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Relations between Markovian and non-Markovian correlations in multitime quantum processes
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In the dynamics of open quantum systems, information may propagate in time through either the system or
the environment, giving rise to Markovian and non-Markovian temporal correlations, respectively. However,
despite their notable coexistence in most physical situations, it is not yet clear how these two quantities may
limit the existence of one another. Here, we address this issue by deriving several inequalities relating the
temporal correlations of general multitime quantum processes. The dynamics are described by process tensors,
and the correlations are quantified by the mutual information between subsystems of their Choi states. First,
we prove a set of upper bounds to the non-Markovianity of a process given the degree of Markovianity in each
of its steps. This immediately implies a nontrivial maximum value for the non-Markovianity of any process,
independent of its Markovianity. Finally, we determine how the non-Markovianity limits the amount of total
temporal correlations that could be present in a given process. These results show that, although any multitime
process must pay a price in total correlations to have a given amount of non-Markovianity, this price vanishes
exponentially with the number of steps of the process, while the maximum non-Markovianity grows only linearly.
This implies that even a highly non-Markovian process might be arbitrarily close to having the maximum amount
of total correlations if it has a sufficiently large number of steps.
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I. INTRODUCTION

Understanding how information flows in quantum pro-
cesses is a central task for developing quantum technologies
and for better comprehending fundamental aspects of quan-
tum theory. As any quantum system of interest inevitably
interacts with an uncontrolled environment [1,2], crucial in-
formation stored on the system may get lost during the
dynamics [3,4], which constitutes the main challenge for
experimental implementation of quantum information pro-
cessing protocols [5].

Sometimes, however, this information returns. Such
information backflow is what characterizes non-Markovian
quantum processes [6–9], whose dynamics are best described
within the process tensor framework [10]. Unlike traditional
approaches that typically employ quantum channels mapping
an initial state to an evolved one [1–4], process tensors are
generalizations of joint probabilities to the quantum realm
[11], which allows for a consistent definition of quantum
Markovianity [12] and proper treatment of memory effects
[13–24].

In this way, several fields of quantum theory that had so
far been explored only for Markovian dynamics are now
being expanded to non-Markovian settings, which brings
them closer to practical applications of the theory since, like
in classical stochastic processes [25,26], non-Markovianity is
the rule in nature, not the exception. Examples of this may be
found in the fields of quantum simulation [27–34], random-
ized benchmarking [35–37], quantum process tomography
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[38–44], and quantum thermodynamics [45–50], among
others [51–53].

The main feature that allows for process tensors to best
describe non-Markovian dynamics is their genuine multitime
structure, which may be equivalently characterized by means
of quantum combs [54] and quantum networks [55]. Similarly,
one could also consider treating such correlations with slightly
more general objects called process matrices, which are used
in the context of quantum causal modeling because they can
also describe processes with indefinite causal order [56–62].
In this way, we could say that a process tensor is a time-
ordered process matrix.1

Importantly, it has been shown that one can construct
resource theories of quantum processes which take process
tensors as objects and superprocesses as transformations [63].
This is extremely useful, as it allows one to take relevant
concepts, techniques, and even results from other resource
theories and adapt them to the context of quantum processes.
For example, Ref. [64] proved that the non-Markovianity and
time resolution of a process could be consumed as resources
to reduce noise in a given process. This is done by means
of an optimized dynamical decoupling protocol that takes the
memory effects of the process into account.

As is usually the case for resource theories [65], mono-
tones play a central role in the resource theory of quantum
processes. Reference [64] defined three important information
quantifiers for general multitime processes, Markovian cor-
relations, non-Markovian correlations, and total correlations,

1Although our approach is focused on process tensors, we indicate
which of our results also hold for process matrices without a definite
causal order.
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FIG. 1. Markovian and non-Markovian correlations in a two-step
quantum process. While Mj quantifies how much information is
transmitted through the system in the jth step, N quantifies how
much information is transmitted through the environment from the
first step to the second one. In this two-step setting, we show
that N � 2(2 ln d − M1) and N � 2 ln d − M2. The generalization
of this result to the n-step scenario implies that the maximum non-
Markovianity of an n-step process tensor is 2(n − 1) ln d and not
2n ln d , as it could seem at first, and also that the total correlations I
of the process are upper bounded by 2n ln d − N/(2n − 2), meaning
that a process can approach the maximum amount 2n ln d of total
correlations only if it has low non-Markovianity or a large number
of steps.

and showed them to be monotonic under the free operations
of the theory. Here, we take one step further in this direction
and seek the relevant properties of these quantifiers. We use
the notion of information exchange between the system and
environment and the time ordering of the process to prove
several inequalities relating the multitime correlations of any
given quantum process. A summary of our results is shown in
Fig. 1.

This paper is structured as follows. In Sec. II we show how
the approach we use to quantify temporal correlations applies
for single-step processes, as described by quantum channels.
In Sec. III we present the two-step scenario, which is the
simplest one in which non-Markovianity may take place, and
discuss from an informational standpoint why Markovian and
non-Markovian correlations should limit one another, proving
some insightful bounds for this simple case. In Sec. IV the
previous analyses are put on firm mathematical grounds, and
the results are generalized to the n-step scenario. The discus-
sions are then concluded in Sec. V.

II. TEMPORAL CORRELATIONS IN SINGLE-STEP
QUANTUM PROCESSES

Quantum channels are the simplest descriptors of open
quantum systems dynamics. They are linear, completely pos-
itive, and trace-preserving maps, which take an initial state of
the system as input and provide as output the corresponding
final state after a single interaction with the environment [3,4].
An example of the quantum channel which will be presented
in several parts of this text is the depolarizing channel Ep :

B(Hin ) → B(Hout ), whose action is defined as

Ep(ρ) = pĨ + (1 − p)ρ, (1)

where Ĩ = I/d is the maximally mixed state, d is the di-
mension of the system, and p ∈ [0, 1] is a parameter of the
channel. For p = 0 we have an identity channel E0(ρ) = ρ,
implying that in this case all the information about the ini-
tial state is preserved in the final state, such that the input
and output are maximally correlated. On the other hand, for
p = 1 we have the completely depolarizing channel E1(ρ) =
Ĩ, which means that all the information about the initial state
is lost during the process; i.e., the input and output are totally
uncorrelated.

The amount of information that is preserved or lost in a
quantum channel may be quantified in several ways. Here,
we adopt an approach that has been shown to be well suited
for multitime processes which consists of first mapping the
temporal correlations of the process to spatial correlations
of a corresponding state and then applying distance-based
measures to quantify them [12,64,66–68].

The first step is achieved using the Choi-Jamiołkowski
isomorphism, in which a channel E : B(Hin ) → B(Hout ) is
mapped to a state ϒE ∈ B(Hin ⊗ Hout ) by means of

ϒE := (Iin ⊗ E )�, (2)

where

� = 1

d

d∑
i, j=1

|i〉〈 j|in ⊗ |i〉〈 j|in (3)

is a normalized maximally entangled state in B(Hin ⊗
Hin ) and Iin is the identity channel in B(Hin ).2 The trace
preservation of E , which corresponds to its deterministic im-
plementation, implies the trace condition

trout[ϒ
E ] = Ĩin. (4)

In turn, any quantum state ϒ ∈ B(Hin ⊗ Hout ) satisfying the
above condition may be associated with a quantum channel
Eϒ : B(Hin ) → B(Hout ) by

Eϒ (ρin ) = dtrin[(ρin ⊗ Ĩout )ϒ
Tin ], (5)

where Tin represents the partial transpose in the |i〉 basis of
Hin.

Since the Choi state ϒE contains all the information about
the quantum channel E , the temporal correlations of the chan-
nel are mapped into spatial correlations between the subspaces
Hin and Hout of ϒE . For example,

ϒE = Ĩin ⊗ σout ⇐⇒ E (ρin ) = σout ∀ ρin; (6)

that is, the Choi state is a product state iff the channel has
a fixed output (i.e., having no spatial correlations is equiva-
lent to having no temporal correlations). On the other hand,
the Choi state is maximally entangled iff the channel is
unitary, and it is separable iff the channel is entanglement
breaking [69].

2Since we use the entropy of Choi states to quantify correlations,
we opt for this less common definition in which they are normalized.
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FIG. 2. Input-output correlation of the depolarizing channel for
different dimensions of the system. M(Ep) is a monotonic function
of p for any d . In general, the quantity M(E ) ranges from 0 for fixed
output channels to 2 ln d for unitary channels.

Now, to quantify the spatial correlations of Choi states we
apply the mutual information between subspaces, which is
equivalent to the relative entropy between the state and the
closest uncorrelated state [4,64],

I (A : B)ρAB
:= SA + SB − SAB (7)

= S(ρAB||ρA ⊗ ρB), (8)

where SA = −tr[ρA ln ρA] is the von Neumann entropy of
ρA = trB[ρAB] and S(ρ||σ ) = tr[ρ(ln ρ − ln σ )] is the rela-
tive entropy quasidistance between states ρ and σ . In this way,
we can define the input-output correlation of the channel E by

M(E ) := I (in : out)ϒE (9)

= Sin + Sout − Sin out. (10)

To illustrate how M quantifies the amount of information pre-
served by a given quantum channel, in Fig. 2 we plot M(Ep)
as a function of p for the depolarizing channel.

To better understand the informational interplay between
the system and the environment, consider the Stinespring
dilation theorem [3,4,70], according to which the action of
any given channel E may be represented as

E (ρ) = trE[U (ρ ⊗ σE)U †] (11)

for some initial state σE ∈ B(HE) of the environment and
some global unitary U : B(Hin ⊗ HE) → B(Hout ⊗ HE).
Figure 3 shows a possible dilation for the depolarizing
channel.

Now, consider a purification �ER = |ψ〉〈ψ | ∈ B(HE ⊗
HR) of σE to an ancilla R, that is,

trR[�ER] = σE, (12)

and define a global pure state η ∈ B(Hin ⊗ Hout ⊗ HE ⊗ HR)
after the unitary interaction

η := (
Iin ⊗ U in,E

out,E ⊗ IR
)
(� ⊗ �ER). (13)

FIG. 3. Example of a Stinespring dilation for the depolarizing
channel in Eq. (1). The global unitary is a controlled-SWAP (Fredkin)
gate; the initial state of the control space of the environment is
(1 − p)|0〉〈0| + p|1〉〈1|, and the initial state of the target space of
the environment is Ĩ. In this way, the input state ρ of the system is
swapped with Ĩ conditioned on the state of the control space. Tracing
out the environment yields a depolarizing reduced dynamics for the
system.

Comparing this definition to Eqs. (9) and (11), it is immedi-
ately clear that

I (in:out)η = M. (14)

By defining the complement of M as

M := 2 ln d − M, (15)

it follows that

I (in:ER)η = Sin + SER − Sin ER (16)

= Sin + Sin out − Sout (17)

= 2Sin − (Sin + Sout − Sin out ) (18)

= 2 ln d − M (19)

= M, (20)

where we used SER = Sin out and Sin ER = Sout since biparti-
tions of pure states share the same entropy [3,4] and also Sin =
ln d because, from Eq. (4), we know troutER[η] is maximally
mixed. Equation (20) shows that, while M is the information
about the initial state of the system that is kept in its the
final state, M is exactly the part of this information that is
lost to the environment. In turn, the system might also get
some information about the initial state of the environment.
Since this information is useless to us, it is simply treated as
noise. However, that will not always be the case in multitime
processes, as at any time step that is not the first one the
environment may be carrying information about past states of
the system.

Importantly, we can show that for the system to get this
information from the environment, it must also give some
of its own. To see this, we calculate the mutual information
between the system and the ancilla R. Since R is initially
entangled with the environment E and is not affected by the
interaction, it contains information about the initial state of E .
Notice that

I (in out : R)η = Sin out + SR − Sin out R (21)

� 2Sin out (22)

= 2(Sin + Sout − M ) (23)
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FIG. 4. The two-step scenario. Initially, an experimenter pre-
pares the system in a state ρ as the input at time t0. Then, the
system interacts with the environment in a first step, resulting in
a new output state at time t1. Next, the experimenter performs a
control operation on the system alone, as described by a quantum
channel M1 : B(Ho1 ) → B(Hi1 ). Finally, still at time t1, the system
interacts in a second step with the same environment as before,
yielding a final state at time t2. The Hilbert space labels above the
lines describe whether the corresponding state at a given time is the
input or the output of an interaction with the environment, such that
o1 is the output space at time t1, for example. As a consequence
of this convention, the experimenter operations will be mappings
from output spaces to input spaces at fixed times. To simplify the
notation, for the remainder of this section we adopt the Hilbert space
labeling shown below the lines; that is, we use {A, B,C, D} instead
of {i0, o1, i1, o2}. This more descriptive labeling will be recovered in
the discussion of the multitime scenario in Sec. IV.

� 2(2 ln d − M ) (24)

= 2M, (25)

where the relation SR − Sin out R � Sin out is a consequence of
the Araki-Lieb triangle inequality [71]

|SA − SB| � SAB (26)

and we also used Sin + Sout � 2 ln d . Equation (25) means the
amount of information the system might receive about the
initial state of the environment is upper bounded by twice
the amount of information the environment receives about
the initial state of the system. This intuition on information
exchange between the system and environment lies at the heart
of our relations between temporal correlations in multitime
processes.

III. TEMPORAL CORRELATIONS IN TWO-STEP
QUANTUM PROCESSES

Besides the single-step processes described by quantum
channels, one could also consider a two-step scenario, as
depicted in Fig. 4. Notice that in this case the action of the
environment on the system will not, in general, be described
by a quantum channel in each step, as the global state before
the second step might not be a product one and, even if it is,
the state of the environment might be conditioned on the input
state at time t0. Thus, the most general descriptor of the action
of the environment in the two-step scenario will be a mapping
T2 taking both the initial state and the control operation to the
final state,

T2[ρ ⊗ M1] = ρ ′. (27)

FIG. 5. Circuit generating the Choi state of a given process tensor
T2. At each time step we prepare a maximally entangled state �

and store half of the state while letting the other half interact with
the environment. The state of the system after each interaction is
then also stored. The global quadripartite state stored in the end
is the Choi state of the process tensor describing this two-step
process.

To preserve the physical properties of the process, this
mapping must be multilinear, completely positive, trace
preserving, and time ordered. A mapping T2 : B(HA) ⊗
B2(HB,HC) → B(HD) satisfying these conditions is what we
call a two-step process tensor [10].

Alternatively, T2 might be seen as a mapping from two
input spaces to two output spaces, T2 : B(HA ⊗ HB) →
B(HC ⊗ HD). In this way, we define the Choi state ϒT2 ∈
B(HA ⊗ HB ⊗ HC ⊗ HD) of the process tensor T2 as

ϒT2 := (IA ⊗ IC ⊗ T2)(�AA ⊗ �CC), (28)

as shown in Fig. 5. In terms of its Choi state, the trace-
preservation and time-ordering properties of the two-step
process tensor T2 are given by

trD[ϒT2 ] = trCD[ϒT2 ] ⊗ ĨC, (29)

trBCD[ϒT2 ] = ĨA. (30)

Like in the single-step scenario, the temporal correlations
of the two-step process are mapped into spatial correla-
tions of its Choi state, with the additional feature that in
this case there is more than just an input-output correlation.
We follow Ref. [64] and define the total correlations of the
process T2

I (T2) := I (A : B : C : D)ϒT2 (31)

= SA + SB + SC + SD − SABCD, (32)

the Markovian correlations in the first step

M1(T2) := I(A : B)ϒT2 (33)

= SA + SB − SAB, (34)

the Markovian correlations in the second step

M2(T2) := I (C : D)ϒT2 (35)

= SC + SD − SCD, (36)
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FIG. 6. Two-step non-Markovian depolarizing dynamics. The
first step of this dynamics is equal to the single-step process de-
scribed in Fig. 3, where depending on the state of the control system
the input state is exchanged with a maximally mixed state. Then, in
the second step we have the same unitary acting on the same systems,
implying the second input is also exchanged with the state of the
environment conditioned on the control system. Importantly, in this
second step the environment may be carrying information about the
first input, which could give rise to non-Markovian correlations in
the dynamics.

the total Markovian correlations

M := M1 + M2, (37)

and the non-Markovian correlations

N (T2) := I(AB : CD)ϒT2 (38)

= SAB + SCD − SABCD, (39)

immediately implying the additive property

I = M + N (40)

= M1 + M2 + N (41)

for any two-step process T2.
Notice that M1 is the input-output correlation, as defined

in Eq. (9), for the channel describing the first step of the
process T2, which is associated with the Choi state trCD[ϒT2 ].
Moreover, we can obtain a channel in the second step by
averaging over all possible inputs in the first step of T2. Such
a channel, whose Choi state is trAB[ϒT2 ], would have an
input-output correlation equal to M2

3. Finally, although we
can see that N is a measure of correlations between the two
steps, it might not be fully clear why it should be associated
with the non-Markovianity of the process. To clarify this, we

3The reason for calling such correlations Markovian is the opera-
tional character of the process-tensor approach, in which we consider
the experimenter to have access only to the system and only in
the indicated discrete set of times [10]. Nothing is assumed about
what happens in between these times or about the underlying global
closed dynamics from which the observed system evolution could be
arising. In this sense, even if the dynamics between two consecutive
time steps was emerging from the discretization of a non-Markovian
dynamics, such non-Markovianity could not be detected by our
constrained experimenter. Thus, non-Markovianity here refers only
to the memory effects that could be operationally perceived by the
experimenter. Since all the other time correlations of the process
could, in principle, be reproduced by Markovian models, they are
regarded as Markovian [12].

FIG. 7. Correlations in the process shown in Fig. 6. Specifically,
in this process we always have M1 = M2. For p = 0 we have identity
channels in both steps, implying M1 = M2 = 2 ln d and N = 0, with
I = M = 4 ln d . For p > 0 there is information exchanged with the
environment in both steps, such that M < 4 ln d , but part of the
information lost in the first step is recovered in the second one,
meaning N > 0. For p = 1 if we input states ρ1 and ρ2 in the first
and second steps, we obtain, respectively, Ĩ and ρ1 as outputs, such
that M1 = M2 = 0, as each output is uncorrelated with its input.
However, since the second output is maximally correlated with the
first input, we still have information propagating in time through the
environment, implying this is a highly non-Markovian process, with
I = N = 2 ln d .

recall the operational Markov condition given in Ref. [12],
according to which a process is Markovian if its Choi state is
of the form

ϒABCD = ϒAB ⊗ ϒCD, (42)

implying the distance between any given Choi state and the
closest Markov Choi state will measure the degree of non-
Markovianity of the process. In this way, since the N we
defined in Eq. (38) is the relative entropy between ϒT2 and
the closest Markov Choi state, it will be a non-Markovianity
quantifier following the recipe of Ref. [12]. A schematic rep-
resentation of the Markovian and non-Markovian correlations
in a two-step quantum process is shown in Fig. 1. As an
example of how these correlations may coexist in a physical
situation, we consider the two-step non-Markovian depolariz-
ing dynamics shown in Fig. 6.4 In Fig. 7 we see how they vary
as a function of the parameter p.

4We call this dynamics “non-Markovian depolarizing” because
although each step is locally depolarizing, in the sense that ϒAB

and ϒCD are Choi states of depolarizing channels, it is also non-
Markovian, as its Choi state is not of the product form of Eq. (42).
Importantly, however, this process could never arise from a time-
continuous depolarizing dynamics, as discretizations of completely
positive divisible dynamics can yield only Markovian processes, with
Choi states of the form of Eq. (42).
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From the definitions of Eqs. (31) to (38) and the discussion
in Sec. II we can see that

0 � I � 4 ln d, (43)

0 � M1 � 2 ln d, (44)

0 � M2 � 2 ln d, (45)

0 � M � 4 ln d, (46)

0 � N � 4 ln d. (47)

The saturation of the upper bound of the four first quantities
above is achieved, for example, in the dynamics of Figs. 6 and
7 for p = 0. The maximum possible value for N will be later
discussed in more detail. Notice that the additive property of
Eq. (40) implies

M1 + M2 + N � 4 ln d. (48)

This means that Markovian and non-Markovian correlations
limit the existence of one another, so that they cannot vary
independently within their ranges. In particular, if M1 = M2 =
2 ln d , we must then necessarily have N = 0, an example of
which we see in Fig. 7.

Nevertheless, Eq. (48) does not carry all the physical prop-
erties of information exchange we expect the process to have.
Consider, for example, a scenario in which M1 = 2 ln d and
M2 = 0. From Eq. (48) we have N � 2 ln d , so we could say
that it is still possible for the process to have some non-
Markovianity. However, notice that M1 = 2 ln d implies that
the first step of the dynamics is a unitary on the system alone,
so the system does not exchange with the environment any
information that could be recovered in the second step, and
we must necessarily have N = 0. Analogously, in an opposite
scenario where M1 = 0 and M2 = 2 ln d , the system does not
exchange information with the environment in the second
step, so it cannot recover any information that was lost in the
first one, also implying N = 0. This means that both M1 and
M2 should somehow individually provide upper bounds to N .

To obtain such bounds we proceed as in Eqs. (21) to (25),
that is,

N = SAB + SCD − SABCD (49)

� 2SAB (50)

= 2(SA + SB − M1) (51)

� 2(2 ln d − M1) (52)

and also

N = SAB + SCD − SABCD (53)

� 2SCD (54)

� 2(2 ln d − M2). (55)

In this way, after defining the complements of the Markovian
correlations M j := 2 ln d − Mj , we obtain a set of conditions
describing how the Markovianity on each step individually
limits the non-Markovianity of the process,

N �
{

2M1,

2M2.
(56)

By adding these conditions and dividing by 2 we recover
Eq. (48). However, these more detailed bounds go beyond
Eq. (48) in that they show how the presence of non-Markovian
correlations require information exchange between the system
and environment in both steps.

Nevertheless, the conditions in Eq. (56) are still not the end
of the story. That is because the time-ordering condition in
Eq. (29) was not used in their derivation; therefore, Eq. (56) is
valid even for process matrices without a definite causal order.
Notice that Eq. (29) implies SABC = SAB + ln d , so we have

N = SAB + SCD − SABCD (57)

= SABC − ln d + SCD − SABCD (58)

� SD − ln d + SCD (59)

� SCD (60)

� M2, (61)

where we used SABC − SABCD � SD, implied by Eq. (26),
SD � ln d , and SCD � 2 ln d − M2. The set of conditions is
then updated to

N �
{

2M1,

M2.
(62)

Such limitations to the non-Markovianity of any two-
step process have several important implications. First, notice
that N � 2 ln d − M2 � 2 ln d , so we can rewrite the range
of N as

0 � N � 2 ln d. (63)

This means that, despite there being states in B(HA ⊗ HB ⊗
HC ⊗ HD) for which 2 ln d < I (AB : CD) � 4 ln d , they are
not Choi states of two-step process tensors, as they do not sat-
isfy the time-ordering conditions of Eqs. (29) and (30). When
restricted to the set of states that do satisfy such conditions, the
maximum possible value for I (AB : CD) is actually 2 ln d . An
example of a process with this maximum non-Markovianity is
that in Fig. 6 with p = 1, where M1 = M2 = 0. Importantly,
while the condition M2 = 0 is necessary for N = 2 ln d , we
could still have 0 < M1 � ln d , an example of which is shown
in Fig. 8.

More generally, we could say that a process that has
high Markovianity in some step has necessarily low non-
Markovianity, that is,

M1 � 2 ln d − ε ⇒ N � 2ε, (64)

M2 � 2 ln d − ε ⇒ N � ε. (65)

On the other hand, a highly non-Markovian process is neces-
sarily low in the Markovianity of its second step but could still
have medium Markovianity in the first one,

N � 2 ln d − 2ε ⇒
{

M1 � ln d + ε,

M2 � 2ε.
(66)

Another relevant feature brought by Eq. (62) is that the
interplay between Markovian and non-Markovian correlations
is not symmetric. To see this, we rewrite the conditions in
Eq. (62) as M1 � 2 ln d − N/2 and M2 � 2 ln d − N , which
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FIG. 8. Maximally non-Markovian process with Markovian cor-
relations in the first step. The first interaction is a CNOT with control
on the system and target on the environment initially in the pure
state |0〉. The second step is a SWAP between the system and the
environment. The Choi state for this dynamics is �ABD ⊗ ĨC, where
�ABD is a maximally entangled tripartite state, which means we have
M1 = ln d , M2 = 0, and N = 2 ln d . Upon inputting states ρ1 and ρ2

into this process, we have state ρ1 teleported to the Bell basis of the
joint output space BD. Considering each output individually, we have
two classical copies of ρ1, that is, ρ1 dephased in the computational
basis.

implies

M � 4 ln d − 3
2 N ; (67)

that is, for a process to have a given amount N of non-
Markovianity, it must “pay a price” in Markovianity of at least
3N/2. Alternatively, in terms of the total correlations of the
process, we may write

I � 4 ln d − 1
2 N. (68)

This means that the only two-step processes with maximum
total correlations are those with local unitaries on the sys-
tem in both steps, so that they have maximum Markovian
correlations and zero non-Markovian correlations, like in the
example in Fig. 6 with p = 0. On the other hand, a process
with maximum non-Markovianity has at most 3 ln d total cor-
relations, as in the example in Fig. 8. More generally, for a
two-step process to approach the upper bound of 4 ln d on
total correlations it must have as little non-Markovianity as
possible,

I � 4 ln d − ε ⇒ N � 2ε. (69)

In contrast, any highly non-Markovian process has its total
correlations limited to about 3 ln d ,

N � 2 ln d − 2ε ⇒ I � 3 ln d + ε. (70)

In summary, we have discussed how the physical prop-
erties of information exchange and the time ordering of
the processes give rise to fundamental relations between
the Markovian and non-Markovian correlations of any two-
step quantum process. The mathematical constraints imposed
by these properties allowed us to derive the conditions of
Eq. (62). They, in turn, provided a general upper bound to non-
Markovian correlations and revealed that non-Markovianity
is undesirable if one seeks a two-step process with a large
amount of total correlations. Now, we move to Sec. IV, where
all these relevant results are generalized to the n-step scenario.

IV. TEMPORAL CORRELATIONS IN GENERAL
MULTITIME QUANTUM PROCESSES

We begin by defining the descriptor of the dynamics and its
Choi state. We assume the most general multitime quantum
process is described by an n-step process tensor, defined as
follows.

Definition 1. An n-step process tensor Tn : B(Hi0 ) ⊗
B2(Ho1 ,Hi1 ) ⊗ · · · ⊗ B2(Hon−1,Hin−1 ) → B(Hon ) is a mul-
tilinear, completely positive, trace-preserving, and time-
ordered mapping from an input state ρ ∈ B(Hi0 ) and a
sequence {M j}n−1

j=1 of control operations M j : B(Ho j ) →
B(Hi j ) to a final state ρ ′ ∈ B(Hon ).

Notably, it is also possible to use a process tensor to de-
scribe a dynamics in which the system and the environment
are initially correlated. In this case, Tn will be a mapping
from the control operations to the final state of the system.
Despite these slightly different conventions, the results we
derive should also hold in those cases with small adaptations.

Importantly, the process tensor Tn may be equivalently
seen as a time-ordered mapping from a sequence of inputs
to a sequence of outputs, that is, Tn : B(Hi0 ⊗ · · · ⊗ Hin−1 ) →
B(Ho1 ⊗ · · · ⊗ Hon ). With this in mind, we define its Choi
state.

Definition 2. The Choi state ϒTn ∈ B(Hi0 ⊗ Ho1 ⊗ · · · ⊗
Hin−1 ⊗ Hon ) of the process tensor Tn is defined as

ϒTn :=
⎛
⎝ n⊗

j=1

Ii j−1 ⊗ Tn

⎞
⎠

⎛
⎝ n⊗

j=1

�i j−1,i j−1

⎞
⎠. (71)

This definition is a straightforward generalization of
Eq. (28). Also, the circuit generating this state is an extension
of that shown in Fig. 5. Equations (29) and (30) are general-
ized as follows.

Remark 1. In terms of the Choi state, the trace-preservation
and time-ordering properties of the process are given by the
hierarchy of trace conditions

tro j

[
ϒ

T2
1: j

] = ϒ
T2
1: j−1 ⊗ Ĩi j−1 (72)

for all 1 � j � n, where

ϒ
T2
1: j := tr j+1:n[ϒT2 ] (73)

and tr j+1:n is the trace over the subspaces
{i j, o j+1, · · · , in−1, on}.

Now, we move to the definition of the correlation quanti-
fiers in the n-step scenario.

Definition 3. The total correlations I , Markovian correla-
tions in the jth step Mj , total Markovian correlations M, and
non-Markovian correlations N of the n-step process tensor Tn

are, respectively, defined as

I (Tn) := I (i0 : o1 : · · · : in−1 : on)ϒTn , (74)

Mj (Tn) := I (i j−1 : o j )ϒTn , (75)

M(Tn) :=
n∑

j=1

Mj, (76)

N (Tn) := I (i0o1 : i1o2 : · · · : in−1on)ϒTn . (77)

These definitions are equivalent to those of Ref. [64], which
can be seen by writing the mutual information as the

062401-7
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relative entropy between the state and the tensor product of
its marginals, as shown in Eq. (7).

Alternatively, the above definitions may be written explic-
itly in terms of the von Neumann entropies of the Choi state’s
marginals, which is done in the following remark.

Remark 2. Let trA[ϒ] denote the partial trace over all sub-
systems of ϒ besides A and define

Si j
:= S

(
tri j

[ϒTn ]
)
, (78)

So j
:= S

(
tro j [ϒ

Tn ]
)
, (79)

S j := S
(
tri j−1o j

[ϒTn ]
)
, (80)

S j := S
(
trik−1o j [ϒ

Tn ]
)
, (81)

and, recalling Eq. (73),

S1: j := S
(
ϒ

Tn
1: j

)
. (82)

Then, the correlation quantifiers may be rewritten as

I =
n∑

j=1

(
Si j−1 + So j

) − S1:n, (83)

Mj = Si j−1 + So j − S j, (84)

M =
n∑

j=1

(
Si j−1 + So j − S j

)
, (85)

N =
n∑

j=1

S j − S1:n. (86)

Importantly, by comparing the above equations we readily
obtain the additive property

I = M + N. (87)

Finally, we also define the complement of Mj ,

Mj := 2 ln d − Mj . (88)

Having set the stage with the definitions, we now proceed
to the results.

Proposition 1. For any (not necessarily time-ordered) pro-
cess matrix Tn, the following set of conditions holds:

N � 2
∑
j �=k

Mj (89)

for all 1 � k � n.
The proof can be found in Sec. A 1.
Example 1. For a four-step process, the conditions of

Proposition 1 are explicitly given by

N �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(M2 + M3 + M4),

2(M1 + M3 + M4),

2(M1 + M2 + M4),

2(M1 + M2 + M3).

(90)

Nevertheless, this set of conditions may be refined if we
take the time ordering of the process into account. That is done
in the following proposition.

Proposition 2. For any n-step process tensor Tn, the follow-
ing set of conditions holds:

N � 2
∑
j<k

Mj +
∑
j>k

Mj (91)

for all 1 � k � n.
The proof can be found in Sec. A 2.
Example 2. For a four-step process, the conditions of

Proposition 2 are explicitly given by

N �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M2 + M3 + M4,

2M1 + M3 + M4,

2M1 + 2M2 + M4,

2M1 + 2M2 + 2M3.

(92)

Having proved the set of conditions of Proposition 2, we
now derive two theorems concerning the non-Markovianity
of general multitime quantum processes.

Theorem 1. The maximum non-Markovianity N of any n-
step process tensor Tn is 2(n − 1) ln d .

The proof can be found in Sec. A 3.
Example 3. Consider the n-step process associated with the

Choi state,

ϒTn = Ĩoi ⊗ �i0o2 ⊗ �i1o3 ⊗ · · · ⊗ �in−2on ⊗ Ĩin−1 . (93)

This is a generalization to n steps of the process in Fig. 6 with
p = 1, such that the output of the ( j + 1)th step is equal to the
input of the jth step. The first output is Ĩ, and the last input is
discarded. It is straightforward to show that for this process

N = 2(n − 1) ln d; (94)

that is, it is maximally non-Markovian. Also, we have that
M = 0, such that I = N .

Now, we derive how the non-Markovianity upper bounds
the maximum possible Markovianity of a given process.

Theorem 2. For any n-step process tensor Tn it holds that

M � 2n ln d − 2n − 1

2n − 2
N. (95)

The proof can be found in Sec. A 4.
Alternatively, we may rewrite this result showing how the

non-Markovianity limits the total correlations of the process.
Theorem 2′. For any n-step process tensor Tn it holds that

I � 2n ln d − 1

2n − 2
N. (96)

The proof can be found in Sec. A 5.
This last theorem shows that a non-Markovian process can-

not have the maximum amount of total correlations. However,
the price paid in total correlations to have a given amount of
non-Markovianity decays exponentially with the number of
steps of the process. This implies that a highly non-Markovian
process with many steps might achieve an amount of total
correlations relatively close to that of a unitary process with a
similar number of steps.

V. CONCLUSIONS

We have shown how to establish useful bounds relating
the different types of temporal correlations present in general
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multitime quantum processes. We used the notion of informa-
tion exchange between the system and the environment and
the time-ordering of the process to prove a set of inequali-
ties relating Markovian correlations in individual steps to the
global non-Markovianity. From these, we derived relevant re-
sults concerning the correlation quantifiers, like the maximum
possible value of the non-Markovianity and how it limits the
total correlations of the process depending on the number of
steps.

These results could be applied, for example, to bound the
efficiency of protocols like those in Ref. [64]. Since the goal
of their technique is to maximize the input-output correlation
of the coarse-grained version of the process, which is upper
bounded by the total correlations of the original process, one
could use our Theorem 2′ to show how the non-Markovianity
of the process limits the performance of the optimized dynam-
ical decoupling protocol described there. Furthermore, our
results could be used to provide fundamental bounds to the
amount of memory resources one must expend to simulate
a given quantum process, independent of the specific exper-
imental setup employed, similar to what Ref. [72] does with
thermodynamic resources.

Therefore, given the importance of dealing with temporal
correlations in quantum processes, we hope these results help
us pave the way towards a deeper understanding of informa-
tional flow in quantum systems, perhaps leading to significant
improvements of state-of-the-art quantum information pro-
cessing technologies.
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APPENDIX : PROOFS

1. Proposition 1

Proposition 1. For any (not necessarily time-ordered) pro-
cess matrix Tn, the following set of conditions holds:

N � 2
∑
j �=k

Mj (A1)

for all 1 � k � n.
Proof. From Eq. (26) we have

|Sk − Sk| � S1:n, (A2)

which implies

Sk − S1:n � Sk . (A3)

Also, the subadditivity of von Neumann entropy SAB � SA +
SB [3,4] yields

Sk �
∑
j �=k

S j . (A4)

Applying this to the non-Markovianity, we obtain, for
any 1 � k � n,

N =
n∑

j=1

S j − S1:n (A5)

�
∑
j �=k

S j + Sk (A6)

= 2
∑
j �=k

S j (A7)

� 2
∑
j �=k

Mj . (A8)

�

2. Proposition 2

Proposition 2. For any n-step process tensor Tn, the follow-
ing set of conditions holds:

N � 2
∑
j<k

Mj +
∑
j>k

Mj (A9)

for all 1 � k � n.
Proof. The trace conditions of Eq. (72) imply

S1:k−1,ik−1 = S1:k−1 + ln d, (A10)

so we have

S1:k−1 = S1:k−1,ik−1 − ln d (A11)

� S1:k + Sok − ln d (A12)

� S1:k (A13)

since S1:k−1,ik−1 − Sok � S1:k holds from Eq. (26) and Sok �
ln d . Then, we can write

Sk − S1:n � Sk − S1:k (A14)

� S1:k−1 (A15)

�
∑
j<k

S j, (A16)

using Sk − S1:k−1 � S1:k , again from Eq. (26), and subadditiv-
ity. Finally, for the non-Markovianity

N =
n∑

j=1

S j − S1:n (A17)

=
∑
j �=k

S j + (Sk − S1:n) (A18)

�
∑
j �=k

S j +
∑
j<k

S j (A19)

= 2
∑
j<k

S j +
∑
j>k

S j (A20)

� 2
∑
j<k

Mj +
∑
j>k

Mj . (A21)

�

062401-9
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3. Theorem 1

Theorem 1. The maximum non-Markovianity N of any n-
step process tensor Tn is 2(n − 1) ln d .

Proof. From the set of conditions in Proposition 2, choose
k = 1, yielding

N �
n∑

j=2

Mj (A22)

= 2(n − 1) ln d −
n∑

j=2

Mj (A23)

� 2(n − 1) ln d. (A24)

�

4. Theorem 2

Theorem 2. For any n-step process tensor Tn it holds that

M � 2n ln d − 2n − 1

2n − 2
N. (A25)

Proof. Take each condition from Proposition 2, multi-
ply both sides by 2n−k , and sum for every 1 � k � n,

yielding

n∑
k=1

2n−kN �
n∑

k=1

2n−k

⎡
⎣2

k−1∑
j=1

Mj +
n∑

j=k+1

Mj

⎤
⎦; (A26)

after some tedious calculations we obtain

(2n − 1)N � (2n − 2)
n∑

j=1

Mj (A27)

= (2n − 2)(2n ln d − M ), (A28)

which, after isolating M, results in the inequality of the
theorem. �

5. Theorem 2′

Theorem 2′. For any n-step process tensor Tn it holds that

I � 2n ln d − 1

2n − 2
N. (A29)

Proof. Take Theorem 2 and add N to both sides. On the
left-hand side we use M + N = I , obtaining the inequality of
the theorem. �
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