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Robustness of higher-dimensional nonlocality against dual noise and sequential measurements
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The robustness of the violation of the Collins-Linden-Gisin-Masser-Popescu (CGLMP) inequality is investi-
gated from the dual perspectives of noise in measurements and in states. To quantify it, we introduce a quantity
called the area of the nonlocal region which reveals a dimensional advantage. Specifically, we report that with an
increase in dimension, the maximally violating states show greater enhancement in the area of the nonlocal region
in comparison to the maximally entangled states and the scaling of the increment in this case grows faster than
visibility. Moreover, we examine the robustness of the sequential violation of the CGLMP inequality using weak
measurements and find that even for higher dimensions, the simultaneous violation of the CGLMP inequalities of
two observers as obtained for two-qubit states persists. We notice that the complementarity between information
gain and disturbance from measurements is manifested by the decrease in the visibility in the first round and the
increase in the same in the second round with dimensions. Furthermore, the amount of white noise that can be
added to a maximally entangled state so that it has two rounds of the violation decreases with the dimension,
while it does not appreciably change for the maximally violating states.
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I. INTRODUCTION

The journey from the Einstein-Podolsky-Rosen paradox
[1] to Bell’s theorem [2] via Bohmian mechanics [3] is a
fascinating story that contributed to our present outlook on
a physical theory. It asserts that a satisfactory description of
nature cannot assume both locality and reality simultaneously.
Jointly, these two assumptions, known as local realism, were
recently refuted experimentally by the loophole-free Bell test
[4–6]. In addition to its foundational significance, the Bell-
Clauser-Horne-Shimony-Holt (CHSH) inequality [7] enables
the device-independent certification of randomness [8], secure
key distribution [9–11], detection of entanglement [12], etc.

Going beyond the much-studied simplest Bell scenario
involving two settings of measurements for two parties with
two outcomes, denoted by (2 − 2 − 2), new insightful and
qualitatively different results have been derived which would
otherwise be impossible if we were restricted to the simplest
scenario. In particular, violation of local realism manifests
more sharply than in the (2 − 2 − 2) case via the Greenberger-
Horne-Zeilinger argument [13], which requires at least a
three-qubit system. It has been shown that with a suitable
choice of binary observables, maximal violation of Bell’s
inequality persists for a singlet state of arbitrary spins [14],
refuting the belief that systems may lose their quantumness
with increasing system size, thereby leading to a decrease
in the violation of Bell’s inequality [15]. Later, the di-
mensional advantage in the violation of local realism was

established considering a more general choice of observables
[16–18] since dichotomic measurements cannot exploit the
higher-dimensional system with full generality. In a bipar-
tite system of arbitrary local dimension with two choices of
nondegenerate measurements, called the (2 − 2 − d ) situa-
tion, corresponding Bell inequalities were derived by Collins,
Gisin, Linden, Massar, and Popescu (CGLMP) [19] that were
violated maximally by a nonmaximally entangled state [20]
for the specific choices of observables [16–18]. These tight
higher-dimensional Bell inequalities [21] exhibit enhanced
visibility with the increase of dimension, thereby showing
more robustness against noise [16,19] Here visibility refers to
the noise strength up to which a pure state mixed with white
noise exhibits a violation. It was shown explicitly that the
performance of many quantum information processing tasks is
enhanced by considering higher-dimensional systems. Specif-
ically, compared to qubits, they exhibit greater robustness to
noise [19], stronger security in device-dependent quantum key
distribution (QKD) [22], and device-independent extraction
of random bits [23]. However, the dimensional advantage is
not always straightforward, as noted in a recent work [24] in
the context of device-independent QKD; the estimated lower
bound on the secure key rate does not improve with increasing
dimension, whereas the upper bound on the key rate exhibits
the opposite trend.

In another direction, the conventional Bell scenario was
extended so that half of a bipartite system is possessed by a
single observer called Alice while the other half is possessed
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by a series of observers referred to as Bobs, who can measure
sequentially [25]. In this new scheme of the Bell test, it has
been shown that no more than two observers can violate
the Bell-CHSH inequality if the observers in the series mea-
sure independently [25,26]. Such a sequential scenario was
also tested experimentally [27,28] and was further extended
to several situations which include detecting the steerable
correlation [29,30], witnessing entanglement [31,32], testing
Bell inequalities other than CHSH [33], identifying genuine
entanglement [34], and preparation contextuality [35]. An
interesting twist in this situation is that with a slight modifica-
tion of the independent and unbiased measurement scheme,
an unbounded series of observers can be found who can
certify nonclassical correlation with a single observer on an-
other side [25,36]. Recently, some interesting applications
of the sequential scheme such as self-testing unsharp mea-
surements [37,38], reusing a teleportation channel [39], and
generating randomness [40] were proposed, thereby showing
its potential for quantum technologies. An interesting ob-
servation from the above studies is that if one is restricted
to a particular measurement scheme, i.e., independent and
unbiased measurement by the series of observers [26], pre-
dicting the number of sequential observers that would show
nonlocal correlations is not straightforward. As the number
of sequential violations depends on the initial strength of the
correlation, detection, and measurement process in a non-
trivial way, it is not well characterized yet. The number is
finite and dictated by the trade-off between the disturbance
and information gained from measurements. For example, it
was found that for a maximally entangled two-qubit initially
shared state, at most 12 Bobs can detect entanglement with
a single Alice employing measurement settings pertinent to
the optimal witness operator [31], while two Bobs sharing the
same state with Alice can violate the CHSH inequality [25,26]
based on the optimal measurement settings required for Bell
violation. In the sequential measurement, partial information
is extracted which is sufficient for the detection scheme, and
at the same time, some residual correlation remains for other
rounds which gradually diminishes with a longer sequence
of Bobs. This reveals that witnessing entanglement possibly
disturbs the state less than the situation in which the Bell-
CHSH test is performed, thereby admitting more robustness
of the former scheme against noise. Similarly, a measurement-
device-independent entanglement witness [41] turns out to
be more suitable in the sequential situation than a standard
entanglement witness [42], as shown through the increased
number of Bobs [32].

In the present work, we first investigate the robustness of
the CGLMP inequality by going beyond the visibility measure
of “nonlocality” [16,19]. Specifically, in addition to white
noise in the state, we consider a noisy measurement ( which
we call a weak or unsharp measurement) on the maximally
entangled state ME as well as on the maximally CGLMP
violating states MV . This consideration of dual noise leads to
a measure of robustness, dubbed the “area of the nonlocal re-
gion” (where nonlocality means the violation of the CGLMP
inequality), which scales with dimension more sharply than
the visibility one. The introduction of noise to the measure-
ment enables the possibility of sequential violation of the
CGLMP inequality. In particular, we find that the violation

by two Bobs persists even with the increase in dimension,
as found in the two-qubit case with the CHSH inequality. In
this respect, the pertinent question is how the robustness of
CGLMP is reflected in the sequential scenario. It was noted
that in the context of a violation of the CGLMP inequality,
the visibility decreases with an increase in dimension [16,19].
However, we observe that if we demand the violation of the
CGLMP inequality in two rounds of a sequential scheme,
the required visibility increases with the dimension for maxi-
mally entangled states, while surprisingly, it remains constant
for maximally violating states. This demonstrates that the
sequential scenario can reveal a kind of robustness which
is qualitatively different from the visibility and area of the
nonlocal region obtained for a single round. This is due to the
trade-off present in the disturbance by the weak measurements
and the information gain via measurements in a sequential
scheme.

This paper is organized in the following way. In Sec. II,
we briefly discuss the prerequisites of the present work. In
Sec. III, the robustness of CGLMP is discussed with a new
measure introducing dual noise. For higher-dimensional pure
states, the CGLMP inequality is used to certify entanglement
sequentially in Sec. IV, and a similar study is carried out for
noisy mixed states in Sec. V. We conclude in Sec. VI with a
brief discussion.

II. PREREQUISITES: BELL INEQUALITIES IN HIGHER
DIMENSIONS AND SEQUENTIAL

MEASUREMENT SCHEME

Before we present our results, let us briefly discuss the
CGLMP inequality and sequential scenario of the Bell test.

A. CGLMP inequality

Let Alice and Bob be two observers allowed to perform two
d outcome measurements. A1 and A2 are Alice’s measurement
settings, and B1 and B2 are Bob’s; they can take values in
the range [0, d − 1], i.e., A1(2), B1(2) = 0, 1, . . . , d − 1. The
CGLMP inequality reads [19]

Id =
� d

2 �−1∑
k=0

(
1 − 2k

d − 1

)
[ f (k) − f (−k − 1)] � 2, (1)

where

f (k) = P(A1 = B1 + k) + P(B1 = A2 + k + 1)

+ P(A2 = B2 + k) + P(B2 = A1 + k). (2)

The probabilities of the outcomes of Alice’s measurement Aa

and Bob’s measurement Bb (a, b = 1, 2) in f (k) differ by k
mod d and can be written as

P(A1 = B1 + k) =
d−1∑
j=0

P(Aa = j, Bb = j + k mod d ).

The strongest violation of the CGLMP inequality is obtained
for a maximally entangled state and a particular class of non-
maximally entangled states if the measurements performed by
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Alice and Bob are in the bases {|k〉Aa} and {|l〉Bb}, with

|k〉Aa = 1√
d

d−1∑
j=0

exp

[
i
2π

d
j(k + αa)

]
| j〉A (3)

and

|l〉Bb = 1√
d

d−1∑
j=0

exp

[
i
2π

d
j(−l + βb)

]
| j〉B, (4)

where

α1 = 0, α2 = 1/2, β1 = 1/4, β2 = −1/4. (5)

The special thing about the above inequality is that its quan-
tum violation increases with dimension d .

B. Sequential measurement scenario

The sequential measurement scenario considers an entan-
gled state of two d-dimensional systems shared in such a way
that half of the system is in the possession of the observer (say,
Alice) and the other half is possessed by several observers
(say, n Bobs, referred to as Bob1, Bob2, Bob3, . . . , Bobn). The
task of Bob1 is to pass the system to Bob2 after performing
an unsharp measurement on his part. Similarly, Bob2 passes
the system to Bob3 after the measurement and so on. In other
words, several Bobs measure their part sequentially, hence the
name “sequential measurement scheme.” Note that the mea-
surement of each Bob is independent and all the measurement
settings of each Bob are equally probable. In the scenario
described above, if the measurement statistics between Alice
and any Bob, say, Bobk (k > 1), exhibits a CGLMP violation,
then we call this “sharing the nonlocality” between them in
the sequential scenario.

To determine the number of Bobs sharing the nonlocality
of a shared entangled state (say, ρ) between Alice and n
Bobs, we have to assume that the measurements of Alice and
Bobn are sharp (i.e., they perform projection measurements
on their parts). In contrast, 1, . . . , n − 1 Bobs perform un-
sharp measurements represented by positive operator-valued
measurements (POVMs). If Alice’s measurement settings are
denoted by {|k〉A〈k|}, the measurement settings of Bobm are
represented by

El
Bm

= λm|l〉B〈l| + 1 − λm

d
Id , (6)

where k, l = 0, 1, 2, d − 1; m = 1, 2, 3, 4, . . . , n − 1; λm

(0 < λm � 1) is the sharpness parameter of Bobm; and Id is
the d-dimensional identity matrix. The state after the mea-
surements of the (m − 1)th Bob without any measurement on
Alice’s end transforms as

ρm = 1

d

d−1∑
l=0

(
Id ⊗

√
El

Bm−1

)
ρm−1

(
Id ⊗

√
El

Bm−1

)
, (7)

where ρm−1 is the state before the unsharp measurement per-
formed by Bobm−1. We will use the postmeasured state ρm

and POVM in Eqs. (6) and (7), respectively, when we certify
nonlocality via the CGLMP inequality in this scenario.

III. ROBUSTNESS IN THE CGLMP VIOLATION:
AREA OF THE NONLOCAL REGION

The study of the violation of Bell-type inequalities is a
major endeavor in studies of nonlocality. Another important
aspect is the investigation of robustness in the obtained vi-
olation. Typical studies of robustness consist of the addition
of noise to a state and tracking the response of violation
due to the amount of noise added to the state. However, for
the violation of Bell-type inequalities, measurements play as
crucial a role as states. Therefore, robustness analysis should
also be carried out when noise is added to the measurements.

We perform a general robustness analysis in which both
the state and the measurements are simultaneously noisy. In
particular, we explore the role of the dimension of a bipartite
state whose nonlocal characteristics in terms of violation of
the CGLMP inequality in Eq. (1) are under investigation.
Before that, we briefly discuss the scenario in which white
noise is mixed with the state, given by

ρ = p|ψ〉〈ψ | + 1 − p

d2
Id2 , (8)

where |ψ〉 is a bipartite pure state with each party having di-
mension d and Id2 is the d ⊗ d maximally mixed state (white
noise). It was observed [19] that when |ψ〉 is a maximally
entangled state in d ⊗ d , given by |ψd

ME
〉 = 1√

d

∑
i |ii〉, the

robustness to noise, which can be called visibility and is mea-
sured as p, increases with the increase in d . This is in the sense
that the maximal white noise that can be added to |ψd

ME
〉 such

that the resultant mixed state ρ violates the CGLMP inequality
which increases with dimension d . For a given d , this maximal
amount of white noise is denoted by 1 − pmin. In other words,
for |ψd

ME
〉, as pmin decreases, 1 − pmin increases with d . This

dimensional advantage of robustness is enhanced when, in-
stead of ME , |ψ〉 is chosen to be the nonmaximally entangled
state, which violates the CGLMP inequality maximally [20].
We denote such maximally violating states as MV . The exact
form of MV up to d = 10 can be found in Ref. [43]. MV

offer greater robustness with d in comparison to ME . For
the convenience of readers, we present the exact form of the
maximally violating states in Appendix A.

We now consider the opposite situation in which the shared
state is noise free and the measurements are taken to be
noisy. The effect operators for the noisy measurements are
described by the POVMs given in Eq. (6). Note that here we
are interested in the first-round violation [m = 1; see Eq. (6)].
Considering |ψ〉 to be noiseless ME and MV , the amount by
which measurements can be made noisy while preserving the
violation of the CGLMP inequality is denoted by 1 − λmin,
which also increases with increasing d . We observe exactly
the same dimensional dependence on noise in the measure-
ments denoted by λ as obtained in the case of noisy states
caused by adding white noise to the state. Mathematically, for
any pure state |ψ〉,

IQ
d (p = 1, λ = x) = IQ

d (p = x, λ = 1). (9)

Here the superscript Q in implies that the probabilities as-
sociated with the CGLMP expression are calculated for the
quantum states and measurements performed by Alice and
Bob, as stated earlier. For brevity, we do not henceforth use the
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FIG. 1. (a) For a fixed d , each point in the curve just crosses the local realist value of 2, i.e., when the value of Id in Eq. (1) is just above 2
by taking the maximally entangled state ME in the (1 − λ, 1 − p) plane. Different d values are considered. (b) A similar plot when the shared
state is the maximally CGLMP violating state MV . (c) A (ordinate) defined in Eq. (10) vs d (abscissa) for ME and MV .

superscript Q as we always work with probabilities generated
by quantum states and measurements. Things become more
interesting and complex when both the state and measure-
ments suffer from noise simultaneously, which we will discuss
in the next section.

Complementarity of robustness

We will now study the robustness obtained from the vi-
olation of the CGLMP inequality by considering both the
state and the measurements to be noisy. We again start with
a d-dimensional maximally entangled state |ψd

ME
〉 as well

as MV and |ψMV 〉 (for a two-qutrit state, MV has the form
1√
t
(|00〉 + γ |11〉 + |22〉), where t = 2 + γ 2 and γ = 0.7923

[20,43]). In this general framework, pmin is a function of the
noise in the measurements, which we denote as pmin(λ), and
naturally, λmin, in turn, becomes a function of the noise added
to the state, which is referred to as λmin(p). For convenience,
we drop the min and functional labels, thereby indicating
1 − pmin(λ) and 1 − λmin(p) as 1 − p and 1 − λ, respectively.
We investigate the dual version of robustness by tracking the
locus of all the points in the (1 − λ, 1 − p) plane that just
crosses the local realist value of 2 by considering ME and
MV [see Figs. 1(a) and 1(b)]. Note that all noise configu-
rations that fall below the curve lead to the violation of the
CGLMP inequality. Therefore, in the (1 − λ, 1 − p) plane, the
ratio of the areas under the curve can be considered to be a
measure of robustness when both the state and the measure-
ment are affected by noise. Motivated by this observation, we
introduce a generalized robustness measure as the area under
this curve, which we call the “area of the nonlocal region” A.
Mathematically, the area of the nonlocal region A in the noise
plane can be defined as

A =
∫ 1−pmin (λ=1)

0
[1 − λmin(1 − p)] d p. (10)

We then compute A values for both ME and MV and perform
a comparative analysis of their respective scalings with d [see
Figs. 1(a)–1(c)]. The A values for ME and MV are listed in
Table I. Our findings are as follows:

(1) The A values for MV are strictly greater than those
obtained for ME . Furthermore, the gap in A values for MV

and ME grows with d , which is clearly discernible from
Table I and Figs. 1(a)–1(c).

(2) A scales much faster with d for MV in comparison to
ME [see Fig. 1(c)].

(3) The gap in the growth between MV and ME in the case
of A grows much faster than that of the visibility.

Because the value of the CGLMP expression is the same
when either the state or the measurement becomes noisy with
the same amount of white noise, Id (p = 1, λ = x) = Id (p =
x, λ = 1) as in Eq. (9), it seems reasonable to assume that ro-
bustness can be completely characterized by looking at either
p or λ. However, this symmetry does not hold in the general
case where both noises are nonvanishing, i.e., Id (p = x, λ =
y) �= Id (p = y, λ = x). The lack of symmetry is reflected by
the fact that the curves in Figs. 1(a) and 1(b) are nonlinear.
Therefore, in the general case, the CGLMP nonlocality is both
a function of the unsharp parameter and the amount of noise
in the state in a nontrivial way. This leads us to introduce A as
a single-letter formula to analyze robustness that incorporates
the effects of both.

Furthermore, note that the white-noise paradigm can be
motivated by interpreting the noise arising from a depolarizing
noisy channel that is independent of the source state as a
systematic noise involved in the setup. This, as we under-
stand, gives a fair platform for comparing the performance of
various states with respect to their robustness against noise.

TABLE I. The A values for maximally entangled (ME ) and
maximally violating (MV ) states and their percentage differences
(Diff.) from d = 3 to d = 10 are given in different columns. The
difference grows with d since A for MV scales much faster with an
increase in d than that for ME .

d A (ME ) A (MV ) Diff.

3 0.05307 0.05685 7.14%
4 0.05517 0.06207 12.51%
5 0.05644 0.06595 16.85%
6 0.0573 0.06909 23.81%
7 0.05792 0.07171 27.45%
8 0.0584 0.07382 26.40%
9 0.05878 0.07567 28.73%
10 0.05906 0.07733 30.93%
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FIG. 2. Comparison of the robustness to the point and white
noise of the maximally entangled states ME and the maximally
violating ones MV for d = 3. Both ME and MV are more robust
to point noise, as indicated by the higher value of 1 − pmin.

For colored noise, there is no unique way to ascribe the
nonuniformity of the noise, and it can alter the nonlocal prop-
erties of various states in completely different ways, which
would make our comparative studies hard. That is why we
focus on the systematic white noise in both cases. In the
general case, one intends to consider an arbitrary separable
state as noise. Such noise will depend on the initial shared
entangled state. To create a meaningful platform for compar-
ison of various initial shared states (ME , MV , etc.), for each
initial state, one has to perform an optimization over the entire
set of separable states, pinning down the least disturbing noise
for each initial state. This, in general, is a very hard problem.
Nevertheless, we undertake a particular colored-noise scheme
that might be worthwhile to consider, which we call the point
noise, where any state |ψ〉 under consideration is made noisy
by

ρ = p|ψ〉〈ψ | + (1 − p)|k = 0〉〈k = 0| ⊗ |l = 0〉〈l = 0|. (11)

For the expressions of |k(l ) = 0〉, see Eqs. (3) and (4). Com-
pared to white noise (mixing a maximally mixed state), both
ME and MV show enhanced robustness features with respect
to the point noise which can be easily observed in Fig. 2
for d = 3. However, the scaling of 1 − pmin with d remains
qualitatively similar, with the hierarchies between MV and
ME being preserved. For the d = 3 case, see Fig. 2.

Typically, noise in the system has an adverse effect on the
system in the form of lowering the visibility. As shown in
this section, the bane can turn out to be a boon in disguise if
we look at the situation from a different point of view. In the
context of sequential measurements, the “white noise” in the
measurement actually constitutes a POVM strategy which al-
lows multiple Bobs to share nonlocality, thereby manifesting
the robustness from a different perspective, as will be shown
in the next section.

IV. SHARING OF NONLOCALITY
IN HIGHER DIMENSIONS

In the sharing scenario considered in this section, we deal
with the maximally entangled and maximally violating states

shared by Alice and Bob1 in an arbitrary dimension. We will
start our discussion with d = 3, and a detailed analysis is
presented for ME in d = 3 to d = 5. We then repeat the
investigation for the maximally violating states.

After substituting d = 3 in Eq. (1), the CGLMP inequality
reads

I3 = P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2)

+ P(B2 = A1) − [P(A1 = B1 − 1) + P(B1 = A2)

+ P(A2 = B2 − 1) + P(B2 = A1 − 1)] � 2. (12)

If the shared state is the two-qutrit ME , given by∣∣ψ3
ME

〉 = 1√
3
(|00〉 + |11〉 + |22〉), (13)

by performing the POVM on Bob′
1s side and by consid-

ering the measurement settings for the CGLMP test given
in Eqs. (3), (4), and (5) for Alice and Bob1, the quantum
expression for the CGLMP inequality I3 [Eq. (12)} for the
Alice-Bob1 pair reduces to

I1
3 = 4

9 (3 + 2
√

3)λ1, (14)

where the superscript 1 represents the number of rounds in
the sequential scenario. Hence, the nonlocality can be demon-
strated by showing the violation of the CGLMP inequality
between Alice and Bob1 if λ1 > 2/[ 4

9 (3 + 2
√

3)] = 0.69615,
while the optimal quantum value for Alice and Bob1 is
2.87293, obtained at λ1 = 1. In a similar fashion, we can find
the quantum expressions for the Alice-Bob2 and Alice-Bob3

pairs, which are, respectively,

I2
3 = 4λ2

81
[−2(

√
3 + 3)λ1 + 12

√
1 − λ1

√
2λ1 + 1

+ 4
√

2λ1 + 1
√

3 − 3λ1 + 14,
√

3 + 15] (15)

and

I3
3 = 4λ3

729
{4(

√
3 + 6)(2

√
1 − λ2

√
2λ2 + 1 − λ2)

×
√

1 − λ1

√
2λ1 + 1 − 2λ1[7

√
3 + 15 − (

√
3 + 6)λ2

+ 2(
√

3 + 6)
√

1 − λ2

√
2λ2 + 1] − 2(7

√
3 + 15)λ2

+ 4(7
√

3 + 15)(
√

1 − λ1

√
2λ1 + 1

+
√

1 − λ2

√
2λ2 + 1 + 75 + 98

√
3)}. (16)

Considering the situation of minimum violation of I1
3 by

Alice and Bob1, the quantum expression for I2
3 reduces to

2.40856λ2. In this case, the violation of the CGLMP inequal-
ity for Alice and Bob2 is possible if λ2 > 0.830372, while the
optimal quantum value is 2.40856 with λ2 = 1. Substituting
the conditions for λ1 and λ2, we find that two Bobs surely
violate the CGLMP inequality. Let us now check whether the
third Bob, Bob3, can also violate the CGLMP inequality or
not. In this case, the optimal quantum value of I3

3 turns out to
be 1.83798 < 2 if we take the minimum violation condition
for Bob2 and Bob3. Since the optimal quantum value of I3

3 is
strictly less than 2, we can claim that only two Bobs, Bob1

and Bob2, can exhibit nonlocality with Alice by using the
CGLMP inequality for d = 3. Notice here that only two Bobs
can violate the CHSH inequality with Alice if they initially
share a two-qubit maximally entangled state [25].
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TABLE II. Optimal quantum values for Bob1, Bob2, and Bob3

are obtained using the CGLMP inequality for a maximally entangled
state for d = 3 to d = 10 dimensions.

Optimal quantum value of the CGLMP inequality
Dimension Bob1 Bob2 Bob3

3 2.8729 2.4086 1.8380
4 2.8962 2.3963 1.7994
5 2.9105 2.3819 1.7650
6 2.9202 2.3699 1.7382
7 2.9272 2.3570 1.7122
8 2.9324 2.3458 1.6910
9 2.9365 2.3360 1.6722
10 2.9398 2.3274 1.6568

Let us now move to d = 4 and d = 5. In these cases, Id in
Eq. (1) reduces to

I4 = P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2)

+ P(B2 = A1) − [P(A1 = B1 − 1) + P(B1 = A2)

+ P(A2 = B2 − 1) + P(B2 = A1 − 1)]

+ 1
3 {P(A1 = B1 + 1) + P(B1 = A2 + 2)

+ P(A2 = B2 + 1) + P(B2 = A1 + 1)

− [P(A1 = B1 − 2)P(B1 = A2 − 1)

+ P(A2 = B2 − 2) + P(B2 = A1 − 2)]} � 2. (17)

By following a similar prescription, for a maximally en-
tangled state |ψ4

ME
〉 = 1

2 (|00〉 + |11〉 + |22〉 + |33〉), we find
that Bob1 starts sharing nonlocality with Alice through the
violation of the CGLMP inequality when λ1 > 0.690551 and
that max I1

4 = 2.89624 for λ1 = 1. Again, if we restrict the
situation such that the Alice-Bob1 duo just shows violation,
Alice and Bob2 violate the CGLMP inequality when λ2 >

0.834603, and in the second round, the maximal quantum
value is reduced to 2.39635 (λ2 = 1). By taking the minimum
violation condition of the sharpness parameter for Bob2 and
Bob3, the optimal quantum value of I3

3 , given in Table II, again
turns out to be less than 2. For d = 5,

I5 = P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2)

+ P(B2 = A1) − [P(A1 = B1 − 1) + P(B1 = A2)

+ P(A2 = B2 − 1) + P(B2 = A1 − 1)]

+ 1
2 {P(A1 = B1 + 1) + P(B1 = A2 + 2)

+ P(A2 = B2 + 1) + P(B2 = A1 + 1)

− [P(A1 = B1 − 2)P(B1 = A2 − 1)

+ P(A2 = B2 − 2) + P(B2 = A1 − 2)]} � 2 (18)

can be used to obtain violations of the CGLMP inequality in
a sequential situation with |ψ5

ME
〉 = 1√

5
(|00〉 + |11〉 + |22〉 +

|33〉 + |44〉). The optimal quantum violations of the CGLMP
inequality for Bob1, Bob2, and Bob3 are given in Table II up
to d = 10. From Table II, we can see that as the dimension
increases, there is an increment of the optimal quantum value
for Bob1, although it decreases with the increase of dimension
for Bob2 and Bob3. Table II also indicates that the trade-off

TABLE III. I i
d (i = 1, 2, 3) for Bob1, Bob2, and Bob3 are listed

for the maximally violating state MV as the initial state from d = 3
to d = 10.

Optimal quantum value of the CGLMP inequality
Dimension Bob1 Bob2 Bob3

3 2.9150 2.4402 1.8578
4 2.9729 2.4526 1.8307
5 3.0158 2.4564 1.8015
6 3.0495 2.4522 1.7702
7 3.0771 2.4418 1.7342
8 3.1012 2.4324 1.7041
9 3.1215 2.4231 1.6768
10 3.1393 2.4142 1.6517

between the information gained by the measurement and the
disturbance created by the measurement plays a crucial role in
this enterprise.

Since the CGLMP inequality gives the maximum violation
for a nonmaximally entangled state, let us examine whether
the initial shared state in a sequential scenario is MV and
whether the situation improves or not. We observe that al-
though the first round of violation is greater and increases
faster with d in comparison to that for ME , the measurements
disturb the state to such an extent that violation for more
than two Bobs remains an impossibility. Also, note that the
third-round value of the CGLMP expression decreases with
increasing dimension, so the possibility of getting a simul-
taneous violation for three rounds is unlikely even if d is
increased beyond 10. See Table III for details. Comparing
Tables II and III, we observe that the gap between the I3

d
values obtained for MV and ME decreases with the increase
in dimension. This possibly indicates that the unsharp mea-
surements disturb MV more drastically than ME in higher
dimensions.

Optimality analysis of measurements in the sequential scenario

An important question is whether the POVMs considered
by weakening the optimal single-round measurement strategy
with white noise might not be the optimal ones to get the max-
imal number of Bobs that can sequentially violate the CGLMP
inequality with a single Alice. The optimality in the sequential
case might be measured by the strategy that maximizes the
number of Bobs that violate the CGLMP inequality. However,
as one can clearly see, such a definition of optimality leaves
a lot of degeneracy in the number of measurement choices
that achieve the optimal number of Bobs since the indicator of
optimality increases in integer steps.

Ideally, one would like to perform a “full optimization”
to maximize n. The full optimization refers to a maximiza-
tion over measurement settings of the CGLMP inequality and
unsharp parameters of all n rounds collectively. Since the
measurement settings of the mth round adaptively depend on
the settings of all the previous rounds, the full optimization
process becomes realistically intractable. Even if each round
is treated independently with the objective being to obtain an
infinitesimal amount of violation with minimal disturbance
to the state, we again run into the domain of infeasibil-
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ity. This is because if the optimization at every round is
carried over arbitrary POVMs, the dimension of the parameter
space in the optimization will become very large even if one
considers POVMs with a fixed number of outcomes. This
again renders the problem intractable. Therefore, we resort
to optimization over a simplified setting in which we are left
with a five-parameter optimization in every round. Specifi-
cally, we numerically scan the measurement strategies used
for the CGLMP inequality made unsharp with white noise,
denoted as (CGLMP + white), to evaluate the optimal setting.
In particular, we perform a five-dimensional optimization over
α1, α2, β1, β2, and λ to find the violation and the postmeasure-
ment state in one round and then perform optimal projective
CGLMP measurements to check whether we get any violation
in the next round. If not, we stop, and if we do, we repeat the
same drill of numerical optimization. Our analysis using the
dividing rectangles algorithm [44] for global optimization re-
veals that for the measurement strategies of the form (CGLMP
+ white), the best setting is when α1, α2, β1, and β2 are chosen
to be in the optimal setting as in the projective (single-round)
case of the CGLMP inequality.

Last, we believe that our choice of weak measurements is
one of the most “intuitive” options one may consider. If the
full optimization, in principle, yields some other strategy, we
suspect that this approach might constitute some exotic mea-
surements that might be difficult to implement operationally.
In such a situation, we argue that our choice of unsharp mea-
surements is the most practically motivated one.

Now we present an analysis of the level of optimality
provided by our choice of the set of weak measurements
over which our optimization runs. Given a weak-measurement
scheme, the optimality of such a strategy involves the study
of the trade-off between the information gain by the measure-
ment and the amount of disturbance it imparts to the state. The
amount of disturbance quantifies the quality of measurement
F and can be obtained from the postmeasurement state ρ ′,

ρ ′ = Fρ + (1 − F )
d−1∑
i=0

PiρPi, (19)

where ρ is the initial state and Pi are the projectors that have
been weakened by the strategy

Ei = λPi + 1 − λ

d
Id , (20)

with I being the d-dimensional identity, the same strategy we
have used in our work [see Eq. (6)]. Again, from Eq. (6), we
can make the following identification: Pi = |l = i〉〈l = i|. The
second quantity of interest measures the amount of informa-
tion gained in the experiment, which can be interpreted as the
precision of the experiment given by G, where

p(Ei ) = G tr(Piρ) + 1 − G

d
, (21)

where p(Ei ) is the clicking probability of Ei. With F and G, we
have the following information gain vs disturbance inequality
[25]:

F 2 + G2 � 1. (22)

FIG. 3. Variation of F 2 + G2 versus the sharpness parameter of
measurement λ for various d . As d increases, the weakening strategy
via white noise becomes suboptimal.

The optimal measurement strategy saturates the above in-
equality. In the d = 2 case, it was proven that weakening
the optimal projective measurements via white noise can sat-
urate the F 2 + G2 � 1 inequality, thereby demonstrating its
optimality. In the absence of the solution for the full opti-
mization, we extend the weakening strategy via white noise
in accordance with the optimal setting for d = 2 to higher
dimensions. To test the optimality of our ansatz, for d > 2, we
test how close to unity F 2 + G2 gets for our choice of weak
measurements. For a general d , we compute

F = 2

d

√
[1 + (d − 1)λ](1 − λ) + (d − 2)(1 − λ)

d
. (23)

See Appendix B for a detailed calculation. Furthermore, from
Eq. (21), we get G = λ. We find that for d > 2, F 2 + G2 < 1,
thereby suggesting that our measurement choices are not op-
timal. However, to our advantage, our analysis reveals that for
low d , the inequality reaches near saturation. For example, for
d = 3 and 4, we get almost 90% saturation of the inequality
for the relevant choice of system parameters (see Fig. 3).

V. ROBUSTNESS IN SEQUENTIAL EXHIBITION
OF NONLOCALITY

In Sec. III, we analyzed how much noise we could add
to the state as well as measurements so that it continued to
violate the CGLMP inequality. However, the option of us-
ing sequential measurements to obtain violations for multiple
Bobs with a single Alice opens up the possibility to examine
robustness from a new point of view. In this context, we define
robustness as the maximal amount of noise that can be added
to a state such that the CGLMP inequality can be violated
for multiple rounds, which we claim to be two since, from
the previous section, we observed that for both ME and MV ,
the maximum number of Bobs that can violate the CGLMP
inequality with Alice remains two.

Let us consider the pure state |ψ〉 admixed with white
noise, given in Eq. (8), with visibility q as an initial state in
the sequential scenario. We now demand that if two Bobs
have to show a violation of local realism with Alice, both
I1
d and I2

d have to be greater than 2. We define qmin as the
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TABLE IV. The qmin values for maximally entangled states ME

and maximally violating states MV for d = 3 to 10 are reported for
the violation of the CGLMP inequality by two Bobs sequentially
with Alice.

Dimension qMV
min qME

min

3 0.8773 0.8845
4 0.8748 0.8872
5 0.8737 0.8900
6 0.8736 0.8933
7 0.8738 0.8963
8 0.8741 0.8987
9 0.8748 0.9012
10 0.8752 0.9034

minimum value of q above which both I1
d > 2 and I2

d > 2. We
now compute how qmin scales with d and compare the results
with the scaling obtained for pmin discussed in Sec. III for both
ME and MV .

Recall that in the CGLMP test, we observed an enhanced
amount of robustness (as defined in terms of the persistence of
the violation with the addition of white noise) on increasing d ,
as indicated by lower values of pmin. The maximal amount of
white noise that the state can absorb such that the violation
persists is simply given by 1 − pmin. For both ME and MV ,
pmin decreases with d [16,19,20]. Furthermore, note that we
expectedly find pmin < qmin < 1.

When robustness is analyzed in the context of sustaining
dual-round violation via the use of sequential measurements,
we observe a qualitatively different trend. For ME , qmin ac-
tually increases with d . This implies that robustness actually
decreases with d when ME are employed and we demand
CGLMP violations by two Bobs. However, for MV , qmin

values do not change significantly on increasing d . See Ta-
ble IV for the details of the qmin values for both ME and
MV . However, in both cases, the gap between qmin and pmin

increases with d . For a pictorial representation of the situation,
see Fig. 4.

FIG. 4. Schematic depiction of the dynamics of qmin and pmin for
both ME and MV with d . pmin denotes the visibility of the state,
while qmin is the minimum value of the visibility above which the
CGLMP inequality in the second round starts violating. The super-
scripts represent the states considered. The green and red arrows
respectively indicate the advantages and disadvantages of robustness
with dimensions.

The above results explain in part why, despite an increase
in the first-round violation with d , one does not get a higher
number of Bobs which sequentially violate the CGLMP
inequality, i.e., Ik

d > 2, with k > 2 for higher-dimensional
systems. Although the amount of the maximal first-round
violation grows, the disturbance induced by the measurements
is high enough to actually bring down the violation in the
second round with d , which ultimately leads to the third round
becoming nonviolating.

VI. DISCUSSION

To achieve quantum advantage, manipulating and analyz-
ing higher-dimensional quantum systems are essential since,
for several quantum information processing tasks, higher-
dimensional quantum systems turn out to be more beneficial
than qubit pairs. The CGLMP inequality is a family of tight
Bell inequalities for bipartite systems of arbitrary dimension
which is known to exhibit more robustness against noise with
increasing dimension. Therefore, it is interesting to investigate
how the CGLMP inequality responds if noise is present not
only in the state but also in the measurement.

We introduced a new measure of robustness which we
referred to as the “area of the nonlocal region” while consid-
ering two noises in the states and measurements. In particular,
this area indicates the region in the noise parameter space
where violation of the CGLMP inequality can be observed.
We found that this region grows more rapidly with the in-
crease in dimension with respect to the increase in visibility
associated solely with states or measurements.

The introduction of noise in measurements facilitates the
use of a sequential violation of the CGLMP inequality as it
retains some residual correlation after obtaining a violation in
the first round. Interestingly, we found that the violation of the
CGLMP inequality by two sequential observers on one side
and another observer on the other end persists with dimension.
Moreover, the minimum visibility required to achieve double
violation in the sequential case increases with the increase
in dimension, thereby exhibiting the opposite behavior com-
pared to the violation obtained for the shared state without
unsharp measurement. This indicates that robustness in the
sequential measurement scenario is qualitatively distinct from
that of the typical Bell test since it involves the disturbance
of the state introduced via the measurement. It would be
interesting to probe further how the double violation obtained
in the CGLMP inequality enables applications in the context
of information processing tasks involving higher-dimensional
quantum systems.
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APPENDIX A: THE MAXIMALLY VIOLATING STATES

The expressions for the maximally violating states were
given in [43]. We state them here once more for the
convenience of the readers.

∣∣ψd=3
MV

〉 = 0.6169 |00〉 + 0.4888 |11〉 + 0.6169 |22〉 , (A1)∣∣ψd=4
MV

〉 = 0.5686 |00〉 + 0.4204 |11〉 + 0.4204 |22〉 + 0.5686 |33〉 , (A2)∣∣ψd=5
MV

〉 = 0.5368 |00〉 + 0.3859 |11〉 + 0.3548 |22〉 + 0.3859 |33〉 + 0.5368 |44〉 , (A3)∣∣ψd=6
MV

〉 = 0.5137 |00〉 + 0.3644 |11〉 + 0.3214 |22〉 + 0.3214 |33〉 + 0.3644 |44〉 + 0.5137 |55〉 , (A4)∣∣ψd=7
MV

〉 = 0.4957 |00〉 + 0.3493 |11〉 + 0.3011 |22〉 + 0.2882 |33〉 + 0.3011 |44〉 + 0.3493 |55〉 + 0.4957 |66〉 , (A5)∣∣ψd=8
MV

〉 = 0.4812 |00〉 + 0.3379 |11〉 + 0.2872 |22〉 + 0.2679 |33〉 + 0.2679 |44〉 + 0.2872 |55〉 + 0.3379 |66〉
+0.4812 |77〉 , (A6)∣∣ψd=9

MV

〉 = 0.4690 |00〉 + 0.3288 |11〉 + 0.2770 |22〉 + 0.2541 |33〉 + 0.2474 |44〉 + 0.2541 |55〉 + 0.2770 |66〉
+0.3288 |77〉 + 0.4690 |88〉 , (A7)∣∣ψd=10

MV

〉 = 0.4587 |00〉 + 0.3212 |11〉 + 0.2690 |22〉 + 0.2440 |33〉 + 0.2334 |44〉 + 0.2334 |55〉 + 0.2440 |66〉
+0.2690 |77〉 + 0.3212 |88〉 + 0.4587 |99〉 . (A8)

APPENDIX B: COMPUTATION OF THE MEASUREMENT
QUALITY INDEX F

Following the weak-measurement strategy given in
Eq. (20), the postmeasurement state reads

ρ ′ =
d−1∑
i=0

MiρM†
i , (B1)

where Mi are the update operators given by

Mi = √
Ei = xPi + y(I − Pi ), (B2)

with

x =
√

1 + (d − 1)λ

d
, y =

√
1 − λ

d
. (B3)

See Eq. (20) for the form of Ei in terms of Pi. Now ρ ′ can be
written as

ρ ′ =
d−1∑
i=0

PiρPi + [2xy + (d − 2)y2]
d−1∑
i j=0
i �= j

PiρPj

= [2xy + (d − 2)y2]ρ

+ [1 − 2xy − (d − 2)y2]
d−1∑
i=0

PiρPi. (B4)

Now following Eq. (19), we make the following identification
for the quality factor of the measurement:

F = 2xy + (d − 2)y2,

= 2

d

√
[1 + (d − 1)λ](1 − λ) + (d − 2)(1 − λ)

d
. (B5)
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