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We consider a damped oscillator mode that is resonantly driven and is coupled to an arbitrary target system via
the position quadrature operator. For such a composite open quantum system, we develop a numerical method to
compute the reduced density matrix of the target system and the low-order moments of the quadrature operators.
In this method, we solve the evolution equations for quantities related to moments of the quadrature operators,
rather than for the density-matrix elements as in the conventional approach. The application to an optomechanical
setting shows that the new method can compute the correlation functions accurately with a significant reduction
in the computational cost. Since the method does not involve any approximation in its abstract formulation itself,
we investigate the numerical accuracy closely. This study reveals the numerical sensitivity of the new approach
in certain parameter regimes. We find that this issue can be alleviated by using the position basis instead of the

commonly used Fock basis.
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I. INTRODUCTION

Open quantum systems have attracted attention from var-
ious perspectives. One example is in the field of quantum
technology, which has been rapidly growing in recent years.
In quantum technology applications, we typically consider
a situation where a composite system consisting of a target
system and a measurement or control apparatus interacts with
the surrounding environment [1-3]. When simulating such a
composite open quantum system, one of the major difficul-
ties is the dimensionality. For an isolated quantum system,
on the one hand, a state is represented by a vector in the
Hilbert space. A state of an open quantum system, on the
other hand, is represented by a density matrix, which is a
square matrix with the Hilbert-space dimension. Therefore,
the number of degrees of freedom is linear with respect to
the Hilbert-space dimension in simulations of an isolated
quantum system, whereas it is quadratic for an open quantum
system. This results in a much larger, possibly prohibitive
computational workload, especially for a composite system
where the Hilbert-space dimension itself could be large. Var-
ious methods have been proposed for efficient numerical
simulations. For a Lindblad equation, which is a Markovian
master equation ensuring trace preservation and complete
positivity of the time evolution map [4], methods that are
applicable to general settings include the stochastic unraveling
[1,5,6] and the low rank approximation [7].

In this article, we consider a composite open quantum
system consisting of an arbitrary target system and an oscil-
lator mode that serves as a measurement or control apparatus.
For later purposes, we introduce the trace operations over
the total, target, and oscillator systems as tr, trg, and troc,
respectively. When simulating such a system, the oscillator
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degrees of freedom in the total density matrix p are commonly
expanded using the Fock basis, which is the eigenbasis of the
operator a'a with @ and ' the annihilation and creation opera-
tors of the oscillator mode, respectively. Each matrix element
is an operator on the target system space, and its temporal
evolution can be determined by solving the corresponding
master equation. Using its solution, we can obtain the re-
duced density matrix of the target system, which is defined by
trosc(0). The reduced density matrix allows us to evaluate any
physical quantity associated with the target system. We can
also evaluate moments of the position X, = (a + a"/ V2
and momentum Pog. = (a — a')/(v/2i) quadrature operators
as (X2 P ) mn=0,1,2,... with (O) = tr(Op) being the expec-
tation value of an operator O. These quantities characterize the
phase-space distribution of the oscillator state. For instance,
the first-order moments ({Xys.) and (Pyy.)) determine the mean
location in the phase space, and the second-order moments
((stc), (POZSC), and (XoscPosc)) together with the first-order
moments to determine the width of the distribution.

This article presents an alternative approach for simulating
such a system. In this approach, we track the evolution of
quantities related to moments of the quadrature operators,
rather than the density-matrix elements as in the conventional
approach. The idea of using moments for composite open
quantum systems comprising of an oscillator mode has al-
ready been discussed in the literature. For instance, it has
widely been applied to systems consisting solely of oscillator
modes, where the generator is given by polynomials of the
quadrature operators with a total degree not exceeding two.
In such systems, the evolution of moments up to the second-
order is independent of the other higher-order moments [8].
Thus, one can easily obtain the evolution of the former,
which are sufficient to fully characterize the oscillator state
when the initial state is Gaussian. Such cumulant expansion
method can now be systematically implemented on arbitrary
open quantum systems to any desired order using the recently
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developed package QuantumCumulants.jl [9]. The idea based
on moments was also applied to an oscillator-atom system in
Ref. [10]. The authors of that article considered quantities
proportional to {trosc(a’”,o(aT)”)}m,n=071,2,‘__. Note that these
are operators on the target system space, not ¢ numbers, and
that taking their trace over the target system space yields the
moments of the ladder operators. The authors then discussed
that the computations of the reduced density matrix trys.(p),
which corresponds to the element with m = n = 0, can be
efficiently performed by tracking the evolution of those quan-
tities.

Instead of trye (a” p(at)"), we propose a new method based
on a different representation, which provides moments of the
quadrature operators. While the new method (hereafter re-
ferred to as the moment expansion method) can be applied to
general settings, it is especially advantageous as a numerical
method when the oscillator mode is resonantly driven and is
coupled to the target system via the position quadrature Xo.
Such systems have been discussed in optomechanical settings,
including the quantum nondemolition measurement of the
photon intensity [11], the backaction-evading measurement of
the mechanical oscillator displacement [12], observation of
the quantized energy of the mechanical oscillator [13], and
generation of macroscopic-scale entanglement [14,15]. For
such systems, the moment expansion method can facilitate the
computation of the reduced density matrix and the low-order
moments of the quadrature operators. This is because the
number of degrees of freedom in their computation scales lin-
early with respect to the truncated dimension of the oscillator
state space, while it scales quadratically in the conventional
method based on the density matrix.

Although the evolution of the total system (comprising the
target and oscillator) is assumed to be governed by a Marko-
vian Lindblad equation, the dynamics of the target system
alone are generally non-Markovian [16,17]. For simulating
non-Markovian dynamics, the bath oscillator model, which
is a system-bath Hamiltonian model assuming the bath to be
a collection of harmonic oscillators linearly coupled to the
system, is widely used (see, e.g., Ref. [18]). Notably, there is
a mathematical equivalence between a bath oscillator model
and a Lindblad equation with fictitious oscillator modes,
known as the pseudomode theory [19-21]. This equivalence
allows us to view the Lindblad systems under investigation
as a pseudomode description of non-Markovian dynamics.
In addition to the pseudomode theory, various methods
exist for simulating the bath oscillator model, including
non-Markovian quantum state diffusion [22,23], reaction co-
ordinate mapping [24-26], the path integral method [27-29],
and hierarchical equations of motion (HEOM) [30-32]. This
article focuses on HEOM. The HEOM simulations can be
simplified when the bath correlation function is expressed as
a sum of real exponential functions, as utilized in the original
formulation [30] and has since been recognized by numerous
researchers, see, e.g., Refs. [33-35]. Building on the link
established by the pseudomode theory described above, it
is then expected that application of this simplification will
facilitate the simulation of Lindblad systems under similar
conditions. In this article, we see that the simplification is
achievable by representing the total system state using quanti-
ties related to the moments of the quadrature operator. The

connection between HEOM and the pseudomode descrip-
tion was suggested in Ref. [36] and recently established in
Ref. [37], where HEOM was shown to lead to a Lindblad-like
equation after a specific similarity transformation. Conversely,
we derive HEOM starting from a Lindblad equation. While
the transformation introduced in Ref. [37] was abstract, we
explore it based on quadrature operator moments and detail
the simplification procedure from this perspective.

The article is organized as follows. After presenting the
formulation in Sec. II, we provide examples of its practical
relevance upon applying it to the computation of the corre-
lation function in an optomechanical system in Sec. III. We
show that the moment expansion method provides the same
quality of numerical results as the conventional method, but
at a largely reduced computational cost. In addition to the
efficiency compared with the conventional method, we also
investigate the accuracy of the moment expansion method
in Sec. IV. While the intrinsic numerical sensitivity of the
method is observed, we demonstrate that it can be mitigated
by employing the eigenbasis of the position quadrature oper-
ator Xosc. Section V contains some concluding remarks.

II. METHODOLOGY

A composite system studied in this article consists of an ar-
bitrary target system and an oscillator mode. The total density
matrix p follows the master equation

d
P = L(p), (D

where £ is a Liouvillian given by
L(p) =Ls(p) + [ea’ — €*a, p] + «Dlal(p)
—ilVs(a+a"), pl. (2)

Throughout this article, we omit the tensor product symbol
® whenever it is evident and set & = 1. The superoperator
L acts only on the target system operators nontrivially and
describes internal dynamics of the target system. Since the
following formulation holds regardless of the detail of Lg, we
do not specify it until we discuss practical examples in later
sections. The second line describes the internal dynamics of
the oscillator mode. The commutator involving € is a drive
term with € the drive amplitude. The term with « describes
single-photon loss, where « is the loss rate and D[a](p) =
apa’ — {a'a, p}/2 is the dissipator with the anticommuta-
tor {a'a, p} = a’ap + pa’a. The coupling between the target
system and the oscillator mode is described by the third line,
with Vs a Hermitian target system operator.

In Eq. (2), we assume that the oscillator mode is reso-
nantly driven. For this reason, a commutator involving a'a,
which represents the internal energy of the oscillator mode,
is omitted. We also make an assumption on the form of the
interaction Hamiltonian, Vs(a + a'). A general linear cou-
pling form is given by Lga’ + L;a with Lg a target system
operator that is not necessarily Hermitian. In Eq. (2), we
assume that Lg is equal to a Hermitian operator Vs. Evolution
equations for moments can be obtained without these assump-
tions, as detailed in Appendix A. In the main text, however, we
concentrate on the master equation Eq. (2) for which the new
method presented in this article is particularly efficient.
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Before discussing the detail of the moment expansion
method, we review the conventional approach. In this ap-
proach, the density matrix p is expanded in the Fock basis.
Let |n) = [(a*)"/«/ﬂ]m) forn=0,1,2,... denote the Fock
states of the oscillator mode, with |0) being the vacuum state.
The set of Fock states forms a complete set and the total
density matrix p can be expanded as

P= Pun®lm)nl, (3)

m,n=0

where p,,, = (m|p|n) is a target system operator. Inserting
Eq. (3) into Eq. (2) yields

(mlL(p)In)
= Ls(omn) + Vm(els — iVs)pm—1.n
— m+ 1(els = iVs) pus1n
+ V1omn-1(els — iVs)" — N+ 1py py1 (€ls — iVs)
+ /I D0+ Dpptne = 50+ Mo @)

with I being the identity operator on the target system space.
The conventional computational approach consists in integrat-
ing (d/dt)pmn = (m|L(p)|n) with a truncation of the indices
m and n (p,, =0 for m,n > N;). Note that the oscillator
system space after the truncation is N, dimensional since m
and » include zero.

Instead of the density-matrix elements {p,, ,}, we solve the
evolution equation for quantities related to moments of the
quadrature operators in this article. In Ref. [10], the authors
considered operators on the target system space proportional
to trosc(@™p(a’)"). The formulation based on them is pre-
sented in Appendix A. In this work, we instead consider the
following operators on the target system space,

trosc(Tr T2(p))

N (m,n=0,1,2,...), )

Xmn =

with Y defined by
Yi(p) =ap +pa'.

Since we have [T, T_] = 0, the order of Y. in Eq. (5) does
not matter. For later purpose, we also introduce the operator

X= Y X ® |m)nl, 6)

m,n=0

in the total space. Note that the element with m = n =0 of
x 1is the reduced density matrix of the target system yo0 =
trosc(p) = ps. Accordingly, the trace of xg ¢ gives the trace of
the total density matrix, trg(xo,0) = tr(o0). On the other hand,
the trace of the elements {x,, ,} withm 4+ n = 1 and 2 read

trs(x1.0) = V2 (Xose)

trS(XO,l) - \/EKPosc)a
trs(x1,1) = i{({Xoscs Posc})s @)

trs(x20) = (2(X2) - 1)/ V2,
estr0 = (1- 22/ V3.

where (O) = tr(Op) is the expectation value of an operator O.
These relations indicate that trg(x,, ,) (m + n > 0) represent
the moments of the quadrature operators.

It can be shown that {p,, ,} can be constructed by a linear
combination of {,, .} [see Eq. (A9)]. In this sense, the opera-
tor x provides a complete description of the state p.

When p solves the master equation (1), the time evolution
of xm.n 1S given by (see Appendix A for the detail of this
derivation)

d
77 mn = (m|M(x)In), ®)

with
K
<m|M)|n> = ‘CS(Xm,n) - E(m + n)Xm,n

+ (€ + €)Vmypm1.n + (€ = €IVnxmn-1
- i[Vs, vm + IXm-H,n + \/aXm—l,n]
- i{VSv \/EXm,nfl}‘ (9)

This is one of the main results of our work. We make three
remarks on Eq. (9):

(a) The reader might notice that the terms involving € play
different roles in the equations for yx,, , [Eq. (9)] and for p,, ,
[Eq. (4)]. On the one hand, in Eq. (9), the terms involving
€ contain only the elements with lower indices x,,—;, and
Xman—1- On the other hand, in Eq. (4), they contain those
with not only lower indices p,,—1, and p,, ,—1 but also higher
indices P41, and pm ny1. The reason of this difference is
explained in Appendix A following Eq. (A6). It is related
to the fact that, in Eq. (9), the element 1|, comes inside
the commutator (see the third line of Eq. (9). The terms that
involve € and x,,+1., then vanish as €[ls, xu+1.,] = 0.

(b) Note that, in Eq. (9), x/u+1., is the only element having
higher indices than Y, ,. In other words, the evolution of
Xm,n 18 independent of {x, 4} p>0, g=n. This is in stark contrast
with Eq. (4), where py+1.0+1> Pm+1.n, and p, 41 appear. This
difference can be understood as follows: First, the term with
Pm+1.n+1 10 Eq. (4) results from the dissipator «D[a]. This
dissipator is diagonalized after the transformation from p to
x [see Eq. (A3)]. For this reason, the term involving x in
Eq. (9) contains only x,, ,. Second, py,+1., and oy, 41 result
from the terms involving € and the interaction term. The terms
involving € are not coupled to the higher indices in Eq. (9) for
the reason discussed in the above remark (a). For the terms
involving Vg, we note from Eqgs. (7) that the left and right
indices of x,,, are associated with the position quadrature
and momentum quadrature, respectively. Since the interac-
tion Hamiltonian, Vs(a + a), depends only on the position
quadrature, it does not contribute to raising the right index that
is associated with the momentum quadrature. This property in
the representation of y is advantageous in numerical simu-
lations, as explained below. We note that the representation
proposed in Ref. [10] [trosc(@” p(a™)")] does not have this
property [see Eq. (A4) and the subsequent discussion].

(c) The evolution equation Eq. (8) can be solved numeri-
cally in a similar way to the equation Eq. (4) for p,, ,. The time
evolution of the reduced density matrix can then be evaluated
by extracting the element with m = n = 0, xg -

062228-3



MASAAKI TOKIEDA

PHYSICAL REVIEW A 109, 062228 (2024)

In situations where we seek to extract the evolution of the
target quantum system, what we need is the reduced den-
sity matrix pg, not the total density matrix p. The solution
procedure for Eq. (8) is then advantageous for the following
reasons: By setting n = 0 in Eq. (9) we obtain

d K
77 Xmo = Ls(Xm0) — 5MXm.0 + 2u\/mxm—1,0

— i[Vs, Vm + 1xmi1,0 + v/Mxm—1.0], (10)

with u = Re(e) where Re denotes the real part. This equa-
tion indicates that the evolution of x, ¢ is independent of
{Xm.ntn>1 (m fixed). Since the reduced density matrix, ps =
X0,0, 18 included in the set {x,;.0}m>0, the evolution of pg can
be evaluated by solving Eq. (10). Using the same truncation
level Ny in the conventional approach {p, ,}m.»>0 and in the
new approach {x,,,0}m>0, the number of degrees of freedom in
the latter simulation is reduced by a factor M. This reduction
enables the computation of pg more quickly and with less
memory, especially when N, is large. We discuss numerical
performance in more detail in later sections.

We can rewrite Eq. (10) in a more compact form by intro-
ducing the rectangular matrix,

o0
X*=" Xmo ® m), (1)

m=0

the evolution of which is governed by

d rec __ A, rec
T = M(x™), (12)

with

v J rec K + re f ., rec
MO = Ls(*) = Fa'ax"™ +2ud'x

— i[Vs, (a+a")x"™]. (13)

rec

When solving this equation, the initial condition of x "¢ can be
determined from that of p using Eq. (5). The reduced density
matrix can be evaluated by extracting the zeroth element of
the solution,

Ps = Xo,0 = (0] x". (14)

We emphasize that no approximation was made in the
derivation of Eq. (12) from Eq. (1). In addition to this, several
remarks are in order:

(i) Compared with trosc (@™ p(a™)"), the representation in
Ref. [10], the primary advantage of the new representation x
emerges in the absence of the term involving a'a in the oscil-
lator Hamiltonian and with the Hermitian coupling (Ls = L;ﬂ).
As elucidated underneath Eq. (A6), these are the assumptions
essential for the decoupling discussed in remark (b). These
assumptions result in the correlation function of the oscillator
mode being represented by a real exponential function. This
aligns with the scenario where the HEOM simulations are
simplified as discussed in the introduction.

(i1) In the derivation of Eq. (10), we set n = 0 and focused
only on the reduced density matrix pg, which does not
explicitly contain information of the oscillator state. Here we
note that the use of Eq. (9) is still advantageous when low-
order moments of the quadrature operators are also needed.
As can be inferred from Egs. (7), moments at order N can in

general be obtained from the set { ;. }m+n=n. We discussed
in the remark (b) that the evolution of Y, , depends on
{Xp.q}p=0, 0<g<n> Ut not on {x, 4} p>0, 4>n. Accordingly, given
a sufficiently large truncation level for the left index, one only
needs to truncate the right index n at n =N+ 1 (., =0
for n > N + 1) to extract all moments up to order N. In this
simulation, the number of degrees of freedom increases only
by a factor N + 1 compared with solving Eq. (12) and, for
small N (low-order moments), the computational cost does
not change significantly. By a similar argument, we can also
evaluate the correlation function of the quadrature operators
by accounting for {x,.»}m>0.n=0.1.2 [see discussion following
Eq. (22)]. We demonstrate such a computation in Sec. III.

(iii)) The decoupling mentioned in remark (b) is a property
of the generator and independent of the initial conditions.
Therefore, Eq. (12) is applicable to any initial state, including
non-Gaussian oscillator states and correlated states. For an
initial state p with @™ p =0 (Npax > 1), Eq. (5) implies
that x,,0 =0 for m > 2Npn, — 1. This suggests that the x
representation generally requires a larger truncation level to
describe an initial state. However, as far as the value of N«
is not excessively large, we can still expect the computational
advantage.

(iv) The extension to several damped oscillator modes is
straightforward.

III. COMPUTATION OF THE CORRELATION FUNCTION
IN AN OPTOMECHANICAL SETTING

In this section, we apply the moment expansion method
formulated in Sec. II to the numerical computation of the
correlation function. The purpose of this section is twofold.
One is to provide a way to calculate the correlation function
within the new framework. We rewrite the quantum regres-
sion formula using the new representation . The other is to
demonstrate the efficiency of the new method. By performing
numerical tests, we show that the moment expansion method
yields results consistent with the conventional method at a
lower computational cost.

We consider an optomechanical setting [38]. The system
is composed of a photon mode inside a cavity and a me-
chanical oscillator, the annihilation operators of which are
denoted by a. and b,,, respectively. Here the subscripts ¢ for
the cavity and m for the mechanical oscillator are used to dif-
ferentiate these operators from those introduced later after the
linearization. These two oscillator modes are coupled via the
radiation pressure force. Here we treat the mechanical oscil-
lator as the target system. We begin with the following master
equation:

d .
Ep = _Z[Hom + Hdrive(t)a 10] + K’D[ac](p)
+ v (1 + na)DIbnl(p) + ynaDIb}1(p). (15
The first line of Eq. (15) describes the unitary dynamics,
where H,p, is the optomechanical Hamiltonian given by [38]

Hom = wc(xm)azac + wmbjnbma

with o, being the frequency of the relevant photon mode
inside a cavity, w,, the frequency of the mechanical oscillator,
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and x,, the displacement of the mechanical oscillator. In what
follows, we denote x,, = X;pf (b, + bfn) with the amplitude
of the zero-point fluctuation x,pr. The photon frequency w,
depends on the displacement x,, of the mechanical oscillator.
Most optomechanical settings deal with small displacements.
For this reason, it is common to expand w.(x,) around
X =0,

dw,
wc(Xm) =@ + Xzpf (b + bjn)
dx

2
X, e d“w,.
zpf c N2
2 by + b e 16
S (b + B + (16)
with w, = w.(x,, = 0), and to truncate at a low order. Taking
into account only the first-order term, the optomechanical
Hamiltonian reads

Hyn = a)cazac + wmbjnbm + gOaIac(bm + bj;z)’

with g0 = xpr(dwe/dxy,)x,—0 being the bare coupling
strength. In the first line of Eq. (15), Hgive(t) represents
the coherent drive to the cavity and is given by
Hurive(t) = i(aqale " — atace®’) with o, the drive
amplitude and w, the drive frequency. The second line of
Eq. (15) describes the dissipative dynamics, where x and y
are the loss rates of the photon and mechanical oscillator,
respectively, and ny, is the average number of thermal quanta
associated with the mechanical oscillator.

The right-hand side of Eq. (15) depends explicitly on
time due to the drive term Hgive(?). This time depen-
dence can be removed by moving to the frame rotating
with the drive frequency, namely, by considering p; =
exp(iogtala.)p exp(—iwgtala,),

d
7P = —i[H, pa] + «Dlacl(pq)

+ ¥ (1 + nw)Dlbul(pa) + ynaDIBL1(pa),  (17)
where we introduce
H =—Adla. + w,b) by,
— goalac(bw + b)) + i(agal — ajac),

with the cavity detuning A = w; — ..

The Heisenberg equations of motion for a, and b,, de-
rived from Eq. (17) are nonlinear due to the coupling term
aZac(bm + bfn). Common experimental settings consist of a
strong drive oy and a weak bare coupling go. In such cases,
the master equation (17) can be linearized approximately [38].
The linearization is performed by dividing the annihilation
operators (a., b,,) into the classical steady state values (&,
B) and the fluctuations around them (a, b) as a. =& +a
and b,, = B + b. Note that ¢ and b are ladder operators; that
is, they satisfy [a,a’] =1 and [b, b'] = 1. Without loss of
generality, we assume that & is real. In terms of a and b, the
coupling Hamiltonian reads go[&(a + a’) + atal(b + b"). For
a weak bare coupling go, the leading order of & is proportional
to ay. Then, for a strong drive «, the term ata is smaller
than the term @(a + a') by a factor |&| and can be neglected
approximately. These considerations lead to the linearized

master equation,

d
7P = —i[Hiin, pa] + «Dlal(pa)

+ y(1 + np)DIbl(pa) + ynu Db 1(pa).  (18)
with the linearized Hamiltonian,
Hiin = —ANa'a+ w,b'b+ gla+a )b+ b), (19)

with A’ = A +2goRe(B) and g = go@. In the following,
we assume that w, is set so that A" = 0. Note that Eq. (18)
has the form of Eq. (2) with Vg =g(b+b"), Ls(p) =
—iwn[b'b, pl + ¥ (1 + ny)D[bl(p) + yna Db 1(p),  and
e =0.

In Eq. (15), we have used the master-equation approach to
take into account the dissipative dynamics. Another approach,
which is often employed when studying optomechanical sys-
tems [38], is the quantum Langevin equations [2]. In the
present context, they are the equations of motion for a. and
b, including the operator-valued white noise associated with
environment degrees of freedom. The master equation of the
form Eq. (15) can be derived after tracing out environment de-
grees of freedom [2]. For the linearized Hamiltonian Eq. (19),
the quantum Langevin equations are linear with respect to a.
and b, and can be solved analytically. When a nonlinear term
is present, on the other hand, solving the quantum Langevin
equations is not straightforward, even numerically. In such
cases, the master-equation approach provides a more powerful
tool. We consider a nonlinear coupling below [see discussions
following Eq. (23)].

For numerical tests, we compute the correlation function
of the quadrature operators of the photon and the mechani-
cal oscillator. In optomechanical settings, it can be extracted
experimentally using homodyne detection. The correlation
function can be used for various purposes. For instance, the
power spectrum, which is given by the Fourier transform of
the correlation function, can reveal detail of the coupling [39]
as will be demonstrated in a simple setting below (see Fig. 2
and discussions in the text).

Let us recall how to calculate the correlation function in
the conventional method. The discussions in this and the
next paragraphs are not restricted to optomechanical systems,
and we consider general settings. The correlation function is
defined including environment degrees of freedom. In this dis-
cussion, the target plus oscillator system is referred to as the
total system following the previous terminology, and the total
system plus environment is referred to as the universe. The
correlation function of a total system operator O is defined by

Co(t) = tryny ( olHumt A Q= iHumt A Op:;" )7

where tr,,, is the trace over the universe, Hy,, is a Hamilto-
nian of the universe, pg" is an equilibrium density operator
on the universe satisfying [p:{l“’, H,w]1 =0, and AO =0 —
trum,(Op;‘c‘l‘V). By inserting the definition of AO, we obtain

Co(t) = tryny (0671'1'1”,“1 (Opunv )eiHuan) _ [trunv (Opunv )]2

eq eq

With the Markov approximation, we can use the quantum
regression formula [2] to calculate the correlation function
from the solution p to a master equation. For a total system
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operator O, it reads
Co(t) = tr(0e (Opyy)) — [tr(Ops)%, (20)

where p;; is a steady-state solution to the master equation. The
first term on the right-hand side can be evaluated as follows:
For an initial state p, we first solve the master equation (1)
until the solution reaches a steady state, pg, = lim,_, o Lt (p).
With py, we next solve the master equation with the initial
condition Opg, up to time ¢. This gives e~ (Opy;) in the above
formula. Then the expectation value of O with respect to the
solution gives the first term. Once the correlation function is
obtained, we can evaluate the power spectrum So(w) by the
Fourier transform of it as

So(w) = Re / ~ dte Co(1). 21

0

We next rewrite the formula (20) using the new represen-
tation y. Detailed calculations are presented in Appendix A,
and here we summarize the results. When an operator O acts
only on the target system space, the correlation function reads
[see Eq. (A10)]

Co(t) = trs(0(0]e™ (04)10)) — [trs(O(0] x:s|ONT,

where x,, is a steady-state solution to Eq. (8). Note that the
state of the oscillator mode is not affected by the operation
of O. In addition, we need only the element with m =n =
0 of x eventually. Therefore, by the same argument as that
underneath Eq. (10), the correlation function can be evaluated
with the rectangular matrix and the corresponding generator
as
Co(t) = trg(0(0|e™M! (OX;fC)) - [tr5(0(0|x7°°)]2.

ANy

When O is the momentum quadrature operator Po. of the
photon mode, on the other hand, the correlation function reads
[see Eq. (A11)]

i i
CPusc ()= ﬁtrs (O|er (XssPosc - ﬁaTXss) [1)

+ 3l 0l 1) 22)
Since P, is operated from the right side and the m = 0, n =
1 element is extracted at the end, the calculation of Cp,(7)
requires only the elements { ), n}m>01=0.1,2-

To demonstrate the performance of this approach, we com-
pute the correlation functions using the conventional method
(p) and the moment expansion method (x). Denoting the
position quadrature operator of the mechanical oscillator by
Xnee = (b+ b')/+/2, we compute Cx__ () and Cp,_(r). We
use the Fock bases both for the photon and the mechanical
oscillator states and denote their truncation levels by Ny
and Ny, respectively. We recall three points regarding the
truncation. First, the truncation level is said to be N,,. when
the Fock states {|n)}o<n<n,.—1 are taken into account. Second,
in the moment expansion method, we track the evolution of
the elements { ) nto<m<Nye—1,0<n<n,—1 With N, =1 for the
computation of Cx_, (¢) and N, = 3 for that of Cp_ (¢). Third,
the number of degrees of freedom reads N2 N2.. for p and
N(,SCN,N%ec for y, and the latter is smaller than the former by
a factor Nys./N,. When computing the steady state, the initial

condition is assumed to be

—Bwnb’b

pt =0)= ® 100,

trg (e—ﬂw,,,hfb)
which leads to

e—ﬁa)mb%h

t=0)= ————
x( ) trs(e—Ponb 9y

® 0X0l,

where the inverse temperature of the environment 8 is de-
termined from efor =1 + nl;l with ng, in Eq. (18). In our
simulations, we set ng = 1. In the unit of time such that
k =1, we arbitrarily set w,, =1, y =0.1, and g = 0.25.
For numerical integration of the master equations, we em-
ploy the fourth-order Runge-Kutta method with the time step
At = 0.02. The steady states are obtained by pg = ¢~ (p)
and x,, = e (x) with the above initial conditions. Through
numerical experiments, we found that a value of ¢, =50
suffices to achieve a steady state, and this value is employed
in subsequent simulations. All the computations in this article
are performed using Python on a MacBook Air (M1, 2020)
equipped with Apple M1 chip, and double precision floating-
point numbers are employed unless specified.

2.0% (a) ---- ReCx,..(t) ()

¢ ReCx,.(t) (x) o

— ReCp,(t) (p)
ReCp,(t) (x)

1.5

Correlation function

~-1.51
0 10 20 30 40 50
t
12001 (b) ﬁ --== Sx..(w) (p)
FEpY *  Sxpe(w) (X)
10001 R — Sp.(w) (p)
+ ¢
£ 800 R e  Sp . (w)(x)
g i
|8} 1
o 6001 .
& A
400 F;
200
0
0.6 0.8 1.0 12 1.4

w

FIG. 1. Correlation functions and power spectra of Xy, (dashed
blue lines and blue diamonds) and P, (solid red lines and red
circles) computed with the conventional method (o) and the moment
expansion method (). The time ¢, the frequency w, and the spectrum
are shown in the unit of ¥ = 1. (a) The real part of the correlation
functions defined by Eq. (20). (b) The power spectrum defined by
Eq. (21).
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TABLE 1. Computational times for the 100 time steps in the
different methods. In parentheses, IV,J and I\7X are the employed trun-
cation levels in the computation, where N, = (Noge = 12, Npee = 30)
and N, = (3, 24).

pm,n(Np) Xm‘O(Nx) Xm,néZ(N)() Xm,ng2(ﬁp)
Time (s) 2.97 3.58x 1072 1.04x 107"  6.60 x 107!

The truncation levels Ny and Ny are determined fol-
lowing Appendix B. With N = (Nygc, Nmec), We obtained as
a result ]Vp = (12, 30) in the conventional method (p) and
]VX = (3, 24) in the moment expansion method (x). The re-
sult Nosc = 3 for x is expected because we now consider the
moments equal to or lower than the second-order and their
evolution is independent of the higher-order moments in the
linearized master equation Eq. (18). The smaller value of
Nmec in the moment expansion method would have no special
significance. In the second application presented below, the
two methods yield the same value of Nyc.

Figure 1(a) shows the resulting correlation functions.
We see that the results of the moment expansion method,
shown by the blue diamonds and red circles, agree with
those of the conventional method, shown by the dashed blue
and solid red lines (a quantitative comparison will be made
below using power spectrum results). As shown in the first
and second columns of Table I, the computation of Cy, . (t)
with the moment expansion method can be performed about
82 times faster than with the conventional method. The
computation of Cp () can also be sped up by a factor 28
(see the third column of Table I). We stress that the faster
computation is not only due to the smaller truncation levels.
The last column of Table I shows the computational time
for the moment expansion method with the same truncation
levels as the conventional method. We achieve a speedup
by a factor or four, highlighting the efficiency of the new
method. This speedup factor can be attributed to the reduction
in the number of degrees of freedom in the simulation of
Xx- As previously mentioned, this reduction is quantified by
Nosc /N, = 12/3 = 4 in the current setting.

We also compute the power spectrum from the correlation
function. The time integral in Eq. (21) is performed up to
t = 150 at which the amplitude of the correlation functions
becomes in the order of 10~*. The result is shown in Fig. 1(b).
Even though the power spectrum is sensitive to a small change
in the correlation function, we see agreement between the two
methods. The relative errors, [S(w) — S§(w)|/1SH(w)| with
Sg(a)) [Sé(a))] being the spectrum computed using p (x), in
the region shown in Fig. 1(b) are on the order of 107%.

In the above simulations, the Liouvillian is quadratic in the
ladder operators, a and b, and is analytically solvable. As a
more nontrivial example, let us take into account the second-
order term in the expansion formula Eq. (16) for w.(x,,).
Similarly to the above case, we displace the annihilation op-
erators a. and b,, and neglect the interaction term involving
a’a. Following Ref. [13], we consider the following master
equation:

%pd = —ilw,b'b+ (a+ a" Vs, pa] + kDlal(pa)
+y (1 + nw)DIbl(pa) + ynuDIb'1(pa),

with
Vs = gin(b + b") + gquaa(2b'b + b* + (b")?). (23)

In most optomechanical settings, the higher-order terms are
negligible. In the so-called membrane-in-the-middle system
where a dielectric membrane is placed inside the cavity, on
the other hand, the strength of the higher-order terms can be
controlled by changing the location of the membrane [40,41].
Inclusion of the second-order term attracts attention for the
following reason: When a membrane is located at a node of
the oscillator mode, one can realize a situation such that gj;, =
0 and gquaa # 0 in Eq. (23). In this case, after eliminating the
terms that involve b*> and (b")? in Eq. (23) using the rotating
wave approximation, the Hamiltonian part commutes with the
number operator b'b. Then, the act of measuring the number
operator b'b, which is related to the membrane’s mechanical
energy, does not disturb the quantum state of the membrane
[3]. In other words, such a coupling enables a quantum nonde-
molition measurement of the membrane’s mechanical energy,
which paves the way to observe the quantized energy of a
macroscopic object.

We keep both the gji, and gqu.a terms in Eq. (23) as
in Ref. [13] and compute Cy,  (¢) and Cp,(¢). To compare
with the previous simulation (Fig. 1), we set gj;, = 0.25 and
8quad = &iin/10. The other parameters remain identical. The

20% (@) ---- ReCx,.(t) () —— ReCp,(t) ()

1514 ¢ ReCx,. (0 (x) e ReCp(0)(x)
s b A
] &
[}
C
=
C
S
©
g
S
(@]

0 10 20 30 40 50
t
12004 (b) ‘ === Sxpe (W) (0) — Sp,.(w) (p)
*oe Sedw *  Sp.(w) (0
1000 IS
Q ' — Sp.(w) (p)

E 800 t4os{ ™ * See(w) ()
2 ! e N e Sp.. @) (i)
@ 600 - s t 4]
o *
g {

400

2001 - ' —

1.8 2.0 2.2 24 2.6

0 . . ; : -
0.50 0.75 1.00 1.25 150 1.75 2.00 225 2.50

w

FIG. 2. Numerical results analogous to those of Fig. 1 in the case
of the quadratic interaction given by Eq. (23). The inset of the panel
(b) is a zoom for an argument between w = 1.6 and w = 2.6, and the
dotted black line shows the result of Sp(w) without the quadratic
coupling [the solid red line in Fig. 1(b)].
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TABLE II. Computational times for the 100 time steps in the dif-
ferent methods. The employed truncation levels in each computation
are N, = (Nosc = 36, Nypee = 30) and N, = (6, 30).

pm.n(]vp) Xm.()(]vx) Xm,néZ(N)() Xm,néZ(Np)
Time (s) 27.4 1.06 x 107" 3.24 x 107! 1.98

truncation levels are determined as in the previous simulation
and read ]Vp = (36, 30) in the conventional method and N, =
(6, 30) in the moment expansion method. Figure 2(a) shows
the resulting correlation functions. We see that the moment
expansion method reproduces the result of the conventional
method. The computational times are listed in Table II. In
this simulation, the computation of Cp,_ (¢) with the moment
expansion method can be performed about 84 times faster than
with the conventional method (see the first and third columns
of Table II). Even when ]Vp is used in the moment expansion
method (the last column of Table II), we gain a speedup by a
factor of 13. This factor is consistent with the reduced number
of degrees of freedom in the simulation of x, which reads
Nosc/N, = 36/3 = 12 in the current setting. We also compute
the power spectrum as in the previous simulation. The results
are shown in Fig. 2(b), the inset of which shows a zoom
around @ = 2. Due to the gquaq term, Sp, . (w) exhibits a second
peak at w = 2, which is not present when gquag = 0 as can be
seen from the dotted black line in the figure. While the height
of the peak is about 100 times smaller than the main peak at
w = 1, the moment expansion method succeeds in capturing
such fine structure. In fact, the relative errors in the shown
region are on the order of 1074,

So far, we have assumed that the oscillator is initially
in the ground state, which is a Gaussian state. As noted in
remark (iii) of Sec. II, the moment expansion method is ap-
plicable to any initial state. We conducted similar numerical
tests with non-Gaussian initial oscillator states proportional to
(1 —6)|0) +48]1) (0 < § < 1) and obtained similar results to
the above, confirming the advantage of the moment expansion
method.

IV. ANALYSIS OF NUMERICAL ACCURACY

In this section, we further investigate numerical accuracy
of the moment expansion method. As emphasized in Sec. II,
the formulation of the moment expansion method itself is
exact. Numerical simulations, on the other hand, require ap-
proximations in representing real numbers, integrating the
differential equation, and describing the infinite-dimensional
oscillator state. We discuss how those approximations affect
numerical accuracy. In the previous section, we discussed the
numerical accuracy of the moment expansion method by com-
paring its results with those obtained from the conventional
method, which also involve numerical errors. In this section,
we delve deeper into the accuracy of the new method by
comparing it with an exact solution.

Using an exactly solvable system, we evaluate errors in the
reduced density-matrix computation. As a result, it is found in
Sec. IV A that, while errors can be reduced to the order of ma-
chine precision with a sufficiently large truncation level when

the parameter u in Eq. (10) is zero, simulations with nonzero
u exhibit a plateau in numerical accuracy. In Sec. IVB, we
show that such a plateau problem can be mitigated by using
the position basis.

A. Plateau in numerical accuracy

In this section, we consider a target two-level system
with L£g = 0 for the following reasons. To evaluate numerical
errors, we need a system that is exactly solvable. The lin-
earized master equation Eq. (18) in the previous section can
be solved exactly. However, truncation of a state space is
required not only for the photon mode (the oscillator sys-
tem), but also for the mechanical oscillator mode (the target
system). To avoid errors due to truncation in the target sys-
tem itself, we consider a finite-dimensional target system. If
we assume Lg = 0, the exact solution is available for any
finite-dimensional target systems, as expected because Vg is
the only system operator in the Lindbladian in this case (see
Appendix C for more details). Among finite-dimensional sys-
tems, the simplest one is a two-level system. Thus, a target
two-level system is suitable for analysis of the numerical
accuracy.

Let Vs = go, with g the coupling constant and o; (i =
X, y, ) the Pauli matrices. We assume that the oscillator mode
is initially in the vacuum state as x™°(+ = 0) = ps(0) ® |0)
with pg(0) the initial state of the two-level system. The exact
time evolution of the reduced density matrix then reads [see
Eq. (C4)]

Pty = 3 I oy a ps (0)| B (24)

a,f=%1

where |£1) = (1/«/5)(:&1 )T, with T the matrix trans-
pose, is the eigenstates of o, and z, g = 4(a — B)[(o — B) +
2iu]/k>.

Throughout this section, we present the results starting
with the initial two-level state pg(0) as

ps(0) = L — o), (25)

with I, the two-dimensional identity matrix The dependence
of numerical accuracy on pg(0) will be discussed in each
numerical test. To obtain the time evolution of the reduced
density matrix, we integrate the evolution equation Eq. (12)
for x™ and then extract its zeroth element [see Eq. (14)]. To
avoid the discretization error of time ¢, we directly compute
x"(t) = exp(Mt)[x™(t = 0)]. For this computation, we
vectorize the rectangular matrix as x "¢ = |target, )(target;| ®
losc) — X ¢ = |targety) @ |target;) @ |osc) and compute
the matrix exponentiation of the generator M using the
SciPy function scipy.linalg.expm. This integration method
was avoided in the previous section because the number
of degrees of freedom in the conventional method was so
large that the matrix exponentiation was unfeasible within
our computational resource. To estimate the numerical er-

rors in the computed reduced density matrix pg ", we

use the Frobenius norm [|pg"" — p&|p = {trs[(pg" " —
pgxact)T(p§0mP _ p§xact)]}l/2.

In the time unit such that ¥k = 1, we vary the values
of the parameters u and g. The resulting numerical errors

obtained with different truncation levels N, are shown in
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FIG. 3. Dependence of the numerical errors on the truncation level N, and the values of the parameters u and g (we fix x = 1). The time ¢
is shown in the unit of k = 1. The figures in the same column have the same value of g while the figures in the same row share the same value

of u. The initial two-level state is given by Eq. (25).

Fig. 3. In Figs. 3(a) and 3(b) (the first row), we set u = 0.
In these cases, we see that sufficiently large truncation levels
[Ny = 40 in Fig. 3(a) and N, = 100 in Fig. 3(b)] allow us to
reach the numerical errors in the order of machine precision
(1071°-10~'4). The same behavior is confirmed for larger
values of g (we checked up to g = 20).

In Figs. 3(c) and 3(d) (the second row), we set u = 2. In
contrast with the cases with u = 0, we see lower bounds on
the numerical error in the long-time domain. In Fig. 3(c),
the numerical errors in the long-time domain cannot be re-
duced to less than 10710, In Fig. 3(d), pg”"™" with the smallest
truncation level N, = 40 (the dotted green line) diverges in
the long-time domain. In this case, we detected the positivity
violation of pg°"", while its trace is preserved. Although such
instability can be resolved by increasing the truncation level,
the numerical error cannot be less than 107> in the long-
time domain. When the value of u is further increased, the
divergence of pg”"" is observed even with a large truncation
level. For instance, when (u, g) = (4,5), we observed the
divergence even with N, = 2000. As in the above case, this
divergence occurs in conjunction with the positivity violation
of o™,

To summarize, when u is nonzero, the numerical accuracy
in the moment expansion method plateaus above a truncation

level. In Appendix D 1, we examine the plateau problem in
detail. We find that the plateau remains even with much larger
truncation levels than the levels employed in Figs. 3(c) and
3(d). We also find that the plateau appears independent of the
initial two-level state pg(0).

To make the moment expansion method applicable to the
largest possible set of parameter regimes, it is crucial to tackle
the plateau observed in numerical accuracy. Our investiga-
tions have identified two ways to mitigate this challenge.
The first is to increase machine precision in simulations.
In Appendix D 2, we show a reduction in numerical errors in
the long-time domain when employing the extended precision
floating-point number, compared with the double precision
floating-point number as Fig. 3. This indicates that the errors
in the long-time domain stem from roundoff errors. Such
errors are peculiar to the cases where the plateau exists; we
confirmed that the difference between the double and ex-
tended precision results is insignificant (in the order of 10~15)
for both the conventional method and the moment expansion
method with u = 0, neither of which exhibits the plateau. The
peculiarity of the term involving u in Eq. (13) is investigated
in Appendix E. This analysis reveals an inherent numerical
sensitivity that has not been recognized in related research.
The other way to deal with the plateau is to use the eigenbasis
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of the position quadrature operator. This is more practical than
increasing machine precision and is discussed in Sec. IV B.

B. Eigenbasis of the position quadrature operator

So far, we have used the Fock basis to represent the oscil-
lator state. Here, we consider the eigenbasis of the position
quadrature operator Xos. = (a +a')/ /2 instead. The use of
such basis (hereafter referred to as the position basis) is mo-
tivated by the work in Ref. [42], where the authors studied
the strong-coupling regime using HEOM and found that the
position basis allowed for more stable and efficient results
than the Fock basis.

The position basis vectors {|x)}_co<r<oo Where Xosc|x) =
x|x) satisfies the orthonormality (x|x') = 8(x —x’) with
the Dirac § function §(x) and the completeness relation
ffooo dx|x)x| = Iy With I, being the identity operator on the
oscillator system space. Accordingly, x™ can be expanded as

o0

X" 2/ dxxx ® |x),
—0oQ0

with x, = (x| x"™ being a target system operator. In this rep-

resentation, the reduced density matrix reads

" [e'e} e—x2/2
0|x™ = dX——Xx- 26
(Olx [ X (26)
The ladder operators a and a' read in the position basis as a —
(x4 9,)/+/2 and a' — (x — 8,)/+/2 with 9, the derivative
operator with respect to x. Therefore, the evolution equation of
X 18 given by (3/0t) x, = (x| M (x"°) with

(IMGE) = L5000 + 5 (0 =2 + 1) s

+ V2u(x — 3 — iv2x[Vs, 5ol (27)

For initial condition of x,, the vacuum initial state x"(r =
0) = ps(0) ® |0) corresponds to

e—x2/2
Xx = WPS(O)'

In numerical simulations, the position space needs
to be confined in a finite-size bOX Xmin < X < Xmax and
be discretized with the grid size Ax as x, = Xmin +
mAx im=0,1,...,N, — 1), where N, = (Xmax — Xmin)/AX
is the dimension of the oscillator system space in sim-
ulations and corresponds to N, in the Fock basis. The
evolution equation is integrated by directly computing
X"(t) = exp(Mt)[x"(t = 0)] as in Fig. 3. For the nu-
merical differentiations in Eq. (27), we use the 13-point

6

formulas, namely’ axXx = Zk=1 Cl,k(Xx+kAx - Xx—kAx) and
21 = Yop_1 2k (Xurkax + Xxkax — 2xx) Where the coef-
ficients {c;;} are determined from the Taylor series of
{Xx+kattk=—6.—s5.....5.6. The reduced density matrix is computed
as pg"™ = YV Ax[exp(—x2 /2) /71, [see Eq. (26)].
We confirmed that the numerical error remains the same when
different integration methods, such as the compound Simp-
son’s rule, are used in the computation of the reduced density
matrix.

For the parameter values (u, g) = (2, 5), the resulting nu-
merical errors are shown in Fig. 4. It shows that the numerical

100

=xs Fock:Ng=120

= = Position: N, =100 (—-10=x<10,Ax=0.2)
w1074+ = Position: N, =200 (-10=x<10,Ax=0.1)
5 T T I
;g (U,g)=(2,5) ..‘..-o( * s few
| 10784 Lo
£ r
SOL/: ] \ ':’
21024V

1.
,
1016 T .
0 2 4 6 8 10
t

FIG. 4. Comparison of numerical errors: the position basis
(dashed blue and solid red lines) versus the Fock basis (the dotted
green line). The time ¢ is shown in units of k = 1.

errors in the long-time domain are smaller than the plateaued
results in the Fock basis. By performing numerical tests for
various other initial states, it turned out that the result be-
haves as Fig. 4 whenever trg(ps(0)o,) = 0 or, equivalently,
whenever the asymptotic state is given by /2. In such cases,
the errors in the long-time domain are reduced to the order of
10'°, While the error grows in the short time domain, better
accuracy can be achieved by decreasing Ax. The other cases
in which trg(ps(0)o,) # 0 are explored in Appendix D 3. In
these cases, we could also reduce the numerical errors below
the plateau value.

In the Fock basis, we mentioned in Sec. IV A that pg"""
diverges with larger values of u. This could not be resolved
by increasing the truncation level N;. In the position basis,
on the other hand, we were able to obtain stable results with
enlarged position space and small Ax. For instance, when
(u, g) = (4,5), the errors att = 10 can be reduced to the order
of 1071% with N, = 2000 (=20 < x < 20, dx = 0.02), while
the result with the Fock basis blows up even with N, = 2000.

V. CONCLUDING REMARKS

For the Liouvillian given by Eq. (2), we introduced the
moment expansion method, which is based on moments of the
quadrature operators [see Egs. (5) and (7)]. This new method
allows us to reduce the cost in computing the reduced density
matrix and the low-order moments of the quadrature oper-
ators, including the correlation function, compared with the
conventional method. The reduction of the numerical cost is
expected because the degrees of freedom associated with the
momentum quadrature are decoupled to those of the position
quadrature [see the remark (b) in Sec. II]. Numerical tests
were performed to discuss the numerical accuracy of the mo-
ment expansion method. Detailed studies in Sec. IV revealed
that the accuracy in the long-time domain behaves differently
depending on the parameter u (real part of the drive amplitude
€). When u = 0, on the one hand, the errors can be reduced
to the order of machine precision with a sufficiently large
truncation level. A master equation for an optomechanical
setting belongs to this class when the linearization approx-
imation is made on the cavity mode, as shown in Sec. III.
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The computation of the correlation functions in this system
showed that the moment expansion method could reproduce
the results of the conventional method at a less computational
cost. When u # 0, on the other hand, simulations with the
Fock basis exhibit a plateau in the accuracy in the long-time
domain. We found that this plateau problem can be mitigated
using the position basis.

As a future perspective, we point out the possibility of
applying the moment expansion method to a resonantly driven
cavity under the continuous homodyne detection of the mo-
mentum quadrature. In an optomechanical setting, such a
situation can be used to generate a conditioned squeezed state
in the mechanical oscillator [12]. In this case, the stochastic
term is coupled only to the degree of freedom associated with
the momentum quadrature (right index of x,, ). The required
truncation level for the right index then might not be as large
as that for the left index, and the moment expansion method
might still provide an efficient means of simulations.
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APPENDIX A: TRANSFORMATION TO MOMENT
EXPANSION REPRESENTATIONS

We proposed in this article to track the evolution of the
operator x, instead of the density matrix p. The operator x
was introduced in Eq. (6) with its elements x,, , defined by
Eq. (5). The authors of Ref. [10], on the other hand, consid-
ered elements proportional to try(a”p(a’)"). To align with
the prefactor of y,, ,, we introduce the elements as

trOSC (a'np (aT )n)

~/m!n!

which are the operators in the target system space, and the
operator

(m,n=20,1,2,...),

Em,n =

E= " & ® |m)n|

m,n=0

in the total space. We find &, = &,.» and x,, , = (—=1)" Xm.n.
Let 7, (n = & or x) be the map sending p to , n = T;(p). In
this Appendix, we reveal several properties of these transfor-
mations.

For n = & and x, 7, are linear maps. In addition, 7, apply
identically to the target system space. Thus, with Ag and Bg
any operators acting only on the target system space, we have
T,(AspBs) = AgnBs. Furthermore, for any operator A,

trosc(A) = (07, (A)]0). (AD)

a. Transformation of a Liouvillian

We first transform a Liouvillian by 7,,. For generality, let
us consider the following Liouvillian, which is more general
than Eq. (2),

£(p) =Ls(p) —iAld’a, p] + [ea’ — €*a, p]
+«Dlal(p) — ilLsa’ + Lia, p),

where A is the oscillator detuning and Ly is a target system
operator. By assuming A = 0 and Lg = Vs (Hermitian), we
recover Eq. (2). To have a more compact form, we introduce
Fs = Lg + iels. The Liouvillian £ then reads

(p)=Ls(p) —iAla‘a, p] +«kDlal(p) — ilFsa" + F{a. pl.

To find how £ is transformed by 7,,, the following relations
are convenient: We have for n = &,

Te(ap) = at, Ti(a'p)={a’, £},
Te(pa') = £a', Ti(pa) = {a, &},
and for n = y,

Te(ap) = 3Y4(x),
Ty(pa®) = 3T_(x),

with Y* defined by Y (p) = a’p & pa. For instance, we can
show from these relations that the dissipator D[a] is diagonal-
ized in the Fock basis after the transformations,

T,(Dlal(p)) = —3{a’a, n} (n = x and &).
The Liouvillian £ can be transformed as

M, () = Ty (L(p)).

Te(a'p) = G-+ Y.
Ty(pa) = AY4 +T5)(x), (A2)

(A3)

For n = &, we have
M (§) = Ls() — idla'a. §] = Sla'a. x)
— i[Fsa" + F{a, €] — i(Fsga' — agFy),
and its (m, n) element reads
(MM (E)n) = Ls ) = iD= M — 5+ M
— i(/MFsEn—1.0 — N MEm a1 Fy)
— i(v/m + 1[Fy, Enr1.n]
+ V14 1[Fs, Epnii])-

For n = x, on the other hand, we have

(A4)

M, (0 = Ls(0) — iBaxa+a' xa') = Sla'a, x)
—ia' (Fsy — xF§) — i(Fsx + xFy)a
— SUE 4 F ax) + S1Fs — B, xal, (A3)
and its (m, n) element reads
(mI, GOln) = L () = 5 0+ M)

- i\/%(FSmel,n - mel,nFST)
- i\/z(FSXm,n—l + Xm,n—lFST)
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i +
— 5«/m—i— LFs + F§, Xmy1,n]

— lA( n(m + 1)Xm+1,n—l
+vVmm~+ Dxm—1.n+1)

i
+§¢n+1U%—Fimeu. (A6)

Let us examine the dependence on the elements with higher
indices than (m, n) as in the remark (b) underneath Eq. (9).
In Eq. (A4), the elements having higher indices than &,, , are
En+1,0 and &, ,41. Those elements come with the Fy operator
and thus result from the terms involving € and the interaction
term. The terms with € do not contribute because of the com-
mutators, and we have [L;, En+1.n)and [Lg, &y p41]- Thus, &,
is inevitably coupled to both &, , and &, ,+;. In Eq. (A6),
on the other hand, the elements having higher indices than
Xm,n A€ Xt 1,n—15 Xm—1,n+1> Xm+1,n> and Xm,n+1- The first two
elements xy,+1.,—1 and x,—1 41 result from the term involving
A, and they are eliminated when we assume that A = 0.
The latter two elements x+1, and .41 result from the
terms involving € and the interaction term. The commutators
remove the contribution of the terms with €, and we have
[Ls +L§, Xm+1,n] and [Lg — L;, Xm.n+1]. In this case, thus,
we can eliminate the term with X, .41 by assuming Lg = Vg
(Hermitian).

Equation (A4) is similar to the hierarchical equation of
motion Eq. (13) in Ref. [10]. Slight differences originate
from the fact that the authors defined their elements as
Enn = trosc((iga)" p(—iga’)"), where g is the coupling con-
stant [in Ref. [10], the interaction Hamiltonian is of the form
g(La" + LYa) with a dimensionless operator L]. Using the
relation &, , = (ig)"(—ig)"~/m!n'&,, ,, we can derive Eq. (13)
in Ref. [10] from Eq. (A4).

b. Inverse transformations

We next show the existence of the inverse of 7, (7 = £ and
x)- For this, it is sufficient to show that the density matrix p
can be constructed from {7, ,}.

We begin with

trose(10)(0la™ p(a™)")
Vmin! '
One can directly show (m|) ;> O[( l)l/l’](a*)la’|n)

8m,00n,0, Which leads to |0)0| = Zl ol(— 1)’/[' Na™1d . In-
serting this relation into Eq. (A7) yields

(AT)

Pmn = (m|p|n) =

Z( 1)[ trosc(a™ +lp(a )Hl)

W , (A8)

or

(=D [(m+Dln+1)!

m!n!

Pm.n = m+1,n+1 -

Thus, with Eq. (3), p can be constructed from {&,, ,}.
From the definition of Y., we find ap = (Y, +
Y_)(p)/2, pa" = (Y4 — Y_)(p)/2. Inserting these relations

into Eq. (A8) yields

_§:<w
P =27\ Jotl

=0

T++T, m+1 T+ - T n+l
X trosc<|:—2 i| [—2 ] (p)

oo m+l n+l

N CEAYCRY
—ZZZMIVﬂ%KP>(q>

1=0 p=0 g=0
g 2 n—p—
X Wose (YYTIYTTTTP(p)),

with the binomial coefficient (‘;) =a!/[b!(a — b)!]. This
equation leads to

oo m+l n+l ( 1)" q

Z Z Z 11221+m+n

1=0 p=0 g=0

pP+!Rl+m+n—p—g)!
m!n!

m+1\(n+1
X P q Xp+q.2l4+m+n—p—q>

which shows that p can be constructed from { .}

(A9)

c. Correlation function

We next consider how to calculate the correlation func-
tion in the new representation. Here we focus only on .
The following formulation can also be performed in the rep-
resentation &. Suppose that the application of an operator
O from the left is transformed to an operation O by T,
namely, 7, (OA) = O(T,(A)) for any operator A. With the
aid of Eq. (A1), the correlation function Eq. (20) can then be
calculated with x as

Co(t) = tr(0e® (0py)) — [tr(Opys)]
= trs(0| T, (0e™ (0ps;))|0) — [trs (0| T, (Opy)10)1*
= tr5(0]O(™" O(x5s))10) — [trs(0]O(xs5)|0) 12,

where x, is the steady state in the y representation, y =

7;( (pss) = lim;_, eer(X)-
For instance, when O acts only on the target system space,
O(A) = OA for any A and thus

Co(t) = trs(0(0]e™ ' (0xs5)10)) — [trs(O(0] xss|0O))1*.
(A10)

When O is the momentum quadrature operator of the oscil-
lator mode, Py, = i(a" — a)/ﬁ, we can show that O(A) =
@i/ V2)a'A — AP, from Egs. (A2). Therefore,

i i .
CPosc )= EHS(OMWX[ <Xssposc - ﬁa‘ Xss) |1)

1
+§mwmmﬁ (A11)

062228-12



MOMENT EXPANSION METHOD FOR COMPOSITE OPEN ...

PHYSICAL REVIEW A 109, 062228 (2024)

APPENDIX B: DETERMINATION OF THE TRUNCATION
LEVELS IN SEC. III

The truncation levels Ny and Npe. in Sec. III are
determined by checking convergence of the steady-state
computation as follows. With Cg"“’N’“” (t = 0) being the cor-
relation function at t = 0 computed with the truncation levels
Nosc and Ny,ec, We estimate the errors using

|CgoscaNmec (t — O) — Cgosc+3a]\’mec (t — 0)|
‘Cgmc’chc (t — O)}

’

Ag)(Nosc» Nmee) =

and
NoseNimee Nose+Nmee+3
ICy t=0)-C, (t =0)|

A(Z)(N scs Nmee) =
o WNoscr LVmec }Cgmc,chc = 0)|

Starting with Nosc = Nmee = 3, we increase them by three un-
til AY < 10~ is reached for i = 1,2 and O = Xec, Posc- We
then use the final values of Ny and Ny in our simulations.

APPENDIX C: EXACT SOLUTION TO THE EIGENVALUE
PROBLEM FOR M AND £ WHEN L =0

For finite-dimensional target systems, the dimension of
which is denoted by d, the exact spectrum and eigenoperators
for the generators £ (2) and M (13) can be obtained analyt-
ically when Lg = 0. From those solutions, we can calculate
the exact solutions to the evolution equations Egs. (1) and (11)
for any initial state in principle. In this Appendix, we present
diagonalization procedures for M and L.

1. Diagonalization of M

Throughout this Appendix, we employ the Hilbert-Schmidt
inner product. For rectangular matrices of the form
Eq. (11), it reads (x[, x5) = trs((x[*°)" x2*). Given a
superoperator 3 on the rectangular matrices, its adjoint
B is introduced as the superoperator that satisfies
(X1, B(x5%)) = trs (™) B(x5™)) = (B (x(*), x5°) =
trs([B“d(Xrec)]k ¢y for x'° and xi° any rectangular
matrices of the form Eq. (11).

We consider the eigenvalue problem for M when Lg = 0;

(M = 2)RE™) =0, (M™=21*)(™)=0

When Lg = 0, the operator Vj is the only target system oper-
ator appeared in M. Suppose that the eigenvalue problem for
Vs is solved as

Vslvi) = gilvi) i =1, ..., ds). (ChH

Since Vg is Hermitian, the eigenvalues {g;} are real and
the eigenvectors are orthonormal, (vi|v;) =4;; for i, j =
1,...,ds. With {|v;)}, we have for any oscillator state |Yqs),

M) (0] ® [Wose)) = [vi)v;| & M} j|Wosc), (C2)
where M}, is defined by

K b T
= —Ea a+2ua’ _lgl.j(a+a )-

This operator can be diagonalized as

WM W =

iJj

—%(a*a + i), (C3)

where z; ; = 4g; j(gi; + 2iu)/k* and the invertible operator
W, ; is defined by

2ig: ; Au—igi;) +
VVi,j=D< lg”)exp( (u lg,j)a[>’
’ K K

with the displacement operator D(a) = exp(aa’ — a*a).
Therefore, for i,j=1,...,ds and m=0,1,2,..., the
eigenvalues, the right eigenoperators, and the left eigenopera-
tors are respectively given by

K
Aijm = _E(m +2ij),

RO = l0idv;| @ W jim),
and
L0155, = vl @ (W) |m).

Using the orthonormality and the completeness of the
Fock basis, we can show the same properties for the
set {r0;5,, 107, Note that Re(d;;m) = —(x/2)(m+
4g; ;/*) < 0, indicating the stability of the dynamics.

The formal solution to the evolution equation Eq. (12)
reads x"°(t) = exp(Mit)[x™(t = 0)]. Thus, using the spec-
tral decomposition of exp(Mt), we obtain

reC(t) _ Z Ze //'”[tl‘g( elrelcm)

i,j=1 m=0

rec (l _ 0))R9rec

i,j,m:

The exact evolution of the reduced density matrix can be
calculated by taking the zeroth element. If the oscillator is
initially in the vacuum state as x™°(t = 0) = ps(0) ® |0),
then we find

ds
pE () =y e T2 ) ps (0) v )vsl. (C4)
ij=1

From here on, we assume that all the eigenvalues of Vy are
nondegenerate. Note that this is true for the two-level example
in Sec. IV, Then, we see that A; ;,, = 0 if and only if i = j
and m = 0. Therefore, the generator on the oscillator system
space responsible for the long-time domain [after decay of all
the modes with Re(A; ) < 0] is MY, = —(k/2)a’a + 2ua’,
which is independent of the target system state index i.

2. Diagonalization of £

For total state operators, the Hilbert-Schmidt inner
product reads (pi, p2) = tr(,o;r 02). Given a superoperator
A, its adjoint A satisfies (o1, A(02)) = tr(pfA(pz)) =
(A¥(p1), p2) = tr([A*(p;)]7p2) for p; and p, any operators
in the total space.

It is instructive to start with the eigenvalue problem for
Dlal]. It can be solved exactly using, for instance, the ladder
superoperator technique [43-45], which proceeds as follows.
We introduce the superoperators

Ao(p) =ap, Ai(p) = pd',
Ay(p)=1a", pl.  Aj(p) =[p.al.
which satisfy
[-’4 I A:;] = 8 sV
[Au, Al =[A,, A]=0,
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for u, v = 0, 1. Note that
1 1
Dla) = —3 S ALA,. (C6)
n=0

While A, is not the adjoint of A, Egs. (C5) resemble the bo-
son commutation relations. For this reason, these operators are
called the ladder superoperators. Recall that the eigenvectors
of a'a, the Fock basis vectors, are constructed using only the
commutation relation [a, a'] = 1. Similarly, we can construct
the eigenoperators of Z,L:o A Ay, and thus of Dla] [see
Eq. (C6)], using the commutation relations Egs. (CS5). Since
ZL:O Aj, A, is not self-adjoint, the right and left eigenopera-
tors are different.

To construct the eigenoperators of ZL:O Al Ay, we first
need vacuum states for the ladder superoperators. The reader
might notice that the Fock vacuum state |0)(0| is annihilated
by A,U. (n=0,1),

A (100D =0 (u=0,1).

Thus, the operators defined by
_ [Aé)]ﬂ'l [A/]]ﬂ
Vm! /n!

are the right eigenoperators of ZL:O AL AL

(10)(0]) m,n=0,1,2,...), (C7)

RAm,n

1
Z A;AM(RXm,n) = (m + n)RXm,n-

n=0
To find the left eigenoperators, we first note
A3 (p) =Ta, pl,  A(p) =1[p,a'l.

The identity operator I is annihilated by these superopera-
tors

Al ose) =0 (w =0, 1).
Thus, the operators defined by
[A8]" [ArT

Xm,n:——(I)(msnzoslvzs"')9 (CS)
i Jml /nl
are the left eigenoperators of ZL:O A Ay
ad

1
Z AL‘AM (LXm,n) = (m + n)LXM,n'
n=0

Using the orthonormality (m|n) = §,,, and the completeness
relation Y o [m)m| = Ios of the Fock basis, we can show
the same properties for the set {g Xy, LXm.n}-

Now consider the eigenvalue problem for £ when L5 = 0:

(L — 1) (&O) =0,
(LY — 1*)(10) = 0.

With {|v;)} in Eq. (C1), we have for any oscillator system
operator Oosc,

LviXvjl ® pose) = [0iXv;| @ Li,j(pose),

where £; ; is defined by
Li(p) =[ea" — €*a, p] + kDlal(p)
—igila+a")p +igjpla+a’).

Using the ladder superoperators introduced above, we obtain

1 1
K ’ .
Lij==3 dSAA —igi; Y Ay
=0 u=0

+ (e —ig) Ay + (e —ig;)* Al

with g; ; = g; — g;. The terms linear to the ladder superoper-
ators can be eliminated by the similarity transformation as

1
_ K ,
Wi LijWij = 3 dALA,L (C9)
n=0
with the invertible superoperator

1
2. . .
W, ;= exp —\isis Z A+ (e—ig) Ay + (e—ig;)* A}
u=0
For instance, the diagonal entries W, ; is a displacement uni-
tary transformation,

o o\ T
Wii(p) = D(@)PD<@) . (C10)

The eigenvalue problem for £ is solved using Egs. (C7),
(C8), and (C9). Fori,j=1,...,dsand m,n=20,1,2,...,
the eigenvalues, the right eigenoperators, and the left eigen-
operators are respectively given by

2g;;  4ig; R
Mg = — 4 my — S0 _ Y181 Re(€)
’ 2 K K

ROijmn = [0iXv;| @ Wi j(RXn.n),

and
+ _1\ad
L®i,j,m,n = |U,‘)(Uj| ® (W,',jl) (LXm,n)~

Using the orthonormality and the completeness of {|v;)},
{rXm.n, LXmn}, we can show the same properties for the set
{£®i jmn> LOijmn}-

The formal solution to the master equation Eq. (1) reads
p(t) = exp(Lt)[p(t = 0)]. Thus, using the spectral decompo-
sition of exp(Lt), we obtain

ds oo
p(t)y= "> umtuw(O], ot =0)rO jmn

i,j=1m,n=0

The exact evolution of the reduced density matrix can be cal-
culated by taking the partial trace tros. For the initial vacuum
states, we obtained the result identical to Eq. (C4).

When all the eigenvalues of Vg are simple, A; j, = 0 if
and only if i = j and m = n = 0. Thus, the long-time behav-

APPENDIX D: NUMERICAL TESTS
FOR THE PLATEAU PROBLEM

In Sec. IV A, we found the plateau in numerical accuracy
when the parameter u in Eq. (10) is nonzero. This Appendix is
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10°
(u,9)=(2,5)
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| 10-84
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S 10-12 = |nitial state A, N, =120
===« |nitial state A, Ny = 1200
= = |nitial state B, Ny =120

10716 4 T T . :
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t

FIG. 5. Insensitivity of the numerical errors in the long-time do-
main to increasing truncation levels (solid red and dotted green lines)
and to changing initial two-level states (solid red and dashed blue
lines). The initial states A and B in the legend are given in Eq. (D1).
The time ¢ is shown in the unit of ¥ = 1.

dedicated to presenting the results of various numerical tests
conducted to both examine and address the plateau problem.

1. Dependence on the truncation level /V;. and the initial
two-level state pg(0)

One might argue that the observed plateau could be
resolved with a truncation level much larger than those em-
ployed in Figs. 3(c) and 3(d). To test this hypothesis, we
perform the simulation with N, = 1200 for the parameter
values (u, g) = (2, 5) [the same parameter values as Fig. 3(d)
but with ten times larger Ny than the solid red line in that
figure]. The resulting numerical error is shown by the dotted
green line in Fig. 5. The curve closely follows the result with
Ny = 120 (the solid red line in the figure), thereby indicat-
ing that increasing the truncation level does not improve the
numerical accuracy.

To see the dependence on the initial two-level state, ps(0),
we conduct simulations with the two different initial states,

1
Initial state A : péA) 0) = 5(12 — 0,) and

X (D1)
i . (B _ )
Initial state B : pg ' (0) = 3 L+ Z o,/\/g .

i=x,y,2

The initial state A corresponds to the one considered in the
main text [see Eq. (25)]. The dashed blue line in Fig. 5 shows
the result for the initial state B in Eq. (D1). We see that
the overall behavior is similar to the solid red line in the
figure showing the result for the initial state A. Other initial
two-level states were also examined and found to have the
same behavior. Consequently, the emergence of the plateau is
independent of the specific configuration of the initial two-
level state.

2. Dependence on the machine precision

When using the Fock basis, we have only been able to
remedy the plateau problem by increasing machine precision.

10°
(u,9)=1(2,5)
=._,_ 10—4_
§
Sun
< 10_8 )
| ) A\ Y
g Pt Al | ‘I{'
Sun ~
Q
= 1012 vY
_'.l/ == Double precision
,\l = = Extended precision
10716 4 T . : :
0 2 4 6 8 10
t

FIG. 6. Influence of machine precision on the numerical errors.
The results using floating point numbers in double and extended pre-
cision are shown by the solid red and dashed blue lines, respectively.
The time ¢ is shown in the unit of k = 1.

Indeed, Fig. 6 compares the results with the double preci-
sion floating-point numbers, the 64-bit format which typically
gives 16 significant digits, and the extended precision floating-
point numbers, the 80-bit format which typically gives 18
significant digits. When integrating the evolution equation,
this time we use the fourth-order Runge-Kutta method with
the time step At = 107*, not the formal solution x™¢(¢) =
exp(Mit)[x™(t = 0)] as in Fig. 3, because the matrix expo-
nentiation function scipy.linalg.expm is not compatible with
the extended precision. Figure 6 shows the resulting numerical
errors. We first note the similarity between the Runge-Kutta
result (solid red line in this figure) and the matrix exponen-
tiation result (solid red line in Fig. 5). This implies that the
plateau is not due to a specific integration method. In addition,
we see in Fig. 6 that the numerical errors decrease by going to
the extended precision.

3. Initial state B with the position basis

In Sec. IVB, we found that the plateau is not seen
when the position basis is used for initial states that sat-
isfy trg(ps(0)o,) = 0. When trg(ps(0)o,) # 0, on the other
hand, the larger errors remain in the long-time domain. Fig-
ure 7 presents a comparison analogous to Fig. 4, but with
the initial state B in Eq. (D1). We see that the error in the
long-time domain can be reduced below the plateau value.
By decreasing Ax, the error can be brought down to the
order of 10~'"'-107!°, but not smaller. These persistent nu-
merical errors in the long-time domain originate from the
poor reproduction of trg(pg” Toy); we observed that, while
trs(pg Toy) = trs(pg To,) = 0 holds in the machine preci-
sion order, the value of trg(pg " oy), which is independent of
time in the exact solution, constantly increases by about 104
at each time step 0.01. We have not yet found a way to resolve

this issue.

APPENDIX E: NUMERICAL SENSITIVITY

In this Appendix, we delve into the origin of the plateau.
Specifically, we reveal the peculiarity of the term involving
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FIG. 7. Comparison of numerical errors analogous to Fig. 4, but
with the initial two-level state B in Eq. (D1).

u in the moment expansion method in Appendix E 1. In Ap-
pendix E2, we provide a qualitative analysis to address the
question of why the plateau is absent with the conventional
method.

1. Condition number associated with the matrix exponentiation

In Appendix D2, we find that the plateau can be miti-
gated by increasing machine precision. This implies that the
errors stem from roundoff errors. Since the plateau appears
regardless of the integration method, the problem of solving
the evolution equation (d /dt)x™¢ = M(x™) might be itself
ill-conditioned, at least in the Fock basis. A problem is called
ill-conditioned when the solution is sensitive to small errors in
the input. In our simulations, we have two inputs that contain
roundoff errors; the generator M and the initial condition
x"°(t = 0). We here concentrate on the former.

The formal solution to the evolution equation can be
obtained by exponentiating the generator M. The exponen-
tiation of M might be sensitive to small errors in it. This
sensitivity can be quantified using a relative condition number
associated with the exponentiation. To understand its mean-
ing, we first consider a simpler quantity; a relative condition
number associated with calculating a scalar function ¢ —
f(q). Assuming g # 0 and f(g) # 0O, suppose that the input g
is perturbed to ¢ + §. The relative error in the input then reads
|6/¢g| and that in the output reads | f(g + 8) — f(@)|/1f(q)| =
llg(d/dq) f(DI/1f(@I1/q) + o(8) (§ — 0) with o(e) the
little-o in the Landau notation. The ratio of the latter to the
former in the limit of small 8, |¢q(d/dq)f(q)|/|f(q)|, quanti-
fies the impact of the input error on the output and is called a
relative condition number. As can be seen from this example,
the derivative of a function is needed in evaluating a relative
condition number. For the exponentiation of matrices, thus,
the derivative of a matrix function is needed. For this purpose,
one can use the Fréchet derivative [46]. An n-dimensional
matrix function F is said to be Fréchet differentiable at a point
Q if there exists Lp(Q, E) such that F(Q+ E) — F(Q) —
Lr(Q,E)=0o(|E|) (IE]| — 0) for all n-dimensional matri-
ces E, where || e || is a matrix norm. The relative condition
number can then be introduced as ||Q||||ILr(Q)||/ | F (Q)|| with

FIG. 8. Condition number associated with the exponentiation of
M, t. We fix k = 1 and g = 1. The lines are the results in the Fock
basis and the markers are the results in the position basis. In the posi-
tion basis computation, we set N, = 80 (—10 < x < 10, dx = 0.25).
The time ¢ is shown in the unit of ¥ = 1.

ILF Q)| = maxg.ollLr(Q, E)II/IIE]. For the matrix expo-
nentiation, we consider F (Q) = exp(Q).

In practice, we can use the condition number estimator
in the SciPy library (scipy.linalg.expm_cond. It employs the
Frobenius norm as the matrix norm and, for n-dimensional
matrices, requires construction of an n2-dimensional matrix.
To facilitate the analysis, we need to reduce the dimension of
a generator. To this end, we note the following identity for any
rectangular matrix x "¢ [see Eq. (C2)]:

M) = Y lakBl® M (x| B),

o,f==%1

where |£1) are defined underneath Eq. (24) and M p=
—(k/2)a‘a + 2ua® — ig(a — B)(a+a’). This identity im-
plies that the operators {Mj z}q p=+1 can be regarded as
generators only on the oscillator system space. In the long-
time domain, only the modes with o = f survive [see
discussion underneath Eq. (C4)]. Thus, the generator on the
oscillator system space responsible for the long-time behavior
is given by M" , = —(x/2)a’a + 2ua’.

The condition numbers associated with the exponentiation
of M , in the Fock basis are shown in Fig. 8. When u =0,
the generator Mgzo = —(k/2)a’a is Hermitian. In this case,
the condition number remains almost constant throughout the
evolution as can be seen from the dashed blue line. In contrast,
when u # 0, a marked increase in the condition number is
observed. Thus, the computation of the propagator exp(Mt)
with large ¢ might be sensitive to minor errors in M when
u # 0. Note that a large condition number does not necessarily
imply that the associated computation cannot be performed
accurately. At least, Fig. 8 signifies the peculiarity of the term
involving u in the generator M.

In Sec. IV B, we saw that numerical accuracy in the long-
time domain can be improved by using the position basis. The
reason for this is not yet clear. In Fig. 8, the same condition
number for M, , in the position basis are plotted by the mark-
ers. We see no significant difference between the results in the
Fock and position bases. The difference in numerical accuracy
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might result from differences in sensitivity to the initial state.
This issue might be addressed in future research.

2. Condition number associated with the eigenvalue problem

Recall that, unlike the moment expansion method, the con-
ventional method does not exhibit a plateau even when u (real
part of €) is nonzero. This difference might be understood
from the sensitivity of the matrix exponentiation, according to
the discussion in Appendix E 1. Since the term involving u in
the Liouvillian £ merely generates a unitary transformation,
we naively expect it to have no significant effects on the
sensitivity. Quantitatively, we were unable to compute the
same condition number for £ within our numerical resource
because the dimension is too large. Instead, we here consider
a condition number associated with the eigenvalue problem
for the generator. The relevance of these two condition num-
bers can be inferred from the theorem 3.15 in Ref. [46]. It
states that the upper bound of the Fréchet derivative, which
quantifies the sensitivity of the matrix exponentiation, is
proportional to the square of the condition number in the
Bauer-Fike theorem, which quantifies the sensitivity of the
eigenvalue problem.

A condition number associated with the eigenvalue prob-
lem is easier to deal with. For example, in the moment
expansion method, the operator M; , = —(k /2)a"a + 2ua' is
the relevant generator in the long-time domain when all the
eigenvalues of Vg are not degenerate. This operator is not
normal owing to the term involving . Unlike normal matrices,
eigenvalues and eigenvectors of non-normal matrices can be
disturbed in their computation by small errors in the input
[47]. It can then be inferred that the term involving # might
affect the numerical accuracy in the long-time domain. This
qualitatively agrees with the observations in Sec. IV A.

For more quantitative discussions, here we consider the
condition number of a simple eigenvalue introduced in
Ref. [47], which is defined as the reciprocal of the inner prod-
uct of the (normalized) right and left eigenvectors. We assume
that there is no degeneracy in the eigenvalues of Vg, as in the
two-level target system in Sec. IV. To discuss the long-time
behavior, we consider the mode of M} , the eigenvalue of
which is zero. From Eq. (C3), the normahzed right and left
eigenvectors are respectively given by

Wiil0)

T _ ef(4u/K)2/26(4u/K)a+ 0),
(OIW,;;W.;10)

|Rl/fosc> =

and
(W'
(LVosc| = = = = (0].
Jow w2 o)

Therefore, the condition number is given by

<L wosc |R wosc) -

It should be emphasized that this result was obtained with-
out truncating the oscillator state. Our primary objective is
to investigate the sensitivity of numerical simulations where
truncation is introduced. Thus, it is essential to assess the
condition number of the truncated generator. To this end, we

1 — 6(4M/K)2/2. (El)

numerically computed the right and left eigenvectors of the
truncated generator M, ,. We could then verify the relation
Eq. (El) for sufficiently large truncation levels. A devia-
tion from Eq. (E1) was detected when the right-hand side,
expl[(4u/k)?/2] exceeds 10'*. This is because the computation
of the eigenvectors is ill-conditioned and cannot be performed
accurately.

The result Eq. (E1) implies that the condition number
rapidly increases with the value of u, which agrees with the
behavior in Fig. 8. For instance, if u/xk = 2 as considered in
Sec. IV, the condition number reads ¢32 ~ 104,

For comparison, we turn our attention to the identical con-
dition number associated with the Liouvillian £. We employ
the Hilbert-Schmidt inner product to calculate the condition
number. To investigate the behavior in the long-time domain
similarly, we examine the mode of L£;; that possesses an
eigenvalue of zero. We recall that the operation of £; ; is given
by

Lii(p) = [(e —iga’ — (e — igi)*a, p] + kDlal(p),

which can be diagonalized as Eqgs. (C9) with (C10). The right
and left eigenoperators are given by

2(e — igi 2e —ig)\'
Woi(xXoo) =D(%)|O><0|D<%> . (E2)
and

(Wijil)ad (£X0,0) = Ioscs

respectively.
These are the results without the truncation. For the trun-
cated generator, denoted as EN" with N, the truncation level,

we first note that EN" still preserves the trace. This indicates
that the N;- dimensional identity operator, denoted by Iy, , is

a left eigenoperator that has an eigenvalue of zero. Further-
more, we numerically verified that an eigenvalue of zero is
simple and that the corresponding right eigenoperator is given
approximately by Eq. (E2) for sufficiently large truncation
levels. In summary, the right eigenoperator of E ¢ with an
eigenvalue of zero is a pure state, which we denote as

Ny __ Ny >< Ny
koM = |l ol ],

where |¢t) is a normalized N,-dimensional vector, whereas
0sc t

the left eigenoperator is the identity operator

Ne INu
LPosc = N,
tr

These expressions are normalized as tr((opXe)" opMr) =1

for both Q = R and L. From these, the condition number is
given by

[tr((code) #o)e)] " = Ve

Hence, the condition number is independent of the param-
eters, in stark contrast to Eq. (E1). The formula indicates
that the simulation results remain unaffected by the sensitiv-
ity within the range of commonly utilized truncation levels
Ny < 10%).

062228-17



MASAAKI TOKIEDA

PHYSICAL REVIEW A 109, 062228 (2024)

[1] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, New York, 2002).

[2] C. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer,
Berlin, Heidelberg, 2000).

[3] H. M. Wiseman and G. J. Milburn, Quantum Measure-
ment and Control (Cambridge University Press, Cambridge,
2010).

[4] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[5] J. Dalibard, Y. Castin, and K. Mglmer, Wave-function approach
to dissipative processes in quantum optics, Phys. Rev. Lett. 68,
580 (1992).

[6] N. Gisin and I. C. Percival, The quantum-state diffusion model
applied to open systems, J. Phys. A: Math. Gen. 25, 5677
(1992).

[7] C. Le Bris and P. Rouchon, Low-rank numerical approxima-
tions for high-dimensional Lindblad equations, Phys. Rev. A
87, 063406 (2013).

[8] A.E. Teretenkov, Irreversible quantum evolution with quadratic
generator: Review, Infin. Dimens. Anal. Quantum Probab.
Relat. Top. 22, 1930001 (2019).

[9] D. Plankensteiner, C. Hotter, and H. Ritsch, QuantumCumu-
lants.jl: A Julia framework for generalized mean-field equations
in open quantum systems, Quantum 6, 617 (2022).

[10] V. Link, K. Miiller, R. G. Lena, K. Luoma, F. Damanet, W. T.
Strunz, and A. J. Daley, Non-Markovian quantum dynamics in
strongly coupled multimode cavities conditioned on continuous
measurement, PRX Quantum 3, 020348 (2022).

[11] A. Heidmann, Y. Hadjar, and M. Pinard, Quantum nondemoli-
tion measurement by optomechanical coupling, Appl. Phys. B:
Lasers Opt. 64, 173 (1997).

[12] A. A. Clerk, F. Marquardt, and K. Jacobs, Back-action evasion
and squeezing of a mechanical resonator using a cavity detector,
New J. Phys. 10, 095010 (2008).

[13] B. D. Hauer, A. Metelmann, and J. P. Davis, Phonon quantum
nondemolition measurements in nonlinearly coupled optome-
chanical cavities, Phys. Rev. A 98, 043804 (2018).

[14] S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, En-
tangling macroscopic oscillators exploiting radiation pressure,
Phys. Rev. Lett. 88, 120401 (2002).

[15] J. Clarke, P. Sahium, K. E. Khosla, 1. Pikovski, M. S. Kim,
and M. R. Vanner, Generating mechanical and optomechanical
entanglement via pulsed interaction and measurement, New J.
Phys. 22, 063001 (2020).

[16] A. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: Characterization, quantification and detection,
Rep. Prog. Phys. 77, 094001 (2014).

[17] H.-P. Breuer, E.-M. Laine, J. Piilo, and Bassano Vacchini, Col-
loquium: Non-Markovian dynamics in open quantum systems,
Rev. Mod. Phys. 88, 021002 (2016).

[18] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 2008).

[19] A. Imamoglu, Stochastic wave-function approach to non-
Markovian systems, Phys. Rev. A 50, 3650 (1994).

[20] B. M. Garraway, Nonperturbative decay of an atomic system in
a cavity, Phys. Rev. A 55, 2290 (1997).

[21] D. Tamascelli, A. Smirne, S. F. Huelga, and M. B. Plenio, Non-
perturbative treatment of non-Markovian dynamics of open
quantum systems, Phys. Rev. Lett. 120, 030402 (2018).

[22] W.T. Strunz, Linear quantum state diffusion for non-Markovian
open quantum systems, Phys. Lett. A 224, 25 (1996).

[23] L. Diési, N. Gisin, and W. T. Strunz, Non-Markovian quantum
state diffusion, Phys. Rev. A 58, 1699 (1998).

[24] L. S. Cederbaum, E. Gindensperger, and I. Burghardt, Short-
time dynamics through conical intersections in macrosystems,
Phys. Rev. Lett. 94, 113003 (2005).

[25] A. W. Chin, A. Rivas, S. F. Huelga, and M. B. Plenio, Exact
mapping between system-reservoir quantum models and semi-
infinite discrete chains using orthogonal polynomials, J. Math.
Phys. 51, 092109 (2010).

[26] J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, Efficient
simulation of strong system-environment interactions, Phys.
Rev. Lett. 105, 050404 (2010).

[27] N. Makri and D. E. Makarov, Tensor propagator for iterative
quantum time evolution of reduced density matrices. 1. Theory,
J. Chem. Phys. 102, 4600 (1995).

[28] N. Makri and D. E. Makarov, Tensor propagator for it-
erative quantum time evolution of reduced density matri-
ces. II. Numerical methodology, J. Chem. Phys. 102, 4611
(1995).

[29] A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B. W.
Lovett, Efficient non-Markovian quantum dynamics using time-
evolving matrix product operators, Nat. Commun. 9, 3322
(2018).

[30] Y. Tanimura and R. Kubo, Time evolution of a quantum system
in contact with a nearly Gaussian-Markoffian noise bath, J.
Phys. Soc. Jpn. 58, 101 (1989).

[31] Y. Yan, F. Yang, Y. Liu, and J. Shao, Hierarchical approach
based on stochastic decoupling to dissipative systems, Chem.
Phys. Lett. 395, 216 (2004).

[32] Y. Tanimura, Numerically “exact” approach to open quantum
dynamics: The hierarchical equations of motion (HEOM), J.
Chem. Phys. 153, 020901 (2020).

[33] Z. Tang, X. Ouyang, Z. Gong, H. Wang, and J. Wu, Extended hi-
erarchy equation of motion for the spin-boson model, J. Chem.
Phys. 143, 224112 (2015).

[34] D. Suess, W. T. Strunz, and A. Eisfeld, Hierarchical equations
for open system dynamics in fermionic and bosonic environ-
ments, J. Stat. Phys. 159, 1408 (2015).

[35] T. Ikeda and G. D. Scholes, Generalization of the hierarchi-
cal equations of motion theory for efficient calculations with
arbitrary correlation functions, J. Chem. Phys. 152, 204101
(2020).

[36] N. Lambert, S. Ahmed, M. Cirio, and F. Nori, Modelling
the ultra-strongly coupled spin-boson model with unphysical
modes, Nat. Commun. 10, 3721 (2019).

[37] M. Xu, V. Vadimov, M. Krug, J. T. Stockburger, and J.
Ankerhold, A universal framework for quantum dissipation:
Minimally extended state space and exact time-local dynamics,
arXiv:2307.16790.

[38] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[39] G. A. Brawley, M. R. Vanner, P. E. Larsen, S. Schmid, A.
Boisen, and W. P. Bowen, Nonlinear optomechanical mea-
surement of mechanical motion, Nat. Commun. 7, 10988
(2016).

[40] J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian
Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive

062228-18


https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1088/0305-4470/25/21/023
https://doi.org/10.1103/PhysRevA.87.063406
https://doi.org/10.1142/S0219025719300019
https://doi.org/10.22331/q-2022-01-04-617
https://doi.org/10.1103/PRXQuantum.3.020348
https://doi.org/10.1007/s003400050162
https://doi.org/10.1088/1367-2630/10/9/095010
https://doi.org/10.1103/PhysRevA.98.043804
https://doi.org/10.1103/PhysRevLett.88.120401
https://doi.org/10.1088/1367-2630/ab7ddd
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/PhysRevA.50.3650
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevLett.120.030402
https://doi.org/10.1016/S0375-9601(96)00805-5
https://doi.org/10.1103/PhysRevA.58.1699
https://doi.org/10.1103/PhysRevLett.94.113003
https://doi.org/10.1063/1.3490188
https://doi.org/10.1103/PhysRevLett.105.050404
https://doi.org/10.1063/1.469508
https://doi.org/10.1063/1.469509
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1143/JPSJ.58.101
https://doi.org/10.1016/j.cplett.2004.07.036
https://doi.org/10.1063/5.0011599
https://doi.org/10.1063/1.4936924
https://doi.org/10.1007/s10955-015-1236-7
https://doi.org/10.1063/5.0007327
https://doi.org/10.1038/s41467-019-11656-1
https://arxiv.org/abs/2307.16790
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1038/ncomms10988

MOMENT EXPANSION METHOD FOR COMPOSITE OPEN ...

PHYSICAL REVIEW A 109, 062228 (2024)

coupling of a high-finesse cavity to a micromechanical mem-
brane, Nature (London) 452, 72 (2008).

[41] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E.
Harris, Strong and tunable nonlinear optomechanical coupling
in a low-loss system, Nat. Phys. 6, 707 (2010).

[42] T. Ikeda and A. Nakayama, Collective bath coordinate mapping
of “hierarchy” in hierarchical equations of motion, J. Chem.
Phys. 156, 104104 (2022).

[43] T. Prosen and T. H. Seligman, Quantization over boson
operator spaces, J. Phys. A: Math. Theor. 43, 392004
(2010).

[44] C. Guo and D. Poletti, Solutions for bosonic and fermionic
dissipative quadratic open systems, Phys. Rev. A 95, 052107
(2017).

[45] T. Barthel and Y. Zhang, Solving quasi-free and quadratic Lind-
blad master equations for open fermionic and bosonic systems,
J. Stat. Mech. (2022) 113101.

[46] N. J. Higham, Functions of Matrices (Society for Industrial and
Applied Mathematics, Philadelphia, 2008), Chap. 3.

[47] G. H. Golub and C. E. Van Loan, Matrix Computations, 3rd
ed. (Johns Hopkins University Press, Baltimore, London, 1996),
Sec. 7.2.

062228-19


https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nphys1707
https://doi.org/10.1063/5.0082936
https://doi.org/10.1088/1751-8113/43/39/392004
https://doi.org/10.1103/PhysRevA.95.052107
https://doi.org/10.1088/1742-5468/ac8e5c

