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The experimental evaluation of many quantum mechanical quantities requires the estimation of several directly
measurable observables, such as local observables. Due to the necessity to repeat experiments on individual
quantum systems in order to estimate expectation values of observables, the question of how many repetitions
to allocate to a given directly measurable observable arises. We show that an active learning scheme can help to
improve such allocations, and the resultant decrease in experimental repetitions required to evaluate a quantity
with the desired accuracy increases with the size of the underlying quantum mechanical system.
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I. INTRODUCTION

There is quite a discrepancy between the quantum me-
chanical observables that can be measured in principle and
those that can be measured in practice. Restrictions to local
observables or even restrictions to preferred measurement
bases are common even in highly controllable experiments
with synthetic quantum systems. This results in the necessity
to infer quantities that cannot be directly measured in terms of
observables that can be measured.

While it is well understood how to express a given quantity
in terms of expectation values of practically measurable ob-
servables [1–4], any such decomposition implicitly assumes
expectation values of all involved observables are known. The
probabilistic nature of quantum mechanical measurements,
however, implies that expectation values can only be esti-
mated with finite accuracy, and any improvement in accuracy
requires more repetitions of the same measurement.

The necessity to estimate expectation values of several
observables and to increase experimental repetitions in order
to improve any such estimate opens the question of how to
allocate experimental resources to the different observables.
Lacking a good basis for a different choice, each observ-
able is typically allocated the same number of experimental
repetitions [5–7].

The uncertainty sampling strategy [8,9] in active learning
(AL) can be used to find better allocations of experimental
repetitions. Active learning methods adaptively choose which
data to sample in order to minimize the total number of sam-
ples required to obtain the desired accuracy. These techniques
are typically applied to speed up learning of machine learning
models, including in speech recognition [10], image retrieval
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[11], classification tasks [12], or computational physics [13].
In the field of quantum physics active learning is known to be
helpful for the analysis of quantum states [14–17] and optimal
control [18]. Active learning can also be regarded as a form
of adaptive experimental design, and it is this view of active
learning that we will take in this paper.

A key ingredient in the AL scheme is to estimate the
informativeness of measurement on each directly measur-
able observable, and hence to decide which observables
to query in consecutive measurements. Concentration in-
equalities [19–21] provide sound foundations to estimate the
uncertainty of variables based on a limited amount of data, es-
pecially when this data is generated by some random variables
with unknown distributions. Therefore, it is suitable to use
concentration inequalities to construct query strategies based
on the outcomes of quantum mechanical measurements.

In this paper, we will use concentration inequalities to de-
cide actively which observable to measure in a repetition of an
experiment in order to obtain the best-expected improvement
of the estimate of a quantity that cannot be directly measured.
We will show that a dynamical allocation of measurements
can help to decrease the total number of repetitions required
to estimate a given quantity with desired accuracy, and that
this decrease is most pronounced in the regime of a few
repetitions.

II. DECISIONS BETWEEN OBSERVABLES

Most quantum mechanical quantities of interest cannot be
assessed in terms of a single observable. This might be due
to practical limitations, as is the case for fidelity with respect
to an entangled state or for an entanglement witness: strictly
speaking, each of those is a regular observable, but the prac-
tical restriction to measurements of single-qubit observables
and correlations thereof implies that several observables need
to be measured before the expectation value of the observable
of interest can be estimated [2,22,23]. This might also be due
to more fundamental reasons, as is the case with the gate
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fidelity [5,24,25]: since its experimental evaluation requires
the implementation of a gate starting from a complete set
of different initial states, estimating a gate fidelity implied
performing several independent measurements even if there
was not a practical restriction to local observables.

In the following, we will thus consider a general quan-
tum mechanical quantity Q whose experimental evaluation
requires estimating the expectations values 〈Si〉 of M indepen-
dent observables Si. Since Q is a function of the expectation
values 〈Si〉, the accuracy of the estimate of Q depends on the
accuracy with which the expectation values 〈Si〉 are estimated.
Crucially, the accuracy of each observable does not only de-
pend on the number of measurement repetitions, but it also
depends on the actual underlying quantum state [26]. At any
given number of repetitions of a σz measurement, for example,
the accuracy in the estimate of 〈σz〉 is higher for a state that
is close to a σz eigenstate than for a state that would yield
more balanced probabilities of the two possible measurement
outcomes.

Given an unknown quantum state, one can thus not find an
optimal allocation of measurement repetitions to the M differ-
ent observables to be measured. Only, as data is being taken,
one may estimate the accuracy of the different expectation val-
ues, and one can use this information in order to decide how to
allocate measurement repetitions for subsequent experiments.

In the following, we will thus consider the situation where
measurements of several observables Si have been performed
with ni repetitions each. Based on the accumulated data, one
can estimate the expectation values 〈Si〉 and thus the value of
the quantity Q of interest with finite accuracy that is limited
by the amount of data, i.e., the number ni of measurement
repetitions. We will derive a decision rule with AL that helps
to identify the observable which, when measured again, will
result in the largest available decrease of the inaccuracy in
the estimate of Q. With several numerical examples, we will
demonstrate that taking data following this AL scheme can
help to substantially decrease the number of experiments re-
quired to estimate the value of Q with the desired accuracy,
and that the gain grows with increasing system size.

III. ACTIVE LEARNING

A. Concentration inequalities

The law of large numbers [27] states that the expectation
value 〈S〉 of a physical observable S is typically approximated
well by the empirical expectation value

〈S〉e = 1

n

n∑
i=1

si , (1)

where si is the result obtained in the i-th repetition of the
measurement of the observable S. The uncertainty in the esti-
mation of 〈S〉 decreases with the number n of measurement
repetitions. This uncertainty can be expressed in terms of
concentration inequalities, which states that the upper bound

|〈S〉 − 〈S〉e| � ε(n, δ) (2)

on the deviation between 〈S〉 and 〈S〉e holds with probability
1 − δ.

The explicit form on the upper bound ε(n, δ) can depend
on the underlying problem. The empirical Bernstein bound
[21,28,29]

εB(n, δ) =
√

2ve

n
ln

2

δ
+ 7

3(n − 1)
ln

2

δ
, (3)

with the empirical variance

ve = 1

n − 1

n∑
i=1

(si − 〈S〉e)2, (4)

applies to a wide range of problems. In turn, however, it is
not necessarily the best available bound for specific problems.
In the case of independent repetitions of a measurement with
only two distinct outcomes (a dichotomic observable), the
bound

εD(n, δ) =
√

2v

n
ln

1

δ
(5)

with the actual variance v applies [19]. While this bound
generally provides a better estimate of the accuracy of 〈S〉e

than the empirical Bernstein bound, it has the disadvantage
that it is not formulated in terms of the empirical variance ve,
but rather in terms of the actual variance

v = p(1 − p)(s1 − s2)2 , (6)

which depends on both the actual probability p to obtain a
given outcome and the values s1 and s2 that the observable S
can adopt (i.e., si ∈ {s1, s2}). Since estimating the expectation
value of S, or, equivalently, the value of the probability p, is
the goal of the experiment, the actual variance v is indeed
unknown, so that εD(n, δ) in Eq. (5) is not usable in practice.

A natural remedy seems to replace the actual variance v

by its empirical counterpart ve as defined in Eq. (4). Since,
however, in cases with close-to-certain outcomes [i.e., p(1 −
p) � 0], the empirical variance ve tends to be smaller than
the actual variance v, this replacement would result in an
underestimate of the uncertainty of empirical expectation val-
ues of observables with low variance. Any algorithm that is
meant to decide to perform measurements of observables with
uncertainty estimates would thus decide to perform too many
measurements of observables with high variance and too few
observables with low variance. In order to find a decision rule
that will result in close-to-optimal choices for observables to
measure, we aim to find a rule that combines the benefits of
being defined in terms of the empirical variance [as in Eq. (3)]
with the suitability to dichotomic observables [as in Eq. (5)].

The heuristic ansatz

εM (n, δ) =
√

2ve

n
ln

1

δ
+ (s1 − s2)2 − 4ve

4n
ln

2

δ
+ 1

n
(7)

includes two additional terms as compared to Eq. (5). With
their 1/n dependence, they become negligible in the limit
n → ∞. The last term ensures that εM (n, δ) does not vanish in
the case of a few measurements (n � 1). The second term in
Eq. (7) vanishes exactly if ve adopts its maximal value, and
it is the largest for vanishing empirical variance. As such,
it results in the desired modification to compensate for the
misestimate of low variances. All explicit examples in the
following are based on the numerical value δ = 1/10.
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B. Uncertainty reduction

With the ability to estimate the uncertainty of empirical
expectation values of directly measurable observables, one
can also estimate the uncertainty of the empirical estimate
Qe of the composite quantity of interest. Even though not
strictly necessary, we will restrict the following discussion to
functions that depend on the observables Si in a linear fashion,
since this is given for quantities like fidelity with respect to a
pure state or a unitary gate. Nonlinear quantities, such as the
von Neumann entropy, would require a generalization that is
feasible (see Appendix A), but that would make the following
discussion unnecessarily technical.

For any given linear function Q = ∑
i ai〈Si〉, with scalar

factors ai, the empirical estimate of Q reads Qe = ∑
i ai〈Si〉e,

and the uncertainty of Qe can be estimated with the inequality

∣∣Q − Qe

∣∣ �
N∑

i=1

|ai|εi , (8)

where εi is the bound on the uncertainty of 〈Si〉e following
Eq. (7).

The goal at hand is to decrease the inaccuracy of Qe

through identification of the observable to measure that re-
sults in the largest possible decrease of the right-hand side in
Eq. (8). To this end, it is desirable to estimate how each of
the bounds εi would change if an additional repetition of the
measurement of Si was performed.

Given the dependence of the bounds in Eq. (7) on the
empirical variance, this prediction can be made only approx-
imately. Leaving aside situations with extremely sparse data
(i.e., n � 1), the change in the empirical variance following
an additional measurement is expected to be negligible; in this
approximation, one can thus quantify the expected uncertainty
reduction

�i = εi(ni ) − ε(ni + 1) (9)

of the estimate of 〈Si〉e, where both εi(ni ) and ε(ni + 1)
follow Eq. (7) with the empirical variance σe based on ni

measurements.
If all the observable Si are pairwise noncommuting, then

the best available reduction in the uncertainty of Qe is
achieved by measuring the observable Si that yields the largest
value of |ai|�i. If there are some commuting observables
within the set {Si}, then it is essential to take into account that
commuting observables can be measured in the same run of an
experiment. Instead of focusing on individual observables Si,
an algorithm should rather focus on groups Gi of observables,
such that all observables in any group do pairwise commute.
The expected uncertainty reduction of Qe upon measurement
of the observables in Gi is given by

wi =
∑

{ j|S j∈Gi}
|a j |� j , (10)

and the group of observables with the largest uncertainty
reduction should be measured.

C. Active learning algorithm

With the ability to identify the observables to measure that
result in the largest uncertainty reduction of the empirical

estimate for the quantity Q of interest, we can finally formu-
late the desired active learning algorithm, which is comprised
of the following steps:

(1) Since no meaningful decision can be taken without
any data, the algorithm is initialized of a single shot of each
measurement. While a single shot is the minimum required
to construct an empirical expectation value, at least two shots
are required to construct an empirical variance [Eq. (4)]. The
initialization will thus include two shots of each of the observ-
ables Si or each of the groups Gi.

(2) Once there is enough data to estimate the expected un-
certainty reduction wi [Eq. (10)], the observable Si or group Gi

with the largest expected reduction is selected to be measured
in the next step. The outcome of this subsequent measurement
is then added to the accumulated data, and the values of
corresponding 〈Si〉e are updated. This step is repeated as long
as necessary or desired.

(3) The process of repeating step (2) is ended if the empir-
ical estimate Qe of Q has reached the desired accuracy.

In the examples of explicit implementations of this algo-
rithm discussed below in Sec. IV, this process of estimating
Qe will be compared with a more conventional approach, in
which step (2) is replaced by a selection of observables Si or
group Gi from a fixed list, such that each observable or group
is measured approximately as often.

IV. ESTIMATION OF PHYSICAL PROPERTIES WITH
ACTIVE LEARNING

This section exemplifies the detailed process of estimating
state fidelities and gate fidelities, and the dependence of the
benefits of AL on the number of qubits in the underlying
systems. All of the subsequent examples are based on numer-
ically simulated measurement outcomes, with the outcomes
generated randomly following the quantum mechanical prob-
abilities.

A. State fidelity

A typical example of a quantity of frequent interest is the
fidelity

F (�, |�〉) = 〈�| � |�〉 (11)

of any given state � with respect to a pure state |�〉 [2]. In
composite quantum systems, it can hardly ever be measured
directly, but it can be cast into a weighted sum of expectation
values of directly measurable observables. For any set of
mutually orthogonal observables Si, the state fidelity is of the
desired form F (�, |�〉) = ∑

i ai 〈�| Si |�〉 with

ai = tr �Si

tr S2
i

. (12)

Since in most systems in the context of quantum information
processing the practically accessible observables are restricted
to tensor products of Pauli matrices σx, σy, and σz and the
identity 1, the subsequent discussion will assume this choice
of observables. Since the identity commutes with all three
Pauli matrices, and measuring an N-qubit observable (i.e., a
tensor product of N Pauli matrices, but no identity) implies
also measuring all observables obtained by replacing Pauli
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FIG. 1. Convergence of fidelity estimates with active learning
(triangles) and with the conventionally uniform allocation of repe-
titions to different observables (squares). Both the standard deviation
and the number of shots are depicted on a logarithmic scale. The lines
indicate 1/

√
nT convergence.

matrices with identities without any additional effort, this sit-
uation fits naturally into the setting of commuting observables
discussed above.

In order to achieve a sound statistical comparison between
fidelity estimates aided by AL and conventional methods, the
following discussion is based on state fidelity with respect
to states |�〉 that are randomly chosen from a distribution
that is unbiased according to the Haar measure [30] (see
Appendix B for simulation details). The quantum state � in
the state fidelity Eq. (11) is chosen such that the fidelity adopts
its maximal value of 1, i.e., � = |�〉 〈�|, but none of the
observations made in the following are specific to the case
of maximal fidelity.

In particular, in the regime of few measurement repetitions,
the data is strongly affected by the statistical fluctuations of
measurement results. The empirical estimates of the fidelity
will thus typically vary between different realizations of the
fidelity estimates. In order to avoid substantial fluctuations in
the numerical data, the subsequent discussion will therefore
be based on an average over m independent realizations of the
same fidelity estimate for any given total number of measure-
ment repetitions (shots) nT .

With the empirical estimate Fi(nT ) of the fidelity in the i-th
realization with a given number of shots nT , and the exact,
theoretically constructed fidelity F , the standard deviation
σ (nT ) of the fidelity estimate with a given nT is defined as

σ (nT ) =
√√√√ 1

m − 1

m∑
i=1

[F − Fi(nT )]2 . (13)

For sufficiently many repeated realizations m, this standard
deviation is indeed independent of the statistical fluctuations
that are inherent to each individual realisation, and the subse-
quent examples are based on m = 10 000 realizations.

Figure 1 depicts the convergence of such a fidelity estimate
for a randomly chosen four-qubit state with a logarithmic
scale for both the number of shots nT (on the x axis) and
the estimated standard deviation σ (on the y axis). Data fol-
lowing the estimate aided by AL is depicted with triangles,

and data following the conventional estimation strategy is
depicted with squares. The black lines depict the 1/

√
nT

dependence that is typical for the reduction of statistical
noise. Since 2 × 34 = 162 shots (i.e., two measurement repe-
titions on each N-qubit observable) are necessary to complete
the initialization stage of the AL algorithm as described in
Sec. III C, convergence is shown only for nT > 162. Initially,
the convergence with the estimate aided by AL shows a faster
decrease than the typical 1/

√
nT dependence, and it follows

the 1/
√

nT -dependence only after nT � 210 shots. On the
other hand, the estimate following the conventional allocation
(i.e., the total number of shots are evenly distributed to each
observable) follows the 1/

√
nT dependence during the entire

process of convergence.
The initial, faster convergence shows that the AL algorithm

is indeed capable of identifying the observables to measure
that best help to decrease the inaccuracy in the fidelity es-
timate. Once enough data is accumulated, however, one can
decide on an optimal allocation of repetitions to the different
observables without accumulating more data. In this case,
the adaptive AL method can no longer outperform a strategy
with a fixed but optimized allocation, and the convergence
necessarily needs to follow the 1/

√
nT dependence. Due to

the initial, fast convergence, however, the approach aided by
AL is expected to outperform conventional approaches also
if convergence towards low variances is required, so that a
larger part of the convergence is dominated by the 1/

√
nT

dependence.
The observation that both approaches follow the 1/

√
nT

dependence after sufficiently many shots (for nT � 210 in this
case) is helpful to define a figure of merit for the improvement
of the approach with AL over the conventional approach. The
ratio n(c)

T /n(AL)
T of the number of shots n(c)

T required to achieve
a given accuracy of the fidelity with the conventional approach
and the number of the shots n(AL)

T to achieve the same accuracy
with the approach aided by AL [i.e. σ (n(c)

T ) = σ (n(AL)
T )] is

independent of a desired standard deviation of the fidelity
estimate as long as this standard deviation is sufficiently small
so that the comparison is taken after the initial interval of fast
convergence. In the following, we will thus refer to the ratio
n(c)

T /n(AL)
T as the improvement.

Since state fidelity can be defined for systems with various
numbers of qubits, it is well suited to highlight the benefits of
AL with increasing system size. The following discussion is
thus focused on the state fidelity of an N-qubit system with N
ranging from one to six.

Figure 2 depicts the cumulative distribution of the im-
provement n(c)

T /n(AL)
T found for different system sizes based

on fidelity estimates for 400 different random states. In the
case of a single qubit (dashed line with circles), one can notice
that the improvement is smaller than one in about 25% of the
cases. In those cases, the conventional method yields better
estimates than the method aided by AL. The distribution of the
observed improvements, however, is skewed toward higher
values, and the average improvement does indeed indicate in
favor of the AL method.

The only moderate benefit of AL in the estimate of
single-qubit fidelities can be attributed to the fact that there
are only three different directly measurable observables to
choose from. Since, however, the range of different observable

062404-4



ACTIVE LEARNING FOR QUANTUM MECHANICAL … PHYSICAL REVIEW A 109, 062404 (2024)

FIG. 2. Cumulative distribution of improvements of state fidelity
estimations with active learning obtained from statistics with 400
random states for each system size ranging from one to six qubits.
While the improvement does depend on the underlying state, there
is a clear trend of increasing improvements with a growing qubit
number, due to the growing number of observables to choose from.

settings grows exponentially in the number of qubits, one
would expect that the benefits of AL become increasingly
pronounced with increasing system size. This expectation is
also clearly corroborated by Fig. 2. For three qubits and more,
the improvement does always exceed the threshold value of
one, and the observed improvements grow steadily with the
number of qubits. For N = 6 qubits (solid line with down-
wards triangles), the improvement exceeds the value 1.8 in
half of the cases, and the improvement reaches values up to
3; that is, the number of measurements to be taken can be
reduced by a factor of 3 without a decrease in the accuracy of
the fidelity estimate.

B. Gate fidelity

The case of state fidelity highlights that the benefits of
AL are particularly pronounced if there is a large number
of measurement settings to choose from. Since, in the case of
gate fidelity, there is a choice for both the initial state and the
measurement to be taken on the final state, the estimate aided
by AL is potentially particularly beneficial for the estimate of
gate fidelities. This section will thus focus on the estimate of
gate fidelities. Rather than analyzing statistics over randomly
chosen gates, this section focuses on the two-qubit controlled-
NOT (CNOT) gate and the three-qubit Toffoli gate.

The fidelity of a quantum channel � with respect to a gate
U for N qubits [24] is given by

F (�,U ) = 1

22N

∑
i, j

〈i|U †�(|i〉〈 j|) U | j〉 , (14)

where the summation is performed over two complete sets of
orthonormal state vectors.

In order to recast the definition of gate fidelity into an
experimentally realizable measurement prescription, it is nec-
essary to expand each of the operators |i〉〈 j| in the argument
of � into a set of actual quantum states. While a set of four
quantum states is sufficient for a single qubit, the following

analysis is based on the five states:

|φ0〉 = |0〉 , |φ1〉 = |1〉 and

|φk〉 = 1√
2

(|0〉 + ei 2π
3 (k−2) |1〉) for k = 2, 3, 4. (15)

With this choice of states, the gate fidelity for a single qubit
can be expressed as

F (�,U ) = 1

4

∑
i, j,k

ci jk 〈i|U †�(|φk〉〈φk|) U | j〉 (16)

with complex scalar coefficients ci jk . Due to the choice of
an overcomplete set of states, the values of these coefficients
are not uniquely determined, but the choices c000 = 1, c111 =
1, c01k = 2

3 ei 2π (k−2)
3 , and c10k = 2

3 e−i 2π (k−2)
3 for k = 2, 3, 4, and

all remaining terms vanishing is a valid choice.
This generalizes straightforwardly to the gate fidelity for

N qubits, with 5N initial states |�k〉 given by tensor products
of the single-qubit states |φk〉, and coefficients Ci jk given by
products of the coefficients ci jk .

An explicit prescription in terms of state preparation, dy-
namics described by the channel �, and final measurement is
obtained by expanding the operators

∑
i j Ci jkU | j〉〈i|U † into

the set of observables that can be directly measured. With the
set of local Pauli measurements Si also used in Sec. IV A for
the state fidelity, one obtains

F (�,U ) = 1

22N

5n−1∑
k=0

4n−1∑
l=0

alk tr [Sl�(|�k〉〈�k|)], (17)

with

alk = tr(Sl
∑

i j Ci jkU | j〉〈i|U †)

tr S2
i

. (18)

The situation regarding the choice of measurements is thus
analogous to the case of state fidelity, but in addition to the
choice of measurement, there is also the choice of initial state.
In every step of the process, the AL algorithm will thus select
the most informative initial state and corresponding measure-
ment.

Similarly to the estimate of state fidelities discussed in
Sec. IV A, the accuracy of an empirical estimate of the gate
fidelity also depends on the actual realization of random
measurement outcomes, and a reliable assessment of the two
methods to be compared is obtained only in terms of statis-
tics of many independent realizations of the same fidelity
estimates.

Figure 3 depicts the decrease of the standard deviation
σ (nT ) with the number of shots for the estimation of the per-
fect fidelity of (a) a two-qubit CNOT gate and (b) a three-qubit
Toffoli gate, similar to Fig. 1. Triangles denote the case of
estimates aided by AL, and squares denote the case in which
all measurements are taken with the conventional approach.
Qualitatively, the convergence confirms the behavior identi-
fied in Fig. 1, but the quantitative details are different: the
period of faster convergence in the approach aided by AL lasts
until nT ≈ 2000 for the CNOT gate and until nT ≈ 1.1 × 104

for the Toffoli gate. The improvement as derived from the
part of the convergence that satisfies the 1/

√
nT behavior is
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FIG. 3. Convergence comparisons of the fidelity estimations with active learning and conventionally uniform allocations of experimental
repetitions for (a) CNOT gate and (b) Toffoli gate. Both the standard deviation and the total number of shots are plotted on a logarithmic scale.
The reference lines indicate the convergence that scales as 1/

√
nT .

n(c)
T /n(AL)

T ≈ 2 for the CNOT gate and n(c)
T /n(AL)

T ≈ 2.2 for the
Toffoli gate. With the larger improvement for the CNOT gate
and the Toffoli gate as compared to the improvement found for
two-qubit and three-qubit state fidelities, Fig. 3 thus confirms
the expectations that the benefits of AL are growing with the
number of measurement settings to choose from.

V. OUTLOOK

In particular, in the era of noisy intermediate-scale quan-
tum (NISQ) devices [31], the estimate of state fidelities and
gate fidelities is a commonly encountered problem [32–34].
The rapidly growing number of observables to be measured
makes this an extremely challenging task even for moder-
ate qubit numbers [35,36]. Due to substantial imperfections,
such as drift or uncharacterized cross-talk between qubits
in such devices [37–39], there is large uncertainty about a
created state or an implemented gate, so a prior allocation
of measurement repetitions for the specific state or gate is
indeed problematic. The interactive active learning process for
observables to be measured can thus practically facilitate the
estimate of fidelities. Since such estimates are at the core of
data-driven optimization processes [40–42], and due to their
iterative nature these optimizations require several fidelity
estimates, the proposed algorithm can contribute to our ability
to derive practical use from faulty hardware.

The use of the proposed techniques is also not limited
to fidelities, but it can also find applicability in variational
quantum algorithms (VQA) [43–45] in which expectation
values of a Hamiltonian or some other operator need to be es-
timated. The goal of the VQA is the experimental realization
of the quantum state that minimizes this expectation value,
and iterative optimization algorithms estimate this expectation
value with the same accuracy for all considered states [46].
Since the proposed algorithm does provide not only empirical
expectation values, but also bounds on their accuracy, it can
also identify the lowest conceivable expectation value at any
point in time during the data acquisition. As soon as this value
exceeds the expectation value observed with another state,
one can safely stop taking data based on this state and start
estimating the expectation value with a different state.

With possible extensions to the estimate of quantities like
entropy or correlation functions involving products of expec-
tation values, the use of the proposed active learning algorithm
has clear potential to become a commonly used tool in the
analysis of quantum systems.
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APPENDIX A: UNCERTAINTIES ON NONLINEAR
QUANTITIES

We have restricted our arguments to estimating the values
of linear quantities, such as state fidelity and gate fidelity.
Nonlinear quantities such as the von Neumann entropy would
require a generalization that is feasible. Here, we present a
sketch of this possible generalization to a quadratic quantity
Q = ∑

i ai〈S2
i 〉 as a concrete example, with scalar factors ai

and expectation values of measurable observables 〈S2
i 〉.

The empirical estimate of Q reads Qe = ∑
i ai〈S2

i 〉e. The
uncertainty on 〈S2

i 〉e is bounded by
∣∣〈S2

i

〉 − 〈
S2

i

〉
e

∣∣ � εi|〈Si〉 + 〈Si〉e|, (A1)

where εi = |〈Si〉 − 〈Si〉e| is the bound on the uncertainty of
〈Si〉e following Eq. (7). The last term in Eq. (A1) is bounded
by

|〈Si〉e + 〈Si〉| = |2〈Si〉e + 〈Si〉 − 〈Si〉e|
� 2|〈Si〉e| + εi. (A2)

Therefore, the uncertainty of Qe can be estimated as

|Q − Qe| �
N∑

i=1

|ai|εi(2|〈Si〉e| + εi ). (A3)

One can thus use it to calculate the expected uncertainty
reduction of Qe upon measuring each individual observable

by replacing εi that appeared in Eq. (7) with εi(2|〈Si〉e| + εi).
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APPENDIX B: SIMULATION DETAILS

The construction of random states [30] is comprised of the
following steps.

Any N -qubit quantum state |ψ〉 can be expressed as a
superposition of basis states

|ψ〉 =
2N∑

k=1

Akeiθk |c(k)〉 , (B1)

with phases θk ∈ [0, 2π ) and real amplitudes Ak ∈ [0, 1],
satisfying normalization constraint

∑2N

k=1 A2
k = 1. Here,

{|c(k)〉} = {|c(k)
1 , ..., c(k)

N 〉} is a reference basis k for the Hilbert
space of N qubits.

To generate unbiased random samples of pure states in N -
dimensional Hilbert space [30], we first use a uniform random
number generator to generate q1 in the interval [0,1] and qk in
[0, 1 − ∑k−1

j=1 q j] for k ∈ {2, 3, ..., 2N − 1}, and set qN = 1 −∑N−1
j=1 q j to ensure the normalization. Then, we shuffle

√
qk

and randomly assign them to be the real amplitudes Ak for
k ∈ {1, 2, ..., 2N }. To generate random phases, we set the first
phase θ1 = 0, and the rest of phases θk are randomly generated
in [0, 2π ) for k = {2, 3, ..., 2N }.
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