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Evolution of strictly localized states in noninteracting quantum field theories with background fields
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We investigate the construction of spin-1/2 fermionic and spin-0 bosonic wavepackets having compact spatial
support in the framework of a computational quantum field theory (QFT) scheme offering space-time solutions of
the relativistic wave equations in background fields. To construct perfectly localized wavepackets, we introduce
a spatial density operator accounting for particles of both positive and negative charge. We examine properties of
the vacuum and single-particle expectation values of this operator and compare them to the standard QFT particle
and antiparticle spatial densities. The formalism is illustrated by computing numerically the Klein tunneling
dynamics of strictly localized wavepackets impinging on a supercritical electrostatic step. The density operator
introduced here could be useful to model situations in which it is desirable to avoid dealing with the infinite
spatial tails intrinsic to pure particle or antiparticle wavepackets.
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I. INTRODUCTION

Quantum field theory with a background field has been
employed in various studies, beginning with the Schwinger-
Sauter effect for pair creation [1], the excitation of a vacuum
by intense laser fields [2], and the analysis of scattering
problems [3–7]. In particular, a time-dependent nonperturba-
tive formalism of quantum field theory with a background
potential has been developed to compute numerically the dy-
namics of pair creation [4]. This formalism has successfully
computed the rates of pair creation for spin-0 bosons and
spin-1/2 fermions resulting from the excitation of the vacuum
by arbitrary electrostatic potentials [8–12]. Recently, we used
this formalism to provide insights into the dynamics of Klein
tunneling for both fermions and bosons [13].

One of the main advantages of using this formalism is
the ability to account for the time-dependent dynamics of
wavepackets propagating in arbitrary electromagnetic po-
tentials. Typically, one considers an approximately spatially
localized wavepacket of unit charge representing the initial
particle (say an electron) scattering on a supercritical poten-
tial. The corresponding (e.g., fermionic) field operator is then
used to construct charge density operators that give the evolu-
tion of the fermionic or antifermionic states as the wavepacket
scatters on the potential producing particle-antiparticle pairs.

It is well known that a wavepacket composed solely
of positive energy plane-wave solutions of the Dirac (or
Klein-Gordon) equation cannot have a finite support [14–16].
Therefore, the charge density computed from the field opera-
tor will also exhibit infinite tails. In most practical scenarios,
the infinite tails of the wavepacket can be neglected: they
are very small, in particular, for wavepackets that are wide
enough (relative to the Compton wavelength). However, in
some instances (e.g., when addressing issues related to time
interval detection), it might be desirable to avoid dealing with
infinite tails and model the initial wavepacket as having com-
pact support.

In this paper, our aim is to extend this computational QFT
scheme to take into account wavepackets with initial compact
support. The existence of perfectly localized states in rela-
tivistic quantum mechanics and QFT remains a controversial
issue [17–23] and we will not dwell here into this debate.
Our starting point is the pragmatic observation that a state
with compact support must contain both positive and negative
energy components. Hence, if such a state were measured
right after preparation, one would not obtain a particle with
certainty, but might find an antiparticle with a small proba-
bility. However, in typical situations only the positive energy
component propagates towards a given direction of interest,
at which point one is dealing with the dynamics of a parti-
cle wavepacket without tails interacting with the background
field.

We will see that the usual charge density operators cannot
account for the dynamics of compact support wavepackets
given that a proper density should encompass the positive and
negative energy manifolds. We will build instead a density
operator reminiscent of the way in which states with compact
support are treated in the first quantized theory. By consid-
ering the pair creation process that occurs when exciting the
vacuum with a supercritical potential, the density operator
will allow us to study the propagation of these finite support
wavepackets through arbitrary potentials.

The paper is organized as follows. In Sec. II, we briefly
recall the propagation of wavepackets with compact support in
first quantized relativistic quantum mechanics and give a brief
overview of wavepacket treatment within the computational
QFT framework we are using. We will see, in particular, why
the charge density operators fail to account for the propagation
of wavepackets with finite support. In Sec. III we introduce
a different density operator that considers modes associated
with both positive and negative energies. This “charge-blind”
density operator allows us to propagate wavepackets with
compact support; we will examine some properties of the
expectation values of this operator. In Sec. IV we illustrate
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both aspects of the density operator, first by computing the
free propagation of Dirac and Klein-Gordon wavepackets
having compact support and by carrying out numerical calcu-
lations for fermionic wavepackets scattering on a supercritical
potential step giving rise to Klein tunneling. We close the
paper by discussing our findings and drawing our conclusions
(Sec. V).

II. PROPAGATION OF WAVE PACKETS

We recall here the propagation of wavepackets in first
quantized relativistic quantum mechanics (RQM) and in the
computational QFT framework employed primarily to tackle
the space-time-resolved dynamics of bosonic or fermionic
fields in a background potential. We will more specifi-
cally focus on the solutions of the Dirac and Klein-Gordon
equations in one spatial dimension with the respective
Hamiltonians HD = HD

0 + V and HKG = HKG
0 + V. In the

Dirac case, HD
0 = −ih̄cαx∂x + βmc2 (α and β are the usual

Dirac matrices 1, m the electron mass, and c the light velocity)
while the free KG Hamiltonian is given by HKG

0 = − h̄2

2m (τ3 +
iτ2)∂2

x + mc2τ3 (we are using the so-called Hamiltonian form
of the KG equation, where τi are the Pauli matrices and m
now represents the boson mass [24]). V (x) is the background
potential. The eigenstates of the free Hamiltonians H0 will be
denoted by |φp〉 for positive energies and |ϕp〉 for negative
energies, where ±|Ep| = ±

√
p2c2 + m2c4. We will use the

same notation (including for the scalar product) for the Dirac
and Klein-Gordon cases and only specify differences between
bosons and fermions when relevant.

A. Wavepackets in the first quantized formalism

In the first-quantized formalism a wavepacket with an arbi-
trary profile in configuration space contains an expansion over
both positive and negative energy components [24]. This is, in
particular, the case for a state having compact support. Let us
assume ψ (0, x) describes a state with positive charge equal to
1 that is zero outside an interval D,

〈x|ψ〉 = ψ (0, x) = N

(
G(x)

0

)
, (1)

where G(x) is a function with compact support equal to zero
outside D and N is a normalization constant. We can rewrite
this initial wavepacket in terms of the projection over the
positive and negative energy components

ψ (0, x) = ψ+(0, x) + ψ−(0, x), (2)

where we define

ψ+(0, x) =
∫

g+(p)〈x|φp〉d p, ψ−(0, x)

=
∫

g−(p)〈x|ϕp〉d p, (3)

1We will consider the usual one effective spatial dimension approx-
imation, neglecting spin-flip [25] and replacing αx and β by the Pauli
matrices σ1 and σ3, respectively.

and

g+(p) =
∫

dx〈φp|x〉σ 〈x|ψ〉, g−(p)

= −ε

∫
dx〈ϕp|x〉σ 〈x|ψ〉, (4)

where σ is equal to the Pauli matrix τ3 and ε = 1 in the case
of bosons, and σ is equal to the identity and ε = −1 in the
case of fermions.

At time t , this wavepacket will evolve to

ψ (t, x) =
∫

g+(p)〈x|φp〉e−iEpt d p +
∫

g−(p)〈x|ϕp〉e+iEpt d p

= ψ+(t, x) + ψ−(t, x).
(5)

If the mean momentum of the initial wavepacket is positive,
the positive energy part will propagate in the positive direction
(towards the right) while the negative energy one will propa-
gate to the left (see, e.g., Ref. [26] for an illustration). The
density, which satisfies the continuity equation, is given by

r(t, x) = ψ†(t, x)σψ (t, x) = ψ
†
+(t, x)σψ+(t, x)

+ ψ
†
−(t, x)σψ−(t, x†) + 2Re(ψ†

+(t, x)σψ−(t, x)).

(6)

It is important to notice this density can be interpreted as a
probability density in the case of fermions, but for bosons it is
a charge density that can be positive or negative. Recall finally
that the full propagator (including positive as well as negative
energy components) is causal [14], so that a wavepacket with
initial compact support will always remain within the light
cone emanating from the bounds of the initial support of the
wave function.

B. Computational QFT formalism

1. Basic expressions

We start from the familiar QFT expressions [27] for the
creation operator of particles and the annihilation operator of
antiparticles (“an”) at some position x,

�̂pa =
∫

d pb̂p〈x|φp〉,

�̂†
an =

∫
d pd̂†

p〈x|ϕp〉, (7)

where bp and dp are the annihilation operators for a particle
and an antiparticle, respectively (they yield a vanishing result
when applied to the vacuum). b†

p and d†
p are the corresponding

creation operators. These operators obey the usual commuta-
tion relations, i.e., for fermions the only nonzero equal time
anticommutators are [bp, b†

k]+ = [dp, d†
k ]+ = δ(p − k) (and

similar commutators for bosons). We define as usual the con-
jugate of these field operators acting on the dual Fock space

�̂†
pa =

∫
d pb̂†

p〈φp|x〉,

�̂an =
∫

d pd̂p〈ϕp|x〉. (8)
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The time evolution of these operators is obtained in
the Heisenberg picture by calculating the time evolution of
each creation and annihilation operator [4] (see also the
Supplemental Material of Ref. [13])

bp(t ) =
∫

d p′(Uφpφp′ (t )b̂p′ + Uφpϕp′ (t )d̂†
p′ ),

d†
p (t ) =

∫
d p′(Uϕpφp′ (t )b̂p′ + Uϕpϕp′ (t )d̂†

p′ ), (9)

where

Uζpξq (t ) = 〈ζp|e−iHt |ξq〉 (10)

are the evolution amplitudes generated by the full Hamiltonian
(hence including the background field). The field operators
(7), therefore, become in the Heisenberg picture

�̂pa(t, x) =
∫

d pd p′(Uφpφp′ (t )b̂p′ + Uφpϕp′ (t )d̂†
p′ )〈x|φp〉,

�̂†
an(t, x) =

∫
d pd p′(Uϕpφp′ (t )b̂p′ + Uϕpϕp′ (t )d̂†

p′ )〈x|ϕp〉,
(11)

with analog expressions for their conjugate.
The field operator obtained by quantizing the “classical”

fields defined from the Klein-Gordon or Dirac Lagrangians is
related to the charge structure of the field [22]. It is obtained
by combining the operators given by Eqs. (7) and (8) as

�̂(t, x) = �̂pa(t, x) + �̂†
an(t, x), (12)

while the expression

ρ̂ch(t, x) = �̂†(t, x)σ�̂(t, x), (13)

represents the total charge density operator. Usually, one is
interested in the dynamics of the particle (or antiparticle)
density. The particle density operator is given by

ρ̂pa(t, x) = �̂†
pa(t, x)σ�̂pa(t, x). (14)

The particle density is then obtained as usual from the ex-
pectation value of such operators. For instance, denoting the
vacuum by ‖0〉〉 (where the symbol ‖〉〉 refers to a state in Fock
space) the vacuum expectation value 〈〈0‖ρ̂pa(t, x)‖0〉〉 gives
the space-time particle density (created by the background
field) when there are initially no particles or antiparticles.
In the present computational QFT framework such densities
are obtained by computing numerically the evolution oper-
ator amplitudes given by Eq. (10) over a basis of solutions
of the free (Klein-Gordon or Dirac) Hamiltonian (see, e.g.,
Ref. [13]). The total number of positively charged particles is
obtained as usual by integrating the density

Npa(t ) =
∫

dx〈〈0‖ρ̂pa(t, x)‖0〉〉. (15)

The antiparticle density operator is defined from Eqs. (7)
and (8) as

ρ̂an(t, x) = �̂†
an(t, x)σ�̂an(t, x). (16)

Note that the expectation values of this operator involves
the scalar product between the basis expansion functions
ϕ j (t, x), which is positive for Dirac fields but negative in the

Klein-Gordon case. Hence the antiparticle number is now
given by

Nan(t ) = −ε

∫
dx〈〈0‖ρ̂an(t, x)‖0〉〉, (17)

where ε = 1 for spin-0 bosons and ε = −1 for spin-1/2
fermions.

2. Wavepacket densities

It is useful when considering a particle scattering on a
potential to model the particle as a wavepacket An initial
particle wavepacket χ (0, x) is written in terms of creation
operators b†

p as [4]

‖χ+〉〉 =
∫

d pg+(p)b†
p‖0〉〉. (18)

The corresponding particle density is then given by the expec-
tation value

ρpa(t, x) = 〈〈χ+‖ρ̂pa(t, x)‖χ+〉〉, (19)

representing the density due to the background field and the
evolved wavepacket. The amplitudes g+(p) determine the
spatial profile of the wavepacket, as is obvious by recalling
that a first quantized single-particle wave function χ (t, x) is
obtained from the second quantized states as [27]

χ (t, x) = 〈〈0‖�̂(t, x)‖χ〉〉. (20)

Note that if ‖χ+〉〉 of Eq. (18) is inserted into Eq. (20), the
resulting wavepacket χ+(t, x) contains only positive energy
modes, and can therefore only account for a particle wave
function presenting infinite tails. This remains true if we re-
place Eq. (18) by

‖χ〉〉 =
∫

d p(g+(p)b̂†
p + g−(p)d̂†

p )‖0〉〉, (21)

which would be the analog of the first quantized wavepacket
given by Eq. (3) since the negative energy sector components
vanish when inserted into Eq. (20).

Similarly, the single-particle wave function generated from
the field operator �̂†(t, x) only keeps the negative energy
modes, yielding an antiparticle wave function with infinite
tails that can only be approximately localized. We therefore
see that we cannot represent a wavepacket with compact sup-
port within the computational QFT framework. Of course,
all the densities that can be computed also present infi-
nite tails: ρpa(t, x) projects to the particle sector only and
ρan(t, x) = 〈〈χ‖ρ̂an(t, x)‖χ〉〉 to the antiparticle sector, while
the charge density operator of Eq. (13) can be seen to yield
(see Appendix A for details) the charge density ρch(t, x) =
ρpa(t, x) − ερan(t, x) (the tails in ρpa and ρan are different and
do not cancel out).

III. DENSITY OPERATOR AND LOCALIZED
WAVEPACKETS

To use the computational QFT formalism with wavepack-
ets having compact spatial support, we need to define a density
operator that does not project to the particle or antiparticle
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sectors. This is done by introducing

ρ̂(t, x) = ν̂†(t, x)σ ν̂(t, x), (22)

where

ν̂†(t, x) =
∫

d p(b̂†
p(t )〈φp|x〉 + (d̂†

p (t ))∗〈ϕp|x〉),

ν̂(t, x) =
∫

d p(b̂p(t )〈x|φp〉 + (d̂p(t ))∗〈x|ϕp〉). (23)

One can express the new operator ν̂ in terms of the familiar
QFT expressions, Eqs. (7) and (11), as

ν̂†(t, x) = �̂†
pa(t, x) + (�̂†

an(t, x))∗T ,

ν̂(t, x) = �̂pa(t, x) + (�̂an(t, x))∗T , (24)

where the congujation applies to the c-numbers and the trans-
pose to the spinors in the expressions defined in Eqs. (7) and
(8). The operator ρ̂(t, x) accounts for the density of particles
and antiparticles regardless of their charge. The rationale for
taking this combination of the field operators (7) is that rather
than creating (or annihilating) a charge, we are now creating
(or destroying) a particle and an antiparticle without changing
the charge of a state. Indeed, the standard field operator is well
known to be related to the charge structure in the sense that
�† raises the charge by 1, i.e., if Q̂ = ∫

dxρ̂ch(x) is the total
charge operator [see Eq. (13)] and ‖q〉〉 is a state of charge
q, i.e., Q̂‖q〉〉 = q‖q〉〉, then Q̂[�†‖q〉〉] = (q + 1)[�†‖q〉〉] so
that �†‖q〉〉 appears as a state of charge q + 1. Similarly, we
can show that ν̂† increases the number of any n particle ‖n〉〉
by 1: if N̂ is the number operator, N̂ = ∫

dx(ρ̂pa − ερ̂an) =∫
d p(b†

pbp + d†
pdp) and N̂‖n〉〉 = n‖n〉〉, then we have (see

Appendix B)

N̂[ν̂†‖n〉〉] = (n + 1)[ν̂†‖n〉〉]. (25)

This implies, in particular, that ρ̂ must contain terms allowing
for the conversion of a particle into an antiparticle (and vice
versa). These are the cross terms obtained when plugging-in
Eq. (23) into Eq. (22).

As a consequence we can now accommodate a compact
support wavepacket as given by Eq. (21) through

χ (t, x) = 〈〈0‖ν̂(t, x)‖χ〉〉 (26)

[compare with Eq. (20)]. In the presence of such a
wavepacket, ρ̂(t, x) may be used to define a density that
remains localized over a compact support. Such a space-
time-resolved density is obtained from the expectation value
ρ(t, x) = 〈〈χ‖ρ̂n(t, x)‖χ〉〉 which becomes

ρ(x, t ) = 〈〈0‖
∫

d p(g∗
+(p)b̂p + g∗

−(p)d̂p)ρ̂(t, x)

×
∫

d p(g+(p)b̂†
p + g−(p)d̂†

p )‖0〉〉. (27)

To highlight the localized character of this density, we
will parse ρ(t, x) as the density of particles and antipar-
ticles created by the background field, on the one hand,
and a wavepacket density identical to the first quantized
single-particle wavepacket given by Eq. (6), on the other,
a wavepacket that is known to be supported on a compact
support. After some algebra (see Appendix C) we obtain

ρ(t, x) = ρ1(t, x) + ρ2(t, x) + ρ3(t, x). (28)

The term

ρ1(t, x) =
∫

d p

( ∫
dqUφpϕq〈x|φp〉

)†

σ

( ∫
dqUφpϕq〈x|φp〉

)
+

( ∫
d pdqg+(q)Uφpφq〈x|φp〉

)†

σ

( ∫
d pdqg+(q)Uφpφq〈x|φp〉

)

+ ε

(∫
d pdqg∗

−(q)Uφpϕq〈x|φp〉
)†

σ

( ∫
d pdqg∗

−(q)Uφpϕq〈x|φp〉
)

(29)

represents the density due to the presence of the background potential (first line), the density corresponding to the incoming
particle (second line), and the modulation in the number density of the created particles due to the incident particle wavepacket.
The structure of ρ1 is identical to the particle density defined by taking the expectation value of Eq. (14).

The second term, given by

ρ2(t, x) =
∫

d p

(∫
dqUϕpφq〈x|ϕp〉

)†

σ

(∫
dqUϕpφq〈x|ϕp〉

)
+

(∫
d pdqg−(q)Uϕpϕq〈x|ϕp〉

)†

σ

(∫
d pdqg−(q)Uϕpϕq〈x|ϕp〉

)

+ ε

(∫
d pdqg+(q)Uϕqϕp〈x|ϕp〉

)†

σ

(∫
d pdqg+(q)Uϕqφq〈x|ϕp〉

)
(30)

is the counterpart of ρ1(t, x) for the antiparticle density and is hence identical to the density obtained from the operator given by
Eq. (16).

Finally, the third term in Eq. (28)

ρ3(t, x) = 2Re

( ∫
d pdqg∗

−(q)U ∗
ϕpϕq

g+(q)Uφpφq〈ϕq|x〉σ 〈x|φp〉
)

+ 2Re

( ∫
d pdqg∗

−(q)U ∗
ϕpφq

g+(q)Uφpϕq〈ϕq|x〉σ 〈x|φp〉
)

(31)

involves cross terms between positive and negative energy modes of the initial wavepacket. This term accounts for the
cancellation of the infinite spatial tails intrinsic to ρ1 and ρ2. When integrated over the entire space this term vanishes, ensuring
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that ρ obeys ∫
dxρ(t, x) =

∫
dxρpa(t, x) +

∫
dxρan(t, x). (32)

This is to be compared to the total number of particles N given by the expectation value of the number operator [cf. Eq. (B1)] as

N (t ) =
∫

dxρpa(t, x) − ε

∫
dxρan(t, x). (33)

We therefore see that for fermions (ε = −1) ρ(t, x) can be interpreted as a number density, whereas for bosons ρ(t, x) appears
as a charge density.

Note that in the absence of a background field ρ(t, x) represents the evolution of the sole wavepacket. In this case, the density
simplifies to [put Uφpϕq = 0 in Eq. (28)]

ρ (0)(t, x) =
(∫∫

d pdqg+(q)Uφpφq〈x|φp〉
)†

σ

(∫∫
d pdqg+(q)Uφpφq〈x|φp〉

)

+
(∫∫

d pdqg−(q)Uϕpϕq〈x|φp〉
)†

σ

(∫∫
d pdqg−(q)Uϕpϕq〈x|φp〉

)

+ 2Re

( ∫∫
d pdqg−(q)U ∗

ϕpϕq
g+(q′)Uφpφq〈ϕp|x〉σ 〈x|φ′

p〉
)

, (34)

which is equal to the density calculated in the first quantized
theory, given by Eq. (6). This demonstrates that ρ (0) evolves
within a compact support inside the light cone. Moreover, in
the absence of a wavepacket, the density of created matter is
equal to the sum of the two number densities of particles and
antiparticles since the cross terms ρ3 and all the terms with g±
vanish in Eqs. (29) and (30). This will be illustrated below.

IV. ILLUSTRATIONS

A. Free propagation of compact support wavepackets

We study numerically the time evolution of perfectly lo-
calized wavepackets of a spin-0 boson or a spin-1/2 fermion
using the bosonic or fermionic field operators introduced
above. The computational techniques employed, based on
accurate numerical computations of the densities on a finite
space-time grid, were detailed elsewhere (see Supplementary
Material of Ref. [13]) for the case of the usual computational
QFT framework; here we simply need to arrange the terms
differently when computing ρ(t, x).

Let us take the initial wavepacket

ψ (x, 0) = N
(

G(x)
0

)
, (35)

where N is a normalization constant and G(x) is defined on
the compact support x ∈ [x0 − Dπ/2, x0 + Dπ/2] as

G(x) = cos8

(
x − x0

D

)
eip0x. (36)

This wavepacket has a mean momentum p0 and is centered
around x0 in real space with a width D. We then determine the
particle and antiparticle densities employing the usual com-
putational QFT framework introduced in Sec. II B, as well as
the density operator proposed in Sec. III; for free propagation
of interest in this subsection, the corresponding expression is
given by Eq. (34).

We show in Fig. 1 the fermionic (Dirac field) particle and
antiparticle densities ρpa and ρan as well as the density ρ for
a freely propagating wavepacket whose initial state is given
by Eq. (35) at two instants t = 0 a.u. and t = 8 × 10−4 a.u..
The particle as well as the antiparticle densities have infinite
tails, while the density ρ reproduces the compact support of
the initial wave function and remains inside the light cone at
later times.

Figure 2 shows similar calculations for a bosonic (charged
Klein-Gordon) field. Only the evolved densities are shown
(the initial wavepacket, centered at x0 = 0, is qualitatively
similar to the one shown in Fig. 1). It can be seen that the
particle density in the dotted black line (blue) has moved
towards the right while the antiparticle density in dashed gray
line (red) has moved towards the left. The density in the
gray solid line (cyan) takes into account both charges and
remains localized within the light-cone emanating from the
initial density, while the charged densities have infinite tails
leaking from the light cone.

B. Klein tunneling with localized wavepackets

Let us now examine the propagation of the densities in the
presence of a background field. For definiteness, let us take a
supercritical potential step rising at x = d given by

V (x) = V0{1 + tanh [(x − d )/α]}/2, (37)

where V0 is the step height and α the smoothness parameter of
the background field. In the absence of any wavepacket, the
background potential creates particle-antiparticle pairs. This
is illustrated in Fig. 3 where the space-time-resolved densities
ρpa, ρan, and ρ are plotted in the fermionic case.

The more interesting case is that of Klein tunneling in
which an electron wavepacket scatters on the supercritical step
and propagates undamped in the potential region. The field
operators now account for pair creation and wavepacket prop-
agation. In the standard computational QFT treatment [4,13],
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FIG. 1. The spatial number densities for spin-1/2 fermions of unit mass (a.u.) are shown at t = 0 (left panels) and t = 10−3 a.u. (right
panels). The bottom row zooms the top row densities to contrast the tails of the particle and antiparticle densities ρpa (dotted black, online
color blue) and ρan (dashed gray, online color red) from the localized character of the proposed density ρ (solid gray, online color cyan). In
the left panel, the two vertical black lines indicate the bounds of the compact support density. In the right panel, the vertical black lines are the
positions of the light-cone emanating from these bounds. Note that a small fraction of the particle and antiparticle densities present tails outside
the light cone. The freely propagating wave packet is given by Eq. (35) with D = 2/c and p0 = 100 a.u. (atomic units are used throughout).

the wavepacket displays infinite tails at any time, whereas
the densities proposed in Sec. III remain within the light
cone emanating from the compact support region over which
the initial wavepacket is localized. This is illustrated in Fig. 4.

We plot there, for the fermionic case, only the terms in ρ1, ρ2,
and ρ3 [cf. Eqs. (28) to (31)] containing terms relevant to the
wavepacket (which is tantamount to subtracting the terms in
the total density that account for pair creation).

FIG. 2. Same as Fig. 1 but for a Klein-Gordon wavepacket. Only the propagated wavepacket at t = 8 × 10−4 is shown. The plot on the right
panel is a zoom of the left panel figure near the position of the light-cone originating from the left bound of the t = 0 compact support density.
The color coding for the densities is the same as in Fig. 1. Units are given in terms of the Compton wavelength λ. The freely propagating
wavepacket is given by Eq. (35) with D = 2λ and p0 = 100h̄/λ.
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FIG. 3. Vacuum expectation number for fermionic particles
(electrons) and antiparticles (positrons) created by a supercritical
background field. The position of the step is represented in light
thin solid gray line (online color magenta), while ρpa(t, x) and
ρan(t, x) are pictured in dotted black (blue) and dashed gray (red),
respectively. The vacuum expectation value of ρ̂(t, x) in solid gray
(cyan) appears as the algebraic sum ρpa + ρan since ρ3 [Eq. (31)]
vanishes. The parameters of the step are V0 = 9mc2 and d = −10λ,
with α = 0.3/λ.

V. DISCUSSION AND CONCLUSION

We proposed in this paper a way to work with states defined
over a compact spatial support in the framework of compu-
tational QFT. Our approach hinged on introducing a density
operator ρ̂(t, x) [Eq. (22)] from which expectation values
yield densities lacking the infinite tails characterizing the stan-
dard computational QFT formalism. Our starting point was
the remark that a compact support KG or Dirac wavepacket
must have both positive and negative energy components:
by relying on the connection between QFT states and first
quantized ones, we have seen how such a density operator
could be constructed. We analyzed some properties of the
expectation values of the proposed operator, and computed
numerical results for specific illustrations for Klein-Gordon
and Dirac fields (free propagation of a wavepacket and a
wavepacket impinging on a Klein step).

We emphasize that the approach developed here should
be regarded as a practical recipe to manipulate compactly lo-
calized states when studying space-time-resolved wavepacket
dynamical problems in situations in which it is awkward to
use the “essentially localized states” [22] of standard quan-
tum field theory intrinsically displaying infinite tails. Such
states could be useful, for example, in certain detector models
aiming at measuring arrival times. We are not claiming that
the operators ν(x, t ) and ν†(x, t ) of Eq. (23) can be promoted
to fundamental quantities from which a full-fledged quantum
field approach can be defined. Previous attempts to construct
strictly localized states from vacuum excitations of a quan-
tized field have run into difficulties, such as field-theoretic
Hamiltonians unbounded from below [20]. Nevertheless, be-
sides the practical usage alluded to above, the present results
could also be useful in investigating problems such as opti-
mizing the localization properties of a single particle state, or

conversely, finding how close a strictly localized wavepacket
can be to a genuine single-particle state. These problems will
be investigated in the future.

APPENDIX A: DENSITIES WITH INFINITE TAILS IN THE
STANDARD COMPUTATIONAL QFT FRAMEWORK

Let us determine the particle density ρpa(t, x) in the ab-
sence of a background potential. ρpa, defined by Eq. (19),
becomes

ρpa(t, x) = 〈〈0‖
∫

d p(g∗
+(p)bp + g∗

−(p)dp)ρ̂pa(t, x)

×
∫

d p(g+(p)b†
p + g−(p)d†

p )‖0〉〉. (A1)

Writing ρ̂pa(t, x) in terms of the field operators, Eq. (14),
using Eq. (9), and noticing that Uφpϕp′ = 0 in the case of free
propagation, one obtains

ρpa(t, x) = 〈〈0‖
∫

d p(g∗
+(p)bp + g∗

−(p)dp)

×
∫∫

d pd p′U ∗
φpφp′

b†
p′ 〈φp|x〉σ

×
∫∫

d pd p′Uφpφp′ bp′ 〈x|φp〉

×
∫

d p(g+(p)b†
p + g−(p)d†

p )‖0〉〉. (A2)

The only nonvanishing term in this case gives

ρpa(t, x) =
(∫

d pg+(p)Uφp′φp〈x|φp〉
)†

× σ

(∫
d pg+(p)Uφp′φp〈x|φp〉

)
. (A3)

Similarly, the density of antiparticles is computed as

ρan(t, x) =
(∫

d pg−(p)Uϕp′ϕp〈x|ϕp〉
)†

× σ

(∫
d pg−(p)Uϕp′ϕp〈x|ϕp〉

)
. (A4)

Now using

Uφpφq =
∫

dx〈φp|x〉σ 〈x|e−iEqt |φq〉

= e−iEqt
∫

dx〈φp|x〉σ 〈x|φq〉, ,

Uϕpϕq =
∫

dx〈ϕp|x〉σ 〈x|eiEqt |ϕq〉

= eiEqt
∫

dx〈ϕp|x〉σ 〈x|ϕq〉, (A5)

and ∫
dx〈φp|x〉σ 〈x|φq〉 = δpq,∫
dx〈ϕp|x〉σ 〈x|ϕq〉 = −εδpq, (A6)
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FIG. 4. Wavepacket densities (obtained by subtracting the terms corresponding to pair creation) for an electron packet scattering on a
supercritical potential step of height V0 = 9mc2, smoothness parameter α = 0.3/c, and centered around d = −10λ. The position of the step is
represented in light thin solid gray line (magenta), the particle (electron) density is shown in blue, the antiparticle (positron) density in dashed
gray line (red) and the compact support density in solid light gray (cyan). The plot on the right zooms on the region around the light cone
originating at the t = 0 right boundary of the spatial support of the initial wavepacket: the compact-support density is seen to vanish outside
the light cone while this is not the case for the particle and antiparticle densities.

where ε = +1(−1) in the bosonic (fermionic) case, one
obtains

ρpa(t, x) =
(∫

d pg+(q)e−iEp〈x|φp〉
)†

× σ

(∫
d pg+(q)e−iEp〈x|φp〉

)
, (A7)

ρan(t, x) =
(∫

d pg−(q)eiEp〈x|ϕp〉
)†

× σ

(∫
d pg−(q)eiEp〈x|ϕp〉

)
. (A8)

It is straightforward to see that these densities are exactly
equal to the first quantized densities ψ+(t, x)†σψ+(t, x) and
ψ−(t, x)†σψ−(t, x), respectively [see Eq. (3)]. They can thus
not be localized within a region of compact support, given
that the cross term in Eq. (6) is necessary to suppress the
tails.

The total charge density ρch(t, x), defined by Eq. (13) and
whose integration over all space defines the usual charge oper-
ator [27–29], also presents tails. This can be seen immediately
by relying on the textbook result

ρch(x, t ) = ρpa(t, x) − ερan(t, x), (A9)

and by using the reasoning below Eqs. (A7) and (A8). Alterna-
tively, it can be directly derived within the present framework,
starting from the field operator (12) in the Heisenberg picture

�̂(t, x) =
∫

d p(b†
p(t )〈x|φp〉 + dp(t )〈x|ϕp〉). (A10)

Equation (13) leads to

ρch(t, x) = 〈〈0‖
∫

d p(g∗
+(p)bp + g∗

−(p)dp)

×
∫∫

d pd p′(U ∗
φpφp′

b†
p′ 〈φp|x〉 + U ∗

ϕpϕp′
dp′ 〈ϕp|x〉)σ

×
∫∫

d pd p′(Uφpφp′ bp′ 〈 x|φp〉 + Uϕpϕp′ d
†
p′ 〈x|ϕp〉)

×
∫

d p(g+(p)b†
p + g−(p)d†

p )‖0〉〉, (A11)

which can be simplified to

ρch(x, t ) = − ε

( ∫∫
d pdqg−(q)Uϕpϕq〈x|ϕp〉

)†

× σ

(∫∫
d pdqg−(q)Uϕpϕq〈x|ϕp〉

)

+
( ∫∫

d pdqg+(q)Uφpφq〈x|φp〉
)†

× σ

(∫∫
d pdqg+(q)Uφpφq〈x|φp〉

)
. (A12)

APPENDIX B: NUMBER RAISING OPERATOR

We provide here a proof of Eq. (25).
Let

N̂ =
∫

d p(b̂†
pb̂p + d†

pdp) (B1)

denote the total particle number. From Eq. (23), ν̂† can be
written as

ν̂† =
∫

d p′(b̂†
p′ 〈φp′ | + d̂†

p′ 〈ϕp′ |). (B2)

Therefore, we have

N̂ ν̂† =
∫∫

d pd p′(b̂†
pb̂p + d̂†

pd̂p)(b̂†
p′ 〈φp′ | + d̂†

p′ 〈ϕp′ |) (B3)

and by using the fermionic or bosonic commutation relations
in the first and last terms we obtain
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N̂ ν̂† =
∫∫

d pd p′(εb̂†
pb̂†

p′ b̂p〈φp′ | + δ(p − p′)b̂†
p〈φp′ | + d̂†

pd̂pb̂†
p′ 〈φp′ |) +

∫∫
d pd p′(b̂†

pb̂pd̂†
p′ 〈ϕp′ |

+ εd̂†
pd̂†

p′ d̂p〈ϕp′ | + δ(p − p′)d̂†
p〈ϕp′ |). (B4)

Integrating the Dirac deltas and using again the the commutativity (anticommutativity) of bosons (fermions) in the first and
fourth terms leads to

N̂ ν̂† =
∫

d p′b̂†
p′ 〈φp′ |

∫
d p(b̂†

pb̂p + d̂†
pd̂p) +

∫
d p′b̂†

p′ 〈φp′ | +
∫

d p′d̂†
p′ 〈ϕp′ |

∫
d p(b̂†

pb̂p + d̂†
pd̂p) +

∫
d p′d̂†

p′ 〈ϕp′ , (B5)

and hence

N̂ ν̂† =
∫

d p′b̂†
p′ 〈φp′ |(N̂ + 1) +

∫
d p′d̂†

p′ 〈ϕp′ |(N̂ + 1)

= ν̂†(N̂ + 1), (B6)

from which Eq. (25) follows.

APPENDIX C: DENSITIES WITH COMPACT SUPPORT

Let us compute the expectation value of the density defined by Eq. (22) in the presence of an initial wavepacket with compact
support. The resulting expression [Eq. (27)] becomes

ρ(t, x) = 〈〈0‖
∫

d p(g∗
+(p)b̂p + g∗

−(p)d̂p)

{∫∫
d p1d p2〈φp1 |x〉σ 〈x|φp2〉b̂†

p1
(t )b̂p2 (t )

+
∫∫

d p1d p2〈ϕp1 |x〉σ 〈x|ϕp2〉d̂†
p1

(t )d̂p2 (t ) +
( ∫∫

d p1d p2〈φp1 |x〉σ 〈x|ϕp2〉b̂†
p(t )d̂p(t ) + H.c.

)}

×
∫

d p(g+(p)b̂†
p + g−(p)d̂†

p )‖0〉〉. (C1)

We then insert Eq. (9) and parse these terms as per Eq. (28), where

ρ1(t, x) =〈〈0‖
∫

d p(g∗
+(p)b̂p + g∗

−(p)d̂p)

{∫∫
d p1d p2〈φp1 |x〉σ 〈x|φp2〉

∫
d p′(U ∗

φp1 φp′
(t )b̂†

p′ + U ∗
φp1 ϕp′

(t )d̂p′
)

×
∫

d p′(Uφp2 φp′ (t )b̂p′ + Uφp2 ϕp′ (t )d̂†
p′
)} ∫

d p(g+(p)b̂†
p + g−(p)d̂†

p )‖0〉〉, (C2)

which expands to

ρ1(t, x) = 〈〈0‖
∫

· · ·
∫

dq1dq′
1dq2dq′

2d p1d p2g∗
−(q1)g−(q2)U ∗

φp1 ϕq′
1

(t )Uφp2 ϕq′
2
(t )〈φp1 |x〉〈x|φp2〉d̂q1 d̂q′

1
d̂†

q′
2
d̂†

q2
‖0〉〉

+ 〈〈0‖
∫

· · ·
∫

dq1dq′
1dq2dq′

2d p1d p2g∗
+(q1)g+(q2)U ∗

φp1 ϕq′
1

(t )Uφp2 ϕq′
2
(t )〈φp1 |x〉〈x|φp2〉b̂q1 d̂q′

1
d̂†

q′
2
b̂†

q2
‖0〉〉

+ 〈〈0‖
∫

· · ·
∫

dq1dq′
1dq2dq′

2d p1d p2g∗
+(q1)g+(q2)U ∗

φp1 φq′
1

(t )Uφp2 φq′
2
(t )〈φp1 |x〉〈x|φp2〉b̂q1 b̂†

q′
1
b̂q′

2
b̂†

q2
‖0〉〉. (C3)

By applying the creation and annihilation operators to the vacuum state and using

〈〈0‖d̂q1 d̂q′
1
d̂†

q′
2
d̂†

q2
‖0〉〉 = δq′

1q′
2
δq1q2 + εδq1q′

2
δq′

1q2 ,

〈〈0‖b̂q1 d̂q′
1
d̂†

q′
2
b̂†

q2
‖0〉〉 = δq1q2δq′

1q′
2
,

〈〈0‖b̂q1 b̂†
q′

1
b̂q′

2
b̂†

q2
‖0〉〉 = δq1q′

2
δq2q′

2
, (C4)
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one obtains

ρ1(t, x) =
∫

dq
∣∣g−(q)

∣∣2
∫

dq

(∫
Uφpϕq (t )〈x|φp〉

)†

σ

(∫
Uφpϕq (t )〈x|φp〉

)

+
∫

dq
∣∣g+(q)

∣∣2
∫

dq

(∫
Uφpϕq (t )〈x|φp〉

)†

σ

(∫
Uφpϕq (t )〈x|φp〉

)

+
(∫

d pdqg+(p)Uφpφq〈x|φp〉
)†

σ

(∫
d pdqg+(p)Uφpφq〈x|φp〉

)

+ ε

(∫
d pdqg−(p)Uφpϕq〈x|φp〉

)†

σ

(∫
d pdqg−(p)Uφpϕq〈x|φp〉

)
. (C5)

Using the normalization of the QFT state yields Eq. (29). The terms ρ2(t, x) and ρ3(t, x) are obtained similarly.
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