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Kirkwood-Dirac (KD) quasiprobability is a quantum analog of classical phase space probability. It offers an
informationally complete representation of quantum state wherein the quantumness associated with quantum
noncommutativity manifests in its nonclassical values, i.e., the nonreal and/or negative values of the real part.
This naturally raises a question: how does such form of quantumness comply with the uncertainty principle
which also arises from quantum noncommutativity? Here, first, we obtain sufficient conditions for the KD
quasiprobability defined relative to a pair of projection-valued measure (PVM) bases to have nonclassical values.
Using these nonclassical values, we then introduce two quantities which capture the amount of KD quantumness
in a quantum state relative to a single PVM basis. They are defined, respectively, as the nonreality and the
classicality—which captures both the nonreality and negativity—of the associated KD quasiprobability over the
PVM basis of interest, and another PVM basis, and maximized over all possible choices of the latter. We obtain
their lower bounds, and derive trade-off relations respectively reminiscent of the Robertson and Robertson-
Schrodinger uncertainty relations but with lower bounds maximized over the convex sets of Hermitian operators
whose complete sets of eigenprojectors are given by the PVM bases. We discuss their measurement using weak
value measurement and classical optimization. We then suggest an information theoretical interpretation of the
KD nonreality relative to a PVM basis as a lower bound to the maximum total root-mean-squared error in
an optimal estimation of the PVM basis, and thereby obtain a lower bound and a trade-off relation for the
root-mean-squared error. Finally, we suggest an interpretation of the KD nonclassicality relative to a PVM basis
as a lower bound to the total state disturbance caused by a nonselective projective binary measurement associated

with the PVM basis, and derive a lower bound and a trade-off relation for the disturbance.
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I. INTRODUCTION

Heisenberg uncertainty principle is a basic tenet of
quantum mechanics which sets down a radical conceptual
demarcation from classical mechanics [1]. It stipulates a fun-
damental restriction, in the form of trade-off relations, on
the simultaneous predictability of outcomes of measurement
of two physical quantities. Formally, the trade-off relations
arise from the noncommutativity of operators representing
quantum measurements [2—4]. From the very beginning, the
uncertainty principle has led to the foundational debate about
the deep nature of randomness arising in quantum mea-
surement [5] and the intimately related conceptual issue on
the meaning of quantum correlation [6]. In recent decades,
attempts to better understand the meaning of uncertainty re-
lation, and quantum randomness in general, has opened an
avenue for fruitful applications in different areas of quantum
science and quantum technology [7]. It is thus important to
study the uncertainty principle from various perspectives to
appreciate its rich and multifaceted nature and to conceive
further implications.

The earliest uncertainty relations are developed based
on the quantification of the measurement uncertainty in
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terms of variance of measurement outcomes [2-4,8]. Cer-
tain drawbacks of variance for characterizing unpredictability
motivated the construction of uncertainty relations based on
the Shannon entropy of the measurement outcomes [7,9—-17].
Variance and Shannon entropy of measurement outcomes,
however, do not only quantify the genuine quantum uncer-
tainty originating from the noncommutativity between the
quantum state and the measurement operators, but they also
take into account the classical uncertainty stemming from
the agent’s ignorance about the preparation, either due to
classical noise or lack of access of another system entan-
gled with the system of interest, leading to the preparation
of mixed states. It is thus instructive to ask if it is possi-
ble to develop uncertainty relations for the intrinsic quantum
uncertainty rather than for the total measurement uncer-
tainty. A notable result along this direction was reported
in Ref. [18], where the author derived a trade-off relation
for an intrinsic quantum uncertainty quantified by means of
Wigner-Yanase skew information [19], having a form similar
to the Robertson uncertainty relation. This result is gener-
alized in Ref. [20] to obtain a trade-off relation similar to
the Robertson-Schrodinger uncertainty relation. Another ap-
proach is suggested in Refs. [16,21-23], which used some
measures of quantum coherence to isolate the intrinsic quan-
tum uncertainty and showed that they satisfy some trade-off
relations similar to the entropic uncertainty relations.
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In the present study, we work with an informationally
equivalent representation of quantum states on a finite-
dimensional Hilbert space using Kirkwood-Dirac (KD)
quasiprobability [24-26]. KD quasiprobability is a quantum
analog of classical phase space probability wherein the quan-
tumness associated with noncommutativity manifests in its
nonclassical values, i.e., nonreal values and/or negative val-
ues of its real part. This prompts the question of how the
uncertainty principle imposes a restriction on such forms
of quantumness. In order to answer this question, we first
derive sufficient conditions for the KD quasiprobability rel-
ative to a pair of rank-1 orthogonal projection-valued measure
(PVM) bases to have nonclassical values. We then intro-
duce two quantities which measure the KD quantumness in
a quantum state relative to a single PVM basis. The first
quantity is defined as the nonreality in the KD quasiprobabil-
ity over the PVM basis of interest and another PVM basis,
and maximized over all possible choices of the latter. We
call it the KD nonreality in the quantum state relative to
the PVM basis. The second quantity is defined similarly, but
relative to the nonclassicality which captures simultaneously
both the nonreality and the negativity of the KD quasiprob-
ability. We call it the KD nonclassicality in the quantum
state relative to the PVM basis. Both quantities have been
proposed earlier in Refs. [27,28] as faithful quantifiers of
quantum coherence relative to the incoherent orthonormal
basis corresponding to the rank-1 PVM basis. We obtain lower
bounds for the quantumness captured by the above-defined
KD nonreality and KD nonclassicality in a state relative to
a PVM basis.

We then proceed to derive trade-off relations for the KD
nonreality in a state relative to a PVM basis and that relative to
another PVM basis, and similarly for the KD nonclassicality
in a state relative to a PVM basis and that relative to another
PVM basis. They are respectively reminiscent of the Robert-
son [4] and the Robertson-Schrodinger uncertainty relations
[8], but with lower bounds that are optimized over the convex
sets of all pairs of Hermitian operators whose eigenprojectors
are given by the two PVM bases of interest. The lower bounds
and the trade-off relations for the KD nonreality and KD
nonclassicality in a state relative to a rank-1 orthogonal PVM
basis lead to similar lower bounds and trade-off relations for
the /;-norm coherence of the state relative to the incoherent
orthonormal basis corresponding to the PVM basis [29]. We
sketch a measurement scheme of the KD nonreality and KD
nonclassicality relative to a PVM basis based on weak value
measurement and classical optimization. We then suggest an
information theoretical interpretation of the KD nonreality in
a state relative to a PVM basis as a lower bound to the root-
mean-squared error of an optimal estimation of the PVM basis
based on projective measurement in the worst case scenario.
This allows us to derive a lower bound and a trade-off relation
for the root-mean-squared error of the optimal estimation of
a PVM basis in the worst case scenario. We further suggest
an operational interpretation of the KD nonclassicality in a
state relative to a PVM basis as a lower bound to the total
state disturbance caused by a nonselective projective binary
measurement associated with the PVM basis, and thereby
derive a lower bound and a trade-off relation of such state
disturbance.

II. SUFFICIENT CONDITIONS FOR NONCLASSICAL
KIRKWOOD-DIRAC QUASIPROBABILITY

KD quasiprobability is a specific quantum analog of phase
space probability distribution in classical statistical mechanics
[24,25]. The KD quasiprobability associated with a quantum
state represented by a density operator o on a Hilbert space H
over a pair of orthonormal bases {|a)} and {|b)} of H is defined
as [24-26]

Prp(a, ble) := Tr{I1, 1.0}, (D

where I1, := |x) (x|, x = a, b. We note that {I1,} comprises
arank-1 orthogonal PVM, ie., > II, =T, IT, 1, = §,,T1,,
where I is the identity operator on H and 8., is the Kronecker
delta. The PVM {I1,} describes a sharp projective measure-
ment with outcomes x and probability Pr(x|o) = Tr{I1,0}.
Hereafter we shall thus refer to {I1,} as a rank-1 PVM basis.

KD quasiprobability gives correct marginal probabilities,
ie., ) ;Prkp(a, blo) =Pr(jlo), i # j, i, j = {a,b}. How-
ever, unlike conventional classical probability, KD quasiprob-
ability may take nonreal value, and its real part, called the
Terletsky-Margenou-Hill quasiprobability [26,30,31], may
be negative. Such nonreality and negativity capture the
quantum noncommutativity, that is, assuming two of its
three ingredients {o, I1,, I1;} commute, e.g., [I1,, 0o]- =0,
renders the KD quasiprobability Prgp(a, b|o) real and non-
negative. Here and in what follows, [X,Y ]y :=XY FYX
denotes the commutator and anticommutator between two
Hermitian operators X and Y. In this sense, the nonreal-
ity or/and the negativity of KD quasiprobability delineate
some form of quantumness stemming from quantum non-
commutativity. The converse, however, is not necessarily true
[32,33]. Remarkably, the real and imaginary parts of the
KD quasiprobability can be estimated in experiment without
resorting to full state tomography either using weak value
measurement or other methods [34-48]. This form of quan-
tumness, i.e., the nonreality or/and the negativity in the KD
quasiprobability, has thus found applications in different areas
of quantum science and technology [27,28,48—62].

KD quasiprobability gives an informationally complete
representation of an arbitrary quantum state. That is, given
a KD quasiprobability Prxp(a, blo) defined over a pair of
orthonormal bases {|a)} and {|b)} with (a|b) = O for all (a, b),
the associated quantum state can be reconstructed as o =
Za’ » Prp(a, blo) ‘(’2‘%' . This important fact naturally raises an
intriguing question on how the KD quantumness captures dif-
ferent yet interrelated nonclassical concepts associated with a
quantum state subjected to quantum measurements. To this
end, we have argued previously that the nonreality or si-
multaneously both the nonreality and negativity of the KD
quasiprobability can be used to quantitatively characterize
quantum coherence [27,28], asymmetry [60,61], and general
quantum correlation [62]. In the present article, we study how
the quantumness in the KD quasiprobability complies with the
quantum uncertainty principle.

First, we summarize two mathematical objects for quanti-
fying, respectively, the nonreality and the total nonclassicality
which captures simultaneously both the nonreality and the
negativity in the KD quasiprobability. To quantify the nonre-
ality in the KD quasiprobability, we use the following /;-norm
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of the nonreal part of the KD quasiprobability:

NRe({Prkp(a, blo)}) := Z [ImPr(a, blo)|
a,b

- §:|hnn1nbnagn. ()
a,b

It vanishes if and only if the KD quasiprobability is real. Next,
let us define the following quantity [32,48,54]:

NCI({Prp(a, blo)}) := Y _ [Prkn(a, blo)| — 1
a,b

= > ITe(IL,Mel — 1. (3)

a,b

It is non-negative by definition since Za,b |Prgp(a, blo)| >
|ZabPrKD(a, blo)| = 1, where the equality follows from
the fact that KD quasiprobability is always normal-
ized, i.e., Zu,b Prkp(a, blo) = 1. Moreover, it vanishes
only when |Prkp(a, blo)| = Prkp(a, blo) for all a and b,
ie., only when Prgp(a, blo) is real and non-negative.
NCI({Prkp(a, blo)}) defined in Eq. (3) thus quantifies the
failure of the KD quasiprobability Prgp(a, b|o) to be both
real and non-negative. We refer to NRe({Prxp(a, b|o)}) and
NCI({Prkp(a, blo)}) defined, respectively, in Eqs. (2) and
(3) as the KD nonreality and the KD nonclassicality in
the quantum state o relative to the pair of PVM bases
{I1,} and {IT,}.

We obtain two simple sufficient conditions for nonvan-
ishing NRe({Prkp(a, b|g)}) and NCI({Prkp(a, b|o)}). Below,
we use the notation ||X| . to denote the operator norm
or the oo-Schatten norm of an operator X. | X is
equal to the largest eigenvalue modulus of X. Using the
operator norm of a Hermitian operator X, we then de-
fine the corresponding normalized Hermitian operator as
X = X/11X |-

First, we have the following result for the KD nonreality in
a state relative to a pair of PVM bases.

Lemma 1. Given a state ¢ on a Hilbert space , the non-
reality in the associated KD quasiprobability over a pair of
PVM bases {I1,} and {I1,} of H, defined in Eq. (2), is lower
bounded as

NRe({Prkp(a, blo)}) > 3|Tr{BIA, o]}, (4)

where A and B are any Hermitian operators with bounded
spectrum whose complete set of eigenprojectors are respec-
tively given by {I1,} and {I1,}.

Proof. LetA = ) all, be a Hermitian operator on /{ with
the complete set of eigenprojectors {I1,} and the associated
spectrum of eigenvalues {a}. Similarly, let B = )", bI1), be a
Hermitian operator on H with the complete set of eigenpro-
jectors {I1,} and the associated spectrum of eigenvalues {b}.
From the definition of the KD nonreality in the quantum state
o relative to a pair of PVM bases {I1,} and {I1,} in Eq. (2),
we have

NRe({Prkp(a. blo)}) : > 1Al Bl
e({Prxp(a, blo)}) = —————
@ [AloliBllow &5 70

X [Im(Tr{IT,ITs0})]

> ———|ImTr(BAo}|
IATToo 1Bl

1 -~
:?ﬁwM&LN &)

where the inequality in Eq. (5) is due to the fact that ||A||» =
max({|a|} and ||B|lcc = max{|b|} and triangle inequality. =~ W

As an immediate corollary of the Lemma 1, while non-
commutativity of all pairs of A, B, and o are not sufficient
for the KD quasiprobability Prkp(a, b|o) associated with o
defined over the eigenbasis {|a)} of A and the eigenbasis {|b)}
of B to have nonreal value (or its real part is negative, or
both) [32,33,63,64], a nonvanishing lower bound in Eq. (4),
i.e., Tr{B[A, 0]-} # 0 for a pair of Hermitian operators A
and B, is sufficient for the corresponding KD quasiprobability
Prkp(a, b|o) to be nonreal for some (a, b). It is interesting to
remark that the lower bound in Eq. (4) takes a form similar to
that of the Robertson uncertainty relation [4].

Next, we derive a lower bound for the KD nonclassicality
in a state relative to a pair of PVM bases defined in Eq. (3).

Lemma 2. Given a state ¢ on a Hilbert space H, the non-
classicality in the associated KD quasiprobability associated
with o over a pair of PVM bases {I1,} and {I1,} of ‘H defined
in Eq. (3) is lower bounded as

NCI({Prp(a. blo)})
> 1(ITr{olA,. Bo1-}1* + | Tr{olA,. B,l1)

—2Tr{A,0)Tr{B,0}1»)"* — 1, (6)
where X, := M(W, X =A,B, and A and B are any

Hermitian operators with bounded spectrum whose complete
set of eigenprojectors are respectively given by {I1,} and
{TT,}.

Proof. Let again A = ) _ all, be a Hermitian operator on
‘H with the complete set of eigenprojectors {I1,} and the asso-
ciated spectrum of eigenvalues {a}. Likewise, let B =), bII,
be a Hermitian operator on H with the complete set of eigen-
projectors {I1,} and the associated spectrum of eigenvalues
{b}. Then, from the definition of the KD nonclassicality in o
relative to a pair of PVM bases {I1,} and {I1,} in Eq. (3), we
first have

NCI({Prp(a, blo)}) = Y |Tr{IT, a0} — 1

a,b

> s 1Al l|Blloo| Tr (T, a0} |
1AlloolIBlloo

> |Tr{oBA}| — 1

1 U -
= EITI{Q[B,A]—} + Tr{e[A, Bl+}| — 1,
(7

where to get the last line, we have used a decomposi-
tion: BA = (B, A]_ + 1[A, B],. Notice that Tr{o[B, A]_} is
purely imaginary while Tr{o[A, B, } is real. Hence, the mod-
ulus in Eq. (7) can be evaluated to give

1

NCI({Prkp(a. blo)}) = 5(|Tr{o[B, A]_}?
+[Tr{ol4, B })"* — 1. (8)
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Next, note that the left-hand side in Eq. (8) does not de-
pend on the spectrum of eigenvalues of A and B. Now,
consider the following Hermitian operators A’ =) (a —
Tr{Ao}I1, = A — Tr{Ag}l and B' =), (b — Tr{Bo})Il, =
B — Tr{Bo}1. Then, we have Tr{o[A’, B']_} = Tr{o[A, B]_}
and Tr{p[A’, B'],} = Tr{o[A, B];+} — 2Tr{Ag}Tr{Bo}. Using
these relations, replacing A and B in Eq. (8), respectively, with
A’ and B’, we obtain Eq. (6). [ |

Lemma 2 shows that a nonvanishing lower bound
in Eq. (6), ie, 3(Tr(old,, Bl ) + [TrlolA,, Boly) —

ZTI{AQQ}TI"{BQQHZ)I/Z — 1 > 0, provides a sufficient condi-

tion for the associated KD quasiprobability Prxp(a, b|o) to be
nonreal, or its real part is negative, or both, for some (a, b).
It is again interesting to note that the lower bound takes a
form similar to the lower bound of the Robertson-Schrédinger
uncertainty relation. Unlike the latter, however, the lower
bound in Eq. (6) depends nonlinearly on the state. Note that
the sufficient condition in Lemma 2 is stronger than that in
Lemma 1 since the former can also detect negativity of the
KD quasiprobability.

III. LOWER BOUNDS AND TRADE-OFF RELATIONS FOR
KD QUANTUMNESS IN A STATE RELATIVE TO A SINGLE
RANK-1 ORTHOGONAL PVM BASIS

We first stress that both NRe({Prgp(a, blo)}) and
NCI({Prkp(a, blo)}) defined in Egs. (2) and (3) quantify the
KD quantumness stemming from the failure of commutativity
between the state o and both of the rank-1 PVM bases {I1,}
and {I1,}, and also between the pair of the PVM bases. How
does the quantumness of the KD quasiprobability portray the
noncommutativity between a state and a single PVM basis,
e.g., between ¢ and the PVM basis {I1,}? Quantities which
reliably capture the noncommutativity between a state ¢ and a
single PVM basis {I1,} is desirable as we discuss the relation
between the quantumness of the KD quasiprobability and the
uncertainty in measurement described by the rank-1 PVM
{IT,} over the state o, and the associated uncertainty relations.
To this end we introduce the following two quantities.

Definition 1. The KD nonreality in a state o on a finite-
dimensional Hilbert space H relative to a PVM basis {I1,} of
‘H is defined as

Okp (0:{Iy}) = sup
{Mp}e Mupym(H)

NRe({Prkp(a, blo)})

= sup ) |ImPrgp(a, blo)l, (9)
{Mp}eMupvm(H) "5

where the supremum is taken over the set M, pym () of all
the rank-1 PVM bases of .

Definition 2. The KD nonclassicality in a state o on a finite-
dimensional Hilbert space H relative to a PVM {I1,} of H is
defined as

Qb (@:{h) == sup  NCI({Prxp(a, blo)})
{Mp}e Mipvm(H)

= osup DT} — 1.
{Mpye Mapvm(H) "7

(10)

Let us mention that QRR¢(p; {I1,,}) and OXS!(0; {T1,}) de-
fined, respectively, in Egs. (9) and (10) have been introduced
earlier in Refs. [27,28]. There, it is argued that both quantities
can be used as faithful quantifiers of coherence of o relative
to the incoherent orthonormal basis {|a)} corresponding to the
rank-1 orthogonal PVM basis {I1,} possessing certain desir-
able properties. In particular, one can show that both quantities
are vanishing if and only if the state and the measurement
basis are commuting: [I1,, o]- =0 for all a so that g is
incoherent relative to the orthonormal basis {|a)}.

In the following subsections, we will derive lower bounds
and trade-off relations for the KD nonreality and KD nonclas-
sicality in a quantum state relative to a PVM basis defined,
respectively, in Egs. (9) and (10). For this purpose, we denote
by H(#) the convex set of all bounded Hermitian operators
on the Hilbert space H, H(#|{I1,}) is the convex set of all
bounded Hermitian operators on H having the complete set
of eigenprojectors {I1,}, and H(#|{x}) denotes the set of all
bounded Hermitian operators with a spectrum of eigenvalues
{x}, x e R.

A. Lower bound and trade-off relation for the KD nonreality
in a state relative to a PVM basis

Using Lemma 1, we directly obtain a lower bound for the
quantumness associated with the KD nonreality in a quantum

state relatiye to @ PYM basis. o .
Egroposzt?on il "Hle I?ﬁ nonreality in a state ¢ on a finite-

dimensional Hilbert space ‘H relative to a PVM basis {I1,} of
‘H defined in Eq. (9) is lower bounded as

ko (@ (M) =1 sup sup |Tr{BIA, 0]-}. (11)
AeH(H|{I1,}) BeH(H)

Proof. Taking the supremum over the set M 1pym(H) of all
the rank-1 PVM bases {I1,} of H to both sides of Eq. (4), and
noting Eq. (9), we first have

ORy (03 {,}) = sup
{Tl,}e Mypvm(H)

sup  |Tr(BIA. ol_}]. (12)
BeH(H|{b})

NRe({Prgp(a, blo)})

> 5
Next, notice that the left-hand side of Eq. (12) depends only
on the PVM basis {I1,}, i.e., it is independent of the spectrum
of eigenvalues {a} of A and the spectrum of eigenvalues {b} of
B. Hence, upon further taking the supremum over all possible
eigenvalues spectrum of A and that of B on the right-hand
side of Eq. (12), the inequality can be strengthened as in
Eq. (11). |

The lower bound in Eq. (11) can be further evaluated to
have the following result.

Proposition 2. The KD nonreality in a quantum state @
on a finite-dimensional Hilbert space H relative to a PVM
basis {I1,} of A is lower bounded by the maximum trace-
norm asymmetry of the state relative to the translation group
generated by all Hermitian operators with the complete set of
eigenprojectors that is given by {I1,} as

O (@) = sup  [A 0]l /2lAllo.  (13)
AcH(HN{I1,})

Here, ||O||; = Tr{~/ OO} is the Schatten 1-norm or the trace-
norm of operator O, and ||[A, o]—||1/2 is just the trace-norm
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asymmetry of the state o relative to the group of translation
unitary generated by the Hermitian operator A [65].

Proof. See Appendix A.

We show in Appendix B that for two-dimensional Hilbert
space H = C?, i.e., a system of a single qubit, both the in-
equalities in Egs. (11) and (13) become equalities for arbitrary
state 0 on C? and arbitrary PVM basis {I1,} of C2. In this
case, both sides in Egs. (11) and (13) are given by the cor-
responding /;-norm coherence of the state p relative to the
incoherent orthonormal basis {|a)} defined as C;, (0; {|a)}) :=
Do 2o 1 {alold’) | [29], directly quantifying the total magni-
tude of the off-diagonal terms of the density matrix. Hence, for
any state o on C? and any PVM basis A = {|e) (e|, |eL) (e ]}
of C?, where |e, ) is the orthonormal partner of |e), we have

Okp (@A) =35 sup sup |Tr(B[4, o0]-}|
AcH(C2|A) BEH(C?)

= sup |l[A 0l-11/2
AcH(C?|A)
= 2| (eleleL) |
=G, (o:{le) . leL)D). (14)

Moreover, the eigenbasis of B,, where B, € H(C 2) is a Her-
mitian operator which attains the supremum in Eq. (14),
is mutually unbiased with the orthonormal reference basis
{le), le1)} and also with the eigenbasis of .

We finally obtain the following trade-off relation.

Proposition 3. The KD nonreality in a quantum state o
on a finite-dimensional Hilbert space H relative to a rank-1
PVM basis {I1,} of H and that relative to another rank-
1 PVM basis {I1;} of H satisfy the following trade-off
relation:

ORES (03 {T1HORY (05 {TT,})

= }1 sup sup
AeH(H|{T.}) BeH(H{TT,})

ITr{[A, Bl_0}I>. (15)

Proof. We first write the inequality in Eq. (11) as

QD (03 {T1a}) = sup sup [Tr{[A, B]_o}|. (16)
2 JeH,)) BEH()

Next, exchanging the role of A and B in Eq. (16), we also have

Qkp' (03 {Tp}) > sup sup
BEH(HHHb}) AcH(H)

ITr{[A, Bl-o}I, (17)

where the supremum are now taken over the set H(H|{I1;})
of all bounded Hermitian operators B on H whose complete
set of eigenprojectors is given by the PVM basis {I1,}, and
over the set HI(#H) of all bounded Hermitian operators A on
‘H. Combining Egs. (16) and (17), we thus finally obtain

ONRe (0; {T1,}) ORRe (0: {TT,})
> sup sup | Tr{[4, B] o}

AeH(H|{I1,}) BeH(H})

X sup sup |Tr{[A, B]_o}I
BeH(H|{I1,}) AcH(H)

>1 swp sup  |Tr([A, Bl_g}l>. (18)

AeH(H{I1.}) BEH(HI{TT,})

where to get the inequality in Eq. (18), we have made use of
the fact that supy (g3 {-} > supXGH(HImA})H. |

One can see that the lower bound in the trade-off relation
of Eq. (15) takes a form similar to that of the Robertson
uncertainty relation. Unlike the latter, however, it involves op-
timizations over the convex sets H (7 |{I1,}) and H(H|{I1;})
of all Hermitian operators on H whose complete set of eigen-
projectors are given, respectively, by the PVM bases {I1,}
and {I1,} relative to which we define the KD nonreality in
the state o: ORR®(0; {I1,}) and ORR(p; {I1,}). The trade-off
relation shows that if there is a pair of Hermitian operators A €
H(#H|{I1,}) and B € H(H|{I1,}) such that Tr{[A, B]_o} # 0,
then the lower bound in Eq. (15) is not vanishing. In this case,
both the KD nonreality OFR¢(0;{I1,}) in o relative to the
PVM basis {I1,} and the KD nonreality ORr¢(0; {I1,}) in o
relative to the PVM basis {I1,} cannot be vanishing, and their
product must satisfy the trade-off relation of Eq. (15).

Let us proceed to show that the lower bounds in Eqgs. (11)
and (13) and the trade-off relation of Eq. (15) for the KD
nonreality in a state relative to a rank-1 orthogonal PVM
basis imply lower bounds and trade-off relation for the
[i-norm coherence of the state relative to the orthonormal
basis corresponding to the PVM basis. First, note that as
shown in Ref. [27], the KD nonreality ORK¢(0;{I1,}) in the
state o relative to the rank-1 PVM basis {I1,} gives a lower
bound to the /;-norm coherence Cj, (o; {|a)}) of o relative to
the orthonormal basis {|a)} corresponding to {I1,} as

Gy (0 {la)}) = Oxpy (03 {TLa)). 19)

Moreover, for an arbitrary state of a single qubit and arbitrary
orthonormal basis {|a)} of C?, the inequality becomes equality
[27].

Using Eqgs. (11) and (19), we thus obtain the following
result.

Corollary 1. The [;-norm coherence of a quantum state o
on a finite-dimensional Hilbert space H relative to an incoher-
ent orthonormal basis {|a)} of H is lower bounded as

Cylo:{la)) > 5 sup sup |Tr{B[A, o]-}|. (20)

AeH(H|(T,}) BeH(H)

As shown in Appendix B, for two-dimensional Hilbert
space C?2, the inequality in Eq. (20) becomes equality for
arbitrary single-qubit state and arbitrary orthonormal basis, as
expressed in Eq. (14).

Next, from Eqgs. (13) and (19), we have the following result.

Corollary 2. The KD nonreality in a quantum state ¢ on
a finite-dimensional Hilbert space H relative to a rank-1 or-
thogonal PVM basis {I1,} of #, the corresponding /;-norm
coherence of p relative to the orthonormal basis {|a)}, and the
trace-norm asymmetry of o relative to the group of translation
unitary generated by any Hermitian operator A with a com-
plete set of eigenprojectors {I1,} obey the following ordering:

Che:{la)h) > Ryl = sup A el-l1/2.
ACH(HI(TT,))
(2D

For two-dimensional Hilbert space C2?, as shown in
Appendix B, both inequalities in Eq. (21) become equalities
for arbitrary state ¢ and arbitrary incoherent orthonormal basis
{la)}.

Recall that whilst Cj, (o;{|a)}) is a measure of quantum
coherence of o which is independent of its encoding in the
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reference incoherent orthonormal basis {|a)}, the trace-norm
asymmetry |[A, o]||l;/2 can also be seen as a measure of
coherence (as translational asymmetry) of ¢ which depends on
its encoding in the reference incoherent eigenbasis {|a)} of the
generator A = A/||A||« of the translation group Uy = e~*A?,
6 € R. The former is sometimes called speakable coherence
while the latter is called unspeakable coherence [65].

Finally, combining Egs. (15) with (19), we obtain the fol-
lowing trade-off relation.

Corollary 3. The [;-norm coherence of a quantum state o
on a finite-dimensional Hilbert space H relative to an inco-
herent orthonormal basis {|a)} of H and that relative to an
incoherent orthonormal basis {|b)} of H satisfy the following
trade-off relation:

G, (o; {la)NCy, (3 {1b)})

>1  sup sup |Tr{lA, Bl_o}I>. (22
AeH(H{T.}) BEH(HI{TT,})

Next, from Eq. (11) of Proposition 1, we obtain the follow-
ing additive trade-off relation for the KD nonreality in a state
o relative to the PVM basis {I1,} and that relative to the PVM
basis {I1,}:

kb (03 {Ta}) + Qp’ (0 (o))
> sup sup  [Tr{[4, Blo}l.  (23)
AeH(H|{I1.}) BEH(H{TT,})

The proof follows exactly similar steps as the proof of Eq. (15)
of Proposition 3. It can also be proven by applying the inequal-
ity for the arithmetic mean and geometric mean, i.e., (a +
b)/2 > ab, a,b € R*, to Eq. (15). Since QFR*(0;{I1,})
is a faithful measure of coherence, Eq. (23) has a form of
additive uncertainty relation for coherence measure reported
in Refs. [16,21-23]. One can then check that the left-hand
side is not vanishing when the state is not totally mixed, i.e.,
o0 # I /d, and the PVM bases are noncommuting as stated in
Theorem 1 of Ref. [23]. In particular, combining Eq. (23) with
Eq. (19), we have

G (o3 {la)}) + Gy, (e: {Ib)})

= sup sup
AeH(H|{T1.}) BeH(H|{TT,})

ITr{[A, Bl-0}I.  (24)

We note that unlike the standard entropic uncertainty rela-
tion [7,17], the lower bound in Eqs. (23) and (24) depends on
the state as for the uncertainty relation for coherence measures
in Refs. [16,21-23]. In particular, it is vanishing when the
state is maximally mixed ¢ = I /d, in which case the left-
hand sides in Egs. (23) and (24) are also vanishing. Hence,
the uncertainty relation depends on the purity of the state as
expected [21]. It is interesting in the future to compare the
type of lower bound in Egs. (23) and (24) to those reported in
Refs. [16,21-23]. In Appendix C, we evaluate the optimiza-
tion in the lower bound analytically for the two-dimensional
system, showing that it is determined by the purity of the
state, and three parameters that characterize the pairwise non-
commutativity among the two PVM bases and the eigenbasis
of the state. We furthermore show that for any pure state in
two-dimensional Hilbert space, the inequality becomes equal-
ity when the bases {|a)} and {|b)} and the eigenbasis of o
comprise a set of three mutually unbiased bases of C2.

B. Lower bound and uncertainty relation for the KD
nonclassicality in a state relative to a PVM

First, using Lemma 2, we obtain the following proposition.

Proposition 4. The KD nonclassicality in a state ¢ on a
finite-dimensional Hilbert space H relative to a PVM basis
{I1,} of H defined in Eq. (10) is lower bounded as

Oxb (03 {Ta})
>3 sup sup {(|Tr{olA,. B,1-}
AcH(H|{T1,}) BeH(H)
+ ITr{olAg, Bol+} — 2Tr(A0) Tr{B,0} )2} — 1. (25)
Proof. Taking the supremum over the set M, pym(H) of all

the rank-1 PVM bases {I1,} of H to both sides of Eq. (6), and
noting Eq. (10), we obtain

Ro(0; (T,))

= sup
{Mp}e Mupvm(H)

NCI({Prkp(a, ble)})

>3  sup {(Tr{olA,, Bol-} I + [Tr{olA,, Bol+}
BeH(H|{b})
—2Tr{A,0)Tr(B,o}1))'/?) — 1. (26)

Observe further that the left-hand side depends only on the
PVM basis {I1,}, i.e., it is independent of the eigenvalues
spectrum {a} of A and the eigenvalues spectrum {b} of B. Not-
ing this, the inequality of Eq. (26) can be further strengthened
to get Eq. (25). ]

We then obtain the following trade-off relation.

Proposition 5. The KD nonclassicality in a quantum state
o on a finite-dimensional Hilbert space H relative to a PVM
basis {I1,} of H and that relative to a PVM basis {I1,} of H
satisfy the following trade-off relation:

[QKB'(0: (T} + 1][ QKb (03 {TTp}) + 1]

>1  sup sup  {|Tr{ol4,, Bo1-}I°

ACH(HI(T1,)) BEH(H(TT,))
+[Tr{elA,, Boli} — 2Tr{d 01 Tr{Bo0} ). (27)

Proof. First, swapping the role of A and B in Eq. (25), we
have

RS (s {TT,)) + 1

>4 sup sup ((Tr(old,, Bol )2
BeH(H|{T1,}) AcH(H)

+[Tr{elA,, B4} — 2Tr(A,0) Tr(Boo} )2 (28)
Hence, combining Egs. (25) and (28), we obtain
[ONS (0: (1)) + 1][ QRS (0: {TT,)) + 1]

>4 s sup {(Trlold,, Bl )P
AcH(H|{[1,}) BeH(H)

+TrlolA,. Bol+) — 2TrlAqe)Tr(Bo0) )12 )

x( sup  sup {(ITr{ol4,, B,1 )}
BeH(H|{I1,}) AcH(H)

+TrlolA,. Byly) — 2Tr(A,0)Tr(By0) )} )
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> sup sup  {|Tr{elA,, Bl -}

ACH(H(T1,)) BEH(HI(MT,))
+ITr{olAg, By14} — 2Tr{A,0}Tr{B,0}*},  (29)

Bl

where the last inequality in Eq. (29) is due to the fact that
SUPy (2} 2 SUPxemm i} u

One can see that Eq. (27) takes a form analogous to the
Robertson-Schrodinger uncertainty relation for observables
A, and B,,. Unlike the Robertson-Schrodinger uncertainty re-
lation, however, the lower bound in Eq. (27) is nonlinear in
the state o. Moreover, there are optimizations over a pair of
convex sets H(#|{I1,}) and H(#|{I1,}) of Hermitian opera-
tors whose complete sets of eigenprojectors are, respectively,
{I1,} and {I1,}, relative to which we define the KD nonclas-
sicality in 0: ORS!(0; {I1,}) and ORS'(0; {I1}). Recall that
the KD nonclassicality in a state relative to a PVM basis
quantifies the total quantumness, i.e., it quantifies simultane-
ously the nonreality and negativity of the corresponding KD
quasiprobability, capturing the noncommutativity between the
state and the PVM basis. In this sense, the trade-off relation
of Eq. (27) thus imposes a restriction on a joint nonclassi-
cality in a quantum state relative to a pair of noncommuting
PVM bases.

Let us proceed to show that the lower bound and the trade-
off relation for the KD nonclassicality relative to a PVM basis
obtained above lead also to a lower bound and a trade-off
relation for the corresponding /;-norm coherence. First, as
shown in Appendix D, the KD nonclassicality in a state o
on a finite-dimensional Hilbert space H relative to a rank-1
orthogonal PVM basis {I1,} of H gives a lower bound to the
l;-norm coherence of the state o relative to the incoherent
orthonormal basis {|a)} corresponding to {I1,}, i.e.,

G, (0; {la)}) = QRS (03 {T1,)). (30)

Combining Eq. (30) with Eq. (25), we thus obtain the
following corollary.

Corollary 4. The l;-norm coherence of a quantum state
o on a finite-dimensional Hilbert space H relative to an
incoherent orthonormal basis {|a)} of H is lower bounded as

G, (e:fla)})

>1 sup  sup {(ITr{olA,. Bol-}?
AeH((H|{I1,}) BeH(H)

+|Tr{olA,, Bo1+} — 2Tr{A,0}Tr{B,0} )"/} — 1. (31)

Next, combining Eq. (30) with Eq. (27), we obtain the
following trade-off relation.

Corollary 5. The l;-norm coherence of a quantum state
o on a finite-dimensional Hilbert space H relative to an or-
thonormal basis {|a)} of H and that relative to an orthonormal
basis {|b)} of H satisfy the following trade-off relation:

[C, (o3 {la)}) + 1][Cy (03 {1B)}) + 1]

> ;1 sup sup  {(ITr{olA,, Bol-}?
AeH(H|{T1,}) BEH(H|{IT,})

+|Tr{olA,, Bol+} — 2Tr{A,0}Tr{B,0}1*)}.  (32)

Following exactly similar steps as above, we can also prove
the following additive trade-off relation for the /;-norm coher-
ence of a state o relative to an orthonormal basis {|a)} and that

relative to an orthonormal basis {|b)} as

G (o3 {la)}) + Cy, (e: {Ib)})

= sup sup
AeH(H|{I1,}) BeH(H|{TTp})

+|Tr{olA,, Bo14} — 2Tr{A,0}Tr{B,0} 1)/} — 2. (33)

{(ITr{olA,, B,1-}I?

IV. OPERATIONAL AND STATISTICAL MEANING

In this section we discuss operational and information
theoretical interpretations of the KD nonreality and KD non-
classicality in a state relative to a PVM basis in terms of
transparent laboratory operations. One is based on the rep-
resentation of the KD quasiprobability in terms of weak
value which can be obtained using various methods in ex-
periment, and the other is based on the decomposition of the
KD quasiprobability in terms of real and non-negative joint
probability and quantum modification terms obtained via two
successive projective measurements.

First, one observes that the KD nonreality and the KD
nonclassicality in a state o relative to a PVM basis {I1,}
defined, respectively, in Egs. (9) and (10) can be expressed
as

@M= sup > [Imr)(Tylo)|Tr{I,e},
{Ip}e Mipym(H) ab

(34)

Ko@) = sup | (Tlo)| Tr{M,e} — 1.
{T}e Mipym(H) ab

(35)

Here, 7}’ (ITy0) := %?5}9} is known as the weak value of
[T, with the preselected state o and postselected state |b)
[34-36]. It is in general complex and its real part may lie
outside [0,1]. Remarkably, the real and imaginary parts of
the weak value can be estimated in experiment without re-
course to state tomography either using weak measurement
with postselection [34—42] or different methods without weak
measurement [43—48]. Noting this, the KD nonreality and KD
nonclassicality in a state relative to a PVM basis of Egs. (34)
and (35) can thus be directly operationally estimated using
weak value measurement together with the classical optimiza-
tion over the set M;jpym(H) of all the rank-1 orthogonal
PVM bases of the Hilbert space #. This estimation scheme
should in principle be implementable in terms of variational
quantum circuits using the currently available NISQ hardware
[66].

The above operational interpretation suggests the follow-
ing information theoretical meaning of the KD nonreality
Qﬁﬁe(g; {I1,}) in a state o relative to a PVM basis {I1,} de-
fined in Eq. (9) and the associated trade-off relation expressed
in Eq. (15). First, applying the Jensen inequality to Eq. (34),
we have

2
AR (@AY < sup Y [Imr)(M,le)| Tr{M,0)
{Ip e Mipym(H) ab
= €, (@) (36)
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where 6{21'1[,}(9) is the total sum of the variance of the imag-
inary part of the weak value 7 (IT,|0) over the probability
Pr(blo) = Tr{I1,0} maximized over the set M pym(H) of all
the PVM bases {I1,} of H. On the other hand, it was argued
by Johansen and Hall in Refs. [67,68] that the variance of the
imaginary part of the weak value 7)Y (IT;|0) over the probabil-
ity Pr(b|o) = Tr{I1,0} can be interpreted as the mean-squared
error of the optimal estimation of I1, based on the outcomes
of measurement described by the PVM basis {I1,} when the
preparation is represented by the state o. Noting this, 6 (@)
defined in Eq. (36) may thus be statistically 1nterpreted as
the total mean-squared error of the optimal estimation of the
PVM basis {I1,} based on projective measurement, given the
preparation g, in the worst-case scenario. Equation (36) thus
shows that the total root-mean-squared error of the optimal
estimation of the PVM basis {I1,} given ¢ in the worst-case
scenario is lower bounded by the corresponding KD nonreal-
ity in o relative to the PVM basis {IT,}.

Combining Eq. (36) with Egs. (11) and (13), we thus obtain
the following results.

Corollary 6a. The total root-mean-squared error of the op-
timal estimation of a PVM basis {I1,} of a finite-dimensional
Hilbert space H given a preselected state o on H, based
on projective measurement described by a PVM basis in
Miipvm(H), in the worst-case scenario, is lower bounded as

emye) =1 sup sup |Tr{BIA, 0]-}. (37)

AeH(H|{I,}) BeH(H)
Moreover, it is also lower bounded by the trace-norm asym-
metry of the state relative to the group of translation unitary
generated by any Hermitian operator with the complete set of
eigenprojectors {I1,} as

€ny@) = sup  l[A, 0]-111/2]|Alle.  (38)

AeH(H{M.})

Next, combining Eq. (36) with (15), we have the following
uncertainty relation.

Corollary 6b. Given a preparation represented by a density
operator o on a finite-dimensional Hilbert space H, the total
root-mean-squared errors of the optimal estimation of a PVM
basis {I1,} of H based on projective measurement described
by a PVM basis in M, pym(?), and that of the optimal es-
timation of another PVM basis {I1,} of H, in the worst-case
scenario, satisfy the following trade-off relation:

emy(0)em,y(@) =5 sup sup  |Tr{[A, B]_o}|*.

AeH(H (M) BEH(HI{T,})
(39)

Let us proceed to discuss an operational interpretation of
the KD nonclassicality in a state relative to a rank-1 PVM
basis in terms of a sequence of two strong projective measure-
ments. First, it has been shown by Johansen in Ref. [43] that
the KD quasiprobability associated with a state o over a pair
of rank-1 PVM bases {I1,} and {I1,} can be expressed as

Prp(a, blo) = Tr{Tl,M,eM,} 4 5Tr{(e — on,)TTs}
—iTr{(0 — on,)IT}/}}. (40)

Here, on, := oI, + (I — I,)o(I — I1,) is the state after
a nonselective binary projective measurement described by

{I1,, I — I}, and l'I”l/2 = ¢Ma/2]], e~ Ma7/2 The first term
on the nght hand side of Eq. (40), i.e., Tr{Il,I1,0I1,} =
Tr{HbTrfgn 5 }Tr{oI1,}, is just the joint probability to get a
in the measurement described by {Il,} and then to get b
afterward in the measurement described by {I1;}, so that it
is always real and non-negative. In this sense, the other two
terms are called the quantum modification terms responsible
for the negativity and nonreality of the KD quasiprobability.
One can then see that the negativity and the nonreality capture
different forms of state disturbance due to the nonselective
binary projective measurement {I1,, I — I1,} as captured by
the expectation values of IT, and l'IZl/az, respectively.

Using the decomposition of the KD quasiprobability in
Eq. (40), the KD nonclassicality in g relative to the PVM {I1,}
defined in Eq. (10) can then be upper bounded as

OXS (03 {T1.})

= sup Z |Tr{1'[bl'lagl'l }
{p}e Mpym(H) ab

1 .1 72
+5Trl(e — en)T} — i5Tr{(e — on, )T, H-1

< sup Y [Tri(e —on,)M}
{Mp}eMupvm(H) "
= dim,(0)- @D
Here, to get Eq. (41), we have used triangle in-

equality, the  normalization Za, b ITr{IT I, 011, }| =
> ap {0} =1 for any {I1,} € Mupvm(H),

/2
and  also  SUP(, e My p () 2oap ITH(Q — 0n DT} =

SUD{T1, )€ Morpuar (1) Za » |Tr{(Q — on,)I1,}|, where the equality
is due to the fact that {H bla } comprises again a rank-1 PVM

basis of H, and the set of the PVM bases {H% 2} is the same
as the set of the PVM bases {I1,} given by M;pym(H).
Hence, the KD nonclassicality QNCI(Q {I1,}) in o relative to
the rank-1 PVM basis {I1,} gives a lower bound to the total
disturbance 8;r,j(0) in the state ¢ caused by the nonselective
projective binary measurement {I1,, I — I1,} associated with
the PVM basis {I1,}.

Combining Eq. (41) and Eq. (25), we first have the follow-
ing corollary.

Corollary 7a. The total disturbance d(7,,(¢) in the state
o caused by the nonselective projective binary measurement
{I1,, I — I1,} associated with the PVM basis {I1,} of a finite-
dimensional Hilbert space H is lower bounded as

sup {(ITr{o[A,, B,1-}I*
,}) BeH(H)

Smyle) =1 sup
AcH(H|{

+|Tr{olA,, Bol4} — 2Tr{A,0)Tr{By0} ") /?} — 1

(42)

From Corollary 7a, we finally obtain the following trade-off

relation, the proof of which follows similar steps to that of
Proposition 5.

Corollary 7b. Given a preparation represented by o on

a finite-dimensional Hilbert space H, the total disturbance

(1,1 (@) in the state ¢ caused by the nonselective projective

binary measurement {I1,, I — I1,} associated with the PVM
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basis {I1,}, and the total disturbance &(r,;(0) in the state
o caused by the nonselective projective binary measurement
{I1,, I — I1,} associated with the PVM basis {I1,}, satisfy the
following trade-off relation:

8(r,y(@)8(m,)(0)

= %( sup sup
AeH(H|{M}) BeH(H|{TT,})

[(ITr{el Ao, Bol -}
. . - 2
+Tr{olA,. B,1+} = 2TrlA o) Tr(Boo) )2} — 1) . (43)

V. SUMMARY AND DISCUSSION

We have first derived lower bounds for the KD nonreal-
ity and the KD nonclassicality relative to a pair of rank-1
PVM bases, respectively, in Eqs. (4) and (6). Nonvanishing
lower bounds thus provide sufficient conditions for the KD
quasiprobability to have nonclassical values, i.e., nonreal or
its real part is negative, or both. We then defined the KD
nonreality and KD nonclassicality in a state relative to a single
PVM basis by taking the supremum over the other basis as in
Egs. (9) and (10). They can be interpreted as quantifying the
amount of the quantumness in the state relative to the PVM
basis manifesting their noncommutativity. We obtained lower
bounds for the KD nonreality and KD nonclassicality in a
state relative to a single PVM basis, given, respectively, in
Egs. (11) and (25). A lower bound for the KD nonreality in a
state relative a rank-1 PVM in terms of extremal trace-norm
asymmetry is given in Eq. (13). The same lower bounds also
apply to the corresponding /;-norm coherence.

We proceeded to derive trade-off relations for the KD non-
reality and the KD nonclassicality relative to a PVM basis
and those relative to another PVM basis given in Egs. (15)
and (27), having similar forms, respectively, to the Robertson
and Roberston-Schrédinger uncertainty relations. The lower
bounds for the trade-off relations involve optimization over
two convex sets of Hermitian operators whose complete set of
eigenprojectors are given by the corresponding PVM bases.
We then showed that the trade-off relations imply similar
trade-off relations for the /;-norm coherence. The trade-off
relations thus restrict simultaneous quantumness associated
with a state o relative to two noncommuting rank-1 PVM
bases. More detailed comparison of the uncertainty relations
to the uncertainty relation for intrinsic quantum randomness
presented in Refs. [16,21-23] is left for future study.

We further briefly discussed a hybrid quantum-classical
variational scheme for a direct measurement of the KD nonre-
ality and KD nonclassicality in a state relative a PVM basis by
means of weak value measurement for the reconstruction of
the KD quasiprobability, combined with a classical optimiza-
tion scheme for searching the supremum over the set of rank-1
PVM bases of the Hilbert space. This operational interpreta-
tion leads to an information theoretical interpretation for the
KD nonreality in a state relative a PVM basis as a lower bound
for the total root-mean-squared error of the optimal estimation
of the PVM basis based on the outcomes of projective mea-
surement, in the worst-case scenario. Moreover, it also leads to
an uncertainty relation between the root-mean-squared error
of the optimal estimation of the PVM basis and that of the
optimal estimation of another PVM basis, based on projective
measurement, in the worst-case scenario. We further applied

the decomposition of the KD quasiprobability obtained via
two successive projective measurements into a real and non-
negative joint probability and two quantum modification terms
which are responsible for the negativity and nonreality of the
KD quasiprobability. Using this decomposition, the KD non-
classicality in a state relative to a PVM basis can be shown to
give a lower bound to the total disturbance to the state caused
by a nonselective projective binary measurement associated
with the PVM basis. This further implies similar lower bound
and trade-off relation for such total disturbance as those for
the KD nonclassicality relative to a PVM basis.

In this article, we have based all of our discussion on
the standard KD quasiprobability associated with a density
operator over a pair of rank-1 orthogonal PVM bases as
in Eq. (1). This suggests directions for further investigation
in the future. First, it is natural to ask if one can extend
the methods and results of the present work to more gen-
eral positive-operator-valued measure (POVM) bases. Next,
recently, motivated by certain interesting physical problems
such as quantum metrology with postselection [55,56] and
detection of out-of-time-order correlation (OTOC) in a many-
body chaotic system [53,54], there are proposals to extend
the KD quasiprobability by extending the number of PVM
basis. Within the representation of the KD quasiprobabil-
ity via weak value, this extension means that we increase
the number of weak measurements before making a strong
projective postselection measurement. This extension of the
KD quasiprobability too shares the properties of the stan-
dard KD quasiprobability. In particular, its negativity and
nonreality signal quantumness associated with quantum non-
commutativity. It is therefore interesting to apply the methods
and reasoning developed in the present article and also in
Refs. [27,28,62] to use the extended KD quasiprobability to
probe quantum coherence, general quantum correlation, and
to see the restriction imposed by the uncertainty principle.
Such an approach might in turn help clarify the roles of coher-
ence and general quantum correlation in quantum metrology
with postselection and OTOC.
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APPENDIX A: PROOF OF PROPOSITION 2

Notice that the left-hand side of Eq. (11) does not depend
on B = B/|B|l«. Hence, the inequality in Eq. (11) can be
strengthened to obtain

ko (@ {T ) >3 sup sup |Tr{B[A, 0]-}I,
AcH(H|{I1,}) BEO(H)

(AL)

where @('H) is the set of all bounded operators on H. Next,
since || Bl = 1, one can further strengthen the inequality in
Eq. (A1) as

Ry (03 (T}

> 3 sup { sup |Tr{XT[A,Q]_}|},

AeHHI{T) | XeOHIIX <1
(A2)
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where O(H|||X |l < 1) is the set of all bounded operators
X with || X|loc < 1. One then observes that the term on the
right-hand side of Eq. (A2) inside the big bracket {. ..} is just
the variational definition of the Schatten p = 1 norm via its
conjugate norm p, = oo [69], so that one has

sup ITr{X"[4, 01} = II[4, e]-II1.
XeOHIIX |oo<1)

(A3)

Inserting this into the right-hand side of Eq. (A2), we obtain
Eq. (13).

As an alternative scheme of proof, first, from Proposition 4
of Ref. [61], we have (see Eq. (22) of Ref. [61])

"R (0; {T1a}) = A, 01-111/211A ]l oo,

where ORRe(0;{I1,}) in this article is denoted by
Ckp(o;{la)}) in Ref. [61]. This can be proven by using
the equality between the trace-norm asymmetry [65] and the
measure of asymmetry based on the maximum mean absolute
value of the imaginary part of the weak value of the generator
A of the translation group proposed in Ref. [60] as expressed
in Proposition 1 of Ref. [61] (see Eq. (5) of Ref. [61]).
Observe that the left-hand side of Eq. (A4) is independent of
the eigenvalues spectrum of the Hermitian operator A which
appears on the right-hand side. Hence, the inequality can be
strengthened as

Ok (@:{Ta}) = sup
ACH(HI(TL,))

(A4)

A, e]-111/2]|Allec.  (AS)

APPENDIX B: PROPOSITIONS 1 AND 2 FOR
TWO-DIMENSIONAL HILBERT SPACE

First, assume, without loss of generality, that the PVM
basis of the two-dimensional Hilbert space H = C? relative to
which we define the KD nonreality in a state on the left-hand
side of Eq. (11) is given by the complete set of eigenprojectors
of the Pauli operator o, i.e., A := {|0) (0], |1) (1]}. All the
Hermitian operators on C? with the eigenprojectors A thus
take the general form as

A =ag |0) (O] +ay [1) (1], (BI)

where ag, a; € R are the eigenvalues. We denote the set of all
such Hermitian operators by H(C?|A ). Moreover, the general
form of all Hermitian operators on the Hilbert space C? reads
as

B(a, B) = by |bi(a, B)) (by(a, B)l
+b_[b_(a, B)) (b—(ax, B,

with the eigenvalues b.,b_ € R, and the corresponding
orthonormal eigenvectors {|b(«, B)), |b—(«, B))} can be ex-
pressed using the Bloch sphere parametrization as

(B2)

by (, B)) = cos% 10) + ¢ sin% 1
Ib_(a, B)) = sin% 0) — ¢ cos%|1), (B3)

where o € [0, 7], B € [0, 27). Let us denote the set of all
Hermitian operators on C2 by H(C?).

We further assume, without loss of generality, that the
singular values of A and B have the following orderings:
lag| = |ai| and |by| = |b_], so that we have ||A]loc = |ag| and
I1Blloo = |b4|. Then, computing the lower bound in Eq. (11),
we obtain

ITr{B[A, o]-}|

NRe
(0;A) > sup sup ——— (B4
Ko 7 aeH©A) per@?) 21Also|Blls

1
= - max max max
2 {ag,a1}€R? (b, ,b_}eR? {a,B}€[0,71x[0,27)
L | —b| lao — ail
{1 sinasin( — 4ol = | (11el0) 1}
b lao|
(B5)
1 b, —b_ —
= max_ ma {' w = bllao = a0 ]
2 {ag,a1}eR? {by ,b_}eR? |b4] lag|
(B6)
=2[(0lol1) | = Gy, (0; A). B7)
Here, ¢g; = — arg (0]o]1), the maximum is obtained for Her-
mitian operator A of Eq. (B1) with |ap — a;| = 2]ayg| and for

Hermitian operator B(«, 8) having the form of (B2) with
a=m/2 and B =¢o + /2 and |by —b_| =2|b,|, and
Ci, (0; A) = 2] (0]o]|1) | is the /;-norm coherence of o relative
to the orthonormal basis A = {|0),|1)}. Note that, to get
Eq. (B7), we have used the fact that for any pair x,y € C
with |x| > |y|, we always have |x — y| < 2|x|, and equality is
attained for x = —y. On the other hand, as shown in Ref. [27],
for arbitrary state of a single qubit and any PVM basis of C2,
the left-hand side of Eq. (B4) is also given by the /;-norm
coherence, i.e.,

Ree(03A) = 2[(0lol1) | = Cy, (03 A). (B8)

Hence, the inequality in Eq. (B4) indeed becomes equality.
Moreover, one observes from the values of o and g that
achieve the maximum in Eq. (B5) that the eigenbasis of B,
expressed in Eq. (B3) which attains the supremum in Eq. (B4)
is mutually unbiased with A = {|0), |1)} and also with the
eigenbasis of p. This proves Proposition 1 for the case of
two-dimensional Hilbert space.

Next, one can see from the proof of Proposition 2 in Ap-
pendix A that the lower bound in Eq. (11) is less than or equal
to the lower bound in Eq. (13), and the left-hand sides of the
two equations are the same. Hence, when the inequality in
Eq. (11) becomes equality, the inequality in Eq. (13) must
also become equality. This, combined with the above result,
means that for two-dimensional Hilbert space, the inequality
in Eq. (13) must also become equality. Indeed, computing the
trace-norm asymmetry of the state o relative to the transla-
tion group generated by A having the form of Eq. (B1), one
has ||[A, o]|l1/2 = |lagp — a1|| (O]e]|1) |. Upon inserting into the
lower bound in Eq. (13), we have

lao — a;|

sup  |I[A, 0]-111/2]|Alloc = max | (0lo|1) |
AGH(’HHHu}) {ﬂoya1]€R2 |a0|
= 2[{0ol1) |
= ORp(e: A), (B9)
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where the last equality in Eq. (B9) is just Eq. (B8) and the
maximum is obtained when |ag — a;| = 2|ap|. This proves
Proposition 2 for the case of two-dimensional Hilbert space.
Combining Egs. (B8) and (B9), we thus obtain Eq. (14) of
the main text. n

APPENDIX C: TRADE-OFF RELATION OF EQ. (24)
FOR A SINGLE QUBIT

Without loss of generality, one can proceed as in
Appendix B, but now the optimization is over the set
H(C?|A) of all Hermitian operators on C? with the complete
set of eigenprojectors A = {|0) (O], |1) (1|} having the form
of Eq. (B1), and over the set H(C?|B) of all Hermitian
operators on C? with the complete set of eigenprojectors
B = {lbi (e, B)) (b4 (a, B)I, |1b—(e, B)) (b—_(cx, B)I}, where
|bi(a, B)) are parameterized as in Eq. (B3). Evaluating the
lower bound in Eq. (24) for two-dimensional Hilbert space,
we have

C,(o;A)+C(0;B)
[Tr{[A, B(a, B)]-o}]
lAll oo 1Bl o

lap — a1 |by — b_]|

= sup sup
AeH(C2|A) B(e, ) H(C?[B)

- {bﬁ?}ﬁkz {ao.ar}eR?  |ap D] | Olel 1}
X| sina sin(B — ¢o1)|
= 4/ (0lel1) || sina]| sin(B — ¢o1)]
= 2,/r* —r?|sina||sin(B — ¢o1)|
= 2r|sin¢,||sina||sin(8 — ¢o1)|. Ch

Here, the maximum is obtained when |ay — ai| = 2|ag|
and |by —b_| =2|by| (see Appendix B), we have used
the expression for the qubit state o = %(]I + reoy +ryoy +
r.o.), 12+ r)z, +r2=r? so that 2| (Olo|1) | = |ry — iry| =
J/r> —r?, and ¢, is the angle between the Bloch vector of
the state and the positive z axis. One can see that the lower
bound decreases as the purity of the state given by Tr(p?) =
(1 + 7%)/2 decreases. Moreover, it also decreases when the
noncommutativity between the two PVM bases, i.e., A and B,
quantified by | sin «¢|, decreases. In particular, the lower bound

vanishes for r = 0, i.e., for maximally mixed state o = I /2
with minimum purity, and it also vanishes when sina = 0, 7,
i.e., when the two PVM bases A and B are commuting. This
result is in accord with that obtained in Ref. [23]. Note that
| sin ;| and | sin(B — ¢o1)| on the right-hand side character-
ize, respectively, the noncommutativity between the state o
and the PVM basis A and between ¢ and the PVM basis
B. They vanish, respectively, when o commutes with A and
o commutes with B, as expected. As an example, consider
the case when the state is pure so that r = 1, and take o =
/2 and ¢o; +7/2 = B so that sina = sin(B — ¢g1) = 1.
Then, taking ¢, = 7 /2, we have C,(0;A) =C,(0;B) =1
and the inequality in Eq. (C1) becomes equality, i.e., both
sides are equal to 2. Note that in this case, the triple A, B and
the ezigenbasis of o comprise three mutually unbiased bases
of C~.

APPENDIX D: PROOF OF EQ. (30)

One first has, from the definition of the KD nonclassicality
in a state o relative to a PVM {I1,} in Eq. (10),

QX5 (0: {1}

= sup Z

(T, }e Mupvm(H) a.b

ZTr{H;,HaQHar} -1

7

D lalold) 1Y 1@k} (bula) | — 1,
a,d by

where we have used a completeness relation ), 1y =1,
triangle inequality, and {I1;,} € M;pym(H) is a PVM basis
which achieves the supremum. On the other hand, using the
Cauchy-Schwartz inequality, we have Zb* | (byla) (d'|by) | <
(O, | (bila) 2 oy 1 (a'1b)) |)1/2 = 1, where we have used
a completeness relation Zb* |by) (by| = L. Inserting this into
Eq. (D1), we finally obtain

QR (e: {TTa}) < ) [ alela’) | — 1

a,a

= llalold) |

N

(D1)

a#d
=Gy (os{la)}), (D2)
where we have used the normalization ), (alo|a) = 1. |
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