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Time-periodic Klein-Gordon media: Tunable wave-vector gaps and Dirac dispersion
with an exceptional point of degeneracy
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This study delves into the exploration of wave propagation in spatially homogeneous systems governed by
a Klein-Gordon–type equation with a periodically time-varying cutoff frequency. Through a combination of
analytical calculations and numerical simulations, intriguing and distinctive features in the dispersion diagram
of these systems are uncovered. Notably, the examined configurations demonstrate some remarkable transitions
as the modulation frequency increases. These transitions encompass a transformation from a frequency gap to a
wave-number (q) gap around q = 0, with the transition point corresponding to a gapless Dirac dispersion with
an exceptional point of degeneracy. Subsequently, the q gap undergoes a bifurcation into two symmetric gaps
at positive and negative wave numbers. At this second transition point, the dispersion diagram takes the form
of an imaginary Dirac dispersion relation and exhibits an isolated exceptional point at the center of the q = 0
gap. These findings contribute to a deeper understanding of wave dynamics in periodically modulated media,
uncovering tunable phenomena.
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I. INTRODUCTION

The Klein-Gordon equation [1,2] in quantum physics of-
fers a fundamental description of relativistic spinless particles
through a scalar field. Its mathematical form, akin to the
d’Alembert wave equation with an additional term propor-
tional to the field, introduces a spectral cutoff for propagating
waves. Interestingly, this equation finds relevance in classical
systems as well. For example, in 1909, Lamb derived a similar
equation to describe vertically propagating acoustic waves in
the atmosphere [3]. Today, Klein-Gordon–type equations have
become integral in diverse fields, modeling phenomena such
as propagation of electromagnetic waves in waveguides [4]
and plasmas [5], Alfvén waves in nonuniform media [6],
duct acoustics [7], vibrating strings [8], upward propagation
of linear acoustic waves in a gravitationally stratified solar
atmosphere [9], etc.

In recent years, the pursuit of innovative wave applica-
tions, encompassing magnetless nonreciprocity, multimode
shaping, parametric amplification, and ultrafast switching, has
reignited interest in time-varying media [10]. Particularly,
media with properties that vary periodically over time exhibit
wave-vector gaps [11–13], analogous to the frequency gaps
occurring in spatially periodic structures [14–16]. In a wave-
vector gap, only complex-frequency solutions of the wave
equation exist. These solutions come in pairs and represent
modes with amplitudes that either grow or decay exponen-
tially. Both options are physically acceptable, in sharp contrast
to frequency gap modes where energy conservation prevents
the existence of waves with growing amplitude in the medium.

In parallel to the studies on spatially or temporally periodic
media which can host only one type of gap, a subject of

study is spatiotemporally periodic media, too. In this con-
text, the band structure and the associated field eigenmodes
have mainly been explored under the assumption of a trav-
eling wave modulation, in the absence of which the system
is dispersionless [17–20]. This scenario, depending on the
modulation’s phase velocity, leads either to frequency or
wave-vector gaps. The transition from frequency to wave-
vector gap (and vice versa) occurs when phase velocity is
equal to wave propagation velocity. However, at the transition
point all the modes of the unmodulated system are strongly
coupled making its study rather challenging [18,19].

While extensive research has been conducted on periodic
systems and their dispersion properties concerning wave prop-
agation, the interplay between frequency and wave-vector
gaps has received comparatively less attention [21,22]. What
is more, within most of the available studies, frequency gaps
emerge from spatial periodicity, leaving the influence of tem-
poral modulation on the properties of spatially homogeneous
media, which inherently possess frequency gaps, largely un-
explored. Only recently, an electromagnetic waveguide loaded
with a one-dimensional lattice of coupled time-periodically
driven LC resonators, an inherently gapped system, was
considered [23].

In this paper, we report a thorough theoretical inves-
tigation into the interplay between the intrinsic frequency
gap of a homogeneous medium and the wave-vector gaps
arising from a temporal modulation. The wave propagation
in our study adheres to the generic Klein-Gordon equa-
tion with a periodically varying cutoff frequency. As a result,
Klein-Gordon–type systems allow us to explore the interplay
between frequency and wave-vector gaps without assuming
any specific form of spatiotemporal modulation but rather
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focusing on a general time-periodic drive, thus departing from
previous assumptions [22].

The remainder of the paper is structured as follows. In
Sec. II, we present our theoretical framework. This sec-
tion lays the groundwork for our analysis by establishing the
fundamental principles upon which our study is built. Fol-
lowing this, in Sec. III, we develop a perturbative approach.
This method enables us to accurately describe our results in
a simple yet consistent manner, facilitating a deeper under-
standing of the phenomena under investigation. Section IV is
dedicated to the systematic analysis of dispersion diagrams
as they evolve with modulation frequency. Here, we uncover
unique characteristics, including Dirac dispersion, in both real
and imaginary space, with an exceptional point of degener-
acy, and wave-number gaps around q = 0. Next, in Sec. V,
we delve into a numerical study of the wave properties of
time-modulated Klein-Gordon media. Our primary focus is
on the case of Dirac dispersion relation with an exceptional
point of degeneracy. Through this analysis, we illuminate the
unusual dynamics that emerge, demonstrating the accuracy
of our theoretical framework in describing these phenomena.
Finally, the paper concludes in the last section, where we
summarize our findings.

II. THEORETICAL FRAMEWORK

We start from a wave equation of the general Klein-Gordon
form in a single spatial dimension(

∂2

∂t2
− c2 ∂2

∂x2
+ ω̃2

c

)
u(x, t ) = 0, (1)

where c, ω̃c are positive constants and u(x, t ) is a field,
the nature of which depends on the physical system under
consideration. This equation type reveals a spectral gap for
propagating waves, ranging from −ω̃c to ω̃c. Consequently,
ω̃c is designated as the cutoff frequency.

In contrast to the common approach of temporally mod-
ulating the constant c, which, in dispersionless systems,
represents the wave propagation velocity, here, we choose to
vary the cutoff frequency ω̃c. Specifically, we assume that

ω̃2
c = ω2

c [1 + ε cos(�t )], (2)

where ε, � are the (relative) amplitude and the frequency of
the modulation, respectively. Under this assumption, Eq. (1)
takes the form(

∂2

∂t2
− c2 ∂2

∂x2
+ ω2

c

)
u(x, t ) + εω2

c cos(�t )u(x, t ) = 0 ,

(3)

which describes a homogeneous system under the effect of
a periodic uniform modulation, of period T = 2π/�. As we
will show in Sec. IV, periodic time variations of c in the
Klein-Gordon equation do not lead to the same rich wave
phenomenology.

Taking advantage of the spatial homogeneity of Eq. (3),
we utilize a Fourier expansion for the general solution with
uq(t ) = ∫ ∞

−∞ dx u(x, t ) exp (−iqx), thus ensuring that each

Fourier component complies with a Mathieu’s equation

d2uq

dt2
+ [

c2q2 + ω2
c + εω2

c cos(�t )
]
uq = 0. (4)

According to Floquet theory, the solutions of Eq. (4) can
be written in the form [24]

uq(t ) = e−iωtφ(t ), (5)

where φ(t + T ) = φ(t ). It is worth noting that the Floquet ex-
ponent ω is not unique, as Floquet exponents which differ by
an integer multiple of � correspond to an equivalent solution.
In practical terms, this means that we can focus on a specific
interval of the real part of ω within a range of �. This interval
is often confined to the first Brillouin zone, represented as
(−�/2,�/2].

In certain regions of the wave number q, referred to as
wave-number gaps, the Floquet exponents form complex-
conjugate pairs, signifying two linearly independent solutions
of Eq. (4): one exponentially growing and one exponentially
decaying in time. In the context of dynamical systems, these
exponentially unstable modes are related to the so-called para-
metric resonances that cause instabilities [25]. Outside these
complex regions, the linearly independent solutions corre-
spond to real valued ω with opposite signs and consequently
to two periodic stable solutions. However, exceptions occur at
the center and the edges of the first Brillouin zone, where the
two solutions can coalesce [26–29], creating what is known
as exceptional points. The existence of an exceptional point
gives rise to one periodic stable and one linearly growing in
time solution.

Because of the periodicity of φ(t ), we express it as a
Fourier series, resulting in

φ(t ) =
∞∑

n=−∞
wnein�t . (6)

By substituting Eq. (5) along with the expansion from (6) into
(4), we obtain[

c2q2 + ω2
c − (ω − n�)2

]
wn + εω2

c

2
(wn+1 + wn−1) = 0,

(7)

which can be cast in the form of a quadratic eigenvalue
problem [

ω2
νI + ωνA + (B + εP)

]−→w ν = 0, (8)

where ων is the νth eigenvalue and −→w ν is a column vector
which contains the Fourier coefficients wν;n of the νth eigen-
mode. I is the unit matrix, A and B are diagonal matrices
with elements Amn = −2m�δmn and Bmn = (m2�2 − ω2

c −
c2q2)δmn, respectively, while P is a Toeplitz tridiagonal matrix
with elements Pmn = −ω2

c (δmn+1 + δmn−1)/2, with δmn being
the Kronecker delta. Equation (8) yields Floquet eigenmodes
in the repeated zone scheme, encompassing linearly inde-
pendent solutions in the first Brillouin zone and equivalent
solutions outside it, with corresponding ω values differing by
integer multiples of �.

It is important to note that, at an exceptional point, Eq. (7)
provides only one of the two linearly independent Floquet
solutions, represented as u1;q(t ) = exp(−iωt )φ1(t ). However,
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FIG. 1. Schematic representation of the first three replicas of the
dispersion diagram for the Klein-Gordon equation [see Eq. (11)] il-
lustrating cases for � < 2ωc (a), (b) and � > 2ωc (c), (d). Horizontal
gray stripes mark intersections between consecutive replicas where
significant mode coupling takes place.

according to the theory of second-order differential equa-
tions with periodic coefficients [30], the second linearly
independent solution is given by

u2;q(t ) = e−iωt

[
φ2(t ) + t

T ρ
φ1(t )

]
, (9)

where ρ = exp (−iωT ) and φ2(t ) is a T -periodic function, to
be determined, associated with the second linearly indepen-
dent solution. By substituting Eq. (9) into (4) and utilizing the
expansion from Eq. (6), we find that the Fourier coefficients
of φ2(t ), w2;n, satisfy the equation

[ω2I + ωA + (B + εP)]−→w 2 = − i�

2πρ
(2ωI + A)−→w 1. (10)

III. PERTURBATIVE ANALYSIS

We now assume that εP in Eq. (8) represents a small pertur-
bation. This assumption enables us to perturbatively examine
the system’s properties. To achieve this, we commence with
the unmodulated system, extracting the O(ε0) order terms of
both eigenvalues and eigenvectors. From Eq. (8) we obtain

ω0ν = ν� ±
√

ω2
c + c2q2, w(0)

ν;n = δnν . (11)

The above eigenvalues correspond to replicas of the usual
Klein-Gordon dispersion diagram (ν = 0), which are spec-
trally shifted by integer multiples of the modulation frequency
�, as shown in Fig. 1. Note that, within the Klein-Gordon
frequency gap, the wave number assumes imaginary values,
as illustrated in Figs. 1(b) and 1(d).

To comprehend the effect of the periodic modulation on
these dispersion diagrams as well as their systematic evolu-
tion by varying the modulation frequency, it proves beneficial
to extend the wave number into the complex plane, seeking
solutions of Eq. (3) in the form exp[i(qx − ωt )]φ(t ), for given
real frequency ω. In this way, we arrive again at Eq. (7)
but now this equation should be viewed as a linear eigen-
value equation which, for a real input value of ω within the
first Brillouin zone, yields eigenvalues λ = c2q2. This ap-
proach is also relevant to problems involving sources [31], or
boundary-value problems such as wave scattering by periodi-
cally time-modulated media in confined geometries, like finite
slabs [23,32,33] and isolated objects [34].

Similar to the approach of the nearly free-electron model
for simple metal crystals [14], in the context of perturbation
theory to first order, it is straightforward to show that replicas
of the unperturbed dispersion curves with no near degener-
acy remain unaffected by the modulation. Conversely, close
enough to their crossing points, within a range of ε, coupling
occurs through the off-diagonal elements of the matrix P. We
note that only replicas of orders ν1 and ν2, with opposite signs,
cross each other. The degeneracy condition (crossing point)
ω0ν1 = ω0ν2 = (ν1 + ν2)�/2 yields

λ0 = c2q2
0 = (ν2 − ν1)2�2

4
− ω2

c . (12)

In a short range, of order ε, about the degeneracy point,
we set λ = λ0 + ελ1 + O(ε2), where λ1 = c2q2

1, and Eq. (8)
becomes[

ω2
νI + ωνA + B(0) + ε(B(1) + P) + O(ε2)

]−→w ν = 0, (13)

where B(0)
mn = (m2�2 − ω2

c − c2q2
0 )δmn and B(1)

mn = −c2q2
1δmn.

By substituting the perturbative expansions for the
eigenvalues

ω = ω0 + εω1 + O(ε2), (14)

where ω0 = ω0ν1 = ω0ν2 , and the eigenvector

−→w =
∑

ν ′=ν1,ν2

cν ′−→w (0)
ν ′ + ε−→w (1) + O(ε2) (15)

into Eq. (13) and keeping terms up to O(ε) we obtain[
c2q2

1 − (ν2 − ν1)�ω1
]
cν1 + ω2

c

2
(δν1ν2+1 + δν1ν2−1)cν2 = 0,

(16a)

ω2
c

2
(δν2ν1+1 + δν2ν1−1)cν1 + [

c2q2
1 + (ν2 − ν1)�ω1

]
cν2 = 0.

(16b)

According to Eqs. (16), mode coupling occurs in first-order
perturbation theory when and only when |ν2 − ν1| = 1. This
behavior is a result of the cosinusoidal modulation choice,
restricting first-order coupling to consecutive replicas. How-
ever, it is worth noting that there is also higher-order coupling
between intersecting replicas of nonconsecutive orders. This
coupling removes mode degeneracy at the crossing points and
results in narrow wave-number gaps, as illustrated in Fig. 2.

Our analysis will focus on the vicinity of the intersection
of consecutive replicas in the dispersion diagram, i.e., around
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FIG. 2. Dispersion diagram of a Klein-Gordon–type equa-
tion featuring a cosinusoidally varying spectral cutoff. The modu-
lation parameters are set to � = 1.5ωc < �c1 (see below Sec. IV)
and ε = 0.5. Horizontal stripes indicate that, in the presence of
modulation, the frequency gap is not absolute. Dashed lines represent
the edges of the first Brillouin zone. A gray rectangle highlights a
second-order crossing of replicas (ν1 = −1 and ν2 = 1), resulting in
a narrow wave-number gap, consistent with perturbation theory. An
enlarged view of this gap is shown in the inset.

c2q2
0 = �2/4 − ω2

c , where significant effects are anticipated.
In this case, Eqs. (16) can be cast in the form of an eigenvalue-
eigenvector problem(

δ 1
−1 −δ

)(
cν

cν+1

)
= μ

(
cν

cν+1

)
, (17)

where δ = 2c2q2
1/ω

2
c and μ = 2�ω1/ω

2
c . The eigenvalues are

μ± = ±
√

δ2 − 1 (18)

and, recalling that c2q2 = c2q2
0 + εc2q2

1 with c2q2
0 = �2/4 −

ω2
c and ω = ω0 + εω1 with ω0 = (2ν + 1)�/2, we obtain the

dispersion relation

ω(q) = (2ν + 1)
�

2
± 1

�

√(
c2q2 + ω2

c − �2

4

)2

−
(

εω2
c

2

)2

.

(19)

The associated eigenvectors are given by(
cν

cν+1

)
±

=
(−δ ∓ √

δ2 − 1
1

)
. (20)

Therefore, when δ2 �= 1, Eq. (5) along with Eqs. (6), (14),
and (15), to zeroth order, yield the two linearly independent
solutions

u1,2;q(t ) = [ei �
2 t − (δ ±

√
δ2 − 1)e−i �

2 t ]e−iεω1±t . (21)

If δ2 = 1, it is evident from Eqs. (18) and (20) that the two
eigenvalues become degenerate and equal to zero (ω1 = 0),
while the corresponding eigenvectors coalesce, as expected
since the 2×2 matrix in Eq. (17) becomes defective.
Therefore, δ2 = 1, which implies ω1 = 0 and thus ω = ω0,

corresponds to an exceptional point of degeneracy. The coa-
lesced eigenvectors yield a single solution

u1;q(t ) = ei �
2 t ∓ e−i �

2 t , (22)

for δ = ±1, respectively. The second linearly independent
solution at the exceptional point can be obtained with the help
of Eqs. (9) and (10), taking the form

u2;q(t ) = i�2

επω2
c

e− i�
2 t − �t

2π
u1;q(t ). (23)

In any case, the general solution is expressed as a linear
combination of u1;q and u2;q with coefficients determined by
the initial conditions, requiring continuity of both the field and
its first derivative.

When seeking complex-q solutions of the wave equation at
a given real frequency ω, perturbative analysis yields(

μ −1
−1 −μ

)(
cν

cν+1

)
= δ

(
cν

cν+1

)
. (24)

This equation can also be derived directly, by reformulat-
ing Eq. (17) to express δ as the eigenvalue. Equation (24)
presents eigenvalues δ± = ±

√
μ2 + 1 with associated eigen-

vectors (cν, cν+1)T
± = (μ ±

√
μ2 + 1, 1)T, where T denotes

vector transpose. Notably, the symmetric form of the 2×2
matrix in Eq. (24) prevents the eigenvectors from coalescing.
Equations (17) and (24) produce the same dispersion diagram
on the real q-ω plane because, in both cases, the dispersion
diagram is governed by the same equation, which is solved
either with respect to ω [see Eq. (19)] or with respect to
q. However, an important distinction arises: the exceptional
points in the complex-ω versus real-q representation trans-
form into doubly degenerate points in the complex-q versus
real-ω representation, which is in line with recent work [35].

IV. DISCUSSION OF DISPERSION DIAGRAMS

We have already discussed the emergence of exceptional
points in our system under consideration when ω1 = 0. The
exceptional points are located either at q �= 0 (at the edges
of wave-number gaps) or at q = 0, depending on the mod-
ulation frequency. Here, we focus on the latter case, where
exceptional points lie at (q, ω) = (0, (2ν + 1)�/2). These
exceptional points appear at some characteristic (critical)
frequencies of the time modulation. In first-order perturba-
tion theory, these frequencies can be directly obtained from
Eq. (19), which, for q = 0 and ω = (2ν + 1)�/2, yields

�2
c1 = 4ω2

c

(
1 − ε

2

)
, �2

c2 = 4ω2
c

(
1 + ε

2

)
. (25)

As depicted in Figs. 1(a) and 1(b), for � < �c1, the real-q
branches of consecutive replicas in the dispersion diagram do
not intersect, while their imaginary-q branches exhibit two in-
tersections. The interaction of the latter results in two avoided
crossings, giving rise to a closed loop on the ω-Im(q) plane,
connecting the edges of the real-q branches. However, it is
important to clarify that this closed loop does not correspond
to an absolute frequency gap, as real-q branches from other
replicas are also present in this spectral region, as shown
in Fig. 2. In addition, a pair of branches with larger Im(q),
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FIG. 3. Evolution of the dispersion diagram, where δω = ω − (2ν + 1)�/2, for a Klein-Gordon–type equation featuring a cosinusoidally
varying spectral cutoff frequency with a relative amplitude ε = 0.1, versus the modulation frequency �. The plots depict the dispersion diagram
in the vicinity of two successive interacting replicas and correspond to different values of �, presented from left to right as 1.9ωc, �c1, 1.97ωc,
�c2, and 2.1ωc. The top and bottom sequences represent the dispersion diagram in real frequency versus complex wave number and complex
frequency versus real wave number, respectively. Solid lines represent the real parts, while dashed lines represent the imaginary parts of the
wave number (or frequency) associated with the various bands. The exceptional points in the bottom sequence are denoted by squares.

symmetrically positioned about q = 0, is formed, as depicted
in Fig. 3(ia).

As the modulation frequency increases, the edges of the
real-q branches approach each other. At � = �c1, these
branches intersect linearly at (q, ω) = (0, (2ν + 1)�c1/2),
representing a gapless Dirac dispersion, which at the crossing
point hosts an exceptional point. Indeed, as can be readily
deduced from Eq. (19) and the first of Eqs. (25), for q → 0

ω(q) ∼ (2ν + 1)
�c1

2
±

√
εωc

�c1
cq. (26)

Meanwhile, the two branches with larger Im(q) remain rela-
tively unaffected, as seen in Fig. 3(ib).

Beyond �c1, the intersecting bands undergo separation,
leading to the emergence of an absolute wave-number gap
around q = 0, as depicted in Fig. 3(ic). Within this gap, the
frequency eigenvalues are complex [see Fig. 3(iic)], signify-
ing waves that either grow or decay exponentially in time.
As the modulation frequency increases, the gap widens and,
simultaneously, the two branches with larger Im(q) draw
closer together. At � = �c2, they ultimately converge and
exhibit a linear variation about the convergence point (q, ω) =
(0, (2ν + 1)�c2/2), as shown in Fig. 3(id). Indeed, for q → 0,
Eq. (19), in conjunction with the second of Eqs. (25), yields

ω(q) ∼ (2ν + 1)
�c2

2
± i

√
εωc

�c2
cq, (27)

which represents an imaginary Dirac dispersion, similar to
[35]. At the crossing point, an isolated in-gap state emerges,
and the continuous wave-number gap around q = 0 breaks
into two parts, one at q < 0 and one at q > 0, as depicted
in Fig. 3(iid). The isolated in-gap state corresponds to an
exceptional point.

For modulation frequencies above the second critical value,
�c2, as illustrated in Figs. 1(c) and 1(d), the real-q branches of
consecutive replicas in the dispersion diagram intersect, while
their imaginary-q branches are separated. The interaction of
the former results in two avoided crossings, giving rise to three
real-q branches, separated by two wave-number gaps, situated
symmetrically about q = 0. Figures 3(ie) and 3(iie) provide a
visual representation of this dispersion diagram, illustrating
the evolution from an isolated in-gap point at q = 0 to a
real-q closed loop around q = 0 as the modulation frequency
increases beyond �c2.

Remarkably, the closed-form expression in Eq. (19), de-
rived in first-order perturbation theory, accurately reproduces
all dispersion diagrams depicted in Fig. 3, obtained through
numerical solution of Eq. (7), with exceptional precision.
Notably, the differences are imperceptible at the scale of the
figure.

It is worth noting that a distinctive aspect in the discussion
of our results pertains to the evolution of dispersion diagrams
presented in Fig. 3 when compared to cases where the periodic
modulation is applied to the velocity rather than the cutoff
frequency. In the latter scenario, assuming a variation of the
form c2[1 + ε cos(�t )], instead of Eq. (19) we obtain

ω(q) = (2ν + 1)
�

2

± 1

�

√(
c2q2 + ω2

c − �2

4

)2

−
(

ε

2

[
ω2

c − �2

4

])2

,

(28)

predicting a direct transition from the frequency gap shown
in Figs. 3(ia) and 3(iia) to a pair of wave-number gaps sym-
metrically situated around q = 0, as illustrated in Figs. 3(ie)
and 3(iie). At the critical frequency �c = 2ωc, we obtain a
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parabolic dispersion relation instead of a Dirac one, given by

ω(q) = (2ν + 1)
�c

2
± c2q2

�c
. (29)

Furthermore, at any modulation frequency, the modes at
q = 0 in this case represent trivial oscillations described by
d2uq/dt2 + ω2

c uq = 0.
In addition, it should be highlighted that only the disper-

sion diagrams in Figs. 3(ie) and 3(iie) are analogous to those
of typical temporally modulated wave systems [32,36,37]. In
this context, it is widely acknowledged that a wave packet,
located in q space within a wave-number gap in such a disper-
sion diagram, undergoes amplification due to the excitation of
exponentially growing modes [31,38–41]. However, this is not
the only possible scenario for Klein-Gordon media. As dis-
cussed earlier, Klein-Gordon media with periodic variations
in cutoff frequency exhibit distinctive features. First, they
can host wave-number gaps, either centered around q = 0 for
�c1 < � < �c2 or around q �= 0 for � � �c2. Moreover, they
can have no such gaps when � � �c1. This unique behavior
enables effective control over the amplification or propagation
of a waveform by tuning only the modulation frequency �

while maintaining a constant modulation amplitude ε �= 0.
Though, their most intriguing feature is the emergence of
a gapless Dirac dispersion relation at a singular exceptional
point when � = �c1. This unprecedented phenomenon sig-
nificantly influences wave propagation as will be discussed
below.

At this point, it is noteworthy to mention recent predictions
regarding Dirac dispersion, centered at an exceptional point,
in systems described by the Schrödinger equation subject to
a complex potential [42]. These predictions encompass linear
Dirac dispersion in either real or imaginary space [35], similar
to our cases for � = �c1 and �c2, respectively. Neverthe-
less, these so-called Dirac exceptional points are defined in a
hybrid space consisting of a momentum dimension and a syn-
thetic dimension for the strength of non-Hermiticity [35,42].
In this respect, they are distinctly different from both typical
Dirac points, commonly associated with diabolic points [43],
which may arise accidentally or due to symmetry in non-
Hermitian systems similar to those in Hermitian systems, and
the conventional exceptional points.

Before proceeding to the numerical investigation, it
is worth commenting on the effect of linear dissipation,
described by an additional term 2γ ut (x, t ) in the Klein-
Gordon equation; here, the subscript t denotes the partial
derivative with respect to time. This leads to a Mathieu’s
equation for the modified Fourier component ũq, where
uq(t ) = exp(−γ t )̃uq(t ),

d2ũq

dt2
+ [

c2q2 + ω2
c − γ 2 + εω2

c cos(�t )
]̃
uq = 0, (30)

which is the same as Eq. (4) but with an additional term
−γ 2ũq. As a result, we obtain similar dispersion diagrams as
in the absence of dissipation, though with a downward shift in
the complex frequency plane by a constant amount of −iγ ,
which arises from the exponential factor exp(−γ t ). In this
context, the time-periodic drive can provide for energy influx
into wave modes within wave-number gaps, that, in turn, may

compensate for losses and thus support nondecaying states in
the presence of the dissipation. Outside these gaps, including
the points of linear instabilities, exponential decay due to the
dissipative losses always dominates at sufficiently long times,
depending on the value of γ .

V. TIME INTERFACES

We now present numerical results to illustrate various
phenomena related to wave dynamics in the system under
consideration, with particular emphasis on the case with
modulation frequency � = �c1, at the exceptional point.
For our numerical simulations, we solve Eq. (3) using a
finite-difference scheme for the spatial differentiation and a
fourth-order Runge-Kutta method for the time evolution. The
spatial domain is chosen to be L = 200c/ωc and we apply
periodic boundary conditions. For illustration purposes, we
consider scattering at a time interface, assuming

ω̃2
c (t ) =

{
ω2

c , t < 0

ω2
c [1 + ε cos(�t )], t � 0

(31)

while the numerical simulation is initiated at t = t0 < 0.

A. Spatially uniform fields

The analysis presented in the previous section reveals
particular interest in the properties of Klein-Gordon media
with a periodic cutoff frequency variation around q = 0, i.e.,
spatially uniform field profiles. At this specific point, as we
have already discussed in Secs. II and III, we have (i) two
stable periodic solutions if � < �c1 or � > �c2 since ω ∈ R,
(ii) one stable periodic solution and one linearly growing if
� = {�c1,�c2} due to the presence of the exceptional point,
and (iii) one growing and one decaying exponentially in time
solution if �c1 < � < �c2 since ω ∈ C. For the aforemen-
tioned cases, the perturbative analysis of Sec. III allows us to
derive exact expressions, in zeroth order of the field u(x, t )
for t � 0. These solutions are uniquely defined by u(x, 0) and
ut (x, 0), where the subscript t denotes the partial derivative
with respect to time.

For t < 0, the solution to Eq. (1) for a spatially uni-
form field (q = 0), of unit amplitude, can be expressed
as u(x, t ) = sin(ωct + φ) and the initial conditions read as
u(x, t0) = sin(ωct0 + φ) and ut (x, t0) = ωc cos(ωct0 + φ). At
t = 0, when the modulation is activated, we have u(x, 0) =
sin φ and ut (x, 0) = ωc cos φ, which allows us to obtain the
perturbative solution in terms of the single phase parameter
φ. Figure 4 illustrates that this approximate solution effec-
tively captures the time evolution of the field in both linearly
and exponentially unstable operating regimes. This is demon-
strated by comparing the perturbative results with numerically
obtained ones.

Hence, due to the accuracy of the perturbation method, we
can estimate the initial conditions in which the unstable eigen-
mode will not be excited, as illustrated in Fig. 4. However, it is
important to note that, in general, the presence of small noise
or perturbations will eventually excite the unstable modes that
will dominate over an extended period of time.
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FIG. 4. Time evolution of a spatially homogeneous solution to
a Klein-Gordon–type equation, initiated at ωct0 = −10, with a cos-
inusoidal modulation of the cutoff frequency activated at t = 0
according to Eq. (31). The relative amplitude of the modulation is
ε = 0.1 and we focus on three characteristic modulation frequencies:
�c1, 1.97ωc, and �c2. The diagrams in the left-hand panel correspond
to a phase parameter φ = π/3 while in the right-hand panel φ is
chosen to prevent excitation of the unstable solutions according
to perturbation theory (φ = 0 for � = �c1, φ ≈ 0.4768 for � =
1.97ωc, and φ = π/2 for � = �c2). The solid and dashed curves
show the numerical and the perturbation theory results, respectively,
highlighting the remarkable agreement between the two.

B. Gaussian wave packets localized around the Dirac point

As detailed in Sec. V A and Fig. 4, stable time evolution
can be achieved if uq=0(0) = 0. Consequently, a wave packet,
initially well localized around q = 0 in the q space, will split
into two counterpropagating components, moving at constant
opposite velocities dω/dq = ±√

εcωc/�c1. This stands in
stark contrast to commonly studied periodically modulated
wave systems, where moving wave packets, with Fourier com-
ponents located in q space near the unstable wave-number
region, undergo amplification upon activation of modulation.

In agreement with the above analysis, in Fig. 5
we show that, indeed, the excitation of the unstable
mode can be avoided. Namely, we consider a suffi-
ciently wide Gaussian initial wave packet, described
by u(x, t0) = exp[−(ωcx/15c)2] sin(ωct0 + φ) with
ut (x, t0) = ωc exp[−(ωcx/15c)2] cos(ωct0 + φ). This specific
wave-packet form implies that its q = 0 Fourier component,
evolving over time, becomes proportional to sin φ when
temporal modulation is initiated at t = 0. Consequently, as
illustrated in Figs. 5(a) and 5(b), for φ = 0, excitation of
the (linearly) unstable mode is prevented and the initially
stationary wave packet splits into two. The strong localization
of the wave packet in q space around q = 0 ensures the
propagation of the two split wave packets with constant
group velocities vg = ±√

εωcc/�c1 corresponding to a

FIG. 5. Evolution of a Gaussian wave packet, described
by u(x, t0) = exp[−(ωcx/15c)2] sin(ωct0 + φ), ut (x, t0 ) = ωc exp
[−(ωcx/15c)2] cos(ωct0 + φ) and launched at ωct0 = −50 in a
Klein-Gordon medium with cosinusoidal modulation of the cutoff
frequency, activated at t = 0 according to Eq. (31). The relative
modulation amplitude is ε = 0.1, the modulation frequency is � =
�c1, and the phase parameter φ = 0 prevents excitation of the un-
stable mode, as illustrated in (a), resulting in two wave packets
propagating in opposite directions with constant velocities dω/dq =
±√

εωcc/�c1, as indicated by the dashed lines. Corresponding snap-
shots of the wave field are presented in (b), calculated numerically
(solid curves) and perturbatively (dashed curves).

dispersionless propagation, as expected from the linear Dirac
dispersion relation.

Contrary to this pattern, Fig. 6 reveals the manifestation
of the unstable mode when φ is set to a nonzero value, here
chosen to be φ = π/2. However, despite the expected uni-
form linear amplitude growth, such behavior is not observed.
As shown in Figs. 6(b) and 6(c), the wave packet adopts a
square shape, with its width expanding at a constant speed
equal to the wave speed at the Dirac point vg = √

εωcc/�c1.
Meanwhile, its amplitude tends to saturate. This unexpected
behavior has also been encountered in the diffraction of
wave packets in complex crystals, where spectral singularities
emerge at the PT -symmetric-breaking point [44,45].

In Figs. 5(b) and 6(c) we also compare numerically ob-
tained field profiles with those calculated using perturbative
expressions, at selected snapshots. Remarkably, excellent
agreement is observed between the two sets of results. To
compute the wave-packet evolution based on our perturbation
theory, we initially calculate the Fourier transforms of u(x, 0)
and ut (x, 0). These transforms provide the necessary condi-
tions to uniquely define the time evolution of each uq(t ).

The dynamics of wave packets described above can
also be elucidated through simple analytical calculations
within the framework of our perturbation theory. In the
context of the sufficiently wide initial wave packet we
consider here, the Fourier coefficients decay rapidly with
respect to q. Moreover, for � = �c1 we have δ = 1 +
2c2q2/(εω2

c ). Therefore, assuming 2c2q2/(εω2
c ) � 1, we get

δ ± √
δ2 − 1 ≈ 1 ± 2c|q|/(

√
εωc). Substituting this expres-

sion into Eq. (21) and considering the general solution uq(t ) =
Aqu1;q(t ) + Bqu2;q(t ), for given initial conditions uq(0) �= 0
and u̇q(0), by straightforward calculation we obtain to lead-
ing order O(1/q), Bq = −Aq = √

εωcuq(0)/(4c|q|) for q �=
0. Similarly, for q = 0, using Eqs. (22) and (23) we get
Bq = −iεπω2

c uq(0)/�2
c1. In accordance with the order of
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FIG. 6. Evolution of a Gaussian wave packet, described
by u(x, t0) = exp[−(ωcx/15c)2] sin(ωct0 + φ), ut (x, t0) =
ωc exp[−(ωcx/15c)2] cos(ωct0 + φ) and launched at ωct0 = −50
in a Klein-Gordon medium with cosinusoidal modulation of
the cutoff frequency, activated at t = 0 according to Eq. (31).
The relative modulation amplitude is ε = 0.1, the modulation
frequency is � = �c1, and the phase parameter φ = π/2 maximally
excites the unstable mode, as illustrated in (a). The dashed lines
indicate the increasing width of the wave packet. Their slope
is dω/dq = ±√

εωcc/�c1 as predicted by the Dirac dispersion
relation. In (b) the numerically obtained time evolution of u(0, t )
(solid curves) is compared with that given by the envelope function
in Eq. (34) for x = 0 (dashed curves), while in (c) corresponding
snapshots of the wave field, calculated either numerically (solid
curves) or perturbatively (dashed curves), are presented.

approximation established in the previous case (q �= 0), we
will focus solely on the linearly growing term in the general
solution here, which dominates the dynamics over extended
periods. This approach yields the following expression for
uq(t ), encompassing both cases q �= 0 and q = 0:

uq(t ) = −
√

εωcuq(0)

c|q| sin(vg|q|t ) sin

(
�c1t

2

)
, (32)

where vg = √
εωcc/�c1 is the wave speed at the Dirac point.

Equation (32) has the form of a rapid oscillation, sin(�c1t/2),
modulated by a slowly varying envelope function. If
uq(0) = 0, instead of Eq. (32) we obtain

uq(t ) = 2u̇q(0)

�c1
cos

(
vg|q|t) sin

(
�c1t

2

)
. (33)

Let us assume a sufficiently wide Gaussian wave
packet of the form u(x, t0) = exp(−x2/σ 2) sin φ with
ut (x, t0) = ωc exp(−x2/σ 2) cos φ, which, for simplicity, is
launched in the modulated Klein-Gordon medium at t0 =
0. In this case we have uq(0) = σ

√
π exp(−σ 2q2/4) sin φ

and u̇q(0) = ωcσ
√

π exp(−σ 2q2/4) cos φ. Substituting these

initial conditions, for φ �= 0 and φ = 0, into Eqs. (32) and
(33), respectively, the inverse Fourier transform u(x, t ) =
(2π )−1

∫ ∞
−∞ dq uq(t ) exp(iqx) can be evaluated analytically

yielding

u(x, t ) = √
πε

σωc

4c
sin φ

[
erf

(
x − vgt

σ

)
− erf

(
x + vgt

σ

)]
× sin

(
�c1t

2

)
(34)

for φ �= 0 and

u(x, t ) = ωc

�c1
[e−(x−vgt )2/σ 2 + e−(x+vgt )2/σ 2

] sin

(
�c1t

2

)
(35)

for φ = 0. The closed-form expressions derived in Eqs. (34)
and (35) elucidate the fundamental characteristics governing
the dynamics of wave packets associated with the Dirac point,
as previously discussed. In particular, when the unstable mode
remains unexcited, Eq. (35) clearly illustrates the emergence
of two Gaussian beams, propagating without dispersion in
opposite directions with constant velocities, equal to the wave
speed at the Dirac point. On the other hand, upon exciting
the unstable mode, the combination of the two error func-
tions in Eq. (34) has the form of a Heaviside step function
∼− 2�(vgt − |x|), albeit with rounded edges. This accurately
accounts for the observed spreading of the wave packet.
Saturation of the wave amplitude is also predicted to the
value [

√
πεσωc/(2c)] sin φ. In particular, at x = 0, Eq. (34)

yields u(0, t ) = −[
√

πεσωc/(2c)] sin φ erf (vgt ) sin(�c1t/2),
in very good agreement with our numerical calculations. As
argued by Longhi [44], such a saturation behavior is basically
due to the fact that the linearly unstable mode is of measure
zero in the continuous wave-number spectrum. Notably, the
explicit linear increase arising from the unstable mode is can-
celed by the combined contributions from the nondegenerate
Fourier components of the wave packet, which individually
give an oscillatory behavior [45].

VI. SUMMARY AND CONCLUSION

In summary, our study presents a comprehensive ex-
ploration of wave dynamics in time-periodic homogeneous
media, governed by a Klein-Gordon–type equation subjected
to temporal modulation of either its cutoff frequency or veloc-
ity constant. Through a combination of numerical simulations
and analytical calculations utilizing perturbation theory, we
have elucidated distinct effects arising from these modula-
tions.

Our findings demonstrate that while variations in velocity
produce relatively minor effects, modulation of the cutoff fre-
quency yields a rich variety of wave phenomena. Specifically,
by appropriately tuning the modulation frequency, we observe
the transformation of the intrinsic Klein-Gordon frequency
gap into wave-number gaps, centered at q = 0 or symmetri-
cally positioned at q > 0 and q < 0. At these transitions, we
reveal the emergence of Dirac dispersion with an exceptional
point of degeneracy at q = 0, manifesting either in real or
imaginary space. In the latter case, we essentially have an
isolated in-gap state.
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This behavior affords effective control over waveform am-
plification or propagation. Notably, we observe that, with
precise adjustment of modulation phase, wave packets lo-
calized around the Dirac point, in the real-space dispersion
case, undergo intriguing transformations. They either split
into counterpropagating wave packets moving at constant
opposite velocities or exhibit spreading at a constant speed
with their amplitude saturating. Furthermore, our study pro-
vides a coherent interpretation of the underlying mechanisms,
supported by simple, analytical closed-form formulas that ac-
curately replicate our results, thus offering valuable physical
insights. Our work may find applications in various experi-
mental setups, including electromagnetic [23,46] and acoustic

waveguides [47], or elastic systems [48,49], where wave
dynamics are governed by Klein-Gordon–type equations.
Such realizations, with the possibility of temporal modulation
of the cutoff frequency, highlight the relevance and applicabil-
ity of our theoretical findings for future advancements in the
emerging field of waves in time-varying media.
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