

A. Fundamentals of graph theory

Graph theory spans a wide range of graph types, such as
simple graphs, weighted graphs, multigraphs, hypergraphs,
weighted hypergraphs, and multihypergraphs [45–48]. A sim-
ple graph is characterized by no more than one edge joining
any two vertices. Weighted graphs are an extension of simple
graphs, assigning weights to each edge. There are two kinds
of multigraphs. One is where multiple edges connecting two
vertices are identical, which allows the same edge to appear
multiple times. Therefore, the multigraphs can be viewed as
weighted graphs [47]. The other type is where edges are
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FIG. 1. Relationships among simple graphs, multigraphs, hyper-
graphs, and multihypergraphs.

considered primitive entities, which are different when mul-
tiple edges connect two vertices. An example is the electrical
network multigraph in Ref. [48]. In hypergraphs, edges can
connect any number of vertices, with those connected to a
single vertex termed rings [45]. In the field of hypergraphs,
weighted hypergraphs and multihypergraphs also exist. The
definitions of weighted hypergraphs and multihypergraphs are
similar to those of weighted graphs and multigraphs except
that edges in weighted hypergraphs and multihypergraphs can
connect any number of vertices. The relationships among sim-
ple graphs, multigraphs, hypergraphs, and multihypergraphs
are depicted in Fig. 1.

A graph of N vertices can be described as G = (V, E ),
where V = ZN denotes the set of vertices and E denotes
the set of edges. The e = { j, k} ∈ E represents the edge
connecting vertices j and k. Similarly, a hypergraph of N
vertices is represented as G̃ = {V, Ẽ}, with Ẽ ⊆ ℘(V ) the
set of hyperedges. Here ℘(V ) denotes the power set of V
and e = {v0, v1, . . . , vt−1} ∈ Ẽ represents the hyperedge con-
necting t ∈ ZN+1 vertices, where v0 < v1 < · · · < vt−1 ∈ ZN

indicates the connected t vertices. When t = 0 the empty set
∅ represents an empty edge. Simple graphs, hypergraphs,
multigraphs, and multihypergraphs can be transformed into
weighted graphs, hypergraphs, multigraphs, and multihyper-
graphs by adding weights to each edge. Within such weighted
graphs, the weight assigned to an edge e is denoted by me.

B. Review of graph and hypergraph states

1. Graph states

The graph state was initially proposed as a cluster state [2].
Then, once the graph was utilized to characterize this quantum
state, it was renamed a graph state [4,5]. Figure 2 illustrates
the construction of a graph state for rectangular lattices from
Ref. [25].

Following varying graph structures, we can formulate dis-
tinct graph states. Before studying the description of such
quantum states, it is significant to define the vertices and
edges within the graph from a quantum perspective. The
formal representation of vertices and edges in graph states
was previously delineated in Refs. [5,9,39]. For a graph
G = (V, E ) comprising N vertices, the corresponding graph
state is characterized by N vertices denoted by |+d〉⊗N =

FIG. 2. Graph state. The circles denote quantum states |+d 〉 =
d−1/2

∑d−1
i=0 |i〉, solid lines correspond to controlled-Z gates, and dot-

ted lines indicate additional |+d 〉 states and controlled-Z gates.

|+d〉 ⊗ |+d〉 ⊗ · · · ⊗ |+d〉︸ ︷︷ ︸
N

. The edge connecting vertices j

and k is represented by

CZ{ j,k} =
d−1∑

i0,...,iN−1=0

ω
i j×ik
d |i0, . . . , iN−1〉〈i0, i1, . . . , iN−1|, (1)

where ωd = e2π i/d (i = √−1). The qudit graph state corre-
sponding to graph G is defined as

|G〉 =
∏
e∈E

CZme
e |+d〉⊗N , (2)

where me ∈ Zd represents both the weight of an edge and the
number of operations executed. According to Refs. [6,40], the
number of qudit graph states is d (N

2 ), where
(N

2

)
is the binomial

coefficient “N choose 2.” The stabilizer operator on a vertex k
for a qudit graph state is characterized as

gk =
(∏

e∈E

CZme
e

)
Xk

(∏
e′∈E

CZ
d−me′
e′

)
= Xk

∏
e∈E ,k∈e

CZ
me
e\{k}, (3)

where the Xk represents that the qudit Pauli gate X =∑d−1
i=0 |i + 1〉〈i| is executed on the kth particle, and the e =

{ j, k} and e′ are any elements in E . The set gk generates an
Abelian group known as the stabilizer [42].

2. Hypergraph states

In Ref. [6] the hypergraph state was proposed, which
extended the graph states. Within a qudit hypergraph state,
vertices are defined as the qudit single-particle states |+d〉 =
d−1/2 ∑d−1

i=0 |i〉. The hyperedge connects vertices v0, . . . , vt−1

are characterized by

C̃Z{v0,v1,...,vt−1} =
d−1∑

i0,i1,...,iN−1=0

(
ω

∏t−1
j=0 iv j

d |i0, . . . , iN−1〉

〈i0, . . . , iN−1|
)
. (4)

The qudit hypergraph state corresponding to graph G̃ =
(V, Ẽ ) is defined as

|G̃〉 =
⎛⎝∏

e∈Ẽ

C̃Z
me
e

⎞⎠|+d〉⊗N , (5)
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where |+d〉⊗N refers to the N vertices comprising the hy-
pergraph state. According to Refs. [42,43], the number of
nontrivial qudit hypergraph states is d2N −1 and the stabilizer
operator on a vertex k for a qudit hypergraph state is charac-
terized as

g̃k =
⎛⎝∏

e∈Ẽ

C̃Z
me
e

⎞⎠Xk

⎛⎝∏
e′∈Ẽ

C̃Z
d−me′
e′

⎞⎠ = Xk

∏
e∈Ẽ ,k∈e

C̃Z
me
e\{k}, (6)

where the e = {v0, v1, . . . , vt−1} and e′ are any elements in Ẽ ,
and e\{k} = {i | i ∈ e, i /∈ {k}}. The operator g̃k stabilizes the
hypergraph state |G̃〉 [42]. The proof of Eq. (6) is delineated
in Appendix A.

III. PROPOSED MULTIGRAPH AND
MULTIHYPERGRAPH STATES

In this section we propose the multigraph and multi-
hypergraph states. Traditional graph and hypergraph states
are typically constructed by a series of Z and multiparticle
controlled-Z gates. However, our approach involves a se-
ries of quantum gates specific to building multigraph and
multihypergraph states. First, we define the quantum opera-
tions that are generalized from the Z and the controlled-Z
gates. Next we employ these gates to construct multigraph
and multihypergraph states. In this paper the multigraph
and multihypergraph utilized differ in that various edges or
hyperedges connecting the same vertices represent distinct
entities. We employ N integral variables s0, s1, . . . , sN−1 ∈ Z∗

d
(Z∗

d = Zd\{0}= {a | a ∈ Zd , a /∈ {0}}) related to N vertices
v0, v1, . . . , vN−1. The edges (hyperedges) in our multi-
graph (multihypergraph) are represented as ė = (Vė|Sė) =
(v0, . . . , vt−1|sv0 , sv1 , . . . , svt−1 ), where t = 2 for edges and
t > 2 for hyperedges. The set Vė = {v0, . . . , vt−1} represents
all the vertices connected by ė, and the different values of t
variables sv0 , sv1 , . . . , svt−1 indicate different ė that contain the
same vertices v0, v1, . . . , vt−1. With this encoding method,
we can encode

∑N
t=1

(N
t

)
(d − 1)t = dN − 1 different edges

(hyperedges) based on both the different connecting vertices
and the different values of sv0 , . . . , svt−1 . Here the edge ė
is no longer just a set of vertices which contains two sets
Vė = {v0, . . . , vt−1} and Sė = {sv0 , sv1 , . . . , svt−1} and is differ-
ent from the edge in Sec. II A. Therefore, the edges e and ė
are used to distinguish the edges in qudit graph (hypergraph)
states and the proposed multigraph (multihypergraph) states,
respectively. We introduce k ∈ Vė to represent that the edge
ė connects vertex k. However, in regular graphs and hyper-
graphs, the symbol Ve is not needed because an edge in these
kinds of graphs itself is a set containing some vertices, where
e = {v0, . . . , vt−1}, as described in Sec. II A. Consequently,
the multigraph or multihypergraph we use can be represented
as a set pair comprising vertices and edges, Ĝ = (V, Ê ) or
ˆ̃G = (V, ˆ̃E ). Here t = 2 characterizes a multigraph, whereas

t ∈ ZN+1 typifies a multihypergraph.

A. Quantum operations generalized from the Z and
controlled-Z gates

Howard and Vala [49] explored qudit versions of the qubit
π/8 gate within the Clifford hierarchy [50]. They proposed a

formulation for the qudit gate

Uh = U(h0,h1,...,hd−1 ) =
d−1∑
k=0

ω
hk
d |k〉〈k|, (7)

when d > 3. Here Uh based on h = (h0, h1, . . . , hd−1) forms
a series of quantum gates with notable applications in magic-
state distillation [51]. We define hk = ∑λ

j=0 a jk j , where λ ∈
Z∗

d and
∑λ

j=1 a jk
j represents a polynomial of degree λ in the

integer residual ring Zd . For hk = k2/2 + k/2 and hk = k3/6,
Uh corresponds to the d-dimensional S gate and π/8 gate
in Refs. [52,53], respectively. (We utilize the definition of
d-dimensional S in Ref. [52], which is slightly different from
that in Ref. [54].) In this paper Uh is employed with hk = kλ.
Then we define the generalized Z operation

λZ :=
d−1∑
k=0

ωkλ

d |k〉〈k|. (8)

Specifically, for λ = 1, 1Z = Z = ∑d−1
k=0 ωk

d |k〉〈k|. For λ =
2, 3, the generalized Z operation can be constructed with some
other gates, such as the d-dimensional S [52] and T [53] gates.
For an odd prime p,

S =
p−1∑
k=0

ω
k(k+1)/2
d |k〉〈k| (9)

and

T =
{∑2

k=0 ω
(1−k)3−1

3 |k〉〈k|, p = 3∑p−1
k=0 ωk36−1

p |k〉〈k|, p � 5.
(10)

Then, based on the d-dimensional S and T gates, we can
obtain

λZ =
{

Z†SS, λ = 2, p � 3

T 6, λ = 3, p � 5
(11)

for the p-dimensional quantum system. Based on the gener-
alized Z operation, we define the generalized t-particle qudit
controlled-Z operation as

�Ct Z{0,...,t−1} :=
d−1∑

j0,..., jt−1=0

(
ω

∏t−1
k=0 ( jk )λk

d | j0, . . . , jt−1〉

〈 j0, . . . , jt−1|
)
, (12)

where � = {λ0, . . . , λt−1}, the superscript t represents a t-
particle controlled operation, and the subscript {0, . . . , t − 1}
indicates the position of all the particles. Next we construct
the multigraph and multihypergraph states by the generalized
Z and controlled-Z operations.

B. Multigraph state

In the multigraph state, the vertex is represented by a qudit
single-particle state |+d〉 = d−1/2 ∑d−1

i=0 |i〉. The edges within
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this framework are delineated through the operation

ĈZ( j,k|s j ,sk ) = �C2Z{ j,k} ⊗ IN−2

=
d−1∑

i0,...,iN−1=0

(
ω

(i j )
s j ×(ik )sk

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|
)
,

(13)

where � = {s j, sk} and IN−2 represents the (N − 2)-particle
identity operation. The multigraph state corresponding to
multigraph Ĝ = (V, Ê ) can be represented by

|Ĝ〉 =
∏
ė∈Ê

ĈZ
mė
ė |+d〉⊗N , (14)

where mė represents both the weight of an edge and the
number of operations performed. The multigraph comprises(N

2

) × (d − 1)2 varieties of edges, and each edge represents a
quantum operation that can be executed d times. Therefore,
the number of multigraph states is d (N

2 )×(d−1)2
. The stabilizer

operator on vertex k for a multigraph state is characterized as

ĝk =
⎛⎝∏

ė∈Ê

ĈZ
mė
ė

⎞⎠Xk

⎛⎝∏
ė′∈Ê

ĈZ
d−mė′
ė′

⎞⎠
= Xk

∏
ė∈Ê ,k∈Vė

(
d−1∑
ik=0

|ik〉〈ik| ⊗ (s j Z { j})mė[
∑sk −1

l=0 (sk
l )(ik )l ]

)
, (15)

where ė = ( j, k|s j, sk ) and ė′ are any two edges in Ê , and
s j Z { j} represents that the operation λZ for λ = s j is executed
on the jth particle. The operator ĝk stabilizes the multigraph
state |Ĝ〉 as |Ĝ〉 = ĝk|Ĝ〉. The proof of Eq. (15) is contained
in the proof of Eq. (20) in Appendix B. We provide an il-
lustrative example of a multigraph state with N = 3, d = 3,
and the edge set Ê = {ė1, ė2, ė3, ė4}. Here ė1 = (0, 1|1, 1),
ė2 = (0, 1|1, 2), ė3 = (0, 1|2, 2), and ė4 = (0, 2|1, 1) with the
weights of edges mė1 = 1, mė2 = 2, mė3 = 2, and mė4 = 1, and
the corresponding quantum operations are

ĈZė1 =
2∑

i0,i1,i2=0

ω
i0×i1
3 |i0, i1, i2〉〈i0, i1, i2|,

ĈZ
2
ė2

=
2∑

i0,i1,i2=0

ω
i0×i2

1×2
3 |i0, i1, i2〉〈i0, i1, i2|,

ĈZ
2
ė3

=
2∑

i0,i1,i2=0

ω
i2
0×i2

1×2
3 |i0, i1, i2〉〈i0, i1, i2|,

ĈZė4 =
2∑

i0,i1,i2=0

ω
i0×i2
3 |i0, i1, i2〉〈i0, i1, i2|. (16)

Then we can obtain the multigraph state

|Ĝ〉 =ĈZė4 ĈZ
2
ė3

ĈZ
2
ė2

ĈZė1 |+3〉⊗3

= 1

33/2

(|000〉 + |001〉 + |002〉 + |010〉 + |011〉 + |012〉 + |020〉 + |021〉 + |022〉

+ |100〉 + ω1×1
3 |101〉 + ω1×2

3 |102〉 + ω1×1+1×12×2+12×12×2
3 |110〉

+ ω1×1+1×12×2+12×12×2+1×1
3 |111〉 + ω1×1+1×12×2+12×12×2+1×2

3 |112〉

+ ω1×2+1×22×2+12×22×2
3 |120〉 + ω1×2+1×22×2+12×22×2+1×1

3 |121〉

+ ω1×2+1×22×2+12×22×2+1×2
3 |122〉 + |200〉 + ω2×1

3 |201〉 + ω2×2
3 |202〉

+ ω2×1+2×12×2+22×12×2
3 |210〉 + ω2×1+2×12×2+22×12×2+2×1

3 |211〉

+ ω2×1+2×12×2+22×12×2+2×2
3 |212〉 + ω2×2+2×22×2+22×22×2

3 |220〉

+ ω2×2+2×22×2+22×22×2+2×1
3 |221〉 + ω2×2+2×22×2+22×22×2+2×2

3 |222〉). (17)

To explain this equation more clearly, we take the phase
|122〉 as an example. For the phase |122〉, ĈZė1 |122〉 =
ω1×2

3 |122〉, ĈZ
2
ė2
|122〉 = ω1×22×2

3 |122〉, ĈZ
2
ė3
|122〉 =

ω12×22×2
3 |122〉, and ĈZė4 |122〉 = ω1×2

3 |122〉. Consequently,
ĈZė4 ĈZ

2
ė3

ĈZ
2
ė2

ĈZė1 |122〉 = ω1×2+1×22×2+12×22×2+1×2
3 |122〉.

Similarly, the phases of all the other superposition terms can
be obtained in this way.

By mapping the set Sė = {sv0 , sv1} to a d-base integer
(sv0 sv1 )d , which is used as a parameter for the thickness of
edges, we can create an intuitive diagram of the multigraph Ĝ
in Fig. 3(a).

C. Multihypergraph state

In the multihypergraph state, the hyperedges are delineated
through the operation

̂̃CZ(v0,...,vt−1|s0,...,st−1 ) = �Ct Z{v0,...,vt−1} ⊗ IN−t

=
d−1∑

i0,...,iN−1=0

(
ω

∏t−1
j=0 (iv j )s j

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|
)
,

(18)

where � = {sv0 , . . . , svt−1} and IN−t represents the (N −
t )-particle identity operation. The multihypergraph state, cor-
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FIG. 3. (a) Three-vertex multigraph with four edges ė1, ė2, ė3,
and ė4, labeled with different thickness values of 113 = 410, 123 =
510, 223 = 810, and 113 = 410, respectively, where the subscripts
3 and 10 represent the numbers in ternary and decimal notation,
respectively. The number on each edge represents the weight of that
edge. (b) Three-vertex graph with a uniform thickness parameter of
the edge.

responding to the structure of multihypergraph ˆ̃G = (V, ˆ̃E ), is
characterized as

| ˆ̃G〉 =
⎛⎝∏

ė∈ ˆ̃E

̂̃CZ
mė

ė

⎞⎠|+d〉⊗N . (19)

The multihypergraph contains
∑N

t=1

(N
t

)
(d − 1)t = dN − 1

varieties of edges or hyperedges and each one represents
a unique quantum operation that can be executed d times.
Therefore, the number of multihypergraph states is ddN −1. The
stabilizer operator on vertex k for a multihypergraph state can

be represented as

ˆ̃gk =
⎛⎝∏

ė∈ ˆ̃E

̂̃CZ
mė

ė

⎞⎠Xk

⎛⎝∏
ė′∈ ˆ̃E

̂̃CZ
d−mė′
ė′

⎞⎠
= Xk

∏
ė∈ ˆ̃E ,k∈Vė

(
d−1∑
ik=0

|ik〉〈ik| ⊗ ̂̃CZ
mė[

∑sk −1
l=0 (sk

l )(ik )l ]
(Vė\{k}|Sė\{sk})

)
, (20)

where ė = (v0, . . . , vt−1|sv0 , . . . , svt−1 ) and ė′ are any two

hyperedges in ˆ̃E , and (Vė\{k}|Sė\{sk}) represents the edge
from ė by only deleting the vertex k. The operator ˆ̃gk sta-
bilizes the multigraph state | ˆ̃G〉, as | ˆ̃G〉 = ˆ̃gk| ˆ̃G〉. The proof
of Eq. (20) is delineated in Appendix B. We consider an
example of a multihypergraph state with N = 3, d = 3, and
the edge set ˆ̃E = {ė1, ė2, ė3, ė4}. Here ė1 = (0, 1|1, 2), ė2 =
(0, 1, 2|1, 2, 1), ė3 = (0, 1, 2|2, 1, 2), and ė4 = (2|2), with
the weights of edges mė1 = 1, mė2 = 2, mė3 = 2, and mė4 = 2.
Then the quantum operations to which the edges respond are

̂̃CZė1 =
2∑

i0,i1,i2=0

ω
i0×i2

1
3 |i0, i1, i2〉〈i0, i1, i2|,

̂̃CZ
2
ė2

=
2∑

i0,i1,i2=0

ω
i0×i2

1×i2×2
3 |i0, i1, i2〉〈i0, i1, i2|,

̂̃CZ
2
ė3

=
2∑

i0,i1,i2=0

ω
i2
0×i1×i2

2×2
3 |i0, i1, i2〉〈i0, i1, i2|,

̂̃CZ
2
ė4

=
2∑

i0,i1,i2=0

ω
i2
2×2

3 |i0, i1, i2〉〈i0, i1, i2|. (21)

Then we can obtain the multihypergraph state

| ˆ̃G〉 = ̂̃CZ
2
ė4

̂̃CZ
2
ė3

̂̃CZ
2
ė2

̂̃CZė1 |+3〉⊗3

= 1

33/2

(|000〉 + ω12×2
3 |001〉 + ω22×2

3 |002〉 + |010〉 + ω12×2
3 |011〉 + ω22×2

3 |012〉

+ |020〉 + ω12×2
3 |021〉 + ω22×2

3 |022〉 + |100〉 + ω12×2
3 |101〉 + ω22×2

3 |102〉
+ ω1×12

3 |110〉 + ω1×12+1×12×1×2+12×1×12×2+12×2
3 |111〉

+ ω1×12+1×12×2×2+12×1×22×2+22×2
3 |112〉 + ω1×22

3 |120〉
+ ω1×22+1×22×1×2+12×2×12×2+12×2

3 |121〉
+ ω1×22+1×22×2×2+12×2×22×2+22×2

3 |122〉 + |200〉 + ω12×2
3 |201〉

+ ω22×2
3 |202〉 + ω2×12

3 |210〉 + ω2×12+2×12×1×2+22×1×12×2+12×2
3 |211〉

+ ω2×12+2×12×2×2+22×1×22×2+22×2
3 |212〉 + ω2×22

3 |220〉
+ ω2×22+2×22×1×2+22×2×12×2+12×2

3 |221〉
+ ω2×22+2×22×2×2+22×2×22×2+22×2

3 |222〉). (22)

To explain this equation more clearly, we take the
phase |222〉 as an example. For the phase |222〉,̂̃CZė1 |222〉 = ω2×22

3 |222〉, ̂̃CZ
2
ė2
|222〉 = ω2×22×2×2

3 |222〉,

̂̃CZ
2
ė3
|222〉 = ω22×2×22×2

3 |222〉, and ̂̃CZ
2
ė4
|222〉 =

ω22×2
3 |222〉. Consequently, ̂̃CZ

2
ė4

̂̃CZ
2
ė3

̂̃CZ
2
ė2

̂̃CZė1 |222〉 =
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FIG. 4. (a) Three-vertex multihypergraph with four edges ė1, ė2,
ė3, and ė4, labeled with different thickness values of 123 = 510,
1213 = 1610, 2123 = 2310, and 23 = 210, respectively. The number
on each edge represents the weight of that edge. (b) Three-vertex
hypergraph with a uniform thickness parameter of the edge.

ω2×22+2×22×2×2+22×2×22×2+22×2
3 |222〉. Similarly, the phases of

all the other superposition terms can be obtained in this way.
By mapping the set Sė = {sv0 , . . . , svt−1} to a d-base integer

(sv0 , . . . , svt−1 )d , which is used as a parameter for the thickness
of hyperedges, we can create an intuitive diagram of the mul-
tihypergraph ˆ̃G in Fig. 4(a).

Here we use the terms multigraph and multihypergraph
states because the multigraph and multihypergraph we use
belong to the second kind of multigraph we described in
Sec. II A. In Ref. [43], Xiong et al. proposed the concept
of multihypergraph states and pointed out that the multi-
hypergraph states are equivalent to qudit hypergraph states.
However, our proposed multihypergraph states contain more
states than qudit hypergraph states and can represent the
quantum states increasing from d2N −1 to ddN −1. Similarly,
the proposed multigraph states also contain more states than
qudit graph states [39–41] and can represent the quantum
states increasing from d (N

2 ) to d (N
2 )×(d−1)2

. The difference be-
tween our proposed multigraph (multihypergraph) states and
qudit graph (hypergraph) states lies in the proposed quantum
operations, the proposed quantum states based on these op-
erations, and the proposed stabilizers of the quantum states,
which are all different. Additionally, when the values of N
integral variables are all the constant 1’s, the proposed multi-
graph and multihypergraph states will degenerate into the
qudit graph states in Refs. [39–41] and the qudit hypergraph
states in Refs. [42–44], respectively. Finally, when d is an
odd prime, the proposed multihypergraph states are equiva-
lent to GREWSs, while qudit hypergraph states [42–44] form
a proper subset of GREWSs, which we introduce in next
section.

IV. RELATIONSHIP BETWEEN GREWSS AND
MULTIHYPERGRAPH STATES

Rossi et al. [6] highlighted the one-to-one correspondence
between qubit hypergraph states and REWSs. Later, Xiong
et al. [43] indicated that qudit hypergraph states are a subset
of GREWSs. In this section we first provide rigorous proof of
the one-to-one correspondence between the proposed multi-
hypergraph states and GREWSs. Furthermore, using the same
method, we provide proof of the relationship between qudit
hypergraph states and GREWSs, as well as the relationship
between qubit hypergraph states and REWSs, in Secs. IV B
and IV C, respectively.

A. Relationship between multihypergraph states and GREWSs

In this section we first state the theorem establishing the
bijective relationship between the proposed multihypergraph
states and GREWSs. Subsequently, linear equations and math-
ematical induction are developed to demonstrate this theorem.
An arbitrary GREWS is defined as

| fd〉 = 1

2n/2

d−1∑
i0,...,iN−1=0

ωd
f (i0,...,iN−1 )|i0, . . . , iN−1〉, (23)

where f (i0, . . . , iN−1) is an integer function of N indepen-
dent variables i0, . . . , iN−1 in the integer residual ring Zd . By
isolating the coefficient of the term |0, . . . , 0〉 as the global
phase and setting f (0, . . . , 0) = 0, the number of GREWSs is
ddN −1. Notably, given that i0, . . . , iN−1 are not simultaneously
zero, we define the condition il0 , . . . , ilt ′−1

> 0 to contain all
nonzero terms in i0, . . . , iN−1, where l0 < l1 < · · · < lt ′−1 ∈
ZN , t ′ ∈ ZN+1.

Theorem 1. Any given multihypergraph state | ˆ̃G〉 =
(
∏

ė∈ ˆ̃E
̂̃CZ

mė

ė )|+〉⊗N that corresponds to a multihypergraph
ˆ̃G = (V, ˆ̃E ) must be a GREWS. Furthermore, for odd prime
d = q, every GREWS | fd〉 can be associated with a specific
multihypergraph state | ˆ̃G〉 such that | fd〉 = | ˆ̃G〉.

Proof. Based on the definitions of multihypergraph states
and GREWSs, it is obvious that a multihypergraph state
is invariably a GREWS. Therefore, to prove Theorem 1 it
is sufficient to demonstrate that each GREWS corresponds
to a multihypergraph state. Consider a multihypergraph
state | ˆ̃G〉 = (

∏
ė∈ ˆ̃E

̂̃CZ
mė

ė )|+d〉⊗N , which is constructed by

{m
ė∈ ˆ̃E }{C̃Z

ė∈ ˆ̃E } operations such that | fd〉 = | ˆ̃G〉. Then the coef-
ficients {ωd

f (i0,...,iN−1 )} of all superposition terms in | fd〉 must
satisfy

{ ∑
{v0,v1,...,vt−1}∈℘(V )\∅,

{v0,v1,...,vt−1}⊆{l0,l1,...,lt ′−1}

d−1∑
s0,...,st−1=1

⎛⎝t−1∏
j=0

(iv j )
s j

⎞⎠m(v0,...,vt−1|s0,...,st−1 ) = f (i0, . . . , iN−1)

∣∣∣∣∣ t, t ′ ∈ Z∗
N+1;

i0, . . . , iN−1 ∈ Zd ; (i0, . . . , iN−1) 
= (0, . . . , 0)

}
, (24)
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where the operations are conducted modulo q. Conse-
quently, the equations above formulate nonhomogeneous
linear equations with dN − 1 independent variables and dN −
1 equations in the finite field GF q. Consistent with the
aforementioned approach, all nonzero terms i0, . . . , iN−1 are
collectively denoted by il0 , . . . , ilt ′−1

. The equations are segre-
gated into N groups based on the number of nonzero terms in
i0, . . . , iN−1. Each group, denoted by n (n ∈ Z∗

N+1), comprises(N
n

)
(d − 1)n independent variables and

(N
n

)
(d − 1)n equations.

Specifically, in the nth set of equations, the independent vari-
ables of f (i0, . . . , iN−1), i0, . . . , iN−1, with n nonzero values,

are represented as il0 , il1 , . . . , iln−1 . Equation (24) is solvable if
each of the N groups of equations has a solution. First, for the
case of n = 1, the initial set of equations is{

d−1∑
sv0 =1

(iv0 )sv0 m(v0|s0 ) = f (i0, . . . , iN−1)

∣∣∣∣∣ v0 ∈ V,

iv0 ∈ Z∗
d ; i j = 0, j ∈ V \{v0}

}
, (25)

whose coefficient matrix is

A = I(N
1 )×(N

1 ) ⊗

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

2 22 · · · 2d−1

...
...

. . .
...

(d − 1) (d − 1)2 · · · (d − 1)d−1

⎤⎥⎥⎥⎥⎦,

(26)

where I(N
1 )×(N

1 ) represents the
(N

1

) × (N
1

)
identity matrix. The coefficient matrix possesses full rank, rank(A) = N × (d − 1),

ensuring the solvability of these equations. Then, if the first n − 1 sets of equations can be solved, the nth set can be simplified
to {

d−1∑
s0,...,sn−1=1

⎛⎝n−1∏
j=0

(iv j )
s j

⎞⎠m(v0,...,vn−1|s0,...,sn−1 ) = bv0,...,vn−1,iv0 ,...,ivn−1

∣∣∣∣∣ n ∈ Z∗
N+1; {v0, . . . , vn−1} ∈ ℘(V )\∅;

iv0 , . . . , ivn−1 ∈ Z∗
d ; i j = 0, j ∈ V \{v0, . . . , vn−1}

}
, (27)

whose coefficient matrix can be derived as

B = I(N
n )×(N

n ) ⊗

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

2 22 · · · 2d−1

...
...

. . .
...

(d − 1) (d − 1)2 · · · (d − 1)d−1

⎤⎥⎥⎥⎥⎦
⊗n

,

(28)

where bv0,...,vn−1,iv0 ,...ivn−1
represents the simplified value to the

right of each equation and I(N
n )×(N

n ) represents the
(N

n

) × (N
n

)
identity matrix. The coefficient matrix exhibits full rank,
rank(B) = (N

n

) × (d − 1)n. Therefore, if solutions exist for
the first n − 1 sets of equations, the nth set also possesses
a solution. Finally, together with the solvability of the first
set of equations, all the linear equations are demonstrated
to be solvable. This means that Eq. (24) is resolvable using
mathematical induction. Hence, when d is an odd prime,
every GREWS | fd〉 corresponds to a specific multihypergraph
state | ˆ̃G〉, satisfying | fd〉 = | ˆ̃G〉. Given that a multihypergraph
state is inherently a GREWS, the validity of Theorem 1 is
confirmed. �

The two-particle, three-dimensional GREWS

| f3〉 = 1
3 (|00〉 + e2π i/3|01〉 + |02〉 + e2π i/3|10〉
+ e2π i/3|11〉 + |12〉 + |20〉 + e2π i/3|21〉 + |22〉) (29)

is taken as an example. Then the coefficients {ω3
f (i0,i1 )}

of all superposition terms in | f3〉 satisfy f (1, 0) = 1,
f (2, 0) = 0, f (0, 1) = 1, f (0, 2) = 0, f (1, 1) = 1, f (1, 2) =
0, f (2, 1) = 1, and f (2, 2) = 0. Here we let ė1 = (0|1),
ė2 = (0|2), ė3 = (1|1), ė4 = (1|2), ė5 = (0, 1|1, 1), ė6 =
(0, 1|1, 2), ė7 = (0, 1|2, 1), and ė8 = (0, 1|2, 2). Since | f3〉 =
(
∏8

j=1
̂̃CZ

mė j

ė j
)|+3〉⊗2 and

̂̃CZė1 =
2∑

i0,i1=0

ω
i0
3 |i0, i1〉〈i0, i1|,

̂̃CZė2 =
2∑

i0,i1=0

ω
i2
0

3 |i0, i1〉〈i0, i1|,

̂̃CZė3 =
2∑

i0,i1=0

ω
i1
3 |i0, i1〉〈i0, i1|,

̂̃CZė4 =
2∑

i0,i1=0

ω
i2
1

3 |i0, i1〉〈i0, i1|,

̂̃CZė5 =
2∑

i0,i1=0

ω
i0×i1
3 |i0, i1〉〈i0, i1|,

̂̃CZė6 =
2∑

i0,i1=0

ω
i0×i2

1
3 |i0, i1〉〈i0, i1|,
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̂̃CZė7 =
2∑

i0,i1=0

ω
i2
0×i1

3 |i0, i1〉〈i0, i1|, ̂̃CZė8 =
2∑

i0,i1=0

ω
i2
0×i2

1
3 |i0, i1〉〈i0, i1|, (30)

we can obtain the linear equations

11 × mė1 + 12 × mė2 = 1, 21 × mė1 + 22 × mė2 = 0, 11 × mė3 + 12 × mė4 = 1, 21 × mė3 + 22 × mė4 = 0,

11 × mė1 + 12 × mė2 + 11 × mė3 + 12 × mė4 + 11 × 11 × mė5 + 11 × 12 × mė6 + 12 × 11 × mė7 + 12 × 12 × mė8 = 1,

11 × mė1 + 12 × mė2 + 21 × mė3 + 22 × mė4 + 11 × 21 × mė5 + 11 × 22 × mė6 + 12 × 21 × mė7 + 12 × 22 × mė8 = 0,

21 × mė1 + 22 × mė2 + 11 × mė3 + 12 × mė4 + 21 × 11 × mė5 + 21 × 12 × mė6 + 22 × 11 × mė7 + 22 × 12 × mė8 = 1,

21 × mė1 + 22 × mė2 + 21 × mė3 + 22 × mė4 + 21 × 21 × mė5 + 21 × 22 × mė6 + 22 × 21 × mė7 + 22 × 22 × mė8 = 0. (31)

With a simple calculation, we can derive mė1 = 2, mė2 = 2, mė3 = 2, mė4 = 2, mė5 = 0, mė6 = 1, mė7 = 0, and mė8 = 1.
Consequently, the two-particle, three-dimensional GREWS | f3〉 can be constructed aŝ̃CZė8

̂̃CZė6
̂̃CZ

2
ė4

̂̃CZ
2
ė3

̂̃CZ
2
ė2

̂̃CZ
2
ė1
|+3〉⊗2 = 1

3

(|00〉 + ω1×2+12×2
3 |01〉 + ω2×2+22×2

3 |02〉 + ω1×2+12×2
3 |10〉

+ ω1×2+12×2+1×2+12×2+1×12+12×12

3 |11〉
+ ω1×2+12×2+2×2+22×2+1×22+12×22

3 |12〉 + ω2×2+22×2
3 |20〉

+ ω2×2+22×2+1×2+12×2+2×12+22×12

3 |21〉
+ ω2×2+22×2+2×2+22×2+2×22+22×22

3 |22〉)
= 1

3 (|00〉 + ω3|01〉 + |02〉 + ω3|10〉 + ω3|11〉 + |12〉 + |20〉ω3|21〉 + |22〉) = | f3〉. (32)

Next we examine the relationship between the GREWSs and the proposed multihypergraph states in scenarios where d is a
composite. By selecting d = 4 and d = 6 as examples, we can derive the coefficient matrices of Eq. (27) as

I(N
n )×(N

n ) ⊗

⎡⎢⎣1 1 1

2 0 0

3 1 3

⎤⎥⎦
⊗n

, I(N
n )×(N

n ) ⊗

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1

2 4 2 4 2

3 3 3 3 3

4 4 4 4 4

5 1 5 1 5

⎤⎥⎥⎥⎥⎥⎥⎦

⊗n

. (33)

In the case of d = 4, element 2 lacks a multiplicative inverse
within the integer residual ring Z4. Similarly, when d = 6,
elements 2, 3, and 4 are devoid of multiplicative inverses in the
integer residual ring Z6. Under these conditions, the system
of equations (27) is inevitably unsolvable, implying that some
of the GREWSs cannot be realized through multihypergraph
states. For instance, with d = 4 and N = 1, it is infeasible
to construct the specified GREWS | f4〉 = 1

2 [|0〉 + e2π i/4|1〉 +
e2π i/4|2〉 + (e2π i/4)2|3〉] by a multihypergraph state because
the corresponding linear equations

1 × m(0|1) + 1 × m(0|2) + 1 × m(0|3) = 1,

2 × m(0|1) + 0 × m(0|2) + 0 × m(0|3) = 1,

3 × m(0|1) + 1 × m(0|2) + 3 × m(0|3) = 2 (34)

are unsolvable. Based on the preceding analysis, it is dis-
cerned that the number of multihypergraph states is equivalent
to the number of GREWSs, both being ddN −1. Furthermore,
multihypergraph states are invariably GREWSs. Conse-
quently, some of these multihypergraph states form identical
GREWSs. For instance, by considering the scenario where

d = 4 and N = 1, we observe

1 × m(0|1) + 1 × m(0|2) + 1 × m(0|3) = 1,

2 × m(0|1) + 0 × m(0|2) + 0 × m(0|3) = 2,

3 × m(0|1) + 1 × m(0|2) + 3 × m(0|3) = 1, (35)

which admits two distinct solutions (1,3,1) and (3,1,1),
indicating that two separate multihypergraph states
correspond to an identical GREWS | f4〉 = 1

2 [|0〉 + e2π i/4|1〉 +
(e2π i/4)2|2〉 + e2π i/4|3〉] = ̂̃CZ(0|1)

̂̃CZ
3
(0|2)

̂̃CZ(0|3)|+4〉 = ̂̃CZ
3
(0|1)̂̃CZ(0|2)

̂̃CZ(0|3)|+4〉. This observation leads to the inference
that when d is a composite number, the proposed
multihypergraph states form a subset of GREWSs, with
certain multihypergraph states corresponding to the same
GREWS.

B. Relationship between qudit hypergraph states and GREWSs

In this section the relationship between GREWSs and qudit
hypergraph states is examined. The reason why GREWSs are
more numerous and which GREWSs cannot be generated
from qudit hypergraph states are also revealed. Consistent
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with the aforementioned approach, all nonzero terms in
i0, . . . , iN−1 are collectively denoted by il0 , . . . , ilt ′−1

. Con-
sidering a qudit hypergraph state |G̃〉 = (

∏
e∈Ẽ C̃Z

me
e )|+d〉⊗N ,

constructed by {me∈Ẽ }{C̃Ze∈Ẽ } operations such that | fd〉 =
|G̃〉, the coefficients {ωd

f (i0,...,iN−1 )} in all superposition terms
of | fd〉 must satisfy

{ ∑
{v0,v1,...,vt−1}∈℘(V )\∅,

{v0,v1,...,vt−1}⊆{l0,l1,...,lt ′−1}

⎛⎝ t∏
j

iv j

⎞⎠m{v0,v1,...,vt−1} = f (i0, . . . , iN−1)

∣∣∣∣∣ t, t ′ ∈ Z∗
N+1; i0, . . . , iN−1 ∈ Zd ;

(i0, . . . , iN−1) 
= (0, . . . , 0)

}
, (36)

where the operations are conducted modulo d . Conse-
quently, the equations above formulate a system of linear
equations with 2N − 1 independent variables and dN − 1
equations in the integer residual ring Zd . A fundamental re-
quirement for the solvability of the system is that the rank
of its coefficient matrix must equal the rank of its augmented
matrix. Thus, for the linear equations in Eq. (36) to be solv-
able, { f (i0, . . . , iN−1)} must adhere to a specific relational
criterion. Given that the augmented matrix of Eq. (36) has a
maximum rank of 2N − 1, qudit hypergraph states can con-
struct at most d2N −1 of the GREWSs (the total number of
GREWSs is ddN −1). For instance, with N = 2 and d = 3, the
linear equations over the finite field GF 3 can be derived as

1 × m{0} = f (1, 0), 2 × m{0} = f (2, 0),

1 × m{1} = f (0, 1), 2 × m{1} = f (0, 2),

1 × m{0} + 1 × m{1} + 1 × 1 × m{0,1} = f (1, 1),

1 × m{0} + 2 × m{1} + 1 × 2 × m{0,1} = f (1, 2),

2 × m{0} + 1 × m{1} + 2 × 1 × m{0,1} = f (2, 1),

2 × m{0} + 2 × m{1} + 2 × 2 × m{0,1} = f (2, 2), (37)

which comprises 22 − 1 = 3 independent variables and 32 −
1 = 8 equations. The system is solvable if and only if f (i0, i1)
fulfills

f (1, 0) + f (2, 0) = 0,

f (0, 1) + f (0, 2) = 0,

f (1, 0) + f (1, 1) + f (1, 2) = 0,

f (0, 1) + f (1, 1) + f (2, 1) = 0,

2 f (1, 0) + f (2, 1) + f (2, 2) = 0. (38)

For example, the probability amplitude of the two-particle,
three-dimensional GREWS | f3〉 in Eq. (29) fails to conform
with Eq. (38). Consequently, it cannot be achieved via the
qudit hypergraph state.

This study acknowledges that the resolution of Eq. (36)
necessitates consideration of the variable d . Specifically, when
d equals an odd prime number q, the solution of Eq. (36)
can be determined with relative ease within the finite field
GF q. Conversely, if d is a composite number, the solution
becomes more complex within the integer residual ring Zd .
This intricacy is explained in Sec. IV A. Anyway, this analysis
has led to a formalization of the GREWSs that are unattain-
able through qudit hypergraph states. This limitation stems
from the discrepancy in the linear system associated with the
hyperedge count, which consists of dN − 1 equations but is
constrained by only 2N − 1 independent variables.

C. Relationship between qubit hypergraph states and REWSs

In this section we provide proof of the relationship be-
tween qubit hypergraph states and REWSs using linear
equations and mathematical induction from Sec. IV A. Sim-
ilarly, we first state the theorem establishing the bijective
relationship. Consider an arbitrary REWS, defined as

| f 〉 = 1

2N/2

1∑
i0,...,iN−1=0

(−1) f (i0,...,iN−1 )|i0, . . . , iN−1〉, (39)

where f (i0, . . . , iN−1) is a Boolean function of N independent
variables i0, . . . , iN−1 ∈ Z2. By setting the coefficient of the
term |0, . . . , 0〉 as the global phase and letting f (0, . . . , 0) =
0, the total number of REWSs is reduced to 22N −1.

Theorem 2. Any given qudit hypergraph state |G̃〉 that
corresponds to a hypergraph G̃ = (V, Ẽ ) must be a REWS.
Furthermore, every REWS | f 〉 can be associated with a spe-
cific qudit hypergraph state |G̃〉 such that | f 〉 = |G̃〉.

Proof. Based on the definitions of hypergraph states and
REWSs, it is obvious that a hypergraph state is invari-
ably a REWS [6]. Therefore, to prove Theorem 2 it is
sufficient to demonstrate that each REWS corresponds to
a hypergraph state. Considering a hypergraph state |G̃〉 =
(
∏

e∈Ẽ C̃Z
me
e )|+d〉⊗N constructed by {me∈Ẽ }{C̃Ze∈Ẽ } operations

such that | f 〉 = |G̃〉, the coefficients {(−1) f (i0,...,iN−1 )} of all
superposition terms in | f 〉 must satisfy

{ ∑
{v0,v1,...,vt−1}∈℘(V )\∅,

{v0,v1,...,vt−1}⊆{l0,l1,...,lt ′−1}

m{v0,v1,...,vt−1} = f (i0, . . . , iN−1)

∣∣∣∣∣ t, t ′ ∈ Z∗
N+1; i0, . . . , iN−1 ∈ Z2;

(i0, . . . , iN−1) 
= (0, . . . , 0)

}
, (40)
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FIG. 5. Relationships among proposed multigraph states A, qudit
graph states B [39–41], qudit hypergraph states C [42–44], proposed
multihypergraph states D, and GREWSs E [43], where B = A ∩ C
and (A ∪ C) ⊂ D, when (a) d is an odd prime number, D = E , and
(b) d is a composite number, D ⊂ E .

which are nonhomogeneous linear equations with 2N − 1 in-
dependent variables and 2N − 1 equations in the finite field
GF 2. The equations in Eq. (40) are categorized based on
the number of nonzero terms in i0, . . . , iN−1. The nth (n ∈
Z∗

N+1) group of equations contains
(N

n

)
independent variables

and
(N

n

)
linear equations. Within the nth subset, all nonzero

elements among the independent variables i0, . . . , iN−1 of
f (i0, . . . , iN−1) are exclusively il0 il1 , . . . , iln−1 . The solvabil-
ity of Eq. (40) depends on each set within the N sets of
equations possessing a solution. First, for n = 1, the set of
equations is formulated as

{m{v0} = f (i0, . . . , iN−1) | v0 ∈ V, iv0 ∈ Z∗
2; i j = 0,

j ∈ V \{v0}}, (41)

whose coefficient matrix is the identity matrix I(N
1 )×(N

1 ), indi-
cating that the equations are solvable. Then, if the first n − 1
sets of equations are solvable, we can simplify the nth set to

{m{v0,v1,...,vn−1} = bv0,v1,...,vn−1 | n ∈ Z∗
N+1;

{v0, v1, . . . , vn−1} ∈ ℘(V )\∅; iv0 , . . . , ivn−1 ∈ Z∗
2;

i j = 0, j ∈ V \{v0, v1, . . . , vn−1}},
(42)

whose coefficient matrix is the identity matrix I(N
n )×(N

n ), where
bv0,v1,...,vn−1 represents the value on the right-hand side of each
equation postsimplification (referred to as bv0,...,vn−1,iv0 ,...,ivn−1

in the proof presented in Sec. IV A, here owing to all nonzero
terms in Z2 being 1). Therefore, if solutions exist for the initial
n − 1 sets of equations, then a solution is also ensured for the
nth set. Finally, together with the solvability of the first set
of equations, all the linear equations are demonstrated to be
solvable. This means that Eq. (15) is resolvable using mathe-

matical induction. Therefore, any REWS | f 〉 can be equated
to a hypergraph state |G̃〉, constructed through a specified
sequence of {me∈Ẽ }{C̃Ze∈Ẽ } operations such that | f 〉 = |G̃〉.
Given that hypergraph states are inherently REWSs [6], The-
orem 2 is proven. �

Finally, we can derive the comprehensive relationships
among qudit graph states, multigraph states, hypergraph
states, multihypergraph states, and GREWSs in Fig. 5.

V. CONCLUSION

In this paper we proposed two classes of multiparticle en-
tangled states, the multigraph states and the multihypergraph
states, each corresponding to their respective constructs in
graph theory. We employed linear equations and mathematical
induction to demonstrate the one-to-one correspondence be-
tween the proposed multihypergraph states and the GREWSs
when the dimension of the states is an odd prime. In the
same way, we also offered proof of the one-to-one corre-
spondence between the qubit hypergraph states and REWSs.
Additionally, we identified the GREWS for which there are
no equivalent qudit hypergraph states. The proposed quantum
states were constructed by a series of quantum gates that rep-
resent the edges in the graph. We provided three examples of
the gates that can be derived from the existing qudit Z , S, and
T gates. In other words, the implementation of the proposed
states is feasible. Given the extensive use of existing graph
and hypergraph states in quantum information and comput-
ing, our work suggests that the properties of multigraph and
multihypergraph states may surpass those of traditional graph
and hypergraph states. Consequently, the potential application
of the proposed multigraph and multihypergraph states in cor-
responding fields merits further exploration. For example, we
previously used graph states to construct the quantum secret
reconstruction protocol [55]. Currently, we are attempting to
design the quantum secret reconstruction protocol with the
proposed multigraph and multihypergraph states, in which
stronger security and higher efficiency are pursued. Given the
enhanced information encoding capabilities of the proposed
multigraph and multihypergraph states, exploring the design
of quantum cryptographic protocols based on these two types
of quantum states is worthwhile.
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APPENDIX A: DERIVATION OF EQ. (6)

Proof. If k /∈ e, C̃Z
me
e Xk C̃Z

d−me
e = Xk . If k ∈ e, C̃Z

me
e Xk C̃Z

d−me
e = XkXk

d−1C̃Z
me
e Xk C̃Z

d−me
e . Since

C̃Ze =
d−1∑

i0,...,iN−1=0

ω

∏t−1
j=0 iv j

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|, (A1)
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Xk
d−1C̃Z

me
e X k =

d−1∑
i0,...,iN−1=0

ω
me(

∏t−1
j=0 iv j )

d |i0, . . . , ik−1, ik + d − 1, ik+1, . . . , iN−1〉〈i0, . . . , ik−1, ik − 1, ik+1, . . . , iN−1|, (A2)

Xk
d−1C̃Z

me
e Xk C̃Z

d−me
e =

d−1∑
i0,...,iN−1=0

ω
me(

∏t−1
j=0 iv j )

d |i0, . . . , ik−1, ik + d − 1, ik+1, . . . , iN−1〉〈i0, . . . , ik−1, ik − 1, ik+1, . . . , iN−1|

×
d−1∑

i′0,...,i′N−1=0

ω
(d−me )(

∏t−1
j=0 i′v j

)

d |i′0, . . . , i′N−1〉〈i′0, . . . , i′N−1|

=
d−1∑

i0,...,iN−1=0

ω
me(

∏t−1
j=0, j 
=r iv j )(ivr +1)+(d−me )

∏t−1
j=0 iv j

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|

=
d−1∑

i0,...,iN−1=0

ω
me(

∏t−1
j=0, j 
=r iv j )(ivr +1−ivr )+d

∏t−1
j=0 iv j

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|

=
d−1∑

i0,...,iN−1=0

ω
me(

∏t−1
j=0, j 
=r iv j )

d |i0, . . . , iN−1〉〈i0, . . . , iN−1| = C̃Z
me
e\{k}, (A3)

where vr = k. Then we obtain XkXk
d−1C̃Z

me
e Xk C̃Z

d−me
e = Xk C̃Z

me
e\{k} and g̃k = (

∏
e∈Ẽ C̃Z

me
e )Xk (

∏
e′∈Ẽ C̃Z

d−me′
e′ ) =

Xk
∏

e∈Ẽ ,k∈e C̃Z
me
e\{k}. �

APPENDIX B: DERIVATION OF EQ. (20)

Proof. If k /∈ Vė, ̂̃CZ
mė

ė Xk
̂̃CZ

d−mė

ė = Xk . If k ∈ Vė, ̂̃CZ
mė

ė Xk
̂̃CZ

d−mė

ė = XkXk
d−1 ̂̃CZ

me

ė Xk
̂̃CZ

d−mė

ė . Since

̂̃CZė =
d−1∑

i0,...,iN−1=0

ω

∏t−1
j=0 (iv j )

sv j

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|, (B1)

X d−1
k

̂̃CZ
mė

ė Xk =
d−1∑

i0,i1,...,iN−1=0

ω
mė[

∏ j=t−1
j=0 (iv j )

sv j ]

d |i0, . . . , ik−1, ik + d − 1, ik+1, . . . , iN−1〉〈i0, . . . , ik−1, ik − 1, ik+1, . . . , iN−1|, (B2)

X d−1
k

̂̃CZ
mė

ė Xk
̂̃CZ

d−mė

ė =
d−1∑

i0,...,iN−1=0

ω
mė[

∏t−1
j=0 (iv j )s j ]

d |i0, ik−1, . . . , ik + d − 1, ik+1, . . . , iN−1〉〈i0, . . . , ik−1, ik − 1, ik+1, . . . , iN−1|

×
d−1∑

i′0,i′1,...,i′N−1=0

ω
(d−mė )[

∏t−1
j=0 (i′v j )s j ]

d |i′0, . . . , i′N−1〉〈i′0, . . . , i′N−1|

=
d−1∑

i0,i1,...,iN−1=0

ω
mė[

∏t−1
j=0, j 
=r (iv j )s j ](ivr +1)svr +(d−mė )[

∏t−1
j=0 (iv j )

sv j ]

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|

=
d−1∑

i0,i1,...,iN−1=0

ω
mė[

∏t−1
j=0, j 
=r (iv j )s j ][

∑svr
l=0(svr

l )(ivr )l −(ivr )svr ]+d[
∏t−1

j=0 (iv j )
sv j ]

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|

=
d−1∑

i0,i1,...,iN−1=0

ω
mė[

∏t−1
j=0, j 
=r (iv j )s j ][

∑svr −1
l=0 (svr

l )(ivr )l ]

d |i0, . . . , iN−1〉〈i0, . . . , iN−1|

=
d−1∑

i0,i1,...,iN−1=0

(
ω

∏t−1
j=0, j 
=r (iv j )

sv j

d

)me[
∑svr −1

l=0 (svr
l )(ivr )l ]|i0, . . . , iN−1〉〈i0, . . . , iN−1|

=
d−1∑
ik=0

|ik〉〈ik| ⊗ ̂̃CZ
mė[

∑sk −1
l=0 (sk

l )ik l ]
(Vė\{k}|Sė\{sk}) , (B3)
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where vr = k. Then we obtain

XkX d−1
k

̂̃CZ
mė

ė Xk
̂̃CZ

d−mė

ė = Xk

d−1∑
ik=0

|ik〉〈ik| ⊗ ̂̃CZ
mė[

∑sk −1
l=0 (sk

l )(ik )l ]
(Vė\{k}|Sė\{sk})

and

ˆ̃gk =
⎛⎝∏

ė∈ ˆ̃E

̂̃CZ
mė

ė

⎞⎠Xk

⎛⎝∏
ė′∈ ˆ̃E

̂̃CZ
d−mė′
ė′

⎞⎠ = Xk

∏
ė∈ ˆ̃E ,k∈Vė

⎛⎝d−1∑
ik=0

|ik〉〈ik| ⊗ ̂̃CZ
mė[

∑sk −1
l=0 (sk

l )(ik )l ]
(Vė\{k}|Sė\{sk})

⎞⎠.
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