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Classical shadow tomography, harnessing randomized informationally complete (IC) measurements, provides
an effective avenue for predicting many properties of unknown quantum states. In n-qubit systems, projections
onto 2n + 1 mutually unbiased bases (MUBs) are widely recognized as minimal and optimal IC measurements
for full-state tomography. Mutually unbiased base circuits, structured as -CZ-S-H -, form the minimal subset of the
whole 2n2+2n

∏n
j=1(4 j − 1) Clifford circuit ensemble. Each of them can be generated by n special MUB circuits.

We study how to use MUB circuits as the ensemble in classical shadow tomography. For general observables,
the variance to predict their expectation value is shown to be exponential to the number of qubits n. However, for
a special class referred to as appropriate MUB-average (AMA) observables, the variance decreases to poly(n).
Additionally, we find that through biased sampling of MUB circuits, the variance for non-AMA observables can
again be reduced to poly(n) with the MUB-sparse condition. The performance and complexity of using the MUB
and Clifford circuits as the ensemble in the classical shadow tomography are compared.
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I. INTRODUCTION

In the realm of quantum information science, efficiently
extracting information from unknown quantum states is piv-
otal. This is traditionally achieved through quantum state
tomography [1–3]. Let {|k〉}d−1

k=0 be the computational basis
and {Uj}L−1

j=0 be an informationally complete unitary ensemble.

We usually perform projective measurements {Uj |k〉〈k|U †
j } to

obtain experimental data {tr(ρUj |k〉〈k|U †
j )} and then recon-

struct density matrix ρ. It allows us to predict any observables
on ρ, such as the state purity, entanglement entropy, and so
on. [4–6]. These predictions are central to many-body physics
and quantum information theory [7,8]. However, as quantum
systems scale up, this approach becomes impractical and even
infeasible due to the enormous memory requirements.

Sometimes, we are interested in some specific observables;
it is not necessary to calculate all the components in the
density matrix by exponentially many measurements. While
shadow tomography was initially proposed with polynomial
sampling [9,10], it required exponential-depth quantum cir-
cuits applied to copies of all quantum states, presenting
challenges for quantum hardware. Subsequently, Huang et al.
introduced classical shadow tomography [11], enabling ran-
dom measurements on unknown quantum states and efficient
prediction of various properties with a sampling complexity of
log(M )‖ · ‖2

shadow, where M represents the number of observ-
ables and ‖ · ‖2

shadow denotes the norm of the corresponding
observables.

This norm also depends on the choice of the unitary en-
semble {Uj}. The initial procedure applies random unitaries
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from a specific informationally complete (IC) ensemble to
the system and then performs computational projective mea-
surements, which is equivalent to performing randomly 3n

Pauli measurements or all Clifford measurements. Pauli mea-
surements are ideal for predicting localized target functions,
while Clifford measurements excel in estimating functions
with constant Hilbert-Schmidt norms, both offering valu-
able tools for various quantum tasks. Subsequently, various
other ensembles have been explored, including fermionic
Gaussian unitaries [12], chaotic Hamiltonian evolutions [13],
locally scrambled unitary ensembles [14–16], and Pauli-
invariant unitary ensembles [17]. The random selection of
multiple sets of IC projective measurements has been the-
oretically generalized to one IC positive-operator-valued
measure (POVM) [18,19]. In alignment with this broadened
perspective, dual measurement frames for IC POVMs are
employed to analyze estimation errors in shadow tomogra-
phy tasks [20,21]. Up to now, classical shadow tomography
has found applications in diverse fields, including energy
estimation [22], entanglement detection [23,24], quantum
chaos [25], quantum gate engineering cycles [26], and quan-
tum error mitigation [27], to name a few.

Without ancillas, the minimal-size IC ensemble con-
tains 2n + 1 unitary operations [28]. Projective measurements
onto the set of 2n + 1 mutually unbiased bases (MUBs)
are recognized as the optimal approach for quantum to-
mography [28–30]. For a vector prepared within a specific
MUB, a uniform distribution will be achieved when pro-
jecting it onto any other MUBs. These MUB measurements
are regarded as having maximal incompatibility and com-
plementarity [31], finding applications in various aspects
of quantum information science, including quantum tomog-
raphy [32,33], uncertainty relations [34–36], quantum key
distribution [37,38], quantum error correction [39–41], and
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FIG. 1. Procedure of the classical shadow tomography based on
uniform (left) and biased (right) sampling. Here σ is the unknown
state, U is a unitary gate chosen from the MUB ensemble with
probability p, and O is the observable that one wants to predict. For
biased sampling, we choose one specific unitary gate with probability
m and choose others uniformly. The classical shadows of the uniform
and biased samplings are denoted by σ̂u and σ̂b, respectively.

the identification of entanglement and other forms of quantum
correlations [42–47].

In this work we use MUB circuits as the unitary ensemble
for classical shadow tomography. The reconstruction channel
and the variance for uniform and biased MUB samplings are
computed. We find that the variance for some bounded norm
observables can be exponential with the number of qubits, but
it can become polynomial when the observables (or states)
are approximate MUB-average (AMA) ones. For observables
that are not AMA but obey the MUB-sparse condition, we
show that by biased sampling one can reduce the variance
to polynomial order. The procedure of the classical shadow
tomography based on MUB circuits is summarized in Fig. 1.
In the end, we compare the algorithmic and circuit complexity
of the MUB and Clifford measurements.

We noticed that also Zhang et al. [48] studied how to
perform classical shadow tomography with the MUB cir-
cuits. Different from us, their motivation was to identify
the minimal subset of the Clifford ensemble that happens
to be the MUB ensemble studied in our paper. Although
some of the results like the reconstruction channel and vari-
ance analysis for uniform sampling are the same, as they
should be, the methods to reach these results are different
in many aspects. First, Ref. [48] employs properties of t-
designs for calculating variances and reconstructing channels
whereas we rely solely on properties inherent to MUBs. Sec-
ond, the MUB circuits constructed in [48] are based on the
Gottesman-Knill theorem while the circuits used in our paper
are constructed directly using the representations of the cal-
culations in the Galois field [49]. The circuit structure is the
same, but the detailed gates are different. More information
on MUB circuits is reviewed in Sec. II A. Third, regarding
biased sampling, we directly compute the corresponding new
reconstruction channel and its variance for the MUB-sparse
case and thus the computational cost of estimation will be
polynomial. The optimal sampling probabilities are given ex-
plicitly. While [48] employs postprocessing techniques for
general observables, determination of the 2n + 1 optimal sam-

pling probabilities can be exponentially hard but handled with
some cases. Fourth, we find the sampling efficiency of approx-
imately MUB-average and MUB-sparse observables (states),
while [48] also found the sampling advantage of MUBs on
estimating off-diagonal operators.

II. MUB CLASSICAL SHADOW TOMOGRAPHY

Let us consider a finite d-dimensional Hilbert space.
When we perform a measurement on a quantum state ρ

using an observable O = ∑d
k=1 λk|φk〉〈φk|, the outcome

λk is obtained with a probability of tr(ρ|φk〉〈φk|). The
projective eigenstates {|φk〉}d

k=1 are mutually orthonormal.
The act of projective measurement onto {|φk〉}d

k=1 yields
a projection-valued measure (PVM) {|φk〉〈φk|}d

k=1. These
PVMs can be generalized into POVMs {Ek}, subject to the
condition that Ek is positive and satisfies the normalization
condition

∑
Ek = I . Multiple PVMs can be amalgamated

into a POVM by scaling each component with normalized
probabilities. For instance, consider the PVMs corresponding
to three Pauli observables: {|0〉〈0|, |1〉〈1|}, {|+〉〈+|, |−〉〈−|},
and {|×〉〈×|, |·〉〈·|}. These can be merged into a POVM
{p1|0〉〈0|, p1|1〉〈1|, p2|+〉〈+|, p2|−〉〈−|, p3|×〉〈×|, p3|·〉〈·|},
where p1 + p2 + p3 = 1.

A POVM {Ek} is considered IC if it spans the entire
Hermitian operators space Md (C) [50,51]. The probability
distribution {tr(ρEk )} is then sufficient to uniquely determine
any arbitrary unknown state ρ. Alternatively, given a proba-
bility distribution {tr(ρEk )}, there exists no other state ρ2 �= ρ

such that tr(ρEk ) = tr(ρ2Ek ) for some k.
An IC POVM should consist of at least d2 elements. Sym-

metric informationally complete measurements (SIC POVMs)
contain a minimum of d2 rank-1 elements and have been
employed in classical shadow tomography [52]. In the im-
plementation of SIC POVMs, additional auxiliary systems
are often needed [53–58]. If not, d2 unitary operations are
required [59]. Two intriguing yet tangential problems lie in the
quest for the existence of SIC POVMs and d + 1 MUBs for
arbitrary dimension d . These challenges have been identified
as the first two open problems in quantum information theory
by Horodecki et al. [60].

Without ancillary systems, a minimum of d + 1 PVMs is
required to consolidate into an IC POVM. Here is a brief
explanation. A normalized density operator ρ contains d2 − 1
real parameters, reduced by 1 due to tr(ρ) = 1. Each PVM
generates d − 1 independent probabilities, as the final one
can be expressed as 1 minus the sum of the others. For a
set of eigenstates {|φ j

k 〉}d
k=1 of a PVM, there always exists a

unitary operation Uj such that Uj |k〉 = |φ j
k 〉. Therefore, in the

absence of ancillary systems, the ensemble {Uj} must contain
at least d + 1 unitary operations to ensure that {Uj |k〉〈k|U †

j :
j = 0, . . . , d; k = 0, . . . , d − 1} is informationally complete.
In the original classical shadow tomography scheme [11],
when selecting the Pauli ensemble and Clifford ensemble, the
number of unitary operations is 3n and 2n2+2n

∏n
j=1(4 j − 1),

respectively, with dimension d = 2n.
Informationally complete (or tomographically complete,

as mentioned in [11]) is a crucial property of randomly se-
lected measurements in classical shadow tomography. With
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this property, the quantum channel for the random sampling
process has a unique inverse.

Let A and B be two Hermitian operators with normalized
eigenstates {|ai〉}d

i=1 and {|b j〉}d
j=1. These two bases are called

mutually unbiased if they satisfy the property

|〈ai|b j〉|2 = 1

d
(1)

for all i and j. For prime power d , there exists a maximum of
d + 1 MUBs.

In n-qubit systems, the Hilbert space has a dimension of
d = 2n. Denote the 2n + 1 MUBs by {B0, . . . ,B2n}. Consider
B0 as the canonical basis {|t〉}2n−1

t=0 . Each additional basis is de-
fined as B j = {|e j

k〉}2n−1
k=0 . Utilizing the Galois-Fourier method,

all basis states |e j
k〉 are explicitly constructed in Eq. (2.70)

of [61].
One of the nice properties of the MUBs is that the

projective measurements onto them are informationally com-
plete [30]. By utilizing these projections, we can construct 4n

orthogonal operators according to the Hilbert-Schmidt inner
product, tr(A†B) = (A, B). These operators can be constructed
in the following manner.

(i) The initial 2n operators stem from basis B0, represented
as {|t〉〈t |}2n−1

t=0 .
(ii) The remaining 4n − 2n operators are generated from the

bases {B j}2n

j=1. For each j, 2n − 1 operators are constructed as

{|e j
k〉〈e j

k| − I/2n}2n−2
k=0 .

The 4n orthogonal operators are linearly independent and
thus span the whole space Md (C).

A. Construction of MUB circuits

Recently, all nontrivial MUB circuits have been efficiently
decomposed into O(n2) elementary gates within O(n3) time,
structured as -H-S-CZ- [49]. We provide a brief review here.

The gates H and S represent the one-qubit Hadamard gate
and the phase gate, respectively. The gate CZ denotes the
two-qubit controlled-Z gate. The control and target qubits of
the controlled-Z gate can vary and be any pair ( j, k) where
0 � j < k � n − 1. Hence, there are

(n
2

)
different types of CZ

gates.
Now let us delve into the decomposition of gates. The 2n

nontrivial unitary operations for MUBs are defined as U ( j) =∑2n−1
k=0 | f j

k 〉〈k|, where j = 0, . . . , 2n − 1. For the mutually un-
biased basis indexed by j, the 2n orthonormal eigenstates
{| f j

k 〉}2n−1
k=0 are defined as follows:

∣∣ f j
k

〉 = 1√
2n

2n−1∑
l=0

|l〉(−1)k·lT
α

j
l . (2)

The states {| f j
k 〉} are the rearrangement of original MUB

states {|e j
k〉}. In addition, the coefficients α

j
l detailed in [61]

are defined as

α
j
l =

n−1∏
r=0

(
√−1) j�(lr×2r )�(lr×2r )

×
∏

0�s<t�n−1

(−1) j�(ls×2s )�(lt ×2t ). (3)

The key point is to change the representation of the coefficient
α

j
l from the multiplication � in the Galois field GF(2n) to

the traditional multiplication and addition of integers. After
modification, the coefficient α

j
l is represented as follows:

α
j
l =

n−1∏
r=0

(√−1
)ar ( j)lr

∏
0�s<t�n−1

(−1)bs,t ( j)lslt . (4)

Here ar ( j) = 0, 1, 2, 3 and bs,t ( j) = 0, 1.
With this representation, the structure of a three-stage

MUB circuit is directly inferred. The operation U ( j) is ex-
pressed as

U ( j) =
2n−1∑
k=0

∣∣ f j
k

〉〈k| = A( j)B( j)C, (5)

which corresponds to the circuit structure -H-S-CZ-.
The operation C = 1√

2n

∑2n−1
k,l=0(−1)k·lT |l〉〈k| represents the

tensor product of n Hadamard gates, denoted by H⊗n. It is also
utilized in the Deutsch-Jozsa algorithm, as shown in Eq. (2.55)
of [62].

The diagonal operation

B( j) =
2n−1∑
l=0

n−1∏
r=0

(
√−1)ar ( j)lr |l〉〈l| (6)

is associated with the tensor product of S gates Sa0( j) ⊗ · · · ⊗
San−1( j). The coefficient al ( j) means the number of times we
should apply the S gate to qubit ql , where l = 0, . . . , n − 1.

The diagonal operation

C( j) =
2n−1∑
l=0

∏
0�s<t�n−1

(−1)bs,t ( j)lslt |l〉〈l|

=
∏

0�s<t�n−1

CZ(s, t )bs,t ( j) (7)

is associated with the tensor product of CZ gates, where
bs,t ( j) = 0, 1. For coefficients bs,t ( j) equal to 1, CZ(s, t )
means that we should add a CZ gate at qubits qs and qt .

In addition to considering the circuit structure, further in-
sights into the behavior of MUB circuits can be gained by
examining the coefficients al ( j) and bs,t ( j). For instance, the
knowledge of only n special MUB circuits can determine all
2n + 1 MUB circuits, which can be observed as a peculiar
and intriguing linear behavior. The entanglement aspect solely
involves the CZ gates, which are only relevant to the behavior
of coefficients bs,t ( j). Specifically, if the CZ(2, 5) gate appears
in a certain MUB circuit, the CZ(3, 4) gate should also appear
in that circuit. Another behavior is related to the average gate
number. For example, the total count of CZ gates is computed
by summing all instances of T1 = ∑2n−1

j=0

∑
0�s<t�n−1 bs,t .

It is noteworthy that the circuit design described in
Ref. [48] utilizes the original MUB states |e j

k〉 of Ref. [61].
Consequently, despite employing the same -H-S-CZ- struc-
ture where diagonal operations commute, the specific gate
numbers and sequences could differ. It would be intrigu-
ing to discuss the performance among various styles of
MUB circuits, particularly in more quantum information
applications [63].
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Regarding the application of classical shadow tomography,
the numerical performance appears to be similar. Mutually
unbiased base circuits are a subset of Clifford circuits, and
the circuit design in [48] relies on the Gottesman-Knill the-
orem for the decomposition of Clifford circuits [64]. It is
conceivable that the time complexity or circuit complexity
may decrease with advancements in techniques for handling
Clifford circuits. While Ref. [49] mentions that the time com-
plexity is O(n3), considering computations over the Galois
field, the maximum gate count is expressed as (n2 + 7n)/2.
Nevertheless, the direct decomposition method may offer
fresh perspectives on various facets of MUB circuits from a
global standpoint. These insights could include examining lin-
ear behavior, entanglement structure, average gate numbers,
distributions of MUB state coefficients, and more.

B. Procedure

We can employ MUB circuits as a unitary ensemble for
conducting classical shadow tomography [11]. Consider σ

as the unknown quantum state and O as the observable for
prediction. The general procedure encompasses two primary
steps.

The initial step involves generating classical shadows of
state σ utilizing MUB measurements. We randomly select a
Uj from the 2n + 1 MUB circuits and rotate the unknown
state, i.e., σ → UjσU †

j . Here Uj = U ( j)†. Subsequently, the
qubits are measured on the computational basis. This mea-
surement yields a 0/1 bit string of length n, denoted by
b0 · · · bn−1. Let k = b0 + 2b1 + · · · + bn−12n−1. We calculate
the classical snapshot of σ , defined as

σ̂ = M−1(U †
j |k〉〈k|Uj ), (8)

where M−1 represents the reconstruction channel depending
on the chosen unitary ensemble. Interestingly, when uniformly
sampling from MUB circuits, the reconstruction channel mir-
rors that of Clifford circuits and can be expressed for any
operator X as

M−1
u (X ) = (2n + 1)X − tr(X )In. (9)

The specific calculations are detailed in Appendix A. Repeat
this rotation-measurement process N times. This yields a set
of N classical snapshots, termed a classical shadow of σ ,
which will be stored in the classical memory.

The second step involves using the obtained classical shad-
ows to predict observables {O1, O2, . . . , OM} of the unknown
quantum state σ . Their expectation values are given by

oi = tr(Oiσ ), 1 � i � M,

which can be approximated by the median of means of the
expectation values

ôi(N, K ) = median{ô(1)
i (L, 1), ô(2)

i (L, 1), . . . , ô(K )
i (L, 1)},

where L = 
N/K� and

ô(k)
i (L, 1) = 1

L

kL∑
j=(k−1)L+1

tr(Oiσ̂ j ), 1 � k � K.

Here, to reduce the variance, we split the shadow into K
equally sized parts labeled j, with each part containing L

FIG. 2. Variance of fidelity estimation between two GHZ states
obtained from the shadows with different unitary ensembles. For
each case, we randomly generate ten different shadows. The number
of measurements in each shadow is 1000. The shaded area is the
statistical variance for ten independent experiments.

snapshots. The quality of this approximation depends on the
choices of the parameters L and K .

C. Performance

Suppose the unknown state is σ . To assess the performance
of using MUB-based classical shadow tomography to predict
an observable O under σ , one should examine the variance
‖O0‖2

σ in Eq. (10), where O0 = O − tr(O)
2n represents the trace-

less part of O. The sample complexity is linearly correlated
with the variance,

‖O0‖2
σ = EU∼U

2n−1∑
k=0

〈k|UM−1(O0)U †|k〉2〈k|UσU †|k〉.
(10)

The variance for an arbitrary unknown state is defined
by the shadow norm ‖O0‖2

shadow = maxσ state ‖O0‖2
σ . The vari-

ance of the shadow norm for Clifford and Pauli measurements
has been studied in [11]. Now we consider the shadow
variance of the MUB measurement. Using the result of the
reconstruction channel in Eq. (9), it is straightforward to show
that

‖O0‖2
σ,u = (2n + 1)

2n∑
j=0

2n−1∑
k=0

tr2(O0Pjk )tr(σPjk ), (11)

where Pjk = U †
j |k〉〈k|Uj . The subscript u means we uniformly

sample MUB ensemble. This variance depends exponen-
tially on n because the terms tr(σPjk ) and tr(O0Pjk ) can
take their maximal values to be approximately O(1) at the
same j, k. For example, when O = |0〉〈0| and σ = |0〉〈0|,
the variance is ‖O0‖2

|0〉〈0|,u � (2n + 1)(1 − 1/2n)2. Since each
0 � tr(σPjk ) � 1 for all j, k, we can derive that the variance
maxσ state ‖O0‖2

σ,u � (2n + 1)tr(O2
0) for all σ and O. Thus,

when the unitary ensemble in the shadow tomography is MUB
circuits, to obtain an accurate enough prediction of 〈O〉, for the
worst case, one needs to perform approximately 2n samples.

A numerical experiment is performed. Consider the
observable O = |GHZ〉〈GHZ| on the unknown state
|GHZ〉〈GHZ|. We predict the expectation value of 〈O〉,
or equivalently the fidelity between two GHZ states, for n
up to 8 using shadows generated by 1000 Pauli, Clifford,
and MUB measurements. The experiments are independently
performed ten times. We plot the variance ‖O‖σ in Fig. 2,
where the shaded area is the statistical variance between
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FIG. 3. Percentage of AMA states with ε = s/2n in 1000 ran-
domly chosen quantum states according to the Haar measure in
n = 2, 3, . . . , 8 qubit systems.

ten different random experiments. The results show that
the variance of the prediction with shadows of Clifford
measurements is independent of the number of qubits, while
for shadows obtained using Pauli and MUB measurements,
‖O‖σ scales exponentially with n, which is consistent with
the analysis made above.

Although when the unitary ensemble is a MUB circuit,
the variance ‖O0‖σ,u of the prediction 〈O〉 using classical
shadow tomography depends exponentially on n, it can be
shown that this variance can decrease to polynomial with n
when the interested observable O or the unknown state σ has
the following property.

Definition 1 (approximately MUB average). A state σ (or
observable O) is called approximately MUB average if it
satisfies

|tr(σPjk ) − 1/2n| � ε (12)

for all j, k and ε = O(poly(n))/2n  1.
In other words, its probability distribution under each ba-

sis of MUBs is approximately uniform. Alternatively, if we
express σ with the 4n orthogonal operators defined above,
the matrix elements are all less than ε + 1/2n. If we sample
|φ〉 = U |0〉 with the Haar measure, the average state will
be [65] ∫

U (2n )
U |0〉〈0|U †dμ(U ) = I/2n. (13)

Thus ε also reflects the deviation from the average state I/2n

with ε = 0.
We consider the special unknown state to be σ = I/2n.

Then tr( I
2n Pjk ) = 1/2n for all j, k. Substituting this into

Eq. (11), we can obtain

‖O0‖2
I/2n,u = (1 + 1/2n)tr

(
O2

0

)
(14)

by Proposition 2.
We perform a numerical experiment using QISKIT to study

the AMA states. The result is shown in Fig. 3. In particular,
we randomly generate 1000 quantum states according to Haar
measure in n-qubit system for n = 2, 3, . . . , 8. If we set s = 5,
we find that 89.7% of these random states are AMA for n = 6,

FIG. 4. Variance of fidelity estimation based on MUB measure-
ments. The observable is OGHZ = |GHZ〉〈GHZ| (red) and OAMA =
|φ〉〈φ| (blue), where |φ〉 are randomly chosen AMA states with
ε = 2/2n. The number of measurements in each experiment is
1000. The shaded area is the statistical variance for ten independent
experiments.

59% for n = 7, and 5.2% for n = 8, while for n = 2, 3, 4, 5,
almost all these random states are AMA because s = 5 is
comparable to 2n. However, if we decrease it to s = n, almost
all of these random states are AMA even for n = 8. Thus, it
seems that as long as we choose an approximate s such that
ε is large enough but still much less than 2n, there is a large
number of AMA states in the Hilbert space.

If we randomly select a density matrix σ , the values
tr(σPjk ) are always less than 1 for all MUB states Pjk . If
the sampling size is large enough, the average behavior will
be like I/d and then tr(σPjk ) � 1

2n + ε. It is an interesting
question to rigorously discuss the percentage of states with
different ε among all states.

Theorem 1. If the observable O is AMA, then for any
unknown states σ , the upper bound of the variance is

‖O0‖2
σ,u �

(
1 + 1

2n

)2

poly(n). (15)

On the other hand, if the unknown state σ is AMA, then for
any observable O the variance is upper bounded by

‖O0‖2
σ,u �

(
1 + 1

2n

)
[1 + poly(n)]tr

(
O2

0

)
. (16)

If tr(O2
0) is a constant bounded norm, then the variance is

bounded by a polynomial function of n.
The proof of the theorem is given in Appendix B. Thus,

if the observable is AMA or the unknown state happens to
be AMA, the MUB-based shadow tomography is an effective
method to predict 〈O〉.

As an example, we study the expectation value 〈O〉 on the
GHZ state for both AMA observable OAMA = |φ〉〈φ| and non-
AMA observable OGHZ = |GHZ〉〈GHZ| for n = 2, 3, . . . , 8.
Here |φ〉 are randomly chosen AMA states with ε = 2/2n for
each n. By 1000 MUB measurements, we plot the variance
of the prediction 〈O〉 in Fig. 4. Compared with the OGHZ

case, the variance of OAMA does not depend exponentially
on n. Thus, it confirms our Theorem 1 and one can use the
MUB-based classical shadow tomography to predict the AMA
observables.

III. BIASED-MUB CLASSICAL SHADOW TOMOGRAPHY

When both the unknown state σ and observable O are not
AMA, the variance ‖O0‖2

σ,u could be exponential with n. An
accurate prediction of 〈O〉 requires approximately 2n MUB
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measurements in classical shadow tomography. In contrast,
we find that if the observable O = |φ〉〈φ| or the unknown state
σ satisfies the MUB-sparse condition, by the biased sampling,
the variance can also be poly(n).

Definition 2 (MUB sparse). A state |φ〉 is called MUB
sparse if it has sparse expression under some basis B j . Pre-
cisely, |φ〉 = ∑2n−1

k=0 akU
†
j |k〉 for some j and the number of

nonzero elements in the set {ak : k = 0, . . . , 2n − 1} is t =
O(poly(n)).

If a state is MUB sparse under basis B j , it is not AMA,
as ε = O(1) under the measurement of B j . However, for the
other 2n bases, we can prove ε = t/2n as follows.

Proposition 1. Consider that |φ〉 contains at most t nonzero
amplitudes under the expression of B j . For the other 2n

MUBs, we can prove |〈φ|Uj′ |k〉|2 � t/2n, where j′ �= j.
Proof. We use the expression |φ〉 = ∑t

k=1 alkU
†
j |lk〉. With

the definition of MUBs |〈k′|Uj′U
†
j |lk〉| = 1√

2n for j �= j′,

|〈φ|Uj′ |k〉|2 = 1

2n

∣∣∣∣∣
t∑

k=1

alk eiθ jk

∣∣∣∣∣
2

� 1

2n

(
t∑

k=1

|alk |2
)(

t∑
k=1

|eiθ jk |2
)

= t

2n
.

�
As we will see in the following, for MUB-sparse observ-

ables, the variance of prediction can decrease significantly if
one performs the MUB measurements in a biased way. Our
motivation to consider the biased sampling is from the obser-
vations of fidelity estimation between two GHZ states. In this
case, both the unknown states and observable are not AMA
but they are MUB sparse with t = 2 under B0. If we sample
the MUB circuits {Ui}d

i=0 uniformly in shadow tomography,
the variance is exponential with n from Fig. 2. Specifically,
2000 snapshots are enough to give 0.99 fidelity for n � 7, but
when n � 8, ensuring a fidelity of 0.95 requires 10 000 sam-
plings. Upon reviewing the numerical outcomes, we find that
choosing more operations U0 improves the estimated perfor-
mance. Theoretically, tr[OM−1(P0k )] = (2n − 1)/2 when U0

is chosen. Otherwise, the expectation values could always be
1/2n+1 − 1/2 or 1/2n. However, as n exceeds 8, the likelihood
of uniformly selecting U0 drastically decreases. Appropriately
increasing the number of samples of U0 will result in a faster
approximation of the exact expected value 1.

Biased shadow tomography follows a process similar to the
usual case, with the difference lying in the data acquisition
phase, i.e., employing random MUB measurements based on a
biased distribution. For instance, if the observable O = |φ〉〈φ|
is MUB sparse under B j , adjusting probabilities can prioritize
sampling from Uj while reducing others’ likelihood, outlined
as

pUj = 1

2n + 1
→ 1 + m

2n + 1 + m
for Uj,

pUk = 1

2n + 1
→ 1

2n + 1 + m
otherwise, (17)

where m is a real number. Note that when we use the biased
shadow to predict 〈O〉, the variance for uniform sampling in
Eq. (11) does not apply anymore. In fact, the correct variance

depends on the parameter m. As we will see later, m is not a
free parameter in our scheme but will be fixed to be the one
that minimizes this variance.

When we randomly sample the MUB circuits according
to Eq. (17), for any operator X , the reconstruction channel
becomes

M−1
b (X ) = (2n + 1 + m)

(
X − m

1 + m

∑
k

tr(XPjk )Pjk

)

− tr(X )I

1 + m
. (18)

When m = 0, it becomes the reconstruction channel for the
uniform sampling case in Eq. (9) and M−1

b (X ) = M−1
u (X ).

The details of this derivation can be found in Appendix A.
Theorem 2. Given an observable O = |φ〉〈φ| and unknown

quantum state σ , if |φ〉 is MUB sparse, one can efficiently
predict 〈O〉 using biased MUB sampling. The upper bound of
variance is given by

‖O0‖2
σ,b � t2 when m = 2n

t − 1
− 1 (19)

and the optimal probabilities to choose Uj and the other uni-
tary circuits in the MUB set are

pUj = 1

t
, pUk = 1

2n

(
1 − 1

t

)
, k �= j. (20)

On the other hand, given an observable O and unknown quan-
tum state σ = |φ〉〈φ|, if |φ〉 is MUB sparse, one can predict
〈O〉 using biased MUB sampling. The subscript b indicates
biased sampling from the MUB ensemble. The upper bound
of variance is given by

‖O0‖2
σ,b � (

√
t + 1)2tr

(
O2

0

)
when m = 2n

√
t

− 1 (21)

and the optimal probabilities to choose Uj and the other uni-
tary circuits in the MUB set are

pUj = 1

1 + √
t
, pUk = 1

2n

(
1

1 + √
t

)
, k �= j. (22)

The proof is given in Appendix B. For both cases, the
variance for predicting the MUB-sparse observable is up-
per bounded by a function independent of n. Thus, classical
shadow tomography based on the MUB circuits works not
only for AMA observables, but also for observables that are
MUB sparse by biased sampling.

Let us consider the fidelity estimation between two GHZ
states again. In Fig. 5 we compare the variance of the predic-
tions of OGHZ using the shadows obtained by Clifford, MUB,
and biased MUB measurements. As discussed before, the
observable is not AMA. Uniform sampling in shadow tomog-
raphy leads to the exponential dependence of n in the variance.
While since OGHZ is MUB sparse with t = 2 under U0 = I ,
according to Theorem 2, we perform the MUB measurements
in a biased ways with the probability 0.5 on U0 and 1/2n+1 on
the others. By doing so, the variance decreases significantly,
that is, even lower than in the Clifford case. In this simple
example, we have shown that by biased sampling, the classical
shadow tomography based on MUB circuits works for the
MUB-sparse observables.
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FIG. 5. Variance of fidelity estimation between two GHZ states
using MUB shadows (red), Clifford shadows (orange), and biased
MUB shadows (green). The shaded region is the statistical variance
among ten randomly generated shadows. The number of measure-
ments in each shadow is 1000.

Remark. Note that for observables that can be treated as
the density matrix of mixed states, i.e., O = ∑s

k=1 pk|φk〉〈φk|
with pk � 0 and

∑s
k=1 pk = 1, if all {|φk〉} are MUB sparse

under the same basis B j , then Theorem 2 still holds. It is easy
to check that tr(OPj′k ) � t

2n for each k when j′ �= j.

IV. COMPARISON WITH RANDOM CLIFFORD
MEASUREMENTS

Based on the performance of the classical shadow to-
mography with a MUB ensemble, we classify the quantum
states (observables) into three classes as depicted in Fig. 6.
With uniform MUB circuit sampling, we observe that the
worst-case variance is bounded by (2n + 1)tr(O0)2, while the
average variance is (1 + 1/2n)tr(O0)2. Notably, for AMA
states (observables), the variance remains polynomial. Ad-
ditionally, with biased MUB circuit sampling, the variance
for sparse states (observables) also stays polynomial. By
contrast, when employing uniform sampling of Clifford cir-
cuits, the variance for all states (observables) is limited
to 3 tr(O2

0).
In addition to the performance, experiment implementation

and postprocessing are two main procedures in classi-
cal shadow tomography. We compare them for Clifford
ensembles and MUB ensembles.

FIG. 6. States classification. We divide all n-qubit states into
three parts: AMA states (observables), states (observables) with a
sparse representation under some basis B j , and others. It is intriguing
to explore if other states share similar properties with the sparse
states and to assess the percentage of these failed states within the
complete set.

A. Experiment implementation

In the data acquisition phase, one needs to randomly sam-
ple the unitary operations in the ensemble many times. The
MUB ensemble has many fewer elements than the Clifford
one, thus making the sampling process more direct. Also, the
random MUB circuit structure is simpler to implement in the
experiments than the random Clifford circuit. Surprisingly, we
only need to consider n special MUB circuits to implement all.

1. Sampling process

As for the n-qubit Clifford ensemble, the number of el-
ements is 2n2+2n

∏n
j=1(4 j − 1). The quantity is too large to

sample directly from the first to the last. Nevertheless, each
Clifford circuit U is fully characterized by its action on
2n Pauli operators [64]: UXjU † = (−1)r j

∏n
i=1 X

α ji

i Z
β ji

i and

UZjU † = (−1)s j
∏n

i=1 X
γ ji

i Z
δ ji

i . The parameters that define U
are (α, β, γ , δ, r, s), where α, β, γ , δ are n × n matrices of
bits and r, s are n-bit vectors. Given these parameters, different
methods can decompose U into elementary circuits [64,66–
70]. The time complexity is O(n3) or O(n2), while the number
of elementary gates is O(n2/log n) or O(n2).

As for the n-qubit MUB ensemble, there are 2n + 1 cir-
cuits. This allows for a direct uniform (biased) sampling due
to their significantly lower count compared to Clifford cir-
cuits. In Ref. [49], 2n + 1 circuits {I,U (0),U (1), . . . ,U (2n −
1)} produce 2n + 1 MUBs by acting on the computational
basis. The sampled MUB circuits are {I,U †(0), . . . ,U †(2n −
1)}. Each nontrivial circuit U ( j) is obtained within O(n3)
time. Notably, every circuit comprises at most (n2 + 7n)/2
elementary gates. On average, the counts of gates includes
3n/2 S gates, (n2 − n)/4 CZ gates, and (n − u)/2 CZ gates
with a distance u.

2. Circuit structure

For the Clifford ensemble, the circuit is structured with 11-
stage decomposition -H-cx-S-CX-S-CX-H-S-CX-S-CX- [66] or
7-stage decomposition -CX-CZ-S-H-S-CZ-CX- [68,70].

For the MUB ensemble, the circuit is structured as
-H-S-CZ-. The entanglement CZ component consists of 2n − 3
fixed modules. Furthermore, the structures among different
MUB circuits exhibit a strong correlation. Linear relations
exist in these 2n + 1 MUB circuits. Each U ( j) can be derived
from the following n circuits: {U (20),U (21), . . . ,U (2n−1)}.

B. Postprocessing

In the prediction phase, we require two sets of data: the
unitary operations used in the rotation, Uj , and the measure-
ment outcomes |k〉. With them, one can estimate the expected
value of observable O by

o ≈ tr[M−1(U †
j |k〉〈k|Uj )O]. (23)

In the worst case, as n grows, the evaluation of the above
expression becomes exponentially slow. However, if the ob-
servable is MUB sparse in the MUB samplings or the
observable has an efficient representation, such as an efficient
stabilizer decomposition in Clifford sampling, the computa-
tion complexity decreases to a polynomial of n.
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In the case of Clifford ensembles, the number of all stabi-
lizer states U †

j |k〉 is O(2n2/2), while the number of MUB states
is 2n(2n + 1). Consequently, the number of possible classical
snapshots in Eq. (8) decreases for MUB ensembles. The set of
all MUB states is a subset of all stabilizer states. In general,
the Clifford ensembles prove effective for a broader range
of observables, considering the computational complexity in-
volved in obtaining the estimation o.

The MUB circuit decomposition can be realized in all
physical platforms. In a quantum optical experiment, one
could perform the random Clifford measurements by uni-
formly projecting a stabilizer state U †

j |k〉. To compute all
these 2n coefficients, the time complexity is O(n × 23n) when
we use the expression of stabilizers generators {gi}n

i=1, where
U †

j |k〉〈k|U †
j = 1

2n

∏n
i=1(I + gi ). A new approach reduces the

complexity to O(2nn3) [71]. If we randomly project a MUB
state | f j

k 〉 in Eq. (2), the time complexity is also O(2nn3) and
we can directly calculate the coefficients [49,61].

V. CONCLUSION

In this paper we explored classical shadow tomography
by uniform and biased sampling MUB circuits. The 2n + 1
MUBs is the minimal and optimal set for full n-qubit state
tomography, which also constitutes a subset of all Clifford
circuits. A mutually unbiased base circuit is structured with
three-stage decomposition -CZ-S-H- [49], a part of the Clif-
ford circuit [70]. There are linear relations between these
MUB circuits and the average number of different gates can
be counted.

The reconstruction channel and variance were calculated
for random uniform and biased sampling of MUB circuits.
For the most general observable, the variance is bounded
by O(2n), but when considering a special subset defined as
AMA observables, we showed that the upper bound of the
variance becomes poly(n), which is comparable to the Clif-
ford case. Furthermore, we found that by biased sampling of
MUB circuits, we could effectively decrease the variance to
poly(n) when the observable (or the unknown state) is MUB
sparse. All these results were demonstrated by numerical ex-
periments.

To characterize whether a random state ρ (observable) is
AMA or MUB sparse, we should calculate d (d + 1) expecta-
tion values {tr(ρPjk )} by definition. However, this approach is
not efficient when d = 2n is large. One possible approach is
checking the AMA- or MUB-sparse proprieties using random
projection. If we randomly select the jth mutually unbiased
bases and kth states, the value {tr(ρPjk )} is probably less than
1
2n + ε. Otherwise, the value is close to O(1) and we can say
that ρ is MUB sparse at that basis. An interesting topic to
discuss is how many samples are needed to have a sufficiently
high confidence level.

There are many possible research directions for the fu-
ture regarding the classical shadow tomography with MUB
circuits. First, we would like to find an efficient scheme to
predict the general observables that are not AMA and MUB
sparse. Second, it would be interesting to consider more types
of observables such as two-point correlation functions and
out-of-time-order correlations. Third, one can also study how

to use the MUB circuits to predict nonlinear or polynomial
observables such as entanglement entropy.
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APPENDIX A: COMPUTATION DETAILS OF THE
RECONSTRUCTION CHANNEL

In classical shadow tomography, after a MUB measure-
ment {U †

j |k〉〈k|Uj}2n−1
k=0 , the unknown density matrix ρ can be

viewed as collapsing to Pjk = U †
j |k〉〈k|Uj , with |k〉 a state in

the computational basis. To obtain the classical shadows ρ̂,
one needs to know the reconstruction channel M−1. We cal-
culate the reconstruction channels of the MUB measurements
for both uniform and biased samplings. The computation de-
tails are given below.

1. Uniform sampling

The channel of the MUB measurements is defined as

Mu(ρ) = 1

2n + 1

2n∑
j=0

2n−1∑
k=0

tr(ρPjk )Pjk . (A1)

As the MUB circuits are informationally complete, each ρ can
be expressed in the form

ρ =
2n∑

j=0

2n−1∑
k=0

x jkPjk .

Note here that the coefficients {x jk} may not be unique. It is
straightforward to show that

tr(ρPjk ) = tr

[(
2n∑

a=0

2n−1∑
b=0

xabPab

)
Pjk

]
(A2)

=
∑

a= j,b=k

tr(xabPabPjk )

+
∑

a= j,b�=k

tr(xabPabPjk ) +
∑
a �= j

tr(xabPabPjk ) (A3)

= x jk + 0 + · · · + 0︸ ︷︷ ︸
2n−1

+ 1

2n

∑
a �= j

2n−1∑
b=0

xab (A4)

= x jk + 1

2n

2n∑
a=0

2n−1∑
b=0

xab − 1

2n

2n−1∑
b=0

x jb (A5)

= x jk + 1

2n
tr(ρ) − 1

2n

2n−1∑
b=0

x jb. (A6)
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In Eq. (A4) we use the property in Eq. (1), i.e., the square
of the inner product of two eigenstates in different MUBs is
1/2n:

Mu(ρ) = 1

2n + 1

2n∑
j=0

2n−1∑
k=0

(
x jk + tr(ρ)

2n
− 1

2n

2n−1∑
b=0

x jb

)
Pjk

(A7)

= 1

2n + 1

⎛
⎝ρ + tr(ρ)(2n + 1)I

2n
−

2n∑
j=0

2n−1∑
b=0

x jb

2n
I

⎞
⎠
(A8)

= 1

2n + 1

(
ρ + tr(ρ)(2n + 1)I

2n
− tr(ρ)

2n
I

)
(A9)

= 1

2n + 1
[ρ + tr(ρ)I]. (A10)

Then the inverse channel is given by

M−1
u (ρ) = (2n + 1)ρ − tr(ρ)I. (A11)

It is the same as the reconstruction channel for the Clifford
measurements [11].

2. Biased sampling

Without loss of generality, we let the biased sampling basis
be B0. The sampling probability is 1+m

2n+1+m for U0 = I and the
sampling probability for other Uj is 1

2n+1+m , where j �= 0. The
resulting reconstruction channel for this adjusted sampling
process will be

Mb(ρ) = 1

2n + 1 + m

⎛
⎝ 2n∑

j=0

2n−1∑
k=0

tr(ρPjk )Pjk

+ m
2n−1∑
k=0

tr(ρP0k )P0k

)
(A12)

= 1

2n + 1 + m

(
ρ + tr(ρ)I + m

2n−1∑
k=0

tr(ρP0k )P0k

)
.

(A13)

Then the updated inverse channel will be

M−1
b (ρ) = (2n + 1 + m)

(
ρ − m

1 + m

∑
k

tr(ρP0k )P0k

)

− tr(ρ)I

1 + m
. (A14)

APPENDIX B: COMPUTATIONAL DETAILS ON
THE VARIANCE

The performance of classical shadow tomography for the
unknown state is linearly dependent on the variance defined

as∥∥∥∥O − tr(O)

2n

∥∥∥∥2

shadow

= max
σ state

EU∼U
∑

b∈{0,1}n

〈b|UσU †|b〉

× 〈b|UM−1

(
O − tr(O)

2n

)
U †|b〉2,

(B1)

where U is a randomly chosen circuit in the unitary ensemble
U . From the definition, the variance depends on the observable
O and choice of U , but it also depends implicitly on how
one samples the circuits. In this Appendix we calculate this
variance when U is MUB circuits for both uniform and biased
sampling. When sampling uniformly MUBs for the unknown
state σ , the variance is represented as ‖O0‖2

σ,u. While sam-
pling with bias, the variance is denoted by ‖O0‖2

σ,b.

1. Uniform sampling

For the traceless part O0 = O − tr(O)
2n , we know that

tr(O0) = 0. The reconstruction channel is

M−1
u (O0) = (2n + 1)O0 − tr(O0)I = (2n + 1)O0.

We obtain that

‖O0‖2
shadow,u = max

σ state
‖O0‖2

σ,u (B2)

= max
σ state

1

2n + 1

2n∑
j=0

2n−1∑
k=0

tr(σPjk )tr2

× [(2n + 1)O0Pjk] (B3)

= max
σ state

(2n + 1)
2n∑

j=0

2n−1∑
k=0

tr2(O0Pjk )tr(σPjk ).

(B4)

Proposition 2.
∑

j,k tr2(O0Pjk ) = tr(O2
0).

Proof. By Eq. (A1) we have

2n∑
j=0

2n−1∑
k=0

tr(O0Pjk )Pjk = (2n + 1)Mu(O0)

= O0 − tr(O0)I = O0. (B5)

Thus
∑

j,k tr(O0Pjk ) = tr(O0) = 0.

Define O0, j = ∑2n−1
k=0 tr(O0Pjk )Pjk . Thus O0 = ∑

j O0, j . It

is easy to prove that tr(O2
0, j ) = ∑2n−1

k=0 tr2(O0Pjk ). If j �= j′ we
have

tr(O0, jO0, j′ ) = 1

2n

∑
k,k′

tr(O0Pjk )tr(O0Pj′k′ ) (B6)

= 1

2n
tr

(
O0

∑
k

Pjk

)
tr

(
O0

∑
k′

Pj′k′

)
(B7)

= 0. (B8)

Here we use tr(O0I ) = 0. Thus tr(O2
0) = ∑

j tr(O2
0, j ) =∑

j

∑
k tr2(O0Pjk ). �
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Here, we give the proof of Eq. (15).
Proof. As the observable O is AMA, we have |tr(OPjk ) −

1/2n| � ε for all j, k. By tr(O0Pjk ) = tr(OPjk ) − 1/2n,
we have tr2(O0Pjk ) � ε2. For each j,

∑2n−1
k=0 tr(σPjk ) = 1.

Then ‖O0‖2
σ,u � (2n + 1)ε2 · ∑

j,k tr(σPjk ) = (2n + 1)2ε2.
We know ε = O(poly(n))/2n. Thus ‖O0‖2

σ,u � (1 +
1
2n )2poly(n). �

Now, we give the proof of (16).
Proof. As the unknown state σ is AMA, we

have tr(σPjk ) � ε + 1
2n for all j, k. Then ‖O0‖2

σ,u �
(2n + 1)(ε + 1

2n )
∑

j,k tr2(O0Pjk ) = (2n + 1)(ε + 1
2n )tr(O2

0).

Thus ‖O0‖2
σ,u � (1 + 1

2n )(1 + poly(n))tr2(O0).
When ε = O(1/2n) and tr(O2

0) is bounded, the variance for
these states σ is at a constant level. When σ = I/2n we have
ε = 0 and ‖O0‖2

σ,I/2n � 2n+1
2n tr(O2

0). �

2. Biased sampling

Here we give the proof of Theorem 2.
Proof. The inverse reconstruction channel for biased sam-

pling is

M−1
b (O0) = (2n + 1 + m)

(
O0 − m

1 + m

∑
k

tr(O0P0k )P0k

)
.

(B9)

Define O0,m = O0 − m
1+m

∑
k tr(O0P0k )P0k . The variance for

state σ changes to

‖O0‖2
σ,b = (2n + 1 + m)2

2n∑
j=1

2n−1∑
k=0

tr2(O0,mPjk )
tr(σPjk )

2n + 1 + m

+ (2n + 1 + m)2
2n−1∑
k=0

tr2(O0,mP0k )
(m + 1)tr(σP0k )

2n + 1 + m
.

We have the following relations. When j = 0, tr(O0,mP0k ) =
1

1+m tr(O0P0k ). When j �= 0,

tr(O0,mPjk ) = tr(O0Pjk ) − 1

2n

m

1 + m

∑
k′

tr(O0P0k′ ) (B10)

= tr(O0Pjk ). (B11)

With tr(O0I ) = 0, we can rewrite the variance as

‖O0‖2
σ,b = (2n + 1 + m)

2n∑
j=1

2n−1∑
k=0

tr2(O0Pjk )tr(σPjk )

+ 1

1 + m
(2n + 1 + m)

2n−1∑
k=0

tr2(O0P0k )tr(σP0k ).

(B12)

Now we give the proof of Eq. (19). Given the ob-
servable O = |φ〉〈φ| and any unknown state σ , we know
that tr(O0P0k ) � max|k〉[tr(OP0k ) − 1

2n ] � 1 and tr(O0Pjk )2 �
(t−1)2

2n2n for j �= 0 and thus

‖O0‖2
σ,b � (2n + 1 + m)

[
(t − 1)2

2n × 2n
× 2n

+ 1

1 + m
max
|k〉

(
tr(OP0k ) − 1

2n

)2
]

� (2n + 1 + m)

(
(t − 1)2

2n
+ 1

1 + m

)
. (B13)

�
Now we give the proof of Eq. (21). Given the observable

O and unknown state σ = |φ〉〈φ|, we know that tr(σP0k ) � 1
and tr(σPjk ) � t

2n for j �= 0 and thus

‖O0‖2
σ,b � (2n + 1 + m)

⎛
⎝ t

2n

2n∑
j=1

tr
(
O2

0, j

) + 1
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