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Leggett-Garg inequalities place bounds on the temporal correlations of a system based on the principles
of macroscopic realism per se and noninvasive measurability. Their conventional formulation relies on the
ensemble-averaged products of observables measured at different instants of time. However, a complete de-
scription that enables a precise understanding and captures all physically relevant features requires the study
of probability distributions associated with noncommuting observables. In this paper, we propose a scheme to
describe the dynamics of generic N-level quantum systems (“qudits”) via a probability vector representation
of the Schrödinger equation and define a precise notion of no-signaling in time (NSIT) for the probability
distributions of noncommuting observables. This provides a systematic way of identifying the interferences
responsible for nonclassical behavior. In addition, we introduce an interference witness measure to quantify
violations of NSIT for arbitrary general probabilistic states. For single-qubit systems, we pinpoint the pivotal
relation that establishes a connection between the disturbance of observables incurred during a measurement and
the resulting NSIT violation. For large-N systems where a manual determination is infeasible, the classification
of states as either NSIT-conforming or NSIT-violating may be performed by a machine learning algorithm. We
present a proof-of-principle implementation of such an algorithm in which the classifier function is prepared via
supervised learning using pseudorandomly generated training data sets composed of states whose corresponding
classifications are known a priori.
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I. INTRODUCTION

The distinction between classical and quantum phenom-
ena has garnered considerable attention over the years. In
contrast to the deterministic nature of classical mechanics,
which accurately describes physical events on the macro-
scopic scales we experience in our day-to-day lives, quantum
mechanics is fundamentally nondeterministic, and its precise
role in the emergence of macroscopic phenomena is yet to
be fully understood. To examine the breakdown of quantum
coherence, Leggett and Garg devised an idealized experimen-
tal bound founded on the principles of macroscopic realism
per se (MRPS) and noninvasive measurability (NIM) [1].1

MRPS posits that physical properties of macroscopic systems
exist independent of our observation, i.e., measurements on
macroscopic systems merely reveal stable preexisting values.

*Contact author: hotta@tuhep.phys.tohoku.ac.jp
†Contact author: sebastian.murk@oist.jp
1Our nomenclature in this paper will refer explicitly to MRPS and

NIM, and preclude the possibility of future measurements affecting
measurement outcomes determined in the past, which is sometimes
referred to as backwards causation (e.g., Ref. [2]) or induction (see,
for instance, Refs. [3,4] for possible definitions). In contrast to the
original 1985 paper by Leggett and Garg [1], in the parlance of mod-
ern literature macroscopic realism is often defined as encompassing
MRPS, NIM, and induction.

In other words, the moon is there even if nobody looks [5].
In a trivial extension of quantum mechanics to large scales,
macroscopic objects like Schrödinger’s cat are described by
a superposition of distinct states, and MRPS is broken. A
more general concept of realism within hidden variable the-
ories encompasses MRPS as a subset. NIM postulates that
the measurement process has no bearing on the state of the
system being measured, i.e., there is no backreaction of the
measurement on the subsequent system dynamics.

Using the framework of general probabilistic theories [6],
we consider a nonquantum system S which has a correspond-
ing N-dimensional quantum system SQM that shares the same
observables. Then, there exists a complete set of N2 − 1 ob-
servables {Q, Q̄1, . . . , Q̄N2−2} for SQM that uniquely determine
the quantum density operator ρ̂ of SQM via quantum tomogra-
phy. However, in quantum mechanics the operators associated
with these observables do in general not commute. The ob-
servables are assumed to be observed in S, at least when
they are measured at distinct points in time. In noninvasive
measurements of an observable Q of the system S (not SQM),
the probability distributions of all other observables Q̄n re-
main unchanged while the initial probability distribution of Q
collapses into a more sharply peaked distribution [see Sec. II,
Eqs. (2.27) and (2.28)]. Such measurements do not exist in
quantum mechanics, but may be allowed in more general
theories like hidden variable theories. We regard the collapse
of the initial probability distribution of Q as a mere knowledge
update about Q, not as a disturbance against the fundamental
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degrees of freedom of S, including Q. This interpretation of
updating information through measurement without causing
a disturbance aligns with the standard approach for macro-
scopic objects in classical statistical mechanics.2

Predicated on MRPS and NIM, experimentally testable
inequalities of the form derived in Ref. [1] [“Leggett-Garg
inequalities” (LGIs)]3 bound the temporal correlations of a
system in sequential measurements of observables. This is
similar in spirit to the Bell [8] and Clauser-Horne-Shimony-
Holt (CHSH) inequalities [9], which place bounds on the
correlations in measurements of spatially separated systems
based on the principles of realism and locality [10].4 A
naive extrapolation of quantum mechanics to the macroscopic
regime violates both types of inequalities. Reciprocally, the
dynamics of a system that violates either LGIs or Bell-
or CHSH-type inequalities cannot be understood within the
framework of traditional classical mechanics [11,12].

Various proposals amenable to experimental verification
of LGIs have been explored, including but not limited to
quasiprobabilistic approaches [13–15], continuous variable
versions [16], and using expanded data sets obtained from
finer-grained measurements [17]. Violations of LGIs have
been confirmed in numerous experiments involving different
physical systems and using different types of measurements
[2,18–21] (see also Table 1 of Ref. [7]).

Nevertheless, the precise scale up to which we can de-
tect the quantumness of macroscopic objects in experiments
remains elusive. LGIs are one of the principal tools to inves-
tigate how quantum coherence in the form of superpositions
and/or entanglement is lost in the macroscopic realm [22,23].
In addition, the possibility of using LGIs to probe the quan-
tumness of gravity through gravitationally induced violations
has recently been put forward [15].

In this paper, we consider the no-signaling in time (NSIT)
condition formulated in Refs. [3,24], which posits that any
measurements performed at t̃ < t do not change the outcome
statistics of a later measurement at t , i.e., the probability
P (Q = q, t ) to observe the measurement outcome q of an
observable Q at time t is independent of whether or not mea-
surements of arbitrary observables Q̃ have been performed at
earlier times t̃ , that is,

P (Q, t ) − P (Q, t )|(Q̃,t̃ ) = 0, (1.1)

where the subscript |(Q̃, t̃ ) indicates that a measurement of the
observable Q̃ has been performed at time t̃ < t . NSIT is a nec-
essary mathematical condition for macroscopic realism (MR).
While MR implies both LGIs and NSIT, the latter on its own
is in general insufficient to derive LGIs. The NSIT condition

2For an explicit example of noninvasive measurements in the clas-
sical theory, see Sec. III, Eqs. (3.18) and (3.19).

3See Ref. [7] for a topical review.
4Note that the experimental setting for testing LGIs is temporal:

multiple measurements are performed within the same spacetime
region enclosed by a single light cone. This is different from the spa-
tially disconnected setting of Bell and CHSH inequalities, in which
simultaneous measurements are performed in causally disconnected
spacetime regions. Table 1 of Ref. [3] compares the conceptual
relationships in Bell- and Leggett-Garg-type inequalities.

is a strong coherence witness condition that is only satisfied if
there is no interference. On the other hand, LGIs may still hold
in the presence of moderate interference effects. In this sense,
the NSIT condition is more stringent than the (non)classicality
bounds imposed by LGIs. A comprehensive discussion of
this aspect is provided in Ref. [25]. It is worth noting that—
while quantum mechanics generally violates NSIT due to
interference terms—it does obey the analogous no-signaling
condition implied by local realism tested in Bell or CHSH
inequalities [see Eq. (4) and Table 1 of Ref. [3]].

We also note that the hidden variable theory for a single
qubit proposed by Bell [8] precisely reproduces the results of
quantum mechanics by violating the NSIT condition. In this
theory, all expectation values 〈σa〉HV of the spin component
σa with a ∈ {x, y, z} are allowed as long as 〈σx〉2

HV + 〈σy〉2
HV +

〈σz〉2
HV � 1 holds. Then, it is possible to define density matri-

ces via the following tomography relation:

ρ̂HV := 1
2 (Î2 + 〈σx〉HVσ̂x + 〈σy〉HVσ̂y + 〈σz〉HVσ̂z ), (1.2)

where Î2 denotes the two-dimensional identity matrix and σ̂a

the Pauli matrices. Among the states described by ρ̂HV, there
exist pure states denoted by |ψHV〉〈ψHV|, which also appear
in quantum mechanics. Similarly, all pure states in quantum
mechanics are shared in Bell’s theory. Therefore, the quantum
coherence of |ψHV〉 is reproduced by a superposition of two
distinct states |±HV〉 via |ψHV〉 = c+|+HV〉 + c−|−HV〉 with
complex coefficients c±, even though this is a hidden variable
theory. In such nonlocal realism (i.e., neither local realism
nor MR) theories, the NSIT condition is violated in the same
manner as in quantum mechanics due to the unavoidable back-
reaction of the measurement.

NSIT tests are primarily tests for noninvasiveness [4,25].
In previous studies of LGIs, arguments related to NIM have
relied solely on the expectation values and ensemble av-
erages of temporal correlations of observables. However,
these quantities are secondary objects, derived from the prob-
ability distributions of observables in actual experiments.
To provide a clearer and more fundamental description of
quantum-mechanical interferences, we introduce a probabil-
ity vector representation of the Schrödinger equation in this
paper. The notion of NSIT is unambiguously defined us-
ing the probability distributions in this representation. Based
on this formalism, we precisely quantify the distinction be-
tween quantum mechanics and other theories in which NSIT
holds. This ultimately allows us to better understand how
fundamental differences between quantum mechanics and
NSIT-compatible theories arise.

The remainder of this paper is organized as follows: In
Sec. II, we review mathematical preliminaries and derive the
probability vector representation of the Schrödinger equa-
tion [Eq. (2.20)] which describes the evolution of a quantum
system in terms of the probability distributions associated
with its observables. In Sec. III, we highlight important differ-
ences between classical (Sec. III A) and quantum (Sec. III B)
dynamics based on the description of a single-qubit system
and introduce an interference witness measure to quantify
potential violations of NSIT [Eq. (3.34)] caused by the back-
reaction of a measurement [Eq. (3.42)] and their interrelation
[Eq. (3.47)]. The generalization to generic N-level quantum
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FIG. 1. Schematic illustration of the state vector space underlying the standard formalism of quantum mechanics (left) and the probability
vector space employed in this paper (right). There is a one-to-one correspondence between quantum states described by density operators
(left) and their corresponding probability vector representation (right). A subset of the state vectors and their corresponding probability vectors
(namely those with sufficiently large coherence amplitudes |c| � 1) displays classical behavior (indicated by the green sphere nested within
the blue quantum dynamics sphere). Here, â† denotes the raising or creation operator, and for |c| � 1 the expression |ψ〉 = ecâ† |0〉 describes a
coherent state. A postmeasurement time evolution that does not (does) exhibit interference and therefore satisfies (violates) the NSIT condition
[Eq. (1.1)] is indicated by the thick green (red) arrow. The witness measure γa [Eq. (3.34)] quantifies the severity of the NSIT violation,
corresponding to the distance from the blue quantum dynamics sphere whose radius is determined by the Bloch sphere inequality [Eq. (4.1)].

systems (“qudits”) is covered in Sec. IV. In Sec. V, we outline
how the classification of general probabilistic states as either
NSIT-conforming or NSIT-violating could be performed by
a machine learning algorithm in the case of very large N
(where a manual evaluation becomes infeasible in practice)
and present a minimalistic proof-of-principle implementation.
Lastly, we summarize our results and discuss their physical
implications (Sec. VI).

II. PROBABILITY VECTOR REPRESENTATION
OF THE SCHRÖDINGER EQUATION

Our objective in this section is to derive a probability
vector representation for quantum dynamics that is suitable
for investigating violations of the NSIT condition [Eq. (1.1)].
In the probability vector representation devised in this paper,
the quantum dynamics and quantum states are embedded
into a more general probabilistic dynamics framework. A
probability vector is a collection of probabilities associated
with a finite number of physical observables. As illustrated
in Fig. 1, the state vector space of quantum dynamics (left)
corresponds to a subset of the general probabilistic probability
vector state space (right). The quantum dynamics which is
governed by a Hamiltonian corresponds to a stochastic evolu-
tion in the probability vector space. Measurements may result
in unphysical postmeasurement states that do not satisfy the
Bloch sphere inequality [see Eqs. (3.2), (3.4), and (4.1)] and
thus have no quantum-mechanical equivalent or counterpart,

i.e., there is no corresponding positive semidefinite density
operator (which, in a slight abuse of notation, may be denoted
as ρ̂ � 0) to describe the postmeasurement state. In this case,
the stochastic evolution induced by the quantum Hamiltonian
maps the probability vector into a vector that violates the
NSIT condition (illustrated schematically by the thick red ar-
row exiting the Bloch sphere on the right-hand side of Fig. 1),
which manifests itself in a time evolution in which some
components of the probability vector take on negative values.
In this section, we explicitly describe postmeasurement states
that violate the NSIT condition and define an interference
witness measure γa [Eq. (3.34)] that quantifies how significant
the deviation is from general probabilistic states whose prob-
ability vectors correspond to valid physical quantum states,
i.e., those that satisfy the Bloch sphere inequality and have an
associated positive semidefinite density operator ρ̂ � 0.

Let us first focus on the dynamics. The Schrödinger equa-
tion for an N-level system represented by the quantum state
ρ̂(t ) at time t is given by

ih̄
d

dt
ρ̂(t ) = [Ĥ, ρ̂(t )], (2.1)

where [Â, B̂] := ÂB̂ − B̂Â denotes the commutator of two op-
erators Â and B̂. The generators λ̂n of SU(N ) satisfy

λ̂†
n = λ̂n, Tr[λ̂n] = 0, Tr[λ̂nλ̂n′] = Nδnn′ , (2.2)
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where n, n′ ∈ {1, . . . , dim[SU(N )]} with dim[SU(N )] =
N2 − 1. The corresponding Lie algebra is given by

[λ̂n, λ̂n′ ] = i
N2−1∑
n′′=1

γ n′′
nn′ λ̂n′′ , (2.3)

where γ n′′
nn′ labels real-valued coefficients. Any N-level quan-

tum state is decomposable in terms of the SU(N ) generators
λ̂n via the so-called Bloch representation

ρ̂(t ) = 1

N

⎛
⎝Î +

N2−1∑
n=1

〈λn(t )〉λ̂n

⎞
⎠, (2.4)

where Î denotes the N-dimensional identity matrix, and the
expectation values of the SU(N ) generators are given by

〈λn(t )〉 = Tr[λ̂nρ̂(t )]. (2.5)

Their time derivatives are computed as

d

dt
〈λn(t )〉 = Tr

(
λ̂n

d

dt
ρ̂(t )

)
= 1

ih̄
Tr{λ̂n[Ĥ, ρ̂(t )]}

= 1

ih̄
Tr{ρ̂(t )[λ̂n, Ĥ ]}. (2.6)

It is useful to introduce the real-valued coefficients

hnn′ := − i

N
Tr{λ̂n′[λ̂n, Ĥ ]} = i

N
Tr{Ĥ[λ̂n, λ̂n′ ]}

= − 1

N

N2−1∑
n′′=1

γ n′′
nn′Tr[Ĥ λ̂n′′ ]. (2.7)

One can then show that

[λ̂n, Ĥ ] = i
N2−1∑
n′=1

hnn′ λ̂n′ . (2.8)

The Schrödinger equation in the form of Eq. (2.1) can thus be
recast in terms of the expectation values 〈λn(t )〉 as follows:

d

dt
〈λn(t )〉 = 1

h̄

N2−1∑
n′=1

hnn′ 〈λn′ (t )〉. (2.9)

This is a generalization of the standard Bloch equation for a
single qubit [N = 2] to arbitrary N . The spectral decomposi-
tion of the SU(N ) generators λ̂n is given by

λ̂n =
N∑

k=1

λn(k)P̂n(k), (2.10)

where λn(k) denote their eigenvalues and P̂n(k) their projec-
tors, respectively. The emergent probability of λn(k) for the
observable λ̂n in the state ρ̂(t ) is

pn(k, t ) = Tr[P̂n(k)ρ̂(t )] (2.11)

and satisfies the normalization condition

N∑
k=1

pn(k, t ) = 1. (2.12)

The expectation values can be expressed in terms of their
respective emergent probabilities, i.e.,

〈λn(t )〉 =
N∑

k=1

λn(k)pn(k, t ), (2.13)

and their time derivatives are computed using

d

dt
pn(k, t ) = Tr

[
P̂n(k)

d

dt
ρ̂(t )

]
= 1

ih̄
Tr{P̂n(k)[Ĥ, ρ̂(t )]}

= 1

ih̄
Tr{ρ̂(t )[P̂n(k), Ĥ ]}. (2.14)

Expanding the right-hand side of this equation with respect to
the generators λ̂n yields

1

ih̄
[P̂n(k), Ĥ ] =

N2−1∑
n′=1

Knn′ (k)λ̂n′ , (2.15)

with coefficients Knn′ (k) given by

Knn′ (k) = 1

Nih̄
Tr{λ̂n′[P̂n(k), Ĥ ]}. (2.16)

Substituting the spectral decomposition of λ̂n′ [see Eq. (2.10)]
into Eq. (2.15), we obtain

1

ih̄
[P̂n(k), Ĥ ] =

N2−1∑
n′=1

N∑
k′=1

Knn′ (k)λn′ (k′)P̂n′ (k′). (2.17)

Defining the coefficients

Hnn′ (k, k′) := λn′ (k′)
Nih̄

Tr{λ̂n′[P̂n(k), Ĥ ]}, (2.18)

the following relation holds:

1

ih̄
[P̂n(k), Ĥ ] =

N2−1∑
n′=1

N∑
k=1

Hnn′ (k, k′)P̂n′ (k′). (2.19)

Substitution of Eq. (2.19) into Eq. (2.14) reveals that the
Schrödinger equation [Eq. (2.1)] can be rewritten in the prob-
ability vector form [i.e., expressed in terms of the emergent
probabilities pn(k, t )] as follows:

d

dt
pn(k, t ) =

N2−1∑
n′=1

N∑
k′=1

Hnn′ (k, k′)pn′ (k′, t ). (2.20)

The initial condition of Eq. (2.20) is chosen such that the
underlying probability distribution describes a valid quantum
state. Therefore, pn(k, 0) = Tr[P̂n(k)ρ̂(0)] holds for an initial
state described by the density matrix ρ̂(0). Using Eqs. (2.18)
and (2.20), and the fact that

∑N
k=1 P̂n(k) = Î , it is straightfor-

ward to show that

d

dt

N∑
k=1

pn(k, t ) = 0, (2.21)

and thus the normalization condition Eq. (2.12) holds at any
time t :

N∑
k=1

pn(k, t ) =
N∑

k=1

pn(k) = 1, (2.22)
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where pn(k) ≡ pn(k, 0). Let �p(t ) represent the N (N2 − 1)-
dimensional probability vector

�p(t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1, t )
...

p1(N, t )
...

pN2−1(1, t )
...

pN2−1(N, t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.23)

Using the N (N2 − 1) × N (N2 − 1) matrix H = [Hnn′ (k, k′)]
whose elements are prescribed by Eq. (2.18), the solution of
Eq. (2.20) is obtained as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1, t )
...

p1(N, t )
...

pN2−1(1, t )
...

pN2−1(N, t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= exp (tH )

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1)
...

p1(N )
...

pN2−1(1)
...

pN2−1(N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.24)

which can be rewritten in the series expansion form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1, t )
...

p1(N, t )
...

pN2−1(1, t )
...

pN2−1(N, t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
∞∑

n=0

t n

n!
Hn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1)
...

p1(N )
...

pN2−1(1)
...

pN2−1(N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.25)

The numerical computation of Hn does not require the exact
diagonalization of H and only takes a brief amount of time.
Consequently, the right-hand side of Eq. (2.25) can be cal-
culated without facing significant obstacles even for sizable
values of N .

For the measurement of an observable λ̂n at time t = 0,
the expectation values 〈λn〉 of λ̂n are determined by [see
Eq. (2.13)]

〈λn〉 =
N∑

k=1

λn(k)pn(k). (2.26)

If a noninvasive measurement of λ̂1 is performed and the result
λ1(1) is obtained, the λ1 sector of the probability vector �p
induces a collapse of the state vector such that p′

1(k)1,1 = δk1,

while the other sectors remain unaffected:

�p=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1)
p1(2)

...

p1(N )
p2(1)

...

p2(N )
...

pN2−1(1)
...

pN2−1(N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ �p ′
1,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p′
1(1)1,1

p′
1(2)1,1

...

p′
1(N ) 1,1

p′
2(1)1,1

...

p′
2(N )1,1

...

p′
N2−1(1)1,1

...

p′
N2−1(N )1,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...

0
p2(1)

...

p2(N )
...

pN2−1(1)
...

pN2−1(N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.27)

This provides a precise definition of NIM for the underly-
ing probability distribution. Tests of NSIT assess the effect
of this state reduction in sequential measurements, i.e.,
measurements of the two-time (or three-time, etc.) proba-
bility. Analogously, one can define probability distributions
p′

n′ (k′)n,k after a noninvasive measurement of λ̂n at time t = 0
results in the observation of the eigenvalue λn(k). The λn

sector of �p induces a collapse of the state vector, while the
other sectors remain unaffected:

p′
n′ (k′)n,k = δn′nδk′k + (1 − δn′n)pn′ (k′). (2.28)

However, it is not assured that the postmeasurement prob-
ability vector �p ′

n,k = [p′
n′ (k′)n,k] always represents a valid

quantum state. The expectation values of λ̂n′ are evaluated as

〈λn′ 〉′n,k =
N∑

k′=1

λn′ (k′)p′
n′ (k′)n,k . (2.29)

The postmeasurement density matrix is given by

ρ̂ ′
n,k = 1

N

⎛
⎝Î +

N2−1∑
n′=1

〈λn′ 〉′n,k λ̂n′

⎞
⎠ (2.30)

and could possess negative eigenvalues, which would im-
ply that the corresponding operator is no longer positive
semidefinite, ρ̂ ′

n,k � 0. In this sense, the presence of negative
eigenvalues signifies the violation of NSIT.

Next, for an arbitrary initial state ρ̂(0), let us introduce a
witness measure γn,k that quantifies the violation of the NSIT
condition [Eq. (1.1)] when a measurement of λ̂n observes
λn(k). To this end, we first evaluate pn′ (k′) via Tr[P̂n′ (k′)ρ̂(0)]
[see Eq. (2.11)]. After the measurement, its λn sector under-
goes the following transition:

pn(k′) ⇒ p′
n(k′) = δk′k. (2.31)

Then, the expectation value of λ̂n is computed as

〈λn〉′n,k =
N∑

k′=1

λn′ (k′)p′
n(k′) = λn(k). (2.32)

For sectors n′ �= n on the other hand, the probabilities remain
unchanged,

pn′ (k′) ⇒ p′
n′ (k′) = pn′ (k′), (2.33)
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and the expectation value of λ̂n′ �=n is given by

〈λn′ 〉′n,k ≡ 〈λn′ 〉 = Tr[λ̂n′ ρ̂(0)]. (2.34)

For ρ̂(0) the pseudodensity matrix after the measurement can
be written as5

ρ̂ ′
n,k = 1

N

⎛
⎝Î +

N2−1∑
n′=1

〈λn′ 〉′n,k λ̂n′

⎞
⎠. (2.35)

More specifically, it can be expressed as

ρ̂ ′
n,k = 1

N

⎧⎨
⎩Î + λn(k)λ̂n +

∑
n′ �=n

Tr[λ̂n′ ρ̂(0)]λ̂n′

⎫⎬
⎭. (2.36)

Let p′
m(n, k) label the eigenvalues in the spectral decomposi-

tion of ρ̂ ′
n,k , i.e.,

ρ̂ ′
n,k =

N∑
m=1

p′
m(n, k)P̂′

m(n, k). (2.37)

The interference witness measure γ (n, k) for ρ̂(0) is then
defined as the sum of the absolute values of all negative
eigenvalues:

γn,k :=
∑

p′
m (n,k)<0

|p′
m(n, k)|. (2.38)

As already alluded to in the caption of Fig. 1, the possible
appearance of negative eigenvalues in the spectrum of the
postmeasurement density operator is inherently connected to
states described by probability vectors whose components are
emergent probabilities that do not satisfy the corresponding
Bloch sphere inequality [see Eq. (3.4)], as will become evident
in what follows, e.g., in the explicit examples considered in
Eqs. (3.50) and (3.51).

The conclusion of this section warrants the following fi-
nal remark: one can certainly verify the violation of NSIT
by numerically diagonalizing ρ̂ ′

n,k , identifying the negative
eigenvalues in its spectrum, and then confirming that γn,k > 0.
However, executing such a numerical diagonalization for large
N is a notably huge task that requires a significant amount
of computational resources compared to the computation of
Hn. Therefore, Eq. (2.25) provides a much more efficient way
of investigating violations of the NSIT condition in large-
N systems. Some of the pn′ (k′, t ) values in Eq. (2.25) can
become negative at specific instances t by taking pn′ (k′) =
Tr[P̂n′ (k′)ρ̂ ′

n,k] and an adequate Hamiltonian Ĥ . By solving
this equation, one can identify the presence of negative com-
ponents within pn′ (k′, t ), which serves as an indicator of the
NSIT violation for ρ̂(0) in the large-N case.

III. SINGLE-QUBIT SYSTEMS

To account for the backreaction of quantum measurements
on the probability distributions of observables for a single-
qubit system, we first revisit the Bloch representation of

5Note that dynamically evolving quantum systems that encode
temporal correlations are necessarily represented by pseudodensity
matrices [26].

FIG. 2. Illustration of the state space of a single qubit [N = 2]. A
random sample of 100 states that satisfy the Bloch sphere inequality
Eq. (3.2) is represented by the points in blue. Such points are nec-
essarily located within the Bloch sphere. The red points correspond
to a random sample of 100 states that satisfy Eq. (3.25), but do not
satisfy the Bloch sphere inequality Eq. (3.2). Such points lie outside
of the Bloch sphere, but within the general probabilistic state space
defined by Eq. (3.25), which is bounded by the cube and includes the
Bloch sphere as a subset.

quantum states. For a single qubit [N = 2], the quantum state
ρ̂ is precisely specified by the expectation values 〈σx〉, 〈σy〉,
〈σz〉 of the three Pauli operators σ̂x, σ̂y, σ̂z via

ρ̂ = 1
2 (Î + 〈σx〉σ̂x + 〈σy〉σ̂y + 〈σz〉σ̂z ). (3.1)

The state space is represented by a Bloch sphere [see Fig. 2],
which is defined by the inequality

〈σx〉2 + 〈σy〉2 + 〈σz〉2 � 1. (3.2)

This condition guarantees that all eigenvalues of ρ̂ remain
non-negative, which is commonly (again, in a slight abuse
of notation) denoted as ρ̂ � 0. The emergent probabilities of
the measurement outcomes ±1 for σ̂a with a ∈ {x, y, z} are
computed as

pa(±1) = Tr[P̂a(±1)ρ̂], (3.3)

where the projection operators P̂a(±1) for σ̂a are repre-
sented by P̂a(±1) := 1

2 (Î ± σ̂a). The Bloch sphere inequality
of Eq. (3.2) can be rewritten in terms of the emergent proba-
bilities as

[px(+1) − px(−1)]2 + [py(+1) − py(−1)]2

+ [pz(+1) − pz(−1)]2 � 1. (3.4)

To examine violations of NSIT for a single-qubit system de-
scribed by ρ̂, it is convenient to consider the six-dimensional
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[in general N (N2 − 1)-dimensional] real vector of emergent
probabilities given by

�p =

⎡
⎢⎢⎢⎢⎢⎢⎣

px(+1)
px(−1)
py(+1)
py(−1)
pz(+1)
pz(−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.5)

The generic form of the time-independent Hamiltonian for a
single qubit is given up to a constant by

Ĥ = h̄

2
(Bxσ̂x + Byσ̂y + Bzσ̂z ), (3.6)

where Ba with a ∈ {x, y, z} denotes real parameters. In this
case, the Schrödinger equation [see Eq. (2.1)] can be ex-
pressed through the ordinary Bloch equation [see Eq. (2.9)]
as

d

dt

⎡
⎣〈σx(t )〉

〈σy(t )〉
〈σz(t )〉

⎤
⎦ =

⎡
⎣ 0 Bz −By

−Bz 0 Bx

By −Bx 0

⎤
⎦
⎡
⎣〈σx(t )〉

〈σy(t )〉
〈σz(t )〉

⎤
⎦. (3.7)

Before considering the quantum probability vector representa-
tion, it is sensible to first revisit the analogous classical theory
to ensure a comprehensive understanding of why the NSIT
condition is always satisfied by classical dynamics.

A. Classical dynamics

The classical equation of motion of a spin vector �S =
[Sx(t ), Sy(t ), Sz(t )] is given by [27]

d

dt

⎡
⎣Sx(t )

Sy(t )
Sz(t )

⎤
⎦ =

⎡
⎣ 0 Bz −By

−Bz 0 Bx

By −Bx 0

⎤
⎦
⎡
⎣Sx(t )

Sy(t )
Sz(t )

⎤
⎦, (3.8)

where the initial condition is specified through the continuous
real parameters S0a [a ∈ {x, y, z}] as⎡

⎣Sx(0)
Sy(0)
Sz(0)

⎤
⎦ =

⎡
⎣S0x

S0y

S0z

⎤
⎦. (3.9)

In the following discussion, let the spin vector with its initial
conditions be denoted by⎡

⎣Sx(t )
Sy(t )
Sz(t )

⎤
⎦ =

⎡
⎣Sx(S0x, S0y, S0z, t )

Sy(S0x, S0y, S0z, t )
Sz(S0x, S0y, S0z, t )

⎤
⎦. (3.10)

Let ρ0(S0x, S0y, S0z ) be the classical probability distribution of
the initial spin satisfying

ρ0(S0x, S0y, S0z ) � 0, (3.11)

and ∫∫∫
ρ0(S0x, S0y, S0z )dS0xdS0ydS0z = 1. (3.12)

The distribution ρ(Sx, Sy, Sz, t ) at time t is determined by

ρ(Sx, Sy, Sz, t ) =
∫∫∫

δ[Sx − Sx(S0x, S0y, S0z, t )]δ[Sy − Sy(S0x, S0y, S0z, t )]δ[Sz − Sz(S0x, S0y, S0z, t )]

× ρ0(S0x, S0y, S0z )dS0xdS0ydS0z, (3.13)

and satisfies the equation of motion

∂

∂t
ρ(Sx, Sy, Sz, t ) = −(Sx, Sy, Sz )

⎡
⎣ 0 Bz −By

−Bz 0 Bx

By −Bx 0

⎤
⎦
⎡
⎢⎢⎢⎣

∂
∂Sx

∂
∂Sy

∂
∂Sz

⎤
⎥⎥⎥⎦ρ(Sx, Sy, Sz, t ). (3.14)

Consider a measurement of Sa [a ∈ {x, y, z}] resulting in the
observed spin s = ±1 of Sa at t = 0. The probability of s for
Sa is computed via

p̄a,s =
∫∫∫

	(sS0a)ρ0(S0x, S0y, S0z )dS0xdS0ydS0z, (3.15)

where 	(x) denotes the Heaviside step function:

	(x) :=
{

1 x � 0
0 x < 0 . (3.16)

The probability distribution subsequent to the measurement at
t = 0 is described by

ρa,s(S0x, S0y, S0z ) = 	(sS0a)

p̄a,s
ρ0(S0x, S0y, S0z ). (3.17)

From Eqs. (3.14) and (3.17), one can immediately ascertain
that no backreaction from the measurement influences the

expectation value of any observable at a future time t . Since
the relation

ρ(Sx, Sy, Sz, t ) = p̄a,+1ρa,+1(Sx, Sy, Sz, t )

+ p̄a,−1ρa,−1(Sx, Sy, Sz, t ) (3.18)

is satisfied at time t , the expectation value

p̄a,+1

∫∫∫
O(Sx, Sy, Sz )ρa,+1(Sx, Sy, Sz, t )dSxdSydSz

+ p̄a,−1

∫∫∫
O(Sx, Sy, Sz )ρa,−1(Sx, Sy, Sz, t )dSxdSydSz

(3.19)

of a physical observable O(Sx, Sy, Sz ) at time t with mea-
surement matches the expectation value

∫∫∫
O(Sx, Sy, Sz )

ρ(Sx, Sy, Sz, t )dSxdSydSz of that same observable without the
measurement. This ensures the stability and predictability of
the system even after measurements have been performed,
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thereby underscoring the classical nature of the described
dynamics. Therefore, classical statistical mechanics is an ex-
ample of an NSIT-compatible theory.

B. Quantum dynamics

To consider measurements and violations of NSIT in quan-
tum dynamical systems, we introduce the six-dimensional
probability vector �pcl as a comparison measure for the
above-described classical theory by defining the discrete spin
variables σa = ±1 as

σx = ε(Sx ) = 	(Sx ) − 	(−Sx ), (3.20)

σy = ε(Sy) = 	(Sy) − 	(−Sy), (3.21)

σz = ε(Sz ) = 	(Sz ) − 	(−Sz ). (3.22)

The classical probability vector �pcl(t ) at time t is then given
by [see Eq. (3.5)]

�pcl(t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̄x(+1, t )

p̄x(−1, t )

p̄y(+1, t )

p̄y(−1, t )

p̄z(+1, t )

p̄z(−1, t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
σy,σz

pcl(+1, σy, σz, t )∑
σy,σz

pcl(−1, σy, σz, t )∑
σx,σz

pcl(σx,+1, σz, t )∑
σx,σz

pcl(σx,−1, σz, t )∑
σx,σy

pcl(σx, σy,+1, t )∑
σx,σy

pcl(σx, σy,−1, t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.23)

where we use the bar to distinguish the classical probabilities
p̄a(s, t ) from their quantum counterparts pa(s, t ), and

pcl(σx, σy, σz, t ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
	(σxSx )	(σySy)	(σzSz )ρ(Sx, Sy, Sz, t )dSxdSydSz. (3.24)

By definition, each component p̄a(s, t ) remains non-negative at any arbitrary time t . Note that the general probabilistic state
space defined by the set of points {〈σx〉cl, 〈σy〉cl, 〈σz〉cl}, where

〈σa〉cl := (+1) p̄a(+1, t ) + (−1) p̄a(−1, t ), (3.25)

is a cube with a side length of 2, centered at the origin, with each side parallel to the x, y, and z axis. Embedded within this cube
is the Bloch sphere with a radius of 1, making contact with the cube at its extremities, as illustrated in Fig. 2. Any point that is
located inside of the cube, yet not within the Bloch sphere (such as those indicated in red in Fig. 2), corresponds to a probability
distribution that does not align with our traditional understanding of quantum mechanics.

Returning to quantum dynamics as delineated by Eq. (2.20), the evolution of a single-qubit system is described by

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

px(+1, t )

px(−1, t )

py(+1, t )

py(−1, t )

pz(+1, t )

pz(−1, t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −Bz/2 Bz/2 By/2 −By/2

0 0 Bz/2 −Bz/2 −By/2 By/2

Bz/2 −Bz/2 0 0 −Bx/2 Bx/2

−Bz/2 Bz/2 0 0 Bx/2 −Bx/2

−By/2 By/2 Bx/2 −Bx/2 0 0

By/2 −By/2 −Bx/2 Bx/2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

px(+1, t )

px(−1, t )

py(+1, t )

py(−1, t )

pz(+1, t )

pz(−1, t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.26)

In contrast to the probabilities p̄a(s, t ) in the case of classical
dynamics described by Eq. (3.14), which are always non-
negative, pa(s, t ) can take on negative values in the quantum
dynamics described by Eq. (3.26), even when the same initial
conditions are chosen for both equations. The presence of
negative probability components pa(s, t ) constitutes a direct
indication for the violation of NSIT in quantum dynamics for
the initial state with �pcl(0) in Eq. (3.23).

Next, let us reconsider the interference witness measure
γn,k introduced in Eq. (2.38) to quantify violations of the NSIT
condition for a single qubit. Unlike the case of large N , we
can easily determine its value for N = 2. Let us assume that
the initial state of the qubit is described by the probability
vector �p of Eq. (3.5). After performing a measurement of
σ̂a at t = 0 and obtaining the result s = ±1, we define a
pseudodensity matrix denoted by ρ̂ ′

a,s. As per Eq. (2.36), this
matrix is described by the expression

ρ̂ ′
a,s = 1

2

⎧⎨
⎩Î + sσ̂a +

∑
a′ �=a

Tr[σ̂a′ ρ̂(0)]σ̂a′

⎫⎬
⎭. (3.27)

Expanding Eq. (3.27) with respect to the identity matrix and
the Pauli matrices [see Eq. (3.1)] as

ρ̂ ′
a,s = 1

2 (Î + 〈σx〉′a,sσ̂x + 〈σy〉′a,sσ̂y + 〈σz〉′a,sσ̂z ) (3.28)

yields the following relations:

〈σa〉′a,s = s, (3.29)

〈σb�=a〉′a,s = Tr[σ̂bρ̂(0)], (3.30)

where a, b ∈ {x, y, z} here and in what follows. Note that ρ̂ ′
a,s

can possess a negative eigenvalue. Indeed, the two eigenvalues
of the 2 × 2 matrix ρ̂ ′

a,s(0) are given explicitly by

pa,s± = 1
2 [1 ±

√
(〈σx〉′a,s)2 + (〈σy〉′a,s)2 + (〈σz〉′a,s)2]. (3.31)

Consequently, the witness measure γa,s of Eq. (2.38) with s =
±1 is evaluated as

γa,s = max
{
0, 1

2

[√
(〈σx〉′a,s)2 + (〈σy〉′a,s)2 + (〈σz〉′a,s)2 − 1

]}
.

(3.32)
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The value of γa,s quantifies the NSIT violation and thus the
extent to which the state under consideration differs from a
physical postmeasurement state that satisfies the Bloch sphere
inequality [see Fig. 1]. Since postmeasurement states that
violate NSIT may not be realized in the experiment in general,
γa,s itself does not qualify as a physical quantity. However, it
is closely related to a physical quantity � that can be straight-
forwardly determined in experiments, as elucidated below.

It follows from Eqs. (3.29) and (3.30) that the squared
expectation values of the Pauli matrices fulfill the following
relation:

(〈σx〉′a,s)2 + (〈σy〉′a,s)2 + (〈σz〉′a,s)2

= 1 +
∑
b�=a

{Tr[σ̂bρ̂(0)]}2. (3.33)

Note that, since (〈σx〉′a,s)
2 + (〈σy〉′a,s)

2 + (〈σz〉′a,s)
2

> 1, the vec-
tor [〈σx〉′a,s, 〈σy〉′a,s, 〈σz〉′a,s] lies outside of the Bloch sphere.
From Eqs. (3.32) and (3.33), γa,−s is found to be equivalent to
γa,s. In what follows, we therefore let γa represent γa,s given
by

γa ≡ γa,s := 1

2

⎛
⎝√1 +

∑
b�=a

{Tr[σ̂bρ̂(0)]}2 − 1

⎞
⎠. (3.34)

The expectation values prior to the measurement are denoted
by 〈σb(0)〉 = Tr[σ̂bρ̂(0)]. Upon solving Eq. (3.34), the follow-
ing set of three equations is obtained:

〈σx(0)〉2 + 〈σy(0)〉2 = 4γz(1 + γz ), (3.35)

〈σy(0)〉2 + 〈σz(0)〉2 = 4γx(1 + γx ), (3.36)

〈σz(0)〉2 + 〈σx(0)〉2 = 4γy(1 + γy). (3.37)

The summation of Eqs. (3.35)–(3.37) yields

〈σx(0)〉2 + 〈σy(0)〉2 + 〈σz(0)〉2 = 2
∑

a

γa(1 + γa). (3.38)

In conjunction with the Bloch sphere condition Eq. (3.2) for
the initial state ρ̂(0) [i.e., the left-hand side of Eq. (3.38)],
this relation establishes the following upper bound for the
violation of the NSIT condition:

∑
a

γa(1 + γa) � 1

2
. (3.39)

Based on Eq. (3.38), it is possible to derive an analogous
inequality for the measured observables. Upon observing σ̂a,

the averaged postmeasurement state is given by

ρ̂a =
∑
s=±1

P̂a,sρ̂(t = 0)P̂a,s, (3.40)

where P̂a,s = |s〉a〈s|a are the projection operators of σ̂a as-
sociated with the eigenvalues s = ±1. The deviation of the
expectation value of σ̂b quantifies the backreaction of the
measurement and is given by

δσb(a) = 〈σb〉′a − 〈σb(0)〉 = Tr[σ̂bρ̂a] − Tr[σ̂bρ̂(0)]. (3.41)

Based on this expression, we can introduce the measure � as
follows:

� := 1

3

∑
a

∑
b

[δσb(a)]2

= 1

3

∑
a

∑
b

[〈σb〉′a − 〈σb(0)〉]2. (3.42)

As mentioned previously, this quantity can be determined by
experiments. Using Eq. (3.40) and the cyclic property of the
matrix trace, we obtain

δσb(a) = Tr

⎡
⎣
⎛
⎝∑

s=±1

P̂a,sσ̂bP̂a,s − σ̂b

⎞
⎠ρ̂(0)

⎤
⎦. (3.43)

The Pauli matrices satisfy the equation

∑
s=±1

P̂a,sσ̂b�=aP̂a,s = 0. (3.44)

From Eqs. (3.43)–(3.44), it follows that

δσb(a) = (δab − 1)〈σb(0)〉. (3.45)

This yields

∑
a

∑
b

(δσb(a))2 = 2[〈σx(0)〉2 + 〈σy(0)〉2 + 〈σz(0)〉2].

(3.46)

From Eqs. (3.38), (3.42), and (3.46), we obtain a useful for-
mula relating the abstract quantity γa to the experimentally
observable quantity � given by

� = 4

3

∑
a

γa(1 + γa). (3.47)

If � > 0, the single qubit in the initial state ρ̂(0) violates
NSIT. Put simply, the relation in Eq. (3.47) quantifies the ex-
tent to which the quantum world differs from a world without
interference terms where γa = 0 and NSIT is satisfied.

Next, we present examples of qubit quantum states to
check the violation of NSIT. First, consider the maximally
mixed state described by ρ̂(0) = Î/2. The corresponding
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probability vector is given by

�p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

px(+1, 0)

px(−1, 0)

py(+1, 0)

py(−1, 0)

pz(+1, 0)

pz(−1, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2

1/2

1/2

1/2

1/2

1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.48)

Prior to the measurement of σ̂a, all expectation values are null,
i.e., 〈σa(0)〉 = pa(+1, 0) − pa(−1, 0) = 1/2 − 1/2 = 0 ∀a. If
the result σx = +1 is observed after a measurement of σ̂x has
been performed, the probability vector becomes

�p ′
x,+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p′
x(+1)x,+1

p′
x(−1)x,+1

p′
y(+1)x,+1

p′
y(−1)x,+1

p′
z(+1)x,+1

p′
z(−1)x,+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1/2

1/2

1/2

1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.49)

The associated state ρ̂ ′
x,+1 is an eigenstate given by |+x〉〈+x|

of σ̂x, thus establishing it as a quantum state that is compat-
ible with NSIT. Hence, the interference witness measure for
this particular state vanishes, i.e., γx,+1 = 0, and thus also
�x,+1 = 0 by virtue of Eq. (3.47). Similarly, measurements
of other components σ̂a yield analogous quantum states. A
single-qubit system whose initial state is described by ρ̂(0) =
Î/2 therefore satisfies the NSIT condition.

On the other hand, if a measurement of σ̂y is performed
on the initial state ρ̂(0) = |+x〉〈+x| and the result σy = +1 is
observed, the probability vector becomes

�p ′
y,+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p′
x(+1)y,+1

p′
x(−1)y,+1

p′
y(+1)y,+1

p′
y(−1)y,+1

p′
z(+1)y,+1

p′
z(−1)y,+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1

0

1/2

1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.50)

Similarly, if the result σy = −1 is observed instead of σy =
+1, the probability vector becomes

�p ′
y,−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p′
x(+1)y,−1

p′
x(−1)y,−1

p′
y(+1)y,−1

p′
y(−1)y,−1

p′
z(+1)y,−1

p′
z(−1)y,−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

1

1/2

1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.51)

Since �p ′
y,±1 does not adhere to the Bloch sphere condition

prescribed by Eq. (3.4), the associated states ρ̂ ′
y,±1 inevitably

violate the NSIT condition. Indeed, the corresponding in-
terference witness measure γy,±1 takes on positive values,
namely,

γy,±1 =
√

2 − 1

2
. (3.52)

In this case, under appropriate selection of Ba in Eq. (3.6),
solving Eq. (3.26) reveals that some negative probability com-
ponents pa(s, t ) appear at a future time t . The negativity of the
probability components pa(s, t ) therefore serves as evidence
for the violation of NSIT.

IV. N-LEVEL SYSTEMS

In a single-qubit system, every point contained within the
Bloch sphere corresponds to a quantum state that can be real-
ized in experiments. Analogous to the Pauli operators σ̂a for
N = 2, one can introduce N2 − 1 observables λ̂n to describe
the dynamics of generic N-level quantum systems [see Sec. II,
Eqs. (2.2)–(2.6)]. The N-level generalization of the Bloch
sphere defining inequality Eq. (3.2) is

N2−1∑
n=1

〈λn〉2 � N − 1. (4.1)

Analogous to the single-qubit case with N = 2, a saturation of
this inequality corresponds to a pure quantum state. However,
in contrast to the single-qubit case, a subset of the set of
points {〈λ1〉, . . . , 〈λN2−1〉} that satisfy the relation prescribed
by Eq. (4.1) does not describe valid quantum states [28].
Consider, for instance, the quantum state described by ρ̂1 =∑

k pk|k〉〈k| � 0. Then, the vector �λ1 = [〈λ1〉1, . . . , 〈λN2−1〉1]
defined by 〈λn〉1 = Tr[λ̂nρ̂1] provides the Bloch representa-
tion of ρ̂1, i.e.,

ρ̂1 = 1

N

(
Î +

N2−1∑
n=1

〈λn〉1λ̂n

)
. (4.2)

Another quantum state ρ̂2 given by

ρ̂2 = 1

N

(
Î +

N2−1∑
n=1

〈λn〉2λ̂n

)
(4.3)

should satisfy

Tr[ρ̂1ρ̂2] =
∑

k

pk〈k|ρ̂2|k〉

= 1

N

(
1 +

N2−1∑
n=1

〈λn〉1〈λn〉2

)
� 0. (4.4)

Hence, �λ2 = [〈λ1〉2, . . . , 〈λN2−1〉2] obeys the following neces-
sary condition:

�λ1 · �λ2 =
N2−1∑
n=1

〈λn〉1〈λn〉2 � −1. (4.5)

It follows from Eq. (4.5) that when ρ̂1 is a pure state satis-
fying

∑N2−1
n=1 〈λn〉2

1 = N − 1, a pure quantum state ρ̂2 which
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meets the condition 〈λn〉2 = −〈λn〉1 does not exist for N � 3.
Consequently, the higher-dimensional generalization of the
Bloch sphere inequality given in Eq. (4.1) does not suffice
to guarantee physically viable quantum states described by
a positive semidefinite operator ρ̂ � 0. The implication here
is that the state space characterized by [〈λ1〉, . . . , 〈λN2−1〉] is
a rather intricate manifold. Therefore, for large values of N
it is in general quite difficult to determine whether a given
vector [〈λ1〉, . . . , 〈λN2−1〉] corresponds to a valid quantum
state or not since this requires the numerical diagonalization
of ρ̂ ′(0). Similarly, for large N it is a numerically difficult task
to check if a given probability vector of the form of Eq. (2.23)
describes a valid quantum state or not [recall that such a vector
comprises N (N2 − 1) components]. In order to alleviate this
difficulty, we propose to adopt a machine learning method as
described in the following section.

V. STATE CLASSIFICATION WITH MACHINE LEARNING

The aim of our proposed machine learning method is
to train an algorithm in the classification of general prob-
abilistic states as either satisfying or violating the NSIT
condition based on their associated probability vectors of the
form given by Eq. (2.23). Such vectors consist of (N2 − 1)
probability tuples [P1, . . . , PN2−1], each containing N entries
[pn(1, t ), . . . , pn(N, t )] satisfying [see Eqs. (2.11) and (2.12)]

N∑
k

pn(k, t ) = 1, pn(k, t ) > 0 ∀ n, k (5.1)

with n ∈ {1, . . . , N2 − 1} and k ∈ {1, . . . , N}. The first step
in our approach is the generation of training data that can
be used for supervised learning. Since our goal is to distin-
guish states that satisfy NSIT from those that violate it, we
generate two distinct probability vector training data sets: the
first containing exclusively vectors associated with states that
satisfy NSIT, and the second containing exclusively vectors
associated with states that violate NSIT.

A. Training data generation

For any arbitrary N � 2, we work with the generalized
Gell-Mann matrix basis (GGMMB) [29]6 and generate pseu-
dodensity states according to the spectral decomposition of
Eq. (2.37), where the projectors P̂′

m(n, k) are constructed from
pseudorandomly generated N-dimensional vectors that are or-
thonormalized via the Gram-Schmidt process. The individual
components of the probability vectors are then generated via
Eq. (2.11), where this time the projectors P̂n(k) are those as-
sociated with the elements of the GGMMB. The difference in
the generation of probability vectors for the NSIT-conforming
vs. the NSIT-violating data set lies in the pseudorandom gen-
eration of the coefficients p′

m(n, k) of Eq. (2.37): while the
normalization condition Eq. (2.12) is always satisfied for each
of the N probability tuples in both data sets, negative values
p′

m(n, k) < 0 are permitted in the generation of probability

6Chapter 3 of Ref. [30] provides an overview of the relevant
properties.

vectors associated with states that violate the NSIT condition
to reflect the fact that the spectrum of the postmeasurement
density matrix [see Eq. (2.30)] may contain negative eigen-
values and thus cannot describe a physically valid state. This
may ultimately result in probability vectors with negative
components pn(k, t ) < 0. However, since this contradicts the
second requirement stipulated by Eq. (5.1), such vectors are
then discarded, and only those satisfying both conditions are
passed onto the NSIT-violating training data set. Figure 3
illustrates the distribution of the interference witness measure
γn,k [Eq. (2.38)] values for 100 000 pseudorandomly gen-
erated probability vectors in the NSIT-violating data sets of
N ∈ {2, 4, 6}.

B. Supervised learning and probability vector classification

Supervised learning is a type of machine learning al-
gorithm that infers a function from labeled training data.
Training data sets are typically composed of pairs in which
an input object is assigned a desired output value. For
our purposes, the supervised learning task corresponds to a
classification task, and the inferred function is a classifier
function C, i.e., a map out = C(in) between input objects
(i.e., probability vectors) and output values (i.e., the state
classification).

An example implementation of our proposed machine
learning methodology is openly available in the Github repos-
itory listed in Ref. [31], including a separate file documenting
the statistical distributions underlying the pseudorandom gen-
eration of the coefficients p′

m(n, k) for both training data sets.
The code provided in this repository is written in MATHEMAT-
ICA 13 [32], and the supervised learning task is performed
by MATHEMATICA’s built-in “Classify[]” function.7 In our ex-
ample implementation, the training data set is generated such
that all probability vectors from the NSIT-conforming [NSIT-
violating] data set are assigned the desired output value 0
[1]. The resulting classifier function then takes an N (N2 − 1)-
dimensional probability vector as input and returns either 0
or 1 based on whether it has determined the state associated
with the input vector to be of the NSIT-conforming or the
NSIT-violating type. As a sanity check and to test the ro-
bustness of the classifier, we can feed the classifier function
probability vectors for which the classification is known a
priori [e.g., through independent manual determination of
the NSIT condition based on the spectral decomposition of
Eq. (2.37) or via the Bloch sphere inequality for emergent
probabilities, e.g., Eq. (3.4) for the single-qubit case] and
evaluate its performance based on the accuracy of its output
classifications.

We stress that the sole intention of the provided code
is to serve as a proof-of-principle implementation for our
proposed machine learning methodology. As such, several
refinements and extensions will be required in order to
model real experimental applications and/or realistic large-N
systems.

7A comprehensive documentation of the machine learning tech-
niques available in MATHEMATICA is provided in Ref. [33].
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FIG. 3. Distribution of the interference witness measure γn,k [Eq. (2.38)] for 100 000 pseudorandomly generated NSIT-violating states for
N ∈ {2, 4, 6} and their respective mean values γ̄N = 1

100 000

∑100 000
i γNi . For the generated NSIT-violating training data sets, the observed mean

value γ̄N tends to increase with N due to the fact that the pseudorandomly generated p′
m(n, k) that appear in the spectral decomposition of

Eq. (2.37) must also satisfy a normalization condition akin to the first relation in Eq. (5.1), i.e., they sum to 1 even in the presence of negative
values. Therefore, in the current implementation underlying the pseudorandom generation of NSIT-violating states, there is more leeway for
large N to offset comparatively large negative values p′

m(n, k) < 0 as the associated eigenvalue tuples have more entries available (∼N , i.e.,
scaling linearly with N) to ensure a sum total of 1.

VI. CONCLUSIONS

Starting from the density operator form of the Schrödinger
equation [Eq. (2.1)], we derive a formally equivalent proba-
bility vector representation [Eq. (2.20)] which describes the
quantum dynamics of a system in terms of the probabilities
associated with its observables. Our analysis demonstrates
that the probability vector representation is uniquely suited
to study features in the evolution of general probabilistic
systems that are relevant with respect to the NSIT condition
[Eq. (1.1)] and its possible violation. Due to the specific form
of Eq. (2.25), an exact diagonalization of the Hamiltonian is
not required in this formalism, which has many advantages
when N is large.

After a measurement has been performed, the postmea-
surement density operator may no longer be positive semidef-
inite (as evidenced by the fact that its spectrum may contain
negative eigenvalues), which is indicative of NSIT violations
and a dynamical evolution that cannot be understood classi-
cally (in the sense of being compatible with MR). While the
negativity of quasiprobabilities has previously been consid-
ered as an indicator of quantumness in the Wigner-Weyl rep-
resentation [14,34], the difference in our approach is that all
initial probabilities are always non-negative for both classical

and quantum dynamics. This allows us to pinpoint what
physical consequences the requirement of no backreaction/
interference that is encoded in the NSIT condition entails.
We also note positive operator-valued measure based [35]
and resource-theoretic [36] approaches to modeling LGIs and
quantifying invasiveness, respectively.

The extent to which the NSIT condition is violated by
quantum dynamics is ultimately determined by the evolution
of probability distributions associated with the observables of
the system under consideration and can be quantified using
the interference witness measure defined in Eq. (2.38). For
single-qubit systems, we derive its explicit relationship to
the backreaction of a measurement [Eqs. (3.34), (3.42), and
(3.47)].

As motivated by our argumentation in Sec. II, we expect
our scheme to be more efficient computationally compared to
conventional equation-solving approaches, particularly for the
dynamics of large-N systems. In this regime, the exploration
of machine learning techniques (especially big data methods)
appears to hold a lot of promise. The explicit treatment of
large-N systems (e.g., N � 2103

–2104
in condensed-matter sys-

tems) as well as possible experimental realizations of NSIT
tests (for instance in quantum Hall systems) will be considered
in future works.
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