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Simulating the spin-boson model with a controllable reservoir in an ion trap
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The spin-boson model is a prototypical model for open quantum dynamics. Here we simulate the spin-boson
model using a chain of trapped ions in which a spin is coupled to a structured reservoir of bosonic modes.
We engineer the spectral density of the reservoir by adjusting the ion number, the target ion location, the laser
detuning to the phonon sidebands, and the number of frequency components in the laser, and we observe their
effects on the collapse and revival of the initially encoded information. Our work demonstrates that the ion trap
is a powerful platform for simulating open quantum dynamics with complicated reservoir structures.

DOI: 10.1103/PhysRevA.109.062402

I. INTRODUCTION

Quantum simulation is an important tool to understand
quantum many-body physics [1–3] and is one of the most
promising applications of noisy intermediate-scale analog or
digital quantum computers [4]. Typical digital quantum com-
puters use two-level spins as the basic processing unit and
encode other particles like fermions and bosons through, e.g.,
the Jordan-Wignar transformation [5] or the standard binary
encoding with a truncation in the particle number [6,7]. In
contrast, analog quantum simulators can directly utilize the
bosonic degrees of freedom and largely save the complexity of
encoding and thus are preferable for near-term study of hybrid
systems like spin-boson coupled systems.

Spin-boson coupled models are fundamental physical
models for describing the matter-light interaction and various
couplings to the bath in materials. For a single spin and a
single bosonic mode, the well-known quantum Rabi model
[8] and Jaynes-Cummings model [9] are used. For multiple
spins coupled to the same bosonic mode, one uses the Dicke
model [10,11] and the Tavis-Cummings model [12], and if
one further extends the model to multiple bosonic modes,
they are generalized to the Rabi-Hubbard model [13–15] and
the Jaynes-Cummings-Hubbard model [16–19]. On the other
hand, one can also consider a single spin coupled to multiple
bosonic modes, which is known as the spin-boson model [20]
and is a prototypical model for understanding open quantum
dynamics like the dissipation of an atom in an environment of
electromagnetic field modes or of a solid-state qubit in a bath.

Within a continuum of the bosonic modes (a reservoir), the
spin dynamics can be solved analytically [20] or numerically
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[21–26], and interesting phenomena like the non-Markovian
revival of information [27–29] have been observed. However,
directly solving the spin dynamics for strong coupling or
discrete spectra can still be challenging. Experimentally, this
model has been simulated in systems like superconducting
circuits [29,30] and neutral atoms or quantum dots in photonic
crystals [31–33]. As one of the leading platforms for quantum
simulation, ion traps have been used to realize many spin-
boson coupled models [34–40]. Proposals for the spin-boson
model have also been made in the ion-trap system [41,42] but
have not yet been realized. Here we simulate the spin-boson
model in a chain of trapped ions, which naturally hosts a set
of collective phonon modes with a configurable structure and
supports laser-induced coupling between the spin and phonon
modes. Specifically, we generate a spin-phonon interaction
for a target ion in a chain of up to 20 ions and demonstrate
the collapse and revival of the initially encoded information.
We engineer the reservoir structure using the ion number,
the location of the target ion, and the spin-phonon detuning
and by introducing multiple frequency components in the
spin-phonon coupling, and we observe their effects on the
simulated open quantum dynamics. Our work demonstrates
that trapped ions are an ideal platform for simulating spin-
boson coupled models and provides tools for future study of
complicated coupling patterns.

II. SETUP

Our setup is sketched in Fig. 1. A linear chain of N =
20 171Yb+ ions is held in a cryogenic blade trap with a
transverse trap frequency ωx = 2π × 2.397 MHz. We encode
the spin state in the |0〉 ≡ | 2S1/2, F = 0, mF = 0〉 and |1〉 ≡
| 2S1/2, F = 1, mF = 0〉 levels of a selected ion. Due to the
Coulomb interaction between the ions, their transverse oscil-
lations couple to N collective phonon modes within a band
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FIG. 1. (a) Experimental scheme. We use a counterpropagating
355-nm laser for Raman transitions, with a global beam for the
sideband cooling of the whole ion chain and a narrow beam for
the spin-phonon interaction on a selected ion. The narrow beam
with a beam-waist radius of 3μm can move along the chain to
address any target ion controlled by an acousto-optic deflector. Other
standard lasers for the basic operations, such as Doppler cooling,
optical pumping, and the qubit state detection, are not shown. (b) The
theoretical phonon spectrum in arbitrary units seen by an edge ion
weighted by the spin-phonon coupling strength [Eq. (2)]. Here we
set a sideband Rabi rate ηk� = 2π × 6.67 kHz for the COM mode,
which is the coupling strength we use in the following experiments.
(c) A similar plot for a central ion.

of about �ωx ∼ e2/(4πε0mωxd3), where m and e are the
mass and charge of the ion and d is the average ion spacing.
With a pair of counterpropagating 355-nm global Raman laser
beams, we can perform sideband cooling to all the transverse
modes [43]. In this experiment, due to the misalignment of
the trap electrode (see Appendix A), we have a relatively
large heating rate of a few hundred quanta per second for
the phonon modes close to the center-of-mass (c.m.) mode,
thus leading to a relatively high phonon number between 0.3
and 0.9 after sideband cooling. Nevertheless, this does not
hinder our observation of the spin dynamics and may actually
enhance the effective spin-phonon coupling to allow us to
cover more phonon modes, as we will see below.

We can use a global laser beam and a counterpropagating
focused laser beam to form a Raman transition on the target
ion near the red motional sideband and to couple its spin state
with the local phonon mode, which in turn can be expanded to
the N collective modes. The relevant spin-boson Hamiltonian
of the system thus reads

H = �

2
σz +

N∑

k=1

ωka†
kak + �

N∑

k=1

ηkbk (σ+ak + σ−a†
k ), (1)

where � and ωk are the frequencies of the spin and the
phonon modes in the rotating frame and � is the carrier Rabi
frequency of the Raman transition. ak and a†

k are the anni-
hilation and creation operators of the kth phonon mode with
the Lamb-Dicke parameter ηk , and bk is the corresponding

mode coefficient for the target ion. Note that the spin and
the phonon frequencies can be shifted by the same constant
without affecting any dynamics. Therefore, from now on we
will use the frequency of the c.m. mode as the reference and
set it to zero.

If we regard the phonon modes as a reservoir, the open
quantum dynamics of the spin is governed by a spectral den-
sity function J (ω) ≡ π

∑
k λ2

kδ(ω − ωk ) [20,42], which takes
into account the coupling strength λk ≡ 2ηkbk� to each mode
and the number of modes around each frequency ω. As shown
by the vertical dashed lines in Fig. 1(b), the collective mode
frequencies of a linear ion chain in a harmonic trap naturally
exhibit a structured spectrum which is denser near the c.m.
mode and is sparser on the low-frequency end. By choosing a
target ion at different locations on the chain and thus different
bk’s, we further modulate the spectral density via the coupling
strength to different modes, as shown in Figs. 1(b) and 1(c).
Here we replace the δ function in the spectral density function
by a Lorentzian line shape to cover the power broadening [43]

J (ω) =
∑

k

|2ηkbk�|3/√2

(ω − ωk )2 + (2ηkbk�)2/2
, (2)

where we set the linewidth to be 2ηkbk�, which is the red-
sideband coupling strength of a single mode when the phonon
number is zero. In practice, with a nonzero average phonon
number, these peaks further broaden, and we shall be able to
couple to more phonon modes. Note that this spectrum is not
directly used in later numerical simulations. Its purpose is just
to visualize the reservoir engineering and to guide the choice
of parameters in the following experiments.

III. NON-MARKOVIAN DYNAMICS AND
RESERVOIR ENGINEERING

First, we demonstrate the non-Markovian spin dynamics in
the phonon reservoir under the spin-phonon interaction. As
shown in Fig. 2(a), we initialize an edge ion in orthogonal
states |0〉 and |1〉 using the 355-nm Raman laser, and we turn
on the spin-phonon coupling with a sideband Rabi rate ηk� =
2π × 6.67 kHz in the c.m. mode and a spin frequency � =
−2π × 20 kHz in the dense region of the phonon spectrum in
Fig. 1(b). We evolve the system for time t and display the final
population of the spin in |1〉 as the yellow squares and green
triangles for initial states |1〉 and |0〉 in Fig. 2(a), respectively.
Initially, these two orthogonal states are easily distinguishable
up to the 2% detection error and the 3% state preparation error
due to the axial motion of the ion and the pointing of the
narrow laser. As the system evolves, the encoded information
gradually leaks into the phonon reservoir, and the two states
can no longer be distinguished. This is reflected in Fig. 2(a)
as the flat region near zero for the blue data points, which
is the absolute difference between the populations from the
two initial states. However, because of the finite and discrete
phonon modes, as well as the fact that the dynamics is much
faster than the motional decoherence on the timescale of
milliseconds, the information in the reservoir can still flow
backwards into the spin before it is eventually lost into the
larger environment. This can be seen as the revival peak in the
blue data points around tr = 0.18 ms. We can also verify this
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FIG. 2. Non-Markovian spin dynamics. (a) Probability of finding
an edge ion in a chain of N = 20 ions in |1〉 when evolved from the
initial state of |1〉 (yellow squares) or |0〉 (green triangles) and their
absolute difference (blue circles). Here we tune the spin frequency
to the dense part � = −2π × 20 kHz of the phonon spectrum in
Fig. 1(b). The two states quickly become indistinguishable as the
initially encoded information leaks to the phonon modes, but then the
information flows backwards due to the discrete nature of the reser-
voir. Theoretical curves are computed by truncating to the dominant
phonon modes as described in Appendix D. (b) A similar plot for
the edge ion from the initial state of |+〉 and |−〉. Here we perform
quantum state tomography for the final spin states and compute
their trace distance. Similar collapse and revival are observed for the
information encoded in the superposition basis. (c) and (d) Similar
plots for an edge ion in a chain of N = 10 ions with roughly the same
ion spacing. The revival becomes more significant due to the sparser
reservoir spectrum. Error bars represent one standard deviation from
300 trials.

experimental result with a numerical simulation based on the
calibrated experimental parameters. Due to the exponential
increase in the Hilbert-space dimension under finite (thermal)
phonon numbers, a direct calculation with even a moderate
truncation of the phonon numbers will be challenging, so
we further truncate the number of involved phonon modes
based on their detuning and the relative coupling strength (see
Appendix D for more details). As shown by the curves in
Fig. 2, we obtain good agreement between the experimental
and theoretical results without fitting parameters, thus con-
firming the successful quantum simulation of the spin-boson
model.

The collapse and revival of the information occur not only
in the |0〉 or |1〉 (particle number) basis but also in the |+〉
or |−〉 (superposition) basis. In Fig. 2(b) we initialize the
spin state in |+〉 and |−〉 by a π/2 pulse of the Raman laser.
Then we repeat the above process to evolve the system under
the spin-boson model Hamiltonian, and we perform quantum
state tomography for the final spin states ρ± from the two
initial states by measuring the expectation values of σx, σy,

and σz. By definition, the maximal retrievable information
can be given by their trace distance D(ρ+, ρ−) [44]. As we
can see, in this case the initial decay of the information is
slower since, ideally, the dephasing time T2 for the sponta-
neous emission will be twice the relaxation time T1 in the
particle-number basis. Nevertheless, we can observe a similar
flat region around zero and a revival peak at roughly the same
time of tr = 0.18 ms, which confirms the phase coherence of
the revival signal. Note that if we move to a rotating frame at
the spin frequency by setting � = 0 in Eq. (1) and shift the
phonon frequencies accordingly, we can immediately see that
the two initial states from |0〉 or |1〉 have the same energy,
such that there will be no phase shift with respect to the bare
resonant frequency of the spin at the revival time. Therefore,
ideally, the revival in the |+〉 or |−〉 basis should occur right
at the same time as the |0〉 or |1〉 basis by the superposition
principle.

Next, we demonstrate our capability to manipulate the
spectral density of the reservoir. One straightforward way is to
adjust the ion number. Ideally, if we increase the ion number
while keeping the average ion spacing unchanged, we can
expect there to be more and more phonon modes in the fixed
band of �ωx. In Figs. 2(c) and 2(d), we compare the above
results with N = 10 ions at roughly the same ion spacing
by raising the axial trap frequency. Specifically, we place the
spin frequency at the same location � = −2π × 20 kHz of
the phonon spectrum. Here the initial information leakage rate
does not change significantly as the decreased mode number is
compensated by the increased mode coefficients bk . However,
due to the sparser phonon modes, we can clearly see that the
revival of the information gets faster and stronger.

In practice, it is often difficult to keep increasing the ion
number in a linear chain while maintaining a constant ion
spacing: Due to the experimental noise, the ion number in
a one-dimensional chain is usually below 100 for a room-
temperature trap [45–47] and below 200 for a cryogenic trap
[48,49]. Although it is also possible to utilize the transverse
modes of a two-dimensional (2D) ion crystal in a Paul trap
[50–54] or a Penning trap with suitable individual addressing
[55], it is desirable to have more flexible ways to manipulate
the structure of the phonon reservoir. In Fig. 3(a) we engineer
the spectral density J (ω) by tuning the frequency of the spin
� → �′. As we can see from Eq. (1), this is equivalent to a
shift in the frequency of all the phonon modes and thus a cor-
responding shift in the spectral density in Eq. (2) as J (ω) →
J (ω − � + �′). Specifically, we set �′ = −2π × 50 kHz in a
sparser and weaker region of the phonon spectrum for N = 20
ions in Fig. 1(b). In this case, the leakage of the information
into the reservoir becomes much slower. Again, the decay for
the |0〉 or |1〉 basis is faster than that for the |+〉 or |−〉 basis,
and again, we observe the revival signal after a flat basin in
the information.

According to Eq. (2), another method of reservoir engi-
neering is to place the target spin at different locations on the
chain, hence modifying the mode coefficients bk . In Fig. 3(b),
we move the narrow Raman laser to a central ion of the
N = 20 chain and repeat the above experimental sequence.
From a comparison of Figs. 1(b) and 1(c), we can see that for
the edge ion, the coupling is mainly concentrated at the high-
frequency end near the c.m. mode and the spectrum is nearly
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(a) (b)

FIG. 3. Reservoir engineering by a single-frequency laser. (a) By
tuning the frequency of the Raman laser, we place the edge ion into
a sparser region of the phonon reservoir � = −2π × 50 kHz with
weaker coupling strength. Again, we use the absolute difference
for |0〉 and |1〉 and the trace distance for |+〉 and |−〉 to quantify
the remaining information. (b) By focusing the addressing laser
on a central ion, we change the spin-phonon coupling pattern in
Fig. 1(c) such that the coupling gets weaker in the dense region
� = −2π × 15 kHz. In both cases, the leakage of the information
into the environment slows down, and the backflow of information
gets much higher. Error bars represent one standard deviation from
300 trials.

continuous in the densest region, while for the central ion the
coupling is more uniform and displays a discrete feature for
the same spin-phonon interaction strength. Also note that near
the c.m. mode in Fig. 1(c), the coupling to the odd modes is
suppressed owing to the reflection symmetry of the ion chain,
which effectively further increases the separation between the
relevant phonon modes. Therefore, we can expect a slower
leakage of the encoded information in the spin and a stronger
revival, as we observe in the experiment.

From the above examples, we see that the coupling of
the spin to the phonon reservoir is often inefficient in the
sense that only a small fraction of the phonon modes can
be coupled. This is because within our achievable parameter
regime, often, the coupling strength ηk� below 2π × 10 kHz
is much smaller than the width of the phonon band above
2π × 100 kHz. (To become narrower, the phonon band re-
quires larger ion distances and weaker axial trapping, making
the system more sensitive to the experimental noise, as we
mention above.) Also we can see this from our numerical
simulation method, in which truncation to only a few nearby
phonon modes is sufficient for convergence. On the one hand,
this suggests that we may need a large number of ions to
approximate a continuous phonon spectrum. On the other
hand, this fact also provides us with further adjustability of
the spectrum by adding more frequency components in the
driving laser to couple to the other unused phonon modes.

To demonstrate this idea, we choose two frequency com-
ponents in the narrow Raman laser beam separated by δ =
2π × 20 kHz. Each frequency component generates a spin-
boson Hamiltonian in the form of Eq. (1), and their joint
effect is just to combine the two spectra which are separated
by δ, as shown in Fig. 4(a). Note that strictly speaking, this
picture is incorrect because the two frequency components
couple to the same set of phonon modes and should be treated
coherently. However, as long as the coupling strength to the
individual phonon mode ηkbk� is much weaker than the

(a) (b)

FIG. 4. Reservoir engineering by a bichromatic coupling laser.
(a) The phonon spectrum seen by an edge ion [blue, the same as in
Fig. 1(b)] and that for a laser shifted by δ = 2π × 20 kHz (orange).
The vertical dashed lines indicate the locations of the two sets of
phonon modes. Since the frequency separation δ is much larger than
the coupling strength ηkbk�, the two sets of spectra can add up
incoherently to give the green curve. (b) In the dense region of the
combined spectrum � = −2π × 20 kHz, the decay becomes even
faster than in Fig. 2, and the revival becomes less significant. Again,
we use the absolute difference for |0〉 and |1〉 and the trace distance
for |+〉 and |−〉 to quantify the remaining information. Error bars
represent one standard deviation from 300 trials.

frequency separation δ, the two frequency components will
never excite the same phonon mode significantly at the same
time. Then our approximate model will be valid. Here, to
maintain consistency with the previous results, we choose
the same coupling strength ηk� = 2π × 6.67 kHz to the c.m.
mode for both frequency components. From the combined
spectral density (green curve) in Fig. 4(a), we expect denser
phonon modes with stronger coupling strength. This is consis-
tent with the experimental and numerical results in Fig. 4(b),
where we get faster leakage of the information and a weaker
revival signal.

IV. CONCLUSION

To sum up, we simulated a spin-boson model in a linear
chain of trapped ions and studied the open quantum dynamics
of a spin in a structured reservoir. We demonstrated the strong
controllability of the spectral density of the reservoir using
various degrees of freedom, including the ion number, the
target ion location, the laser detuning to the phonon sidebands,
and the number of frequency components in the laser. We
observed a change in the collapse and revival of the encoded
information under the reservoir engineering, and we con-
firmed the experimental results with numerical simulations.
Our work provides convenient tools to engineer complicated
bosonic reservoir for spins and thus to solve spin dynamics
that are challenging for classical computers, and our method
can be readily generalized to a 2D ion crystal to further in-
crease the ion number and to produce more complex coupling
patterns. It is also convenient to introduce more spins into the
model by adding more focused laser beams on different ions,
which will allow the study of multiple emitters in a shared
bosonic environment. Finally, stronger controllability of the
bosonic environment can also be obtained by adding active
heating via stochastic kicks [56] or sympathetic sideband
cooling on some ions.
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APPENDIX A: EXPERIMENTAL SETUP

We trap a chain of 171Yb+ ions in a cryogenic trap with
segmented blade electrodes [49] and an rf frequency ωrf =
2π × 35.733 MHz. A magnetic field of B = 5.5 G perpen-
dicular to the axial direction of the trap is used to define
the quantization axis. We follow the standard procedure to
use a 369.5-nm laser for Doppler cooling, optical pumping,
and qubit state detection [57], and we use counterpropagating
355-nm Raman laser beams (Paladin Compact 355-4000 with
a repetition rate of 118.7 MHz) to couple the spin and the
phonon modes. As shown in Fig. 5, the frequency and the
phase of each 355-nm beam can further be adjusted by an
acousto-optic modulator (AOM). The 355-nm laser beams are
oriented at 45◦ to the transverse x and y directions. We use
elliptic global Raman beams for sideband cooling of the ion
chain, and an additional narrow beam with a Gaussian waist
radius (where the intensity drops to 1/e2) of 3 × 5μm2 to
generate the spin-boson model and to prepare the initial state
of the target spin. The orientation of the narrow beam can
be controlled by an acousto-optic deflector (AOD) to select
different target ions.

For a chain of N = 20 ions, we adjust the axial confinement
to achieve an average ion spacing of about 4.6μm. We can
read the ions’ locations on a CCD camera with an accuracy
of about 0.6μm. To further improve the accuracy, we can use
the frequencies of the transverse phonon modes to fit the ion
spacing [40]. Then we can compute the phonon mode vectors
and thus obtain bk’s for the target ion.

FIG. 6. Spectra of the red and blue sidebands for N = 20 ions
under a weak global Raman laser. Vertical dashed lines represent the
positions of the phonon modes. For the red sideband, only the c.m.
mode and the tilt mode have a visible population.

Our blade electrodes are aligned symmetrically when as-
sembled at room temperature. However, after cooling down to
the cryogenic temperature at 6 K, some components deform
differently, resulting in the misalignment of these individual
electrodes. In particular, one of the dc blades gets closer to
the trap center, leading to a higher heating rate. Also there is
tilt in the electrodes, causing a nonuniform electric field over
the ion chain and thus heating of phonon modes other than the
c.m. mode.

APPENDIX B: SIDEBAND COOLING

Before each experimental trial, we initialize the motional
state by 3-ms Doppler cooling. Then we perform 9.75-ms
sideband cooling for the x and y modes by sequentially cool-
ing different frequencies. The spectra of the red and blue
motional sidebands under the same weak driving [40] are
shown in Fig. 6 for N = 20 ions. As we can see, apart from
the c.m. mode and the adjacent tilt mode, all other modes have
been cooled to a low phonon number below 0.3.

We further measure the phonon number for the c.m. mode
and the tilt mode by comparing the blue- and red-sideband
dynamics under a narrow Raman laser on the edge ion. With
a weak driving strength, the off-resonant coupling to all the
other phonon modes can be neglected, and effectively, we get
a Jaynes-Cummings model. We can thus estimate the average
phonon number by comparing the blue and red motional side-
bands [43] as shown in Fig. 7. This gives us n̄ = 0.9 for the
c.m. mode and n̄ = 0.5 for the tilt mode.

(a) (b)

FIG. 7. Blue- and red-sideband dynamics for (a) the c.m. mode
and (b) the tilt mode with a narrow Raman laser on the edge ion.
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We attribute the higher phonon number of c.m. and tilt
modes to their higher heating rates (about 1000 quanta per
second for the c.m. mode and about 500 quanta per second
for the tilt mode). For the c.m. mode, it is well known that the
heating rate will scale linearly with the ion number if the heat-
ing is mainly caused by a uniform electric-field noise across
the ion chain. In practice, the electric-field noise will have
slow spatial variations, so we can expect decreasing effects
on phonon modes with lower frequencies and smaller spatial
wavelengths [58]. In this experiment, due to the misalignment
of the trap electrode described in Appendix A, we expect a
relatively large spatial variation of the electric field, which
contributes to the heating rate of the tilt mode.

APPENDIX C: QUANTUM STATE TOMOGRAPHY

To compare the dynamics of the spin-boson model from
the initial states |0〉 and |1〉, we simply measure the final spin
state in the |0〉 and |1〉 basis σz. To compare the dynamics
from initial states in the |+〉 and |−〉 superposition basis σx,
we further need to perform quantum state tomography for the
density matrix of the spin and to compute the trace distance
D(ρ+, ρ−) = 1

2 Tr |ρ+ − ρ−|.
To reconstruct the spin density matrix, we measure the ex-

pectation values of σx, σy, and σz to get ρ = (I + ∑
i〈σi〉σi )/2.

Among these observables, σz can directly be measured in the
|0〉 and |1〉 basis. To measure σx, we apply a π/2 pulse on the
target ion using a Raman laser with the same phase as the one
used to prepare the initial |+〉 and |−〉 states. As for σy, we
shift the phase of the π/2 pulse by an additional π/2.

APPENDIX D: NUMERICAL SIMULATION

In this Appendix we describe how we numerically simulate
the dynamics of the spin-boson model with one spin and N
bosonic modes. Due to the exponential increase in the Hilbert-
space dimension, even if we truncate each collective mode to
a moderate phonon number of ncut = 3, the total dimension
of the system can still scale as 2(ncut + 1)N = 241 ≈ 2 × 1012

for N = 20 modes. However, for our typical phonon number
of 0.3–0.9 for each mode, there is still a non-negligible proba-
bility for them to have a phonon number above this truncation.

Inspired by the fact that our driving laser is able to couple
to only a few adjacent phonon modes satisfying |2ηkbk�| �
|� − ωk|, we can discard the phonon modes that are not sig-
nificantly excited by the spin-phonon interaction. Specifically,
we give a weight [2ηkbk�/(� − ωk )]2 to each mode k and
keep only the K modes with the largest weight. Here K is
a hyperparameter. In practice, we can gradually increase K
and check whether the result has converged. For the numer-
ical simulation relevant to this experiment, often, we find a
truncation between 5 and 10 to be sufficient.

Next, we observe that the Hamiltonian (1) conserves the
total particle number. Therefore, given an initial Fock state of
one spin and K phonon modes, its time evolution is restricted
in a subspace of dimension

D = C(M + K − 1, K − 1) + C(M + K − 2, K − 1), (D1)

 ( )

FIG. 8. Absolute difference between spin dynamics from |0〉 and
|1〉 in Fig. 2(a) when truncating to different numbers of phonon
modes K . Each curve is averaged over S = 100 trials for the initial
phonon number distribution.

where M is the total excitation number of the initial Fock state
and C(n, m) ≡ n!/[m!(n − m)!] is the combination number to
choose m items from n elements. This allows us to express
the Hamiltonian in a more compact and efficient way. For
an initial superposition state of the spin, we can compute the
dynamics in the two subspaces individually and then combine
them together coherently to obtain the reduced density matrix
of the spin.

Finally, we assume that initially, the phonon modes are in
thermal states with the average phonon number given by the
measured value in the experiment. Specifically, for N = 20
ions we set the average phonon number for the c.m. mode
to be 0.9, that of the tilt mode to be 0.5, and that of all the
remaining modes to be 0.3. For N = 10 ions we have better
sideband cooling, so we simply choose n̄ = 0.2 for all the
modes, which also comes from comparing the red and blue
motional sideband spectra, similar to Fig. 6. We randomly
generate S = 100 trials for the initial phonon number distri-
bution and average over them to obtain the numerical results
for the spin dynamics. Note that in the numerical simulation
we consider only a finite initial phonon number and neglect
the heating effect during the evolution. This is because for a
heating rate up to hundreds of quanta per second and an evo-
lution time up to 300μs, the increase in the average phonon
number will be on the order of only about 0.1 per mode, which
is smaller than the existing phonon number in these modes.

As an example, in Fig. 8 we show the numerical results for
the absolute difference between the dynamics from |0〉 and |1〉
in Fig. 2(a) when truncating to different numbers of phonon
modes K . As we can see, typically, including the dominant
two or three phonon modes can provide a good explanation
of the position of the major revival peak, while more phonon
modes are still needed to explain its height, as well as the other
smaller features in the spin dynamics.
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