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Quantum phase transition and critical behavior between the gapless topological phases
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The phase transition between gapped topological phases represents a class of unconventional criticality beyond
the Landau paradigm. However, recent research has shifted attention to topological phases without a bulk gap,
where the phase transitions between them are still elusive. In this work, based on large-scale density-matrix
renormalization-group techniques, we investigate the critical behaviors of the extended quantum XXZ model
obtained by the Kennedy-Tasaki transformation. Using fidelity susceptibility as a diagnostic, we obtain a
complete phase diagram, which includes both topological nontrivial and trivial gapless phases. Furthermore,
as the XXZ-type anisotropy parameter � varies, both the critical points hc and correlation length exponent ν

remain the same as in the � = 0 case, characterized by c = 3/2 (Ising plus free boson) conformal field theory.
Our results indicate that fidelity susceptibility can effectively detect and reveal a stable unconventional critical
line between the topologically distinct gapless phases for general �. This work serves as a valuable reference
for further research on phase transitions within the gapless topological phase of matter.
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I. INTRODUCTION

The classification of the quantum phase of matter consti-
tutes a core issue in condensed-matter and statistical physics
[1–4]. Nevertheless, in the past few decades, the development
of topological phases has received significant attention [5–10],
expanding our understanding of quantum phases beyond
the Landau paradigm. A notable example is the symmetry-
protected topological (SPT) phases [7–9], where the bulk is
gapped and nontrivial gapless modes emerge at the bound-
ary. It is worth emphasizing that discussions of SPT phases
typically focus on gapped quantum phases [11–19]. Despite
the crucial role of the bulk gap in defining topological phases,
recent research [20–47] has revealed that many key features of
topological physics, such as degenerate edge modes, persist
in the gapless systems, even in the presence of nontrivial
coupling between the boundary and critical bulk fluctuations,
which we refer to as gapless topological phases. These new
phases are not described by the Landau paradigm, and recent
studies have explored their exotic properties [36,38–45,47].
However, the phase transitions between them remain largely
unexplored.

On a different front, the development of the theory of
quantum phase transitions (QPTs) stands as one of the striking
achievements in modern physics [1,48,49]. The traditional
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theory of phase transitions relies on the Landau-Ginzburg-
Wilson symmetry-breaking paradigm [50]. However, in the
past few decades, it has become clear that this paradigm
does not fully capture the complexities at quantum criti-
cal points (QCPs), which are referred to as unconventional
QCPs [51–53]. A notable example is the topological phase
transitions between the gapped topological phases, which
cannot be described in terms of fluctuating local order pa-
rameters or symmetry breaking [54–57]. Nonetheless, as
mentioned in the preceding paragraph, the gapless topo-
logical phases represent a new type of exotic quantum
matter beyond the Landau paradigm, and their phase tran-
sitions may be highly nontrivial and worth exploring in
depth [58–62].

Fidelity susceptibility is a concept borrowed from quan-
tum information theory and has found widespread utility as
a useful diagnostic for pinpointing QCPs in the realms of
condensed-matter and statistical physics [63–75]. Its advan-
tage lies in the fact that it does not require prior knowledge
of order parameters or symmetry breaking. To date, fidelity
susceptibility has proven effective in detecting various types
of QCPs, including conventional symmetry-breaking QCPs
[63,65], topological phase transitions [67], Anderson tran-
sitions [69], nonconformal commensurate-incommensurate
transitions [70], deconfined quantum criticality [76], and even
non-Hermitian critical points [71,77]. Nevertheless, it remains
an open question whether fidelity susceptibility can detect
quantum phase transitions between gapless topological phases
and more importantly determine the critical exponents and
universality class at these QCPs.

2469-9926/2024/109(6)/062226(12) 062226-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8900-1100
https://orcid.org/0000-0002-1935-1463
https://ror.org/011xvna82
https://ror.org/006teas31
https://ror.org/006teas31
https://ror.org/00xsfaz62
https://ror.org/00a2xv884
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.062226&domain=pdf&date_stamp=2024-06-27
https://doi.org/10.1103/PhysRevA.109.062226


ZHANG, LI, YANG, AND YU PHYSICAL REVIEW A 109, 062226 (2024)

FIG. 1. (a) Phase diagram and (b) schematic representation of the
extended quantum XXZ spin chain with the anisotropy parameter
� and transverse field h. The critical point h∗

c is obtained from
the polynomial fitting hc(N ) = h∗

c + aN−1/ν of the peak position of
fidelity susceptibility hc(N ) for N = 48, 56, 64, 72, 80, 88, 96 sites.
Symbols denote the numerical results of the critical values h∗

c .

In this work we take the first step towards addressing
the above questions by investigating the QPT between triv-
ial and intrinsically gapless symmetry-protected topological
(gSPT) phases. We accomplish this by constructing a one-
dimensional extended quantum XXZ spin model through
the Kennedy-Tasaki (KT) transformation [41,78–80]. Specif-
ically, using fidelity susceptibility as a diagnostic and in
combination with the string order parameter and entan-
glement spectrum, we establish a complete global phase
diagram, which includes both intrinsically gSPT and trivial
gapless phases (see Fig. 1). Furthermore, by performing finite-
size scaling on fidelity susceptibility, we conclude that as
XXZ-type anisotropy parameters � vary, these topologically
distinct gapless phases undergo a continuous phase transition,
with the critical points hc and correlation length exponent ν

remaining the same as in the � = 0 case, characterized by
conformal field theory (CFT) with central charge c = 3/2
[46,81,82], which can be identified as an Ising CFT combined
with a free boson CFT [41]. It indicates that the unconven-
tional critical point between topologically distinct gapless
phases for � = 0 expands to a critical line for general �.

The paper is organized as follows. Section II contains the
lattice model of the extended quantum XXZ spin chain after
the KT transformation, the numerical method employed, the
string order parameter, the entanglement spectrum, and the
scaling relations of fidelity susceptibility. Section III shows
the global phase diagram of the model and the finite-size scal-
ing of the various physical quantities. A summary is presented

in Sec. IV. Additional data for our numerical calculations are
provided in the Appendixes.

II. MODEL AND METHOD

A. Extended quantum XXZ spin chain
through the KT transformation

We consider a lattice model exhibiting topologically dis-
tinct gapless quantum phases. This model can be obtained by
stacking an Ising-ordered Hamiltonian with an XXZ chain via
the KT transformation [41]. The Hamiltonian is given by [38]

H = −
L∑

i=1

(
τ z

2i−1σ
x
2iτ

z
2i+1 + τ

y
2i−1σ

x
2iτ

y
2i+1 + �τ x

2i−1τ
x
2i+1

+ σ z
2iτ

x
2i+1σ

z
2i+2 + hσ x

2i

)
, (1)

where L denotes the number of unit cells, with the to-
tal number of sites N being twice that, i.e., N = 2L. Each
unit cell is composed of a pair of spins (τ2i−1, σ2i ) rep-
resented by Pauli operators σα and τα on the even and
odd sites, respectively. The parameter h > 0 acts only on
even sites (σ spins) and denotes the strength of the trans-
verse field. The XXZ-type anisotropic parameter � makes
the Hamiltonian not exactly solvable in the sense of the
Jordan-Wigner transformation. The system exhibits a class of
gapless phases described by a c = 1 free boson CFT, pos-
sesses a Z4 symmetry generated by U = ∏

i σ
x
2ie

i(π/4)(1−τ x
2i−1 ),

and also exhibits an emergent anomaly in the low-energy sec-
tor, known as intrinsically gSPT phases [34]. Specifically, in
this sector, the Z4 symmetry is approximately realized as U ∼∏

i σ
x
2ie

i(π/4)(1−σ z
2i−2σ

z
2i ), which is analogous to the anomaly

observed on the boundary of a (2 + 1)-dimensional Levin-
Gu SPT state [83]. This anomaly prevents the system from
realizing a unique symmetry-preserving gapped phase and
gives rise to interesting physical properties. Furthermore, in
an open chain with a length N , the square of the low-energy
symmetry operator fractionalizes onto each end of the bound-
ary, as detailed in [44,45]. Specifically, U 2 ∼ τ x

1 σ z
2σ z

2L. This
charge locally anticommutes with the U symmetry, protecting
a twofold degeneracy in the intrinsically gSPT ground state.

In this work we solve the model using the density-matrix
renormalization-group (DMRG) method [84–87] based on
matrix product states (MPSs) [88–90]. The DMRG method
stands as one of the most powerful unbiased numerical tech-
niques for addressing one-dimensional strongly correlated
many-body systems. We fix the maximal MPS bond dimen-
sion at 1024 to ensure reliable convergence of true energy
eigenstates and fidelity susceptibilities (see Appendix E for
details). To this end, we maintain relative energy errors be-
low 10−9. The fidelity susceptibility, defined later [Eq.(6)],
is computed with a minimal step of δh = 10−3. In practical
DMRG calculations, a random initial state is chosen, and open
boundary conditions are applied in most cases.

B. String order and entanglement spectrum
in gapless topological phases

We first utilize the long-distance behavior of nonlocal
string order parameters and the bulk entanglement spectrum
under periodic boundary conditions (PBC) to identify the
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possible quantum phases in the phase diagram before inves-
tigating QPT and pinpointing QCPs.

Following the KT transformation, as described in Ref. [41],
the conventional local spin correlation function before the
KT transformation is converted into string order parameters
afterward, specifically denoted by σ and τ string correlations:

Oσ (|i − j|) =
〈
σ z

2i

⎛
⎝ j−1∏

k=i

τ x
2k+1

⎞
⎠σ z

2 j

〉
, (2)

Oτ (|i − j|) =
〈
τ z

2i−1

⎛
⎝ j−1∏

k=i

σ x
2k

⎞
⎠τ z

2 j−1

〉
. (3)

For � = 0.0, in the trivial gapless phase (1.0 < h < 2.0),
the σ string correlation exhibits exponential decay at long
distances, while the τ string correlation function displays
algebraic decay behavior. Conversely, in the intrinsically
gSPT phase (0.0 < h < 1.0), the σ string correlation exhibits
long-range order, while the τ string correlation still displays
algebraic decay behavior.

Furthermore, the bulk entanglement spectrum encodes in-
formation beyond entanglement entropy, suggesting that the
bulk ground-state wave function captures universal bound-
ary information, such as topologically protected degenerate
edge modes [91], and hence can be used to detect the
gapped or gapless topological phases [38,92]. The entangle-
ment spectrum consists of the eigenvalues of the entanglement
Hamiltonian H̃A, related to the reduced density matrix ρA of
subsystem A by

ρA = TrB|
〉〈
| =
∑

α

e−ξα
∣∣
A

α

〉〈

A

α

∣∣ = e−H̃A . (4)

Here |
〉 represents the ground-state wave function of the
Hamiltonian and ξα ≡ − ln λα , where λα is the eigenvalue
of ρA. In our study of one-dimensional quantum chains,
A = 1, 2, . . . , L/2 and B = L/2 + 1, . . . , L represent a spatial
bipartition of the entire chain, and the bulk entanglement
spectrum displays two degenerate and nondegenerate ground
states in topologically nontrivial and trivial gapless phases,
respectively.

C. Fidelity susceptibility and scaling relations

In this work we utilize fidelity susceptibility, a concept
borrowed from quantum information theory, offering a re-
markably simple and intuitive method for identifying QCPs
and obtaining critical exponents through finite-size scaling.
The concept of fidelity susceptibility is as follows. Given
a Hamiltonian H (h) = H0 + hH1 with a driving parameter
h, the quantum ground-state fidelity F (h, h + δh) is defined
as the overlap amplitude of two ground states |ψ (h)〉 and
|ψ (h + δh)〉:

F (h, h + δh) = |〈ψ (h)|ψ (h + δh)〉|. (5)

When a system undergoes a continuous phase transition from
an ordered to a disordered phase by tuning the external
field h to a critical value h∗

c , at which the structure of the
ground-state wave function changes significantly, the quan-
tum ground-state fidelity is nearly zero near h∗

c . In practice,
a more convenient quantity for characterizing QPTs is the

fidelity susceptibility, defined by the leading term of fidelity:

χF (h) = lim
δh→0

2[1 − F (h, h + δh)]

(δh)2
. (6)

For a continuous QPT of a finite system with size N , fi-
delity susceptibility exhibits a peak at the pseudocritical point
hc(N ), and the true QCP h∗

c can be estimated through poly-
nomial fitting hc(N ) = h∗

c + aN−1/ν [93]. In the vicinity of
hc(N ), previous studies have shown that the finite-size-scaling
behaviors of fidelity susceptibility χF (h) are described by [63]

χF (h → hc(N )) ∝ Nμ, (7)

where μ = 2 + 2z − 2�V is the critical adiabatic dimension.
Here z is the dynamical exponent and �V is the scaling di-
mension of the local interaction V (x) at the critical point. On
the other hand, it is shown that the fidelity susceptibility per
site scales as [63]

N−dχF (h) = N (2/ν)−d fχF (N1/ν |h − h∗
c |), (8)

where d is the spatial dimension of the system, fχF is an
unknown scaling function, and ν is the critical exponent of the
correlation length, which can be easily computed according to
the relation ν = 2/μ. Based on Eqs. (7) and (8), the values
of critical exponents μ and ν can be determined and the
corresponding critical behavior can be easily confirmed. In
practice, the critical exponents ν and μ are usually extracted
from fidelity susceptibility per site, χN (h) = χF (h)/Nd .

III. PHASE DIAGRAM AND CRITICAL BEHAVIOR

A. Quantum phase diagram: Overview

Before exploring phase transitions, let us investigate the
possible quantum phases that appear in the phase diagram. In
this work we focus only on � > 0 since the −� case can be
obtained through a π rotation around the x axis of every other
τ spin, followed by the transformation � → −�. As a first
step, we examine a limiting case: When � = 0.0, the model
simplifies to an Ising-ordered Hamiltonian combined with
an XY chain via the KT transformation. References [41,42]
indicate that this model exhibits a phase transition between the
intrinsically topological (0.0 < h < 1.0) and trivial gapless
phases (h > 1.0). For a general �, since the model is no
longer exactly solvable, we employ the DMRG simulations to
ascertain the possible phases in the model by computing the
scaling behavior of σ and τ string correlations for � = 0.2
(see Appendix A for other �). As depicted in Figs. 2(a) and
2(b), we observed that when h < 1.0, σ and τ string correla-
tions exhibit long-range order and power-law decay behavior,
respectively, at the long-distance limit, consistent with the
characteristics of intrinsically gSPT phases as we mentioned
before. Conversely, when h > 1.0, σ and τ string correlations
display exponential and power-law decay behaviors, respec-
tively, consistent with the features of trivial gapless phases.

Furthermore, to elucidate the topological properties of gap-
less topological phases more clearly, we computed the bulk
entanglement spectrum as a function of h under � = 0.2 (see
Appendix A for other �). As illustrated in Fig. 2(c), we
observe that the ground-state degeneracy of the bulk entangle-
ment spectrum transforms from twofold (0.0 < h < 1.0) to a
unique ground state (h > 1.0). This indicates that the system
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FIG. 2. Scaling behaviors of τ and σ string correlations in (a) the
intrinsically gSPT phase (h = 0.5) and (b) the trivial gapless phase
(h = 1.5) for � = 0.2 and N = 192. (c) Evolution of the entangle-
ment spectrum as a function of h for � = 0.2 and N = 96 under PBC
with only the first 50 low-lying values displayed in the plot.

undergoes a phase transition from a topologically nontrivial
phase to a trivial gapless phase. Additionally, we notice that
for � > 1.0, the model exhibits a continuous phase transition
between two distinct topologically trivial gapped phases at
hc = 1.0, characterized by a (1 + 1)-dimensional Ising uni-
versality class (see Appendix F for the details), which is not
the focus of our paper.

The numerical results mentioned above suggest that ir-
respective of the magnitude of the XXZ-type perturbation,
which breaks the integrability of the model, stable trivial and
intrinsically gapless topological phases continue to exist in
the ground-state phase diagram, determined through DMRG
calculations for N = 48, 56, 64, 72, 80, 88, 96 sites, with the
results presented in Fig. 1. When � = 0.0, the ground state
exhibits an intrinsically gSPT phase with a twofold degener-
acy at h ∈ (0.0, 1.0) and transitions to a trivial gapless phase
as h becomes greater than 1.0, consistent with previous find-
ings [41]. Additionally, for finite �, we find that the model
exhibits a stable intrinsically gSPT phase and a trivial gapless
phase across the entire range of � that we consider.

The finite-size-scaling behavior of fidelity susceptibility
for � = 0.2 with different N is presented in Fig. 3(a), which
follows the scaling relation χN (hc(N )) ∝ Nμ−1 [Eq. (7)] near
the second-order QPT critical point. As the system size N in-
creases, the peak position hc(N ) approaches the exact critical
point value h∗

c more closely (see Appendix B for other �).
Specifically, for the extended XXZ model with � = 0.2, h∗

c
is determined by the polynomial fitting hc(N ) = h∗

c + aN−1/ν

and then extrapolating to N → ∞ [Fig. 3(b)]. According
to Eq. (8), the fidelity susceptibility follows an exact scal-
ing relation and collapses to one master curve [Fig. 4(b)],

FIG. 3. (a) Fidelity susceptibility per site χF /N of the ex-
tended quantum XXZ spin chain for � = 0.2 and N = 48, 56, 64,

72, 80, 88, 96 sites as a function of the transverse field h. Symbols
denote the DMRG method results. (b) Extrapolation of the critical
point h∗

c for different N . Symbols denote the finite-size DMRG
method results for � = 0.2 and N = 48, 56, 64, 72, 80, 88, 96 sites.
We use the polynomial fitting hc(N ) = h∗

c + aN−1/ν and extrapolate
the critical point h∗

c ≈ 0.988(9).

confirming the appropriateness of the extrapolation. The
finite-size-scaling behavior of fidelity susceptibility for other
� values is also investigated (see Appendix C for details), and
the results are presented in Table I. The findings indicate that
the QCPs remain unchanged as � varies. This numerical ob-
servation can be understood by considering the model before
the KT transformation, which is a quantum XXZ spin chain (τ
spin) stacked with an Ising symmetry-breaking Hamiltonian
(σ spin) with a transverse field acting on even sites. For |�| <

1.0 and 0.0 < h < 2.0, the ground state of the τ degree of
freedom corresponds to gapless phases, while the ground state
of the σ degree of freedom is in the symmetry-breaking phase
for h < hc and in the trivial gapped phase for h > hc. Since
the anisotropy term � commutes with the KT transformation,
after the KT transformation, the model exhibits topological
and trivial gapless phases for h < hc and h > hc, respectively.
Therefore, since the tuning parameter only acts on even sites
(σ spins), as long as |�| < 1.0 (maintaining the τ degree of
freedom as the gapless phase), the location of the critical point
between the topological and trivial gapless phases remains
unchanged.

FIG. 4. (a) Finite-size scaling of the fidelity susceptibility per site
χF (hc ) at the peak position hc where μ ≈ 1.894. (b) Data collapse
of fidelity susceptibility χF for the extended quantum XXZ spin
chain. Symbols denote the finite-size DMRG method results for � =
0.2 and N = 48, 56, 64, 72, 80, 88, 96 sites, where ν ≈ 1.059(3),
μ ≈ 1.889(6), and h∗

c ≈ 0.988(9) are used for data collapse plots.
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TABLE I. Critical exponents and critical points of the extended
quantum XXZ chain for different �. The parentheses around the
numbers represent the standard deviation of the least-squares fitting,
accurate to the third decimal place.

� h∗
c μ ν

0.0 0.988(9) 1.890(5) 1.058(3)
0.2 0.988(9) 1.889(6) 1.059(3)
0.4 0.979(4) 1.890(5) 1.058(2)
0.6 0.979(4) 1.890(4) 1.059(3)
0.8 0.99(1) 1.890(5) 1.058(2)
2.0 0.990(1) 1.890(5) 1.058(3)
3.0 0.980(3) 1.890(5) 1.058(3)

B. Finite-size scaling and critical exponents

The next questions concern the critical behavior of the ex-
tended XXZ chains with different � values and whether there
exists a critical threshold �c at which the critical behavior
changes. To address these questions, we conduct large-scale
DMRG simulations for various N in the region 0.0 � � < 1.0
to extrapolate the critical exponents μ and ν through the finite-
size scaling of fidelity susceptibility.

The fidelity susceptibility per site, χN = χF /N , at the peak
position hc(N ) for different N at � = 0.2 is illustrated in
Fig. 4(a). The adiabatic critical dimension μ is well fitted by
a polynomial function of χN (hc(N )) = Nμ−1(c + dL−1).

According to Eq. (8), the fidelity susceptibility can be
scaled by N−2/νχF as a function of N1/ν (h − h∗

c ) in the vicin-
ity of the QCP h∗

c . The correlation length exponent ν is then
determined by ν = 2/μ. By substituting the obtained criti-
cal point h∗

c and critical exponent ν into Eq. (7), all fidelity
susceptibilities for different N collapse into a single curve
[Fig. 4(b)], indicating the accuracy of the estimated critical
point and critical exponent (see Appendix D for other �). It
is worth noting that the peak in the data collapse is not pre-
cisely at 0 due to the finite-size effect for h(N ) = h∗

c + aL−1/ν

(a �= 0).
The extrapolations of the critical adiabatic dimension μ

and the correlation length exponent ν for other � values are
presented in Appendix C and the results for all � are summa-
rized in Table I and Fig. 5. Both ν and μ remain unchanged
as � varies. This indicates that the XXZ-type term acts as
irrelevant perturbations and the unconventional critical point

FIG. 5. (a) Correlation length exponent ν and (b) critical adi-
abatic dimension μ with respect to �. The symbols denote the
finite-size DMRG method results that are obtained by extrapolating
from the fidelity susceptibility χF (hc(N )) at the peak position hc(N )
of N = 48, 56, 64, 72, 80, 88, 96 sites.

described by CFT with central charge c = 3/2 for � = 0.0,
as discussed in the literature [41], expands to a critical line
for general �. This trend also suggests that the unconven-
tional QCP between the topologically distinct gapless phases
is robust against the XXZ-type perturbation. However, the
anomalous dimension η is related to the Luttinger parame-
ter and has been compared with the exact solution η(�) =
1 − arccos(−�)/π , as shown in recent work [38] by some of
the authors of the present paper. Therefore, the properties of
the model are not fully characterized at � = 0. Nevertheless,
in this work, although the model exhibits the same correlation
length exponents ν but distinct anomalous dimensions η for
various values of �, we focus only on the universal features of
the phase transition between the topologically distinct gapless
phases, both characterized by Ising CFT combined with a free
boson CFT.

IV. CONCLUSION AND OUTLOOK

We have investigated the phase transition between topo-
logically distinct gapless phases, namely, intrinsically gSPT
phases. We established a complete phase diagram for the
Hamiltonian, which is a one-dimensional extended XXZ
model constructed by the KT transformation. Using fidelity
susceptibility as a diagnostic and in combination with the
string order parameter and entanglement spectrum, we unam-
biguously revealed the intrinsically gSPT and trivial gapless
phases in the phase diagram. Moreover, by computing fidelity
susceptibility and performing finite-size scaling, we observed
a continuous phase transition between the topologically dis-
tinct gapless phases as the XXZ-type anisotropy term �

varies. Remarkably, the critical points and correlation length
exponent remain the same as in the � = 0 case, characterized
by CFT with central charge c = 3/2, which can be identi-
fied as an Ising CFT combined with a free boson CFT. Our
results indicate that fidelity susceptibility can effectively de-
tect and reveal an unconventional critical point for � = 0.0
extended into a critical line for general �. Future intrigu-
ing questions involve exploring the critical behavior between
topologically distinct gapless phases in higher dimensions and
within different symmetry groups, e.g., Z3 and U(1), as well
as constructing finite-temperature phase diagrams. Our work
could shed new light on the phase transition between gapless
topological phases of matter.
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APPENDIX A: STRING ORDER AND ENTANGLEMENT
SPECTRUM FOR OTHER VALUES OF �

In this Appendix we provide additional data to identify
the intrinsically gSPT and trivial gapless phases through the
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(a) (b) (c) (d)

FIG. 6. Scaling behaviors of string correlations in the intrinsically gSPT phase (h = 0.5) and trivial gapless phase (h = 1.5) for (a) � =
0.0, (b) � = 0.4, (c) � = 0.6, and (d) � = 0.8. The simulated system size is N = 192 under OBC.

scaling behavior of string correlations and the entanglement
spectrum for different � values.

On the one hand, as described in the main text, the long-
distance behavior of the τ and σ string correlations can be
completely different within the intrinsically gSPT and trivial
gapless phases. Specifically, as shown in Fig. 6, we computed
the τ and σ string correlations as a function of lattice dis-
tance r for � = 0.0 [Fig. 6(a)], � = 0.4 [Fig. 6(b)], � = 0.6
[Fig. 6(c)], and � = 0.8 [Fig. 6(d)] with a simulated system
size of N = 192 under OBC. The results indicate that h > 1
and h < 1 exhibit the characteristics of trivial gapless and
intrinsically gapless SPT phases, respectively.

On the other hand, to more intuitively exhibit the topo-
logical properties of gapless quantum phases, as in the main
text, we calculated the bulk entanglement spectrum as a func-
tion of h under different �, i.e., � = 0.0 [Fig. 7(a)], (b)
� = 0.4 [Fig. 7(b)], (c) � = 0.6 [Fig. 7(c)], and (d) � = 0.8
[Fig. 7(d)], with N = 96 under PBC. Here we display only
the first 50 low-lying values in the plot. Our results indicate
that regardless of the magnitude of �, the ground-state de-
generacy of the entanglement spectrum changes from double
degeneracy to a unique ground state at h ≈ 1.0 (blue dashed
lines in Fig. 7) as � increases. This change in topological
properties is consistent with the change in the long-distance
behavior of string correlations as mentioned in the preceding
paragraph.

APPENDIX B: FIDELITY SUSCEPTIBILITY
FOR OTHER VALUES OF �

In this Appendix we provide additional data to obtain
the critical line via fidelity susceptibility for other values
of �.

As in the main text, the fidelity susceptibility per
site χN of the extended quantum XXZ spin chain

for � = 0.0 [Fig. 8(a)], � = 0.4 [Fig. 8(b)], � = 0.6
[Fig. 8(c)], and � = 0.8 [Fig. 8(d)], with system sizes N =
48, 56, 64, 72, 80, 88, 96, is plotted as a function of the trans-
verse field h in Fig. 8. We observe that, regardless of the
value of �, the fidelity susceptibility exhibits obvious peaks
as h varies, indicating continuous phase transitions between
topologically distinct gapless phases. Moreover, we find that
the QCPs remain unchanged for different values of XXZ-type
perturbation.

APPENDIX C: QUANTUM CRITICAL POINT FITTING
AND CRITICAL ADIABATIC DIMENSION

FOR OTHER VALUES OF �

In this Appendix we provide additional data to extrapolate
the accuracy of critical points and critical adiabatic dimen-
sions for other values of �.

As in the main text, we determined the pseudocrit-
ical point hc(N ) corresponding to the maximum values
of the fidelity susceptibility and performed finite-size
scaling of the pseudocritical point hc(N ) as a function
of inverse system sizes 1/N for � = 0.0 [Fig. 9(a)],
� = 0.4 [Fig. 9(b)], � = 0.6 [Fig. 9(c)], and � = 0.8
[Fig. 9(d)], with N = 48, 56, 64, 72, 80, 88, 96 sites. The
extrapolated critical points are summarized in Table I.
The accurate critical point h∗

c remains unchanged with
increasing �.

Furthermore, we examined the maximal fidelity suscep-
tibility per site χN (hc(N )) = χF (hc(N ))/N as a function of
system sizes N for � = 0.0 [Fig. 10(a)], � = 0.4 [Fig. 10(b)],
� = 0.6 [Fig. 10(c)], and � = 0.8 [Fig. 10(d)], with N =
48, 56, 64, 72, 80, 88, 96 sites. The critical adiabatic dimen-
sions are also summarized in Table I. We observe that
the critical adiabatic dimension μ remains unchanged with
increasing �.
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FIG. 7. Entanglement spectrum as a function of h for (a) � = 0.0, (b) � = 0.4, (c) � = 0.6, and (d) � = 0.8 with N = 96 under PBC.
We display only the first 50 low-lying values in the plot.

APPENDIX D: DATA COLLAPSE
FOR OTHER VALUES OF �

In this Appendix we present additional data demonstrating
the variation in correlation length exponents ν of the extended
quantum XXZ chain.

As in the main text, data collapse of fidelity suscep-
tibility χF for the one-dimensional extended XXZ model
is shown for � = 0.0 [Fig. 11(a)], � = 0.4 [Fig. 11(b)],
� = 0.6 [Fig. 11(c)], and � = 0.8 [Fig. 11(d)], with N =
48, 56, 64, 72, 80, 88, 96 sites. The correlation length expo-
nents are summarized in Table I. It is evident that the
correlation length exponents of the extended quantum XXZ
chain is the same as observed in the � = 0.0 case, char-
acterized by a CFT with central charge c = 3/2, which
can be understood as a combination of Ising and free
boson CFTs.

APPENDIX E: CONVERGENCE TESTING
AND BENCHMARKING AGAINST EXACT

DIAGONALIZATION FOR SMALL SYSTEM SIZES

In this Appendix we benchmark the performance of
the DMRG method against exact diagonalization (based on
the Lanczos algorithm) for small system sizes to validate the
accuracy of the DMRG method.

Figure 12 shows the ground-state energy Eg and fidelity
susceptibility χN for � = 0.4 and N = 24 sites. As shown
in Fig. 12(a), the ground-state energy Eg calculated by the
DMRG method (blue circles) and exact diagonalization (red
pluses) as a function of the external field h demonstrates
close agreement, indicating the high accuracy of the DMRG
method. As shown in Fig. 12(b), the fidelity susceptibility
per site χN calculated by the DMRG method (blue circles)
and exact diagonalization (red crosses) as a function of h

FIG. 8. Fidelity susceptibility per site χN for the extended quantum XXZ spin chain for (a) � = 0.0, (b) � = 0.4, (c) � = 0.6, and (d)
� = 0.8 with N = 48, 56, 64, 72, 80, 88, 96 sites as a function of the driving parameter h. Symbols denote finite-size DMRG method results.
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FIG. 9. Finite-size scaling of the pseudocritical point hc(N ) as a function of inverse system size 1/N for (a) � = 0.0, (b) � = 0.4, (c)
� = 0.6, and (d) � = 0.8. We use the polynomial fitting formula hc(N ) = h∗

c + aN−1/ν .

FIG. 10. Maximal fidelity susceptibility per site χF (hc ) as a function of system size N for (a) � = 0.0, (b) � = 0.4, (c) � = 0.6, and
(d)� = 0.8 with N = 48, 56, 64, 72, 80, 88, 96 sites. We use the fitting formula χF (hc ) = Nμ(c + dN−1).

FIG. 11. Data collapse of fidelity susceptibility χF for the extended quantum XXZ spin chain for (a) � = 0.0, (b) � = 0.4, (c) � = 0.6,
and (d) � = 0.8 with N = 48, 56, 64, 72, 80, 88, 96 sites as a function of the transverse field h.

0.6 0.8 1.0 1.2

h

−29

−28

−27

−26

−25

E
g

(a)

DMRG

ED

0.6 0.8 1.0 1.2

h

0.05

0.10

0.15

0.20

χ
N

(b)

DMRG

ED

0.9 1.0 1.1

h

0.1

0.2

0.3

0.4

0.5

0.6

χ
N

(c)

D = 256

D = 512

D = 1024

FIG. 12. Benchmarking against exact diagonalization for small system sizes. (a) Ground-state energy Eg and (b) fidelity susceptibility per
site χN calculated separately by the DMRG method and exact diagonalization (based on the Lanczos algorithm) for system size N = 24 along
the � = 0.4 line. (c) Convergence of the fidelity susceptibility near the critical point for N = 96 along the � = 0.4 line under OBC. The
simulation is performed with MPS bond dimensions D = 256, 512, and 1024, respectively.
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FIG. 13. (a) Fidelity susceptibility per site χN as a function of
h for � = 2.0 and N = 48, 56, 64, 72, 80, 88, 96. The inset exhibits
the extrapolation of critical point h for the extended quantum XXZ
spin chain. (b) Data collapse of fidelity susceptibility χF for the
model for � = 2.0, where ν ≈ 1.058(3), μ ≈ 1.890(5), and h∗

c ≈
0.99(1) are used for data collapse plots. (c) and (d) Scaling behaviors
of string correlations for � = 2.0 with the simulated system size
N = 192 under OBC.

also shows close alignment, confirming the robustness of the
DMRG method results. In addition, the fidelity susceptibility
is calculated with different MPS bond dimensions D = 256,
512, and 1024 for � = 0.4 and N = 96 sites as shown in
Fig. 12. It is clear that the bond dimension used in the work,
namely, D = 1024, is sufficiently large to obtain converged
and reliable results.

APPENDIX F: FIDELITY SUSCEPTIBILITY AND STRING
CORRELATION FOR LARGE VALUES OF �

The model before the KT transformation is a quantum
XXZ spin chain (τ spin) combined with an Ising symmetry-
breaking Hamiltonian (σ spin) with a transverse field acting
on even sites. In the large-� limit, by tuning the trans-
verse field h, the ground state of the τ degrees of freedom
corresponds to gapped spontaneous-symmetry-broken (SSB)
phases, while the ground state of the σ degrees of freedom
remains in the gapped SSB phase for h < hc and transitions
to a trivial gapped phase for h > hc. Therefore, after the KT
transformation, the model no longer exhibits a phase transi-
tion between topologically distinct gapless phases. Instead, it
displays a phase transition between distinct gapped phases,
characterized by the Ising universality class due to Z2 sym-
metry breaking.

To numerically verify this physical understanding, in this
Appendix we provide additional data showing the fidelity

FIG. 14. (a) Fidelity susceptibility per site χN as a function of
h for � = 3.0 and N = 48, 56, 64, 72, 80, 88, 96. The inset exhibits
the extrapolation of critical point h for the extended quantum XXZ
spin chain. (b) Data collapse of fidelity susceptibility χF for the
model for � = 3.0, where ν ≈ 1.058(3), μ ≈ 1.890(5), and h∗

c ≈
0.980(3). (c) and (d) Scaling behaviors of string correlations for
� = 3.0 with the simulated system size N = 192 under OBC.

susceptibility and string correlations for large values of �.
As shown in Figs. 13(a) and 14(a), we examined the fidelity
susceptibility per site χN of the extended quantum XXZ spin
chain for � = 2.0 and 3.0 with N = 48, 56, 64, 72, 80, 88, 96
sites as a function of the transverse field h. The insets exhibit
the extrapolation of the critical point h∗

c for the model. The
data collapse of the fidelity susceptibility χF is presented
for � = 2.0 and 3.0 with N = 48, 56, 64, 72, 80, 88, 96 sites
in Figs. 13(b) and 14(b), respectively. The insets show the
finite-size scaling of the maximal fidelity susceptibility per
site χN = χF /N to obtain the correlation length exponent ν.
The resulting critical points and exponents are also shown
in Table I. The results demonstrate that a continuous phase
transition exists at hc = 1 even for � > 1.0, with the cor-
relation length exponent ν = 1, consistent with the (1 +
1)-dimensional Ising universality class.

Additionally, we provide further data to identify possible
quantum phases through the scaling behavior of string cor-
relations for large values of � = 2.0 and 3.0. Specifically,
we compute the τ and σ string correlations as functions of
lattice distance r to reveal the possible quantum phases, as
depicted in Figs. 13(c), 13(d), 14(c) and 14(d). The results
clearly show that the σ string exhibits long-range order below
the critical point and exponential decay above it, while the τ

string correlation is always zero since the gapless topological
phases become topologically trivial gapped SSB phases for
� > 1.0.
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