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Real-time parameter estimation for two-qubit systems based on hybrid control
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In this paper, we consider the real-time parameter estimation problem for a ZZ-coupled system composed
of two qubits in the presence of spontaneous emission. To enhance the estimation precision of the coupling
coefficient, we first propose two different control strategies, where the first one is feedback control based on
quantum-jump detection, and the second one is hybrid control combining Markovian feedback and Hamiltonian
control. The simulation results show that compared with free evolution, both control strategies can improve
parameter precision and extend system coherence time. Then, on the basis of the two control strategies,
we propose a practical single-parameter quantum recovery protocol, which includes the preparation of an
optimal initial probe state, the active control and optimization of a system evolution process, the design of
an adaptive measurement scheme, and the parameter estimation algorithm based on Bayesian estimation theory.
In particular, by employing a batch-style adaptive measurement scheme, the parameter recovery is conducted
and the effectiveness of the two control strategies is verified.
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I. INTRODUCTION

Quantum metrology is a scientific discipline that explores
the measurement, estimation, and control of quantum states
and quantum systems. As an important subfield, quantum
parameter estimation aims at obtaining parameter information
by preparing the initial probe state, controlling the evolution
process, and seeking the optimal measurements. It primarily
focuses on how to leverage the nonclassical properties of
quantum systems (such as entanglement, superposition, and
coherence) to surpass the traditional shot-noise limit (SNL)
and even achieve the Heisenberg limit (HL) [1–3]. Due to its
crucial role in various fields, such as quantum gate calibration
in quantum computing [4,5], channel estimation in quantum
communication [6,7], and precision measurement in quantum
sensing [8–10], quantum parameter estimation has become
one of the research fields that attracts much attention in the
quantum information science community.

Up to the current development of quantum metrology,
the majority of literature on parameter estimation focuses
on single-qubit systems [11–17], which are relatively sim-
ple and easy to control. Remarkable achievements include
high-precision measurements of multiplicative Hamiltonian
parameters and dissipative coefficients under nonunitary evo-
lution [3,12]. However, there is a paucity of literature
addressing the parameters between multiple qubit systems. In
fact, in the fields of quantum communication and quantum
computing, the interaction term between two qubits is one
of the key resources to generate and control quantum en-
tanglement [18,19]. Furthermore, understanding the nature of
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system interactions also contributes to identifying the sources
of noise, thereby facilitating improved noise suppression. That
is to say, it is crucial to accurately estimate the interaction term
for quantum technology applications [20,21].

In the field of quantum metrology, active control plays a
fundamental role in enhancing parameter estimation perfor-
mance [22–25]. In terms of open-loop control, Hamiltonian
control based on numerical optimization has been demon-
strated to effectively improve the estimation performance of
qubit systems, including gradient ascent pulse engineering
(GRAPE) [14,22], Krotov’s method [11], deep deterministic
policy gradients (DDPG) [25,26], and asynchronous advan-
tage actor-critic (A3C) [27]. In terms of closed-loop control,
two commonly used and easily implementable techniques
are quantum-jump feedback control and homodyne-mediated
feedback control [11–13,28,29]. These methods use real-time
measurements to reduce the disturbance caused by the unpre-
dictable environmental interference. Currently, closed-loop
feedback control has been utilized for the generation of en-
tangled steady states [30], control of entropy uncertainty [31],
and manipulation of quantum discord dynamics in two-atom
systems [32]. In this paper, we consider the estimation prob-
lem of the coupling coefficient in the presence of spontaneous
emission noise in a two-qubit system. We first propose a local
feedback control strategy based on quantum-jump detection,
which only needs to act on one qubit to achieve precision en-
hancement. Then, a hybrid control strategy for the two-qubit
system is proposed, which not only retains the compensation
function of feedback control against stochastic disturbances
but also incorporates the flexibility of Hamiltonian control.

To recover the information of system parameters to the
maximum extent, various quantum estimation algorithms have
been developed, including Bayesian mean estimation (BME)
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[33,34], maximum likelihood estimation (MLE) [35], and
least squares estimation (LSQ) [36,37]. However, the existing
literature often treats the control and optimization process
and the parameter recovery step separately, resulting in a
loose connection between them. In this paper, we propose
a practical single-parameter quantum recovery protocol to
achieve high-precision estimation of the coupling coefficient
g of the ZZ coupling between two qubits. The proposed pro-
tocol demonstrates a complete parameter estimation process.
First, by calculating the pure state of maximizing quantum
Fisher information (QFI) without control and noise, an opti-
mal initial probe state is obtained. Second, we propose two
control strategies including local feedback control and hybrid
control to improve parameter estimation precision and extent
system coherence time. Finally, we design an adaptive mea-
surement scheme and a parameter estimation algorithm based
on Bayesian estimation theory, and apply the two control
strategies to the parameter recovery process and achieve the
high-precision estimation of the unknown parameter g.

This paper is organized as follows. In Sec. II, we introduce
the Fisher information for parameter estimation and provide
a brief description of the physical model under considera-
tion. In Sec. III, the impact of feedback control on parameter
estimation precision under different detection efficiencies is
investigated, and the hybrid control strategy is designed to fur-
ther enhance parameter estimation performance. In Sec. IV,
we devise an adaptive measurement scheme and propose
a batch single-parameter quantum recovery protocol based
on Bayesian estimation theory. The work is summarized in
Sec. V.

II. BACKGROUND KNOWLEDGE ON QUANTUM
PARAMETER ESTIMATION

In this section, we introduce several common precision
evaluation criteria, and show how to obtain a set of optimal
measurements. Then, the evolution model of the two-qubit
system under consideration is presented, and the feedback
control model is further derived.

A. Fisher information

In the field of quantum sensing, the core task of param-
eter estimation is to obtain unknown system parameters by
manipulating quantum states and employing appropriate mea-
surement operations. For an open quantum system, let θ be
a single unknown parameter to be estimated, which may be a
physical quantity such as coupling coefficient g [21], magnetic
field strength ω [11], or dissipation rate γ [12]. To begin
the estimation process, an initial probe state ρ0 is prepared
and evolves in a quantum channel ξθ . By applying appropri-
ate measurement operators {My} (

∑
y My = I , where I is the

identity matrix) to the evolving state, the probability density
function of measurement results pθ (y) is obtained. Subse-
quently, with the assistance of suitable estimation algorithms,
the unknown parameters can be effectively estimated [38].
According to the Cramér-Rao bound [12], the lower bound
of the variance Var(θ̂ ) of the unbiased estimator θ̂ satisfies

Var
(
θ̂
)
� 1

nIθ

� 1

nF θ

, (1)

where n is the number of repeated experiments, Iθ stands for
the classical Fisher information (CFI), and Fθ represents the
QFI [34]. From Eq. (1), it is clear that larger Fisher informa-
tion implies a smaller variance limit for the estimator, thereby
enabling a higher estimation precision.

In classical parameter estimation theory, CFI is an im-
portant statistical concept, which is used to describe the
distinguishability of probability space and thus quantify the
limit of estimation precision [22]. For a set of probability
distributions pθ (y) = Tr(ρθMy) of discrete measurement out-
comes, Iθ is defined as [14]

Iθ =
∑

y

pθ (y)

[
dln pθ (y)

dθ

]2

, (2)

where ln (·) represents the natural logarithm, and Tr(·) is
the trace operation. CFI is fundamentally a function of
measurements. To achieve higher estimation precision, the
choice of measurement operators is crucial. By using the
Cauchy-Schwartz inequality [39], it can be proved that CFI
is equivalent to QFI under the action of the optimal measure-
ment operators, i.e., max{My}Iθ (ρθ , {My}) = Fθ [40].

As a basic quantity in quantum physics, QFI has
widespread applications in quantum metrology [22], quantum
phase transitions [40], and other fields. Fθ is defined as [11]

Fθ = Tr
[(

Lθ
s

)2
ρθ

]
. (3)

Here, Lθ
s represents the symmetric logarithmic derivative

(SLD) operator of θ , which is similar to the logarithmic
derivative (LD) in classical statistics. SLD can capture the
response information of quantum states to small changes in
parameters, which is also an important tool to determine the
optimal measurement and plays a key role in quantum param-
eter estimation [41]. SLD can be defined as

∂θρθ = 1
2

(
Lθ

s ρθ + ρθLθ
s

)
, (4)

where ∂θρθ is the partial derivative of the quantum state ρθ

with respect to θ .
We conduct spectral decomposition on the density matrix

ρθ and have ρθ = ∑
i λi |λi〉 〈λi|. Substituting it into Eq. (4)

gives 〈λi|∂θρθ |λ j〉 = 1
2 (λi + λ j ) 〈λi|Lθ

s |λ j〉. Further solving
for Lθ

s yields

Lθ
s =

∑
i, j,λi+λ j>0

2
〈λi|∂θρθ |λ j〉

λi + λ j
|λi〉 〈λ j |. (5)

Since the SLD operator is a Hermitian operator, it can
be diagonalized, whose eigenvectors correspond to a set of
orthogonal normalized bases. For single-parameter estimation
problems, the eigenvectors of SLD can be used to construct
a set of optimal measurement bases [40]. Here, the set of
eigenvectors of Lθ

s is denoted as {|ei〉}, and the corresponding
projectors are considered as a set of positive-operator valued
measures (POVM), denoted as {Ei} = {|ei〉 〈ei|}. Then, the
probability of the ith measurement outcome is 〈ei|ρθ |ei〉. With
Lθ

s = ∑
i ei |ei〉 〈ei| and Eq. (4), we can obtain 〈ei|∂θρθ |ei〉 =

ei 〈ei|ρθ |ei〉. Substituting it into Eqs. (2) and (3),
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we have

Iθ �
∑

i

〈ei|∂θρθ |ei〉2

〈ei|ρθ |ei〉 =
∑

i

ei
2 〈ei|ρθ |ei〉

= Tr

[∑
i

ei
2ρθ |ei〉 〈ei|

]
=Fθ . (6)

From Eq. (6), it can be proved that the measurements
under this set of projection measurements {Ei} maximize the
parameter estimation precision [40]. It should be noted that, in
most cases, Ei depends on the true value of θ . Considering the
limitations of prior knowledge in actual situations, it is usually
necessary to find optimal measurements in an adaptive way.

This paper focuses on enhancing the single-parameter es-
timation precision. In this case, there always exists a specific
set of optimal measurements that can achieve the precision
defined by QFI [40], as expressed in Eq. (3). Therefore, QFI is
chosen as the objective function for the optimization process.
According to Eqs. (3) and (4), it is clear that the maximization
of QFI depends on the evolving state ρθ and its sensitivity to
the parameter. This dependency involves factors such as the
initial state ρ0, degree of dissipation, and control Hamiltonian
[40].

B. Physical model

Let us consider a ZZ-coupled system composed of two
spin-1/2 subsystems, with energy levels |e(k)〉 and | f (k)〉
for the kth qubit (k = 1, 2). The model of this system has
widespread applications in strong-field regimes [22]. In the
absence of control, the system dynamics can be described by
the Lindblad master equation as

ρ̇ = L(ρ) = − i

h̄
[H, ρ] + LD(ρ), (7)

where L represents the superoperator of the system evolution,
and LD(ρ) describes the decoherence caused by the environ-
ment. h̄ is the reduced Planck constant, taken as h̄ = 1 in this
paper. H = H0 + Hc, where H0 is the free Hamiltonian and
Hc is the control Hamiltonian. For the ZZ-coupled system, the
free Hamiltonian can be written as [21]

H0 = ω1σ
(1)
z + ω2σ

(2)
z + gσ (1)

z σ (2)
z , (8)

where σ (1)
z = σz ⊗ I , σ (2)

z = I ⊗ σz, and σz = |e〉 〈e| −
| f 〉 〈 f |. ω1 and ω2 represent the local frequencies of the two
qubits, respectively. g is the coupling coefficient of the ZZ
coupling between the two subsystems, which is the parameter
to be estimated. We assume that g has a true value of g∗. In

the case of local spontaneous emission for each qubit, the
dissipative term LD(ρ) is described as

LD(ρ)=
∑

k=1,2

γk

[
σ

(k)
− ρσ

(k)
+ − 1

2
(σ (k)

+ σ
(k)
− ρ+ρσ

(k)
+ σ

(k)
− )

]
, (9)

where γk represents the dissipation rate of the kth qubit.
We assume that the dissipative rates for both qubits are
the same, i.e., γ1 = γ2 = γ (γ � 0). σ

(k)
− = | f (k)〉 〈e(k)| and

σ
(k)
+ = |e(k)〉 〈 f (k)| serve as the lowering and raising operators

of the kth qubit.
Note that the existence of the dissipative term leads to

the loss of information in the evolution of the quantum
state, and thereby a reduction in the accuracy of param-
eter estimation. Feedback control can be used to address
this challenge [40]. Before introducing the system model
with feedback control, we discuss the relationship between
open quantum dynamics and quantum measurement. By dis-
cretizing the stochastic master equation (7) and comparing
with the general form of quantum measurement ρ(t + dt ) =∑

k=0,1 
k (dt )ρ(t )
†
k (dt ) [42], one can obtain⎧⎪⎨

⎪⎩

1(dt ) =

√
γ dtσ−


0(dt ) = I −
(

iH + γ

2
σ+σ−

)
dt

, (10)

where 
1(dt ) and 
0(dt ) are measurement operators. To be
specific, if a photon is detected (as the result of energy level
transition), the measurement outcome is recorded as 1, and
the corresponding transition process is represented by the
operator 
1(dt ). Conversely, if no transition event is detected,
the measurement outcome is recorded as 0, and the corre-
sponding process is represented by the operator 
0(dt ). For
more details, please refer to Ref. [11].

Now, we consider the system model in the presence of
feedback control. The system (7) is continuously monitored
through a photon detector D. When the detector D detects a
photon, a unitary evolution, denoted by Uf b, is triggered as a
feedback to the spin to correct the dynamics of the system.
No control is applied at other times, and Uf b is precisely the
feedback control law that needs to be designed subsequently.
At time t + dt , the density matrix with feedback control can
be represented as

ρ(t + dt ) =Uf b
1(dt )ρ(t )
†
1(dt )U †

f b

+ 
0(dt )ρ(t )
†
0(dt ). (11)

Substituting Eq. (10) into Eq. (11), we have Eq. (12),

ρ(t + dt ) = ρ(t )+
⎧⎨
⎩−i[H, ρ(t )] +

∑
k=1,2

γk

[
Uf bσ

(k)
− ρ(t )σ (k)

+ U †
f b−

1

2
(σ (k)

+ σ
(k)
− ρ(t )+ρ(t )σ (k)

+ σ
(k)
− )

]⎫⎬
⎭dt +O(dt2) (12)

ρ̇ = −i[H, ρ] +
∑

k=1,2

γk

[
Uf bσ

(k)
− ρσ

(k)
+ U †

f b − 1

2
(σ (k)

+ σ
(k)
− ρ + ρσ

(k)
+ σ

(k)
− )

]
(13)

When dt is small enough, the second-order infinitesimal
term O(dt2) can be ignored, and thus the dynamics under

feedback control can be described by Eq. (13). Equation (13)
is an ideal feedback model where the detection efficiency is
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not considered. We will provide a more realistic situation with
the detection efficiency in Sec. III. To preserve the Markovian
nature of the system, the feedback control must take effect
within a short time after the detection event is triggered.

III. ENHANCING QUANTUM PARAMETER
ESTIMATION PRECISION

It is well known that the quantum parameter estimation
mainly includes four steps: (1) preparation of the initial probe
state, (2) parametrization, (3) measurement, and (4) parameter
recovery [25]. In this section, we consider the first two steps.
Two control strategies are proposed to improve parameter
estimation precision.

For the preparation of the initial state |ψopt (0)〉, the objec-
tive is to maximize the sensitivity to small variations in the
parameter to be estimated. Since the system (7) can achieve
the highest Hamiltonian parameter estimation precision only
under the free evolution and in the absence of noise [22],
the optimal probe state can be chosen as a pure state in this
case. Let the probe state at time t = 0 be |ψ (0)〉 = a |00〉 +
b |01〉 + c |10〉 + d |11〉, and the quantum state at time T be
|ψ (T )〉. The corresponding QFI can be obtained as [22]

Fg=4Re[〈∂gψ (T )|∂gψ (T )〉−〈∂gψ (T )|ψ (T )〉〈ψ (T )|∂gψ (T )〉],
(14)

where Re[·] represents the real part. |∂gψ (T )〉 is the partial
derivative of the quantum state |ψ (T )〉 with respect to the
coupling coefficient g.

Note in our context, the parameter θ in Eq. (3) is replaced
by the coupling coefficient g. Substituting the system state
|ψ (T )〉 = e−i(w1σ

(1)
z +w2σ

(2)
z +gσ (1)

z σ (2)
z )T |ψ (0)〉 at time T without

control and noise into Eq. (14) gives

Fg = 4T 2{1−[ 〈ψ (0)|σ (1)
z σ (2)

z |ψ (0)〉 ]2}
. (15)

To achieve the highest sensitivity, the metric Fg needs to
be maximized, i.e., the condition 〈ψ (0)|σ (1)

z σ (2)
z |ψ (0)〉 = 0

holds. Moreover, with the normalization condition of the state
vector, we have{

|a|2 − |b|2 − |c|2 + |d|2 = 0

|a|2 + |b|2 + |c|2 + |d|2 = 1
⇒
{

|a|2 + |d|2 = 1
2

|b|2 + |c|2 = 1
2

. (16)

Thus, we can choose an optimal probe state as

|ψopt (0)〉 = 1
2 |00〉 + 1

2 |01〉 + 1
2 |10〉 + 1

2 |11〉 = |++〉 ,

(17)
where |+〉 = 1√

2
(|0〉 + |1〉). In the succeeding study, this state

will always be used as the initial probe state unless otherwise
stated.

A. Without control

After preparing the initial probe state, we first analyze the
estimation precision under the free evolution. For the system
(7) without control, we estimate the coupling coefficient g
between the qubits. Denote the density matrix of the system

at time t as

ρ(t ) =

⎡
⎢⎢⎢⎢⎣

ρ11(t ) ρ12(t )

ρ∗
12(t ) ρ22(t )

ρ13(t ) ρ14(t )

ρ23(t ) ρ24(t )
ρ∗

13(t ) ρ∗
23(t )

ρ∗
14(t ) ρ∗

24(t )

ρ33(t ) ρ34(t )

ρ∗
34(t ) ρ44(t )

⎤
⎥⎥⎥⎥⎦. (18)

With the optimal initial probe state |ψopt (0)〉 in (17), sub-
stituting Eq. (18) into Eq. (7), we can calculate the analytical
solutions for the elements of ρ(t ) as

ρ11(t ) = 1
4 exp[−(γ1 + γ2)t]

ρ12(t ) = 1
4 exp[−(2γ1 + γ2)t − i(2ω2 + 2g)t]

ρ13(t ) = 1
4 exp[−(γ1 + 2γ2)t − i(2ω1 + 2g)t]

ρ14(t ) = 1
4 exp

[− 1
2 (γ1 + γ2)t − i(2ω1 + 2ω2)t

]
ρ22(t ) = 1

2 exp(−γ1t ) − 1
4 exp[−(γ1 + γ2)t]

ρ23(t ) = 1
4 exp

[− 1
2 (γ1 + γ2)t − 2(ω1 − ω2)t

]
ρ24(t ) = exp

[
χ1

2g−iγ2

2(4g−iγ2 )

]
+ iγ2 exp

[− 1
2 (γ1 + 2γ2)t + i(4g + 4ω1)t

]

2

ρ33(t ) = 1
2 exp(−γ2t ) − 1

4 exp[−(γ1 + γ2)t]

ρ34(t ) = exp
(
χ2

2g−iγ1

2(4g−iγ1 )

)
+ iγ1 exp

[− 1
2 (2γ1 + γ2)t + i(4g + 4ω2)t

]

1

ρ44(t ) = 1
4 exp[−(γ1 + γ2)t] − 1

2 exp(−γ1t )

− 1
2 exp(−γ2t ) + 1, (19)

where χk = − 1
2γkt − i(4g − 4ωk )t , 
k = 1

4(4g−iγk ) , and k ∈
{1, 2}. Based on Eqs. (3), (18), and (19), one can obtain Fg.
We plot the change curves of Fg with the dissipation rate γ

and time t in Fig. 1. It can be observed from Fig. 1(a) that
the increase in the dissipation rate causes a rapid deterioration
of Fg at the terminal time T = 80. In particular, the estima-
tion capability almost vanishes when γ reaches 0.05. Hence,
γ = 0.05 is chosen as the dissipation rate in the subsequent
analysis. During the evolution process in Fig. 1(b), Fg gradu-
ally increases over time until it reaches a peak, and then begins
to decrease. This implies that the uncertainty introduced by
noise affects the parameter estimation accuracy of the system
(7). Specifically, for the studied open quantum system (7), its
coherence gradually becomes weak due to the influence of the
environment, ultimately leading to significant decrease in the
parameter estimation precision after t = 41.6 for g∗ = 0.1 and
t = 37.6 for g∗ = 0.2.

B. Feedback control

In this subsection, we examine the impact of quantum-
jump feedback control on the dynamics and analyze the
control performance. Under feedback control, the system
is described by Eq. (13), and the final parameter estima-
tion precision depends on the choice of feedback operator
Uf b. Once a transition event represented by σ

(k)
− ρσ

(k)
+ is de-

tected, the operator Uf b = exp[iHf bδt ] immediately acts on
the system within an extremely short time δt , where Hf b is a
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(a)

(b)

FIG. 1. (a) Without control, the change curve of Fg at the termi-
nal time T = 80 with the dissipation rate γ , where the true value of
g is set as g∗ = 0.1. (b) The change curves of QFI with time t under
different values of g∗, where the solid blue line and the dotted red line
correspond to g∗ = 0.1 and g∗ = 0.2, respectively. Other parameters
are chosen as ω1 = ω2 = 1 and γ = 0.05.

Hermitian operator. Under the constraint of Uf bU
†
f b = I , a

feedback mechanism that can break the exchange symmetry
between atoms is considered, aiming to limit destructive in-
terference. Here, we apply feedback to only one of the qubits,
i.e., local feedback. The selected feedback operator Uf b is [30]

Uf b = eiλσx ⊗ I, (20)

where λ represents the feedback strength (0 � λ � π ).
In practice, due to non-negligible error limitations on the

experimental components, the efficiency η of the detector D
is difficult to reach 1, while the detection information directly
affects the effectiveness of feedback control. Therefore, the
analysis of detection efficiency is also necessary.

1. Perfect detection (η = 1)

Here, we analyze the case of perfect detection efficiency
(η = 1), i.e., the detector successfully detects all photons and
responds accordingly. In this case, the master equation of

FIG. 2. The surface plot and its top view mapping of Fg with
respect to both time t and the feedback strength λ under feedback
control. The true value of g is set as g∗ = 0.1. Other parameters are
chosen as ω1 = ω2 = 1 and γ = 0.05.

the system is Eq. (13). The change surface of Fg with time
and the feedback strength λ is plotted in Fig. 2, where we
project this surface onto a top plane for easy observation.
From Fig. 2, it can be seen that the different values of the
feedback strength λ have varying effects on the function Fg.
λ = 0 corresponds to the scenario without feedback. The cor-
responding simulation result is consistent with that without
control. As λ changes, the surface exhibits a hump-shaped
pattern, reaching the highest point at λ = π

2 . This indicates
that the feedback operator Uf b = ei π

2 σx ⊗ I can be used to
enhance the parameter estimation precision. Additionally, the
top plane indicates that feedback has the ability to slow down
the attenuation of QFI and maintain high estimation precision
even over a longer evolution time.

Next, we analyze the maximum QFI that can be achieved
under different control laws. Define the peak value Fmax

g of
QFI and its improvement degree (increment) �Fmax

g as

Fmax
g = maxt [Fg(t )], (21)

�Fmax
g = Fmax

g (λ) − Fmax
g (0), (22)

where λ = 0 corresponds to the case without control.
In Fig. 3, we plot the curves of Fmax

g and �Fmax
g under

different values of λ. As can be seen from Fig. 3(a), Fmax
g

changes periodically with λ, and the period is π . Moreover,
as λ approaches nπ

2 in the nth period, the degree of precision
enhancement increases. At the peak value, the improvement
reaches 90.18%, which provides a valuable reference for the
selection of control strategies in the subsequent design of
the parameter recovery protocol. Considering the potential
limitation of insufficient prior knowledge in practical exper-
iments, in Fig. 3(b), we illustrate the impact of feedback
control on estimation precision under different values of g∗.
Figure 3(b) reveals that the three different values of g∗ exhibit
similar precision improvement, implying the broad applica-
bility of this optimization strategy. In addition, we also find
that as g∗ increases, there is an increase in the enhancement of
QFI.
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(a)

(b)

FIG. 3. (a) Under feedback control, the scatter plot of the varia-
tion of the QFI peak value Fmax

g with the feedback strength λ. The
true value of g is set as g∗ = 0.1. (b) Under different values of g∗,
the impact of feedback control on the QFI peak improvement degree
�Fmax

g , where the solid blue line, the dotted red line, and the dashed
green line represent g∗ = 0.1, g∗ = 0.2, and g∗ = 0.3, respectively.
Other parameters are chosen as ω1 = ω2 = 1 and γ = 0.05.

2. Imperfect detection (0 < η < 1)

Now, we consider another situation, where some of the
emitted photons during the system transitions are not detected
by the detector D.

According to the quantum measurement theory, the
detection efficiency η can be reflected in the measure-
ment process, i.e., ρ(t + dt ) = ηU f b
1(dt )ρ(t )
†

1(dt )U †
f b +

(1 − η)
1(dt )ρ(t )
†
1(dt ) + 
0(dt )ρ(t )
†

0(dt ) (0 � η � 1).
In this case, the master equation (13) is modified as

ρ̇ = − i[H, ρ] + ηγ1D[Uf bσ
(1)
− ]ρ

+ (1 − η)γ1D[σ (1)
− ]ρ + γ2D[σ (2)

− ]ρ (23)

with

D[σ (k)
− ]ρ =σ

(k)
− ρσ

(k)
+ − 1

2 (σ (k)
+ σ

(k)
− ρ + ρσ

(k)
+ σ

(k)
− ). (24)

η = 0 represents a photon detection efficiency of 0, meaning
that the feedback operator is never triggered at any time. In

FIG. 4. (a) When T = 80, the change surface and the top map-
ping plane of Fg with respect to the feedback strength λ and the
detection efficiency η. (b) The change surface and the top mapping
plane of Fmax

g with respect to the feedback strength λ and the de-
tection efficiency η. The true value of g is set as g∗ = 0.1. Other
parameters are chosen as ω1 = ω2 = 1 and γ = 0.05.

this case, Eq. (23) is equivalent to Eq. (7). η = 1 corresponds
to the perfect detection efficiency, and in this case Eq. (23)
reverts to Eq. (13), while 0 < η < 1 indicates the situation
that the photon detector D only detects some photons, which
is also the focus of our study in this subsection.

Similarly, we explore the optimal feedback strength under
imperfect detection efficiency, where the feedback operator
is of the form in Eq. (20). Figure 4(a) shows the surface of
Fg at T = 80 with the feedback strength λ and the detection
efficiency η. Furthermore, we replace the objective function
Fg in Fig. 4(a) with Fmax

g represented by Eq. (21), and the
result is shown in Fig. 4(b). By observing Figs. 4(a) and 4(b),
it is clear that the estimation precision under any detection
efficiency reaches its peak at λ = π

2 . Thus, we obtain the
optimal feedback operator as Uf b = ei π

2 σx ⊗ I , which is the
same as that under perfect detection efficiency.

Then, Fig. 5(a) shows how the QFI value Fg changes with
time t and the detection efficiency η. Along the time axis, the
objective function Fg increases gradually with the increase
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(a)

(b)

FIG. 5. (a) Under feedback control and imperfect detection, the
change surface and the top mapping plane of Fg with respect to time
t and the detection efficiency η, where the feedback strength is set as
λ = π

2 . (b) When T = 80, the change curves of Fg under different
values of the detection efficiency η, where the dotted red line, the
dashed green line, and the solid blue line represent η = 1, η = 0,
and 0 < η < 1, respectively. The true value of g is set as g∗ = 0.1.
Other parameters are chosen as ω1 = ω2 = 1 and γ = 0.05.

of the detection efficiency. Even with imperfect detection
efficiency, the performance under feedback control is still su-
perior to that under free evolution, which also can be verified
more intuitively by Fig. 5(b). The control effect at T = 80
is depicted in Fig. 5(b), showing that the detection efficiency
curve of η ∈ (0, 1) lies between the perfect detection and free
evolution lines. In addition, it can be seen that a higher detec-
tion efficiency leads to a faster rate of precision improvement.
This indicates that feedback control significantly enhances the
system’s ability to suppress decoherence.

C. Hybrid control

In the previous subsection, we analyzed the impact of
quantum-jump feedback on the parameter estimation pre-
cision. The results show that the optimization strategy
improves the maximum achievable QFI to some extent and

slows down the decay rate of estimation precision. How-
ever, there is still room for improvement. In this subsection,
Hamiltonian control is applied to further extract the infor-
mation of g. For simplicity, we assume that the perfect
detection efficiency can be achieved, i.e., η = 1, and con-
trols are applied in all three directions for each qubit,
i.e., Hc = ∑

k=1,2

∑
j=1,2,3 u(k)

j σ
(k)
j . In this case, the system

Hamiltonian can be expressed as

H =H0 + Hc =ω1σ
(1)
z + ω2σ

(2)
z + gσ (1)

z σ (2)
z +

∑
k=1,2

	u(k) · 	σ (k),

(25)
where 	u(k) represents the control field in the three directions
of the kth qubit. For the system in Eq. (13), we consider
the Hamiltonian in Eq. (25) and choose Uf b = ei π

2 σx ⊗ I as
the feedback operator. The GRAPE algorithm [14,22] is used
to find optimal control fields. In the GRAPE algorithm, the
control time is divided into multiple time segments. For any
control field, the control quantity on each time segment is a
constant to be determined, called the control variable on this
time segment associated with the control field. The partial
derivative of the objective function with respect to any control
variable under each control field will form a gradient compo-
nent. Thus, the basic idea of the GRAPE algorithm is to first
choose a set of initial control fields to drive the evolution of
the quantum system, and then iteratively update the control
quantity on each time segment under each control field along
the gradient direction of the objective function in order to
maximize the objective function. In what follows, we state the
design of hybrid control with analysis.

First, the time interval [0, T ] is divided into M segments
of length δt (δt = T

M ). The density matrix at time T can
be expressed as ρ(T ) = �M

n=1exp(Lnδt )ρ(0), where Ln is the
system evolution superoperator corresponding to the nth time
segment, i.e., Ln(ρ) = − i

h̄ [H0 +∑
k=1,2 	u(k)(n) · 	σ (k), ρ] +

LD(ρ). According to Eq. (3), we calculate the gradient of the
objective function at time T and have

∂Fg(T )

∂u(k)
j (m)

=Tr

(
∂Nm

∂u(k)
j (m)

ρ(mδt )

)
+Tr

(
Nm

∂ρ(mδt )

∂u(k)
j (m)

)
, (26)

where u(k)
j (m) is the control variable on the mth time segment,

and Nm = �M
n=m+1exp(Lnδt )[Lθ

s (T )]2. Then, the control vari-
able is updated according to the gradient information as

u(k)
j (m) → u(k)

j (m) + ε
∂Fg(T )

∂u(k)
j (m)

, (27)

where ε is the learning rate. We set the total time as T = 80,
the number of time segments as M = 100, and the learning
rate as ε = 0.01. Figure 6(a) shows how u(k)

j changes with
time t in six directions when the control amplitude is uncon-
strained. Considering some physical and technical constraints,
we may need to limit the control amplitude within a certain
range. From Fig. 6(a), we can see that the optimal control
amplitudes in different directions differ by more than five
times. In addition, during most of the time, the control values
are within the range of ±0.2. This indicates that the control
amplitude of the hybrid control strategy can be limited to
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(a)

(b)

FIG. 6. (a) The optimal control law under hybrid control when
there is no constraint on the control amplitude. (b) The final opti-
mal control law when the control amplitude is constrained within
[−0.2, 0.2]. In each graph, the first (second) vertical column repre-
sents the local controls applied to the first (second) qubit in three
directions. Other parameters are chosen as g∗ = 0.1, ω1 = ω2 = 1,
and γ = 0.05.

[−0.2, 0.2]. The result under this control amplitude restriction
is shown in Fig. 6(b).

Next, we discuss the dependence of the hybrid control
strategy on the initial probe state. We choose three typi-
cal quantum states for comparison: |++〉, |�(+)〉 = (|00〉 +
|11〉)/

√
2, and |� (+)〉 = (|01〉 + |10〉)/

√
2. The QFI values

Fg under these three probe states are plotted in Fig. 7(a),
which shows a similar upward trend and meanwhile implies
that the hybrid control strategy can quickly adjust the initial
state to the state sensitive to the unknown parameter and
thereby has a high degree of freedom in the selection of the
initial probe state, not limited to a specific quantum state. In
addition, we also plot the change curves of Fg under different
g∗ in Fig. 7(b). It can be seen from Fig. 7(b) that the QFIs
under the three scenarios have been greatly improved with the
increase of evolution time, which reflects good robustness of

(a)

(b)

FIG. 7. (a) Under the hybrid control strategy, the influence of dif-
ferent initial probe states on the estimation precision of the unknown
parameter, where the solid blue line, the dotted red line, and the
dashed green line represent |++〉, |�(+)〉, and |� (+)〉, respectively.
(b) When the parameter to be estimated takes different true values,
the curves of Fg with respect to time t , where the solid blue line,
the dotted red line, and the dashed green line represent g∗ = 0.1,
g∗ = 0.2, and g∗ = 0.3, respectively. Other parameters are chosen as
ω1 = ω2 = 1 and γ = 0.05.

the algorithm. At the same time, it indicates that the hybrid
control strategy has a low dependence on prior knowledge and
is more suitable for practical scenarios.

Finally, to compare with the traditional GRAPE algorithm,
we plot the curves of Fg under the hybrid control strategy and
the GRAPE algorithm during the iteration process in Fig. 8(a).
Due to the correction effect of feedback control in the early
stage, the hybrid strategy shows superior performance. Af-
ter the 67th iteration, the performance is much higher than
the traditional GRAPE algorithm, which once again veri-
fies the significance of feedback control. Subsequently, both
curves fluctuate around their respective stable values. Note
that during the iteration process, the two curves do not al-
ways exhibit the upward trend. This is due to the nonconcave
nature of the objective function, which can lead the GRAPE
algorithm to get stuck in local optimum while searching for
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(a)

(b)

FIG. 8. (a) After 500 iterations, comparison of improvement in
estimation precision between the hybrid control strategy and the
GRAPE algorithm. The blue (upper) line represents the case where
feedback control and additional Hamiltonian control are simultane-
ously applied to the system, and the red (lower) line stands for the
case where only the GRAPE algorithm is applied to Hamiltonian
control. (b) The change curves of Fg with respect to time t for the
three scenarios, where the solid blue line, the dotted red line, and
the dashed green line represent no control, only feedback control,
and hybrid control, respectively. Other parameters are chosen as
g∗ = 0.1, ω1 = ω2 = 1, and γ = 0.05.

control pulses. Figure 8(b) intuitively shows the curves of
Fg under three different cases: no control, feedback control,
and hybrid control. Before T = 40, additional Hamiltonian
control has little impact on the precision improvement, and
feedback control plays a key role. For simplicity, we choose
the feedback control curve instead. As the decoherence effect
gradually becomes apparent, the overall estimation precision
without control shows the decreasing trend. However, appro-
priate feedback control can suppress such a decreasing trend.
After that, the improvement effect of hybrid control on QFI
gradually becomes evident, eventually reaching 6.24 times of
the maximum precision value under free evolution. Even after
a long evolution period, hybrid control can still maintain dis-
tinguishability between quantum trajectories under different

parameter true values, and extend the coherence time of the
system.

IV. BAYESIAN BATCH SINGLE-PARAMETER
QUANTUM RECOVERY PROTOCOL

In this section, we study the other two steps of parame-
ter estimation, namely, measurement selection and parameter
recovery. By combining these steps with the hybrid control
strategy discussed in Sec. III, an adaptive Bayesian batch
single-parameter quantum recovery protocol is proposed.

Before proceeding with protocol design, we first introduce
the Bayesian estimation theory needed for parameter recovery.
For the majority of problems that use prior knowledge to
deal with uncertainty, Bayesian estimation demonstrates good
performance. It can provide a complete probability distribu-
tion and a unique state estimate, and has wide applications
in parameter estimation, decision analysis, and other fields
[33]. In quantum parameter estimation, for the parameter θ

to be estimated, a set of specific POVMs {My} can be used
to perform the same measurement operation on N copies of
ρ(θ ). This transforms the quantum estimation problem into a
classical statistical probability problem. With the observation
outcome y and the prior probability P(y|θ ), the posterior prob-
ability P(θ |y) is updated after each measurement. Generally,
the Bayesian rule can be written as

P(θ |y) = P(y|θ )P(θ )∫
P(y|θ )P(θ )dθ

(28)

and the corresponding Bayesian estimator for θ can be ex-
pressed as

θ̂ =
∫

θP(θ |y)dθ. (29)

In addition to the classical probability and statistical es-
timation rules, a quantum parameter recovery protocol also
involves measurement scheme and simulation design [33],
which will be discussed in the following subsections.

A. Adaptive measurement scheme

In Sec. III, the selection of optimal measurements was
not considered. The reason is that the lower bound of the
variance achievable by all physically allowable measurement
operators is equal to the reciprocal of QFI. However, when it
comes to a practical recovery protocol, we need to consider
an actual measurement strategy, which is directly related to
the extraction of quantum parameter information and signif-
icantly affects the final estimation precision. In the case of
rich prior knowledge, it is possible to directly obtain better
measurements that make CFI close to QFI. Here, our focus
lies in the situation of limited prior knowledge, which is more
frequently encountered in practical applications. For this, we
propose an adaptive measurement scheme that incorporates
the Bayesian estimation. In this scheme, a compromise param-
eter value is first chosen to find a set of approximately optimal
measurement operators as the initial measurement set, and
then this measurement operator set is continuously updated
based on the observed data and the corresponding estimate of
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the parameter. The specific measurement scheme is stated as
follows.

The first step is to select an initial set of measurements with
good robustness, which has high sensitivity to a large range
of parameters to be estimated. Let us consider the estimation
problem of the coupling coefficient g in the ZZ-coupled sys-
tem. With Eq. (4), the eigenvectors of SLD under g∗ = 0.1
are calculated, and the corresponding projectors can be cho-
sen as a set of measurement operators. Since the selection
of the initial measurement set only needs to ensure that the
corresponding parameter information can be extracted under
different values of g∗ and will be updated adaptively, it is not
necessary to adopt the strictly optimal measurement set under
a specific value of g∗. To simplify calculation, we approximate
all elements of each measurement operator to their nearest in-
tegers. Thus, the resulting initial POVM set can be obtained as

M0 = 1

4

⎡
⎢⎢⎣

1 i i 1
−i 1 1 −i
−i 1 1 −i
1 i i 1

⎤
⎥⎥⎦

M1 = 1

4

⎡
⎢⎢⎣

1 i −i −1
−i 1 −1 i
i −1 1 −i

−1 −i i 1

⎤
⎥⎥⎦

M2 = 1

4

⎡
⎢⎢⎣

1 −i i −1
i 1 −1 −i

−i −1 1 i
−1 i −i 1

⎤
⎥⎥⎦

M3 = 1

4

⎡
⎢⎢⎣

1 −i −i 1
i 1 1 i
i 1 1 i
1 −i −i 1

⎤
⎥⎥⎦. (30)

The effectiveness of the initial measurement set in Eq. (30)
will also be verified in the subsequent Sec. IV C, where this
set of POVM exhibits a high distinguishability for different
values of g∗ within a large range, that is, the measurement
results vary significantly. This implies that it is appropriate to
select Eq. (30) as an initial measurement set under g∗ = 0.1.

The second step is to adaptively update the measurement
set. Based on the parameter information obtained from the
early measured simulation data, a new estimate θ̂ can be
obtained. By solving Eq. (4), the SLD operator Lθ

s associ-
ated with the estimate and thereby a new set of projective
measurement bases can be obtained. It should be noted that
the practical measurement overhead problem needs to be con-
sidered in the adaptive update process. Although the update
of POVM after each measurement can achieve high-precision
estimation level quickly, it significantly increases the compu-
tational cost and time overhead. To solve this problem, we
can adopt a batch-style adaptive measurement scheme, i.e.,
(1) the initial measurement set is applied to R copies of the
quantum state ρθ (T ), called one batch, and R measurement
outcomes are obtained through a sampling process, which
will be described in Sec. IV B; (2) the parameter’s probability
distribution is calculated according to the R measurement
outcomes, and the parameter estimate is obtained through
Bayesian method; (3) the optimal measurement set under the

estimate is updated as the measurement set for the next batch,
and is used to generate R new measurement outcomes; (4) the
above steps (2) and (3) are repeated until N batches.

B. Adaptive parameter recovery protocol with simulation

Combined with the aforementioned adaptive measurement
rules, we illustrate the design of the batch-style adaptive
single-parameter recovery protocol with the aid of simula-
tion. We still consider the estimation problem of the coupling
coefficient g in the ZZ-coupled system. The flowchart of the
protocol is shown in Fig. 9. In the simulation, the parameters
are set as follows. A total of 100 values of the coupling
coefficient g are taken at equal intervals in [0, 0.2], and their
initial probability distribution is uniform, i.e., P0(g) = 1

100 for
each value of g. The initial probe state is chosen as |++〉, and
the initial measurement set follows Eq. (30). The true value of
g is set as g∗ = 0.1. The system evolves in the time interval
[0, T ] with the terminal time T = 80. We divide [0, T ] into
M = 100 equal portions and assume the photon detection
efficiency η in feedback control to be 1 for simplicity. The
evolution process is simulated in N = 20 batches, each batch
consisting of R = 100 independent evolutions. The design of
the adaptive parameter recovery protocol can be summarized
in the following steps:

(1) By placing the initial probe state in the parameter
channel and making it evolve, the density matrix ρ (n)

g (T ) at
time T can be obtained for each g, where n indicates the
nth batch with 1 � n � N . Since g∗ = 0.1 corresponds to
the real evolution of the system, ρ

(n)
g∗ (T ) represents the real

density matrix of the system at time T . Thus, we can calculate
the theoretical probabilities of four measurement outcomes
{m0, m1, m2, m3} according to P∗(n)(ml ) = Tr[ρ (n)

g∗ (T )M(n)
l ],

where l ∈ {0, 1, 2, 3}.
(2) We obtain a sample set of R measurement outcomes of

the nth batch by simulating the practical measurement process
and sampling. Generally, according to the designed adaptive
measurement scheme, one can apply the current measurement
set to R independent evolutions to obtain a sample set of R
measurement outcomes. While in the simulation, this can be
conveniently realized by directly sampling R measurement
outcomes according to the theoretical probability P∗(n)(ml )
of each measurement outcome. The obtained R measurement
outcomes form a sample set of measurement outcomes of the
nth batch, denoted as 	S (n). Considering the possible projection
measurement errors in practice, we discuss two scenarios: per-
fect sampling and imperfect sampling. The corresponding sets
of samples are denoted by 	S (n)

p and 	S (n)
np , respectively. Perfect

sampling implies that measurement outcomes are generated
strictly according to the theoretical probabilities, and then 	S (n)

p
is further obtained by randomly shuffling the order of the
measurement outcomes.

Under imperfect sampling, 	S (n)
np is generated by using the

roulette wheel method, where the cumulative probability of
each measurement result is decided by

d (n)
l =

l∑
i=0

P∗(n)(mi ), l ∈ {0, 1, 2, 3}. (31)

Concretely, a random number is first generated in (0, 1) by a
computer. Then, the corresponding measurement outcome is
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FIG. 9. The framework of the single-parameter quantum recovery protocol proposed in this paper, including initialization, evolution,
sampling, Bayesian estimation, adaptive measurement, and evaluation steps.

determined by the interval it falls into. For example, if the
random number falls into (0, d (n)

0 ], then the measurement
result is m0; if the random number is in (d (n)

l−1, d (n)
l ], then the

measurement result is ml . This process is repeated R times to
obtain a sample set of R measurement outcomes of the nth
batch 	S (n)

np .
(3) Based on the obtained sample set of measurement out-

comes of the nth batch 	S (n), Bayesian estimation is used to
update the probability distribution of g, i.e.,

P(n)
(
g| 	S (n)

r

)= P(n)
(
s(n)

r |g)P(n)
(
g| 	S (n)

r−1

)
∫

P(n)
(
s(n)

r |g)P(n)
(
g| 	S (n)

r−1

)
dg

, (32)

where s(n)
r represents the rth element (measurement outcome)

of the nth sample set 	S (n) with 1 � r � R, and 	S (n)
r represents

the set of the first r elements of 	S (n). For each element s(n)
r ,

the posterior probability of s(n)
r−1 acts as the prior probability of

s(n)
r , and then the new posterior probability of s(n)

r is calculated
via Eq. (32). After all the elements of 	S (n) are used to update
Eq. (32) in turn, the final probability distribution of g for the
nth batch can be obtained. Based on the obtained probability
distribution, a new estimate can be yielded by utilizing the
Bayesian estimator ĝ(n) = ∫

gP(n)(g| 	S (n) )dg. Meanwhile, the
POVM for the next batch is updated according to the new
estimate, as described in Sec. IV A. With the new POVM, a
new batch is started from Step 1 until the maximum batch N .

(4) After obtaining the estimates of g for all batches, we
choose an evaluation indicator to measure the estimation per-
formance. Here, the parameter recovery result is evaluated by
using the mean square error (MSE), i.e.,

MSE (ĝ) = 1

N

N∑
n=1

(ĝ(n) − g∗)2, (33)

where ĝ(n) represents the estimate of the nth batch.

In view of the factors such as experiment overhead, time
cost, and limited prior knowledge, the final estimation preci-
sion of the protocol is difficult to reach the quantum precision
limit. However, it has the advantages of simplicity, efficiency,
and practicality in implementation. In the next subsection, we
will integrate the two control strategies proposed in Sec. III
into the parameter recovery protocol and analyze the recovery
performance.

FIG. 10. Estimates of ĝ in the ZZ-coupled systems with respect
to iterative batches (with or without feedback control) at different
sample levels, where an enlarged view indicates the results of batches
16–20. The solid red line represents the true value of g, i.e., g∗ = 0.1.
The orange circles and yellow triangles represent the estimation re-
sults without control under imperfect sampling and perfect sampling,
respectively. The blue diamonds and green squares are the estimation
results with feedback control under imperfect sampling and perfect
sampling, respectively. Other parameters are chosen as ω1 = ω2 = 1
and γ = 0.05.
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TABLE I. Mean square errors of parameter estimation under
different values of g∗.

Control strategy Imperfect sampling Perfect sampling

g∗ = 0.05 Without control 1.59 × 10−4 7.89 × 10−5

Feedback control 5.13 × 10−5 3.74 × 10−5

Hybrid control 2.62 × 10−5 9.30 × 10−6

g∗ = 0.1 Without control 7.04 × 10−5 3.97 × 10−5

Feedback control 3.67 × 10−5 1.75 × 10−5

Hybrid control 1.79 × 10−5 5.47 × 10−6

g∗ = 0.15 Without control 1.16 × 10−4 6.92 × 10−5

Feedback control 4.68 × 10−5 3.15 × 10−5

Hybrid control 3.09 × 10−5 7.22 × 10−6

C. Performance analysis

First, we discuss the effect of feedback control in the
parameter recovery protocol. The feedback operator is still
chosen as Uf b = ei π

2 σx ⊗ I . Perfect sampling and imperfect
sampling are used to simulate the system without and with
feedback control. The estimates of g are shown in Fig. 10.
It can be seen that under free evolution, the estimated values
exhibit significant fluctuations around the true value. The en-
larged graph more intuitively shows that there is no decreasing
trend in fluctuations without control. In contrast, the estimates
under feedback control, whether with perfect or imperfect
sampling, show a better convergence trend. In the case of per-
fect samples, the estimated values closely match the true value
in early iterations. Such an improvement trend in estimation
precision is consistent with that under the feedback control
scheme in Sec. III.

Next, we discuss the effect of hybrid control in the param-
eter recovery protocol. Since additional Hamiltonian control
is based on optimization and thereby easily leads to local
optimum in the absence of prior knowledge, we can apply
only feedback control to the first batch (n = 1) to acquire
some parameter information. Upon entering the second batch
(n = 2), the hybrid scheme is launched. The GRAPE algo-
rithm is utilized to obtain an optimal control 	u(k) (k = 1, 2),
which acts on the system as the Hamiltonian control together
with feedback control. This process iterates sequentially until
the maximum batch N is reached. Finally, the MSEs under
different scenarios are presented in Table I, where we use the
measurement operators in Eq. (30) as initial measurements. It
can be seen that under the same control strategy, perfect sam-
pling exhibits lower errors compared to imperfect sampling.
In the three scenarios with different values of g∗, compared
with free evolution, the two control strategies proposed in this
paper significantly reduce the MSEs of estimation. This val-
idates the effectiveness of combining adaptive measurement
with control strategies, making the entire quantum parameter
recovery protocol easier to implement and more efficient. It
should be emphasized that MSEs in Table I achieve satis-

factory estimation accuracies in all cases, although the initial
measurement operators in Eq. (30) may be not optimal for the
parameter values of g∗ = 0.05 and g∗ = 0.15. This is because
the adaptive update of the measurement operators plays a
good role.

V. CONCLUSION

In this paper, we have presented a complete process of
quantum parameter estimation for a ZZ-coupled system. To
improve the estimation precision of the coupling coefficient g,
two control strategies including feedback control and hybrid
control were proposed. In the feedback control strategy, we
have found a stable feedback operator that acts on only one
qubit and can significantly improve estimation performance.
In the hybrid control strategy, by combining feedback control
with additional Hamiltonian control, the estimation precision
was further improved. Compared with free evolution, both
control strategies exhibit superior estimation performance
and significantly slow down the rate of decoherence. On
the other hand, to enhance the connection between theory
and practice, a practical quantum parameter recovery proto-
col based on Bayesian estimation theory has been proposed.
This protocol combines batch adaptive measurement with two
aforementioned control strategies. The parameter recovery re-
sults verify the effectiveness of the two schemes in improving
estimation precision. We point out that the protocol proposed
in this paper is also applicable to the improvement of other
quantum performances, such as stable entropy squeezing in
atomic systems.

In future research, the problem of multiparameter esti-
mation of quantum systems will be explored using similar
hybrid control and adaptive measurement schemes. Although
there have been many studies on multiparameter estimation
in quantum systems [25,34], there still exist some challenges,
e.g., how to select the optimal measurement set to achieve
the simultaneous high-precision estimation of multiparame-
ters such as the dissipation rate γ and local frequency ω under
different prior knowledge, and how to consider limitations
on control resources from an experimental perspective. We
expect to extend the schemes proposed in this paper to multi-
parameter scenarios to better address these issues. In addition,
under higher requirements for estimation accuracy, practical
single- or multiparameter recovery protocols are worth further
investigating, which involve the optimization and improve-
ment of measurement schemes and estimation protocols.
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