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Quantum teleportation is an essential application of quantum entanglement. The examination of teleportation
fidelity in two-party standard teleportation schemes reveals a critical threshold distinguishing separable and
entangled states. For separable states, their teleportation fidelities cannot exceed the threshold, emphasizing the
significance of entanglement. We extend this analysis to multiparty scenarios known as controlled teleportation.
Our study provides thresholds that N-qudit k-separable states cannot exceed in a controlled teleportation scheme,
where N � 3 and 2 � k � N . This not only establishes a standard for utilizing a given quantum state as a
resource in controlled teleportation but also enhances our understanding of the influence of the entanglement
structure on controlled teleportation performance. In addition, we show that genuine multipartite entanglement
is not a prerequisite for achieving a high controlled teleportation capability.
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I. INTRODUCTION

Quantum teleportation is a crucial application of quan-
tum entanglement, finding utility in quantum communication,
quantum networks, and quantum computation. In the standard
teleportation scheme, Alice can perfectly transfer quantum
information to Bob by using a two-qubit maximally entangled
state and two bits of classical information [1]. Nonmaxi-
mally entangled states can also be considered in a standard
teleportation scheme, and we can evaluate the quantum
state’s usefulness for teleportation through teleportation fi-
delity [2,3]. It is important to note that there exists a threshold
that separable states cannot surpass. Therefore, if an entangled
state exceeds this threshold, we can assert its usefulness in
standard teleportation.

In multiparty scenarios, controlled teleportation is a no-
table consideration [4–8]. Here, we consider the following
controlled teleportation scheme. Initially, N-players share an
N-qudit state and N − 2 out of N players conduct orthogo-
nal measurements on their respective systems. Subsequently,
the remaining players execute the standard teleportation
over the resulting state. The receiver then reconstructs the
sender’s quantum state with the N − 2 players’ measure-
ment outcomes. For example, suppose that Alice, Bob, and
Charlie share a Greenberger-Horne-Zeilinger (GHZ) state
[9], |GHZ〉ABC = (|000〉ABC + |111〉ABC )/

√
2. If Bob mea-

sures his system in the X basis {|0x〉 , |1x〉}, where |ix〉 =
[|0〉 + (−1)i |1〉]/√2, then the rest of the players share a two-
qubit maximally entangled state, enabling them to execute
two-qubit standard teleportation completely. Without Bob’s
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measurement, Alice and Charlie cannot carry out teleportation
surpassing the classical channel since the reduced state ρAC

of the GHZ state is a separable state. Even if Bob performs
the measurement and does not disclose the measurement out-
come, Alice and Charlie encounter difficulties in performing
teleportation perfectly due to the dependency of the resulting
state of Alice and Charlie on the measurement result of Bob.

The controlled teleportation capability in this scheme can
be directly evaluated as the average of the two-party tele-
portation fidelities of the resulting quantum states obtained
after the measurements [6,7]. By noting that any orthogo-
nal measurements on fully separable states fail to entangle
the resulting states, we can readily obtain a threshold that
fully separable states cannot exceed. However, in multiparty
scenarios, considering separability involves not only fully
separable states but also other types of separable states. For
instance, in the case of |ψ〉ABC = (|000〉ABC + |110〉ABC )/

√
2,

system A is entangled with systems BC, while systems AB and
C are separable. In more detail, for N � 3 and 2 � k � N ,
stating that an N-partite pure state is k-separable means that
the quantum state can be separated into k parts. An N-partite
mixed state is k-separable if it can be represented as a convex
sum of k-separable pure states. If an N-partite quantum state
does not correspond to any case of separability, then it is
termed as a genuinely multipartite entangled state. There-
fore, refining the threshold for the controlled teleportation
capability based on k-separability is significant for utilizing
a quantum state as a resource in controlled teleportation and
for understanding the effect of the entanglement structure of
quantum states in controlled teleportation.

In this paper, we provide thresholds that k-separable states
cannot surpass in the controlled teleportation scheme, thereby
elucidating the impact of the entanglement structure on the
controlled teleportation performance. We also demonstrate
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that values equal to the thresholds can be achieved using
k-separable states, indicating that our thresholds are tight cri-
teria. By using these results, we observe that a high controlled
teleportation capability can be attained by a biseparable state,
suggesting that genuine multipartite entanglement is not a
precondition for achieving a high controlled teleportation
capability. However, we also show that a high controlled tele-
portation capability is achievable only when the number of
entangled systems in the pure states constituting the bisepara-
ble state is sufficiently close to N .

This paper is organized as follows. We introduce the
maximal average teleportation fidelity of the controlled
teleportation over an N-qudit state in Sec. II and investigate
the controlled teleportation capability in Sec. III. An example
with the isotropic GHZ state is provided in Sec. IV, followed
by a summary and discussion of our results in Sec. V.

II. TELEPORTATION CAPABILITY IN CONTROLLED
TELEPORTATION

We begin by reviewing the maximal fidelity of teleporta-
tion over a two-qudit state ρAB ∈ Cd

A ⊗ Cd
B. The teleportation

fidelity is defined as [10]

F
(
�ρAB

) =
∫

dξ 〈ξ |�ρAB (|ξ 〉 〈ξ |) |ξ 〉 , (1)

where �ρAB represents a given teleportation scheme over a
two-qudit state ρAB and the integral is taken over a uniform
distribution with respect to all one-qudit pure states. It is worth
noting that the teleportation fidelity is associated with the fully
entangled fraction of ρAB [11], defined as

f (ρAB) = max 〈e| ρAB |e〉 , (2)

where the maximum is taken over all maximally entangled
states |e〉 of two-qudit systems. When �̄ρAB represents the
standard teleportation scheme over ρAB to achieve maximal
fidelity, it has been proven that the following equation holds
[2,3]:

F
(
�̄ρAB

) = df (ρAB) + 1

d + 1
. (3)

The given state ρAB is said to be useful for teleportation if
F (�̄ρAB ) > 2/(d + 1), as the classical channel can have at
most F = 2/(d + 1) [2,12]. In other words, two-qudit sepa-
rable states cannot exhibit a teleportation fidelity F exceeding
2/(d + 1).

Let us now consider the following controlled teleportation.
Suppose that N � 3 players, A1, A2, . . . , AN , share an N-qudit
state ρA1···AN ∈ Cd

A1
⊗ · · · ⊗ Cd

AN
. Following individual

orthogonal measurements on their respective systems
by all players except Ai and Aj , the players Ai and Aj

carry out the standard teleportation over the resulting state
with the measurement outcomes. We note that a one-qudit
orthogonal measurement can be described in terms of the
computational basis {|k〉}d−1

k=0 and d × d unitary operator
U . Thus we can say that the players Ai and Aj have the

resulting state σ
UKi j ,J

AiA j
with probability 〈J|UKi j ρKi jU

†
Ki j

|J〉
after the N − 2 players’ measurements. Here, Ki j =
{Ak1 , Ak2 , . . . , AkN−2} = {A1, A2, . . . , AN } \ {Ai, Aj}, UKi j =
UAk1

⊗ UAk2
⊗ · · · ⊗ UAkN−2

is a tensor product of local unitary

operators, J ∈ ZN−2
d is the N − 2 players’ measurement

outcome, and ρKi j = ρAk1
⊗ ρAk2

⊗ · · · ⊗ ρAkN−2
with the

reduced state ρAkt
on system Akt . Then, the maximal average

teleportation fidelity F (N )
i j is naturally derived as follows [6,7]:

F (N )
i j

(
ρA1···AN

) = max
UKi j

∑
J∈ZN−2

d

〈J|UKi j ρKi jU
†
Ki j

|J〉 F

(
�̄

σ
UKi j

,J

AiA j

)
.

(4)
By linearity and Eq. (3), we obtain

F (N )
i j

(
ρA1···AN

) = df (N )
i j

(
ρA1···AN

) + 1

d + 1
, (5)

where

f (N )
i j

(
ρA1···AN

) = max
UKi j

∑
J∈ZN−2

d

〈J|UKi j ρKi jU
†
Ki j

|J〉 f
(
σ

UKi j ,J

AiA j

)
.

(6)
To assess the overall controlled teleportation capability

of ρA1···AN , we consider the minimum of F (N )
i j , where the

minimum is taken over all distinct i and j. The minimum
of Fi j not only implies that ρA1···AN has at least that much
controlled teleportation capability for any arbitrary i and j
according to its own definition, but it can also be anticipated
to be an important quantity for investigating the relationship
with genuine multipartite entanglement. Indeed, it is related
to GHZ distillability [7] and can be used to define a genuine
multipartite entanglement measure [13].

We can assert that ρA1···AN is more useful for controlled tele-
portation than fully separable states if min{F (N )

i j } > 2/(d +
1), where the minimum is taken over all different i and j. This
assertion stems from the observation that if ρA1···AN is a fully
separable state, then the resulting state after N − 2 players’
measurements is a two-qudit separable state. However, when
considering multiparty scenarios, different types of separable
states can also be taken into account. In the following section,
we investigate the controlled teleportation capability of quan-
tum states in the controlled teleportation scheme based on the
degree of separability.

III. INVESTIGATING THE CONTROLLED
TELEPORTATION CAPABILITY

We first introduce some definitions and notations. For
an N-partite pure state |ψ〉, where N � 3 and 2 � k �
N , it is called k-separable if there exists a partition Pk =
{P1, P2, . . . , Pk} of the set {A1, A2, . . . , AN } such that it can
be written as |ψ〉 = |ψP1〉 ⊗ |ψP2〉 ⊗ · · · ⊗ |ψPk 〉. In this case,
we denote |ψ〉 ∈ SEP(k). When emphasizing the partition Pk ,
we write |ψ〉 ∈ SEP(Pk ). An N-partite mixed state ρ is called
k-separable if it can be written as a convex sum of k-separable
pure states ρ = ∑

l pl |ψl〉 〈ψl |, where the k-separable pure
states {|ψl〉} can be k-separable with respect to different parti-
tions, and we denote ρ ∈ SEP(k). In particular, if there exists
a partition Pk such that |ψl〉 ∈ SEP(Pk ) for all l , then let
us denote ρ ∈ SEP(Pk ). We note that SEP(k) ⊂ SEP(k − 1)
for 3 � k � N . For an N-partite state ρ, it is called fully
separable if ρ ∈ SEP(N ), and biseparable if ρ ∈ SEP(2). If
an N-partite state is not biseparable, then it is a genuinely
N-partite entangled state.
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The controlled teleportation capability of quantum states
with respect to k-separability is under investigation. Let
ρA1···AN be an N-qudit k-separable state. By definition, it can
be written as

ρA1···AN =
∑
Pk

αPk ρPk , (7)

where the sum is over all partitions Pk of size k, αPk �
0, and ρPk ∈ SEP(Pk ). For a partition Pk , if {Ai, Aj} ∈ Pk ,
then f (N )

i j (ρPk ) is at most 1, and otherwise, f (N )
i j (ρPk ) � 1/d .

Hence, we obtain that

f (N )
i j

(
ρA1···AN

)
�

∑
Pk

αPk f (N )
i j

(
ρPk

)

� 1

d
+ d − 1

d

∑
Pk :{Ai,Aj }∈Pk

αPk . (8)

We now derive the following theorem.
Theorem 1. Let

T (d, N, k) = 2

d + 1
+ d − 1

d + 1

(N − k + 1)(N − k)

N (N − 1)
. (9)

For an N-qudit state ρA1···AN , if ρA1···AN ∈ SEP(k), then

min
1�i< j�N

F (N )
i j

(
ρA1···AN

)
� T (d, N, k). (10)

Proof. Assume that ρA1···AN is a k-separable state of the
form in Eq. (7). Then, by Eq. (8), f (N )

i j (ρA1···AN ) is upper
bounded by

1

d
+ d − 1

d

∑
Pk :{Ai,Aj }∈Pk

αPk . (11)

Since we consider all i and j such that 1 � i < j � N , there
are

(N
2

)
upper bounds. For a partition Pk , αPk appears in

the upper bound of f (N )
pq (ρA1···AN ) only when {Ap, Aq} ∈ Pk .

Hence, the number of upper bounds where αPk appears is∑k
t=1

(|Pt |
2

)
, where Pt ∈ Pk and |S| is the size of the set S.

Therefore,

∑
1�i< j�N

f (N )
i j

(
ρA1···AN

)
� 1

d

(
N

2

)
+ d − 1

d

∑
Pk

k∑
t=1

(|Pt |
2

)
αPk

� 1

d

(
N

2

)
+ d − 1

d

(
N − k + 1

2

) ∑
Pk

αPk

= 1

d

(
N

2

)
+ d − 1

d

(
N − k + 1

2

)
, (12)

where the second inequality is derived from the fact that∑k
t=1

(|Pt |
2

)
is maximized when one of the sets in partition Pk

has a size of N − k + 1 and the sizes of the remaining sets are
all one. The proof is completed by dividing both sides by

(N
2

)
since the minimum cannot exceed the average. �

Theorem 1 introduces the limitations of controlled tele-
portation capability achievable through N-qudit k-separable
states, as depicted in Fig. 1. Remark that when considering
only pure states, T (d, N, k) is a loose bound since

min
1�i< j�N

F (N )
i j (|ψ〉A1···AN

) = 2

d + 1
(13)

FIG. 1. For 3 � N � 7 and 2 � k � N , T (2, N, k) is expressed.
In any case, if the minimum of F (N )

i j for a given quantum state is
greater than 2/3, then the quantum state is more useful than fully
separable states in controlled teleportation. However, as N increases,
the threshold T (2, N, 2) that a genuinely multipartite entangled state
must surpass to outperfom any biseparable state in controlled tele-
portation also increases.

for any N-qudit biseparable pure state |ψ〉A1···AN
. However,

there is an N-qudit k-separable mixed state that attains
T (d, N, k) as the minimum of F (N )

i j as follows below. In other
words, T (d, N, k) can be considered as a tight bound if we
take account of all quantum states.

Theorem 2. There exists an N-qudit k-separable state ρ

such that

min
1�i< j�N

F (N )
i j (ρ) = T (d, N, k). (14)

Proof. For t ∈ Zd , let

|φM,t 〉 ≡ 1√
dM−1

∑
i1+···+iM≡t (mod d )

|i1 · · · iM〉 , (15)

where i j ∈ Zd . Consider the following symmetric N-qudit k-
separable state,

ρ = 1( N
k−1

) ∑
Ak−1

|0 · · · 0〉Ak−1
〈0 · · · 0| ⊗ |φN−k+1,0〉Āk−1

× 〈φN−k+1,0| , (16)

where the sum is over all subsets Ak−1 of A =
{A1, A2, . . . , AN } with size k − 1, and Ak−1 and Āk−1 corre-
spond to the system ofAk−1 andA \Ak−1, respectively.

Assume that players A3, . . . , AN measure their respective
systems in the computational basis {|0〉 , |1〉 , . . . , |d − 1〉},
and they get the outcome i3 · · · iN ∈ ZN−2

d with i3 + · · · +
iN ≡ s (mod d ). Let σ

(i3···iN )
A1A2

be the resulting state of players
A1 and A2.
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From tedious but straightforward calculations, we have that

prob(i3 · · · iN ) 〈φ2,0| σ (i3···iN )
A1A2

|φ2,0〉

= 1( N
k−1

) ∑
Ak−1:{A1,A2}	⊂A\Ak−1

∏
j:Aj∈Ak−1

〈i j |0〉 1

dN−k+1

+ 1( N
k−1

) ∑
Ak−1:{A1,A2}⊂A\Ak−1

∏
j:Aj∈Ak−1

〈i j |0〉 1

dN−k−1
(17)

if s ≡ 0 (mod d ), and

prob(i3 · · · iN ) 〈φ2,d−s| σ (i3···iN )
A1A2

|φ2,d−s〉

= 1( N
k−1

) ∑
Ak−1:|{A1,A2}∩Ak−1|=1

∏
j:Aj∈Ak−1

〈i j |0〉 1

dN−k+1

+ 1( N
k−1

) ∑
Ak−1:{A1,A2}⊂A\Ak−1

∏
j:Aj∈Ak−1

〈i j |0〉 1

dN−k−1
(18)

if s 	≡ 0 (mod d ). Hence, by the definition of f (N )
i j ,

f (N )
12 (ρ) �

∑
i3,··· ,iN

prob(i3 · · · iN ) f
(
σ

(i3···iN )
A1A2

)

� 1

d

∑
Ak−1:{A1,A2}	⊂A\Ak−1

1( N
k−1

)
+

∑
Ak−1:{A1,A2}⊂A\Ak−1

1( N
k−1

)
= 1

d
+ d − 1

d

∑
Ak−1:{A1,A2}⊂A\Ak−1

1( N
k−1

) . (19)

It follows from Eq. (8) that

f (N )
12 (ρ) = 1

d
+ d − 1

d

∑
Ak−1:{A1,A2}⊂A\Ak−1

1( N
k−1

)

= 1

d
+ d − 1

d

(N−2
k−1

)
( N

k−1

)
= 1

d

(
N

2

)
+ d − 1

d

(
N − k + 1

2

)
. (20)

Therefore,

F (N )
12

(
ρA1···AN

) = T (d, N, k), (21)

and the symmetry completes the proof. �
Let us think about genuinely N-partite entangled states.

Since

T (d, N, 2) = 1 − 2(d − 1)

N (d + 1)
, (22)

T (d, N, 2) converges to 1 as N goes to infinity, Theorem
2 tells us that a high controlled teleportation capability can
be attained by using a biseparable state for sufficiently large
N . In other words, genuine multipartite entanglement is not
a prerequisite for achieving a high controlled teleportation
capability.

However, when we examine the pure states constituting
the biseparable state in Eq. (16), N − 1 out of N systems
are entangled. Considering this fact, one might wonder if

FIG. 2. The upper bound Te(2, N, m) in Eq. (24) plotted,
where N = 6t for 1 � t � 5 and m = N/2, 2N/3, N − 1. As N
increases, Te(2, N, N − 1) approaches 1, while Te(2, N, N/2) and
Te(2, N, 2N/3) cannot exceed 0.834 and 0.852, respectively.

achieving a high controlled teleportation capability requires a
sufficient number of systems close to N to be entangled in the
pure states constituting the biseparable state. To clarify this,
we further refine the set of biseparable states based on the
number of entangled subsystems within the states constituting
the biseparable state, and examine the corresponding thresh-
old for the controlled teleportation capability. The thresholds
for these cases can be obtained by slightly modifying the proof
of Theorem 1.

Corollary 3. Suppose that the number of systems that can
be entangled in pure states composing an ensemble of an N-
qudit biseparable state ρ is limited to m, where m � �N/2�.
Then

min
1�i< j�N

F (N )
i j

(
ρA1···AN

)
� Te(d, N, m), (23)

where

Te(d, N, m) = 1 − 2(d − 1)m(N − m)

(d + 1)N (N − 1)
. (24)

Proof. In this case, we have

2∑
t=1

(|Pt |
2

)
�

(
m

2

)
+

(
N − m

2

)
(25)

in the first inequality in Eq. (12), and thus,

∑
1�i< j�N

f (N )
i j

(
ρA1···AN

)
� 1

d

(
N

2

)
+ d − 1

d

×
[(

m

2

)
+

(
N − m

2

)]
. (26)

We obtain the result through direct calculations. �
Let us consider scenarios where the proportion of systems

that can be entangled in pure states composing an ensem-
ble of an N-qudit biseparable state is limited by γ , where
1/2 � γ � 1. According to Corollary 3, the minimum of F (N )

i j
is upper bounded by Te(d, N, γ N ) as seen in Fig. 2. Since
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Te(d, N, γ N ) is an increasing function with respect to N ,

lim
N→∞

Te(d, N, γ N ) = 1 − 2(d − 1)γ (1 − γ )

d + 1
(27)

serves as an upper bound of the minimum of F (N )
i j . This indi-

cates that to achieve a high controlled teleportation capability,
γ should be close to 1 at least. Namely, the number of entan-
gled subsystems in the pure states constituting the biseparable
state impacts the controlled teleportation performance.

IV. EXAMPLE: ISOTROPIC GHZ STATES

Suppose that N � 3 players A1, A2, . . . , AN share an N-
qubit isotropic GHZ state ρN defined by

ρN = p |GHZN 〉 〈GHZN | + 1 − p

2N
IN , (28)

where |GHZN 〉 = 1√
2
(|0〉⊗N + |1〉⊗N ), 0 < p < 1, and IM

is the identity operator for M-qubit system. If players
A3, . . . , AN measure their systems in the X basis {|0x〉 , |1x〉},
where | jx〉 = 1√

2
[|0〉 + (−1) j |1〉] for j = 0, 1, and they have

the measurement outcomes i3, . . . , iN , then the players A1 and
A2’s quantum state become

σ+ = p |φ+〉 〈φ+| + 1 − p

4
I2 (29)

if i3 + · · · + iN ≡ 0 (mod 2), and

σ− = p |φ−〉 〈φ−| + 1 − p

4
I2 (30)

if i3 + · · · + iN ≡ 1 (mod 2), where |φ±〉 = 1√
2
(|00〉 ±

|11〉). Since

f (σ±) � 〈φ±| σ± |φ±〉 = 1

4
+ 3

4
p, (31)

it follows from the definition of fi j ,

f (N )
12 (ρN ) � 1

4
+ 3

4
p. (32)

On the other hand,

f (N )
12 (ρN ) � p f (N )

12 (|GHZN 〉 〈GHZN |) + (1 − p) f (N )
12

(
1

2N
IN

)

= 1

4
+ 3

4
p. (33)

Therefore, by symmetry,

min
1�i< j�N

F (N )
i j (ρN ) = 1

2 + 1
2 p. (34)

Remark [14] that ρN is a genuinely N-partite entangled
state if and only if

p >
2N−1 − 1

2N − 1
. (35)

Hence, if ρN is a genuinely N-partite entangled state, then

min
1�i< j�N

F (N )
i j (ρN ) >

1

2
+ 2N−1 − 1

2N+1 − 2
. (36)

Theorem 1 implies that if the minimum of F (N )
i j (ρN ) exceeds

T (2, N, k), then ρN outperforms any k-separable state in the

FIG. 3. For the N-qubit isotropic GHZ state ρN in Eq. (28),
the value of p for which the minimum of F (N )

i j becomes T (2, N, k)
is calculated, where k = �N/2� + 1 and k = �N/2�. The solid line
represents the bound for being a genuinely N-partite entangled state,
which is the right-hand side in the inequality in Eq. (35). If p is
greater than the bound, then ρN is more useful than any (�N/2� + 1)-
separable state in the controlled teleportation scheme. However, it
cannot be said that ρN outperforms �N/2�-separable states.

controlled teleportation scheme. Numerical analysis confirms
that if ρN is a genuinely N-partite entangled state, then it
is more useful than (�N/2� + 1)-separable states in the con-
trolled teleportation scheme, as illustrated in Fig. 3. However,
if k � �N/2�, then examples demonstrating genuinely mul-
tipartite entangled states with lower controlled teleportation
capability than k-separable states can be easily found using
Theorem 2.

V. CONCLUSION

In this paper, we have investigated the controlled teleporta-
tion capability with respect to k-separability and established
thresholds that k-separable states cannot exceed. These
thresholds are tight criteria because they can be attained with
k-separable states. Based on these results, we have shown
that genuine multipartite entanglement is not a precondition
for achieving a high controlled teleportation capability. We
have also demonstrated that controlled teleportation perfor-
mance depends on the number of entangled subsystems in
the pure states composing the biseparable state. As an in-
stance, we have examined the N-qubit isotropic GHZ states,
and have illustrated that if an N-qubit isotropic GHZ state is a
genuinely multipartite entangled state, then it has controlled
teleportation capability that outperforms k-separable states,
where k = �N/2� + 1. However, there exists a genuinely N-
partite entangled state with lower controlled teleportation
capability than k-separable states, when k � �N/2�.

Based on our findings, we can consider the following future
works. The activation of genuine multipartite entanglement is
a fascinating feature [14,15]. There exists a biseparable state
ρ such that ρ⊗n is a genuinely multipartite entangled state for
some n. With this feature, investigating whether there exists
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a quantum state ρ that enhances the controlled teleportation
capability for some n could be an interesting task. It could also
be intriguing to investigate if similar results can be obtained
in a more general controlled teleportation scheme. For exam-
ple, we have considered cases where all players involved in
the control part performed orthogonal measurements, but one
could also explore scenarios where general measurements are
conducted.

We can also look into other multiparty quantum appli-
cations such as conference key agreement [16] or quantum
secret sharing [5]. Indeed, for conference key agreement,
multipartite private states capable of having a perfect key
are genuinely multipartite entangled states [17]. For quantum
secret sharing, there are quantum states that can have a perfect
key for secret sharing [18,19], and this form is similar to
multipartite private states, so it could be proven that these
quantum states are genuinely multipartite entangled states.
However, it has been shown that genuine multipartite entan-
glement is not necessarily essential to obtain a nonzero key
rate for conference key agreement [20]. The quantum state

considered in Ref. [20] is similar to the quantum state in
Eq. (16). It could be interesting to investigate whether the
degree of separability can determine the limits of the key rate
achievable for conference key agreement or quantum secret
sharing.
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