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A conserved photon current is derived from the commutation relations satisfied by the electromagnetic four-
potential and field tensor operators. The density is found to be a sum over positive and negative frequency terms,
both of which contribute a positive number density and propagate in a common direction. Discrete positive and
negative frequency excitations are both identified as photons. The photon number, equal to the spatial integral of
the photon density, is conserved in the absence of sources and sinks.
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I. INTRODUCTION

In quantum field theory (QFT) and quantum optics (QO)
photons are indivisible excitations of the electromagnetic
(EM) field with integral helicity λ = ±1, making them bosons
described by second quantized fields satisfying commutation
relations. Since there is no exclusion principle for bosons, an
EM state is an arbitrary linear combination of n-photon states
where n is any positive integer or 0; it is a whole number.
We will refer to both positive and negative frequency EM
excitations as photons.

Physical one-photon pulses coupled to transmission lines
and optical circuits are now routinely prepared in the labo-
ratory [1]. A one-photon pulse with bandwidth equal to an
appreciable fraction of its center frequency has a definite
photon number but not definite energy. Photon density is fun-
damental and the scalar product that normalizes a one-photon
state should be conserved in the absence of sources and sinks.

The model described here can be applied to the essen-
tial components of an optical quantum computer. In 2000,
Knill, Laflamme, and Milburn proved that it is possible
to create a universal quantum computer solely with single-
photon sources, optical gates consisting of beam splitters,
phase shifters, and photodetectors (KLM protocol) [2]. Pho-
tons are ideal quantum devices [3] and a photonic integrated
circuit (PIC) can be implemented using established foundry-
based technology [4]. These devices can incorporate photon
sources, low-loss dielectric transmission lines, optical gates,
and photon counting detectors [5,6]. The transmission lines
and optical gates will be referred to here as the optical circuit.

The source, optical circuit, and detector should be, at least
approximately, confined to separable finite regions of space.
This degree of localization cannot be described by a positive
frequency field alone since any positive frequency function
initially localized in a finite region spreads instantaneously
throughout space [7] and there are no local annihilation or
creation operators [8]. The early work on approximate photon
localization is reviewed by Mandel and Wolf [9] and the use
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of Hermitian operators to describe electromagnetic excitation
in QFT is discussed in Ref. [10].

Motivated by these no-go theorems, previous work on the
quantization of positive and negative frequency photon states
[11] and the need to model localized devices such as beam
splitters, researchers at the University of Leeds quantized both
positive and negative frequency solutions of Maxwell’s equa-
tion in position space to give real localizable photon pulses
[12]. Consistent with these requirements and previous work,
the conserved photon current described here is also a real
localizable sum of positive and negative frequency fields.

The conserved electric current is well known and serves as
a model for the quantitative description of a conserved photon
current. Since Fμν = ∂μAν − ∂νAμ is a tensor, its contraction
with Aμ,

AμFμν =
(

1

c
A · E, A × B + 1

c2
Eφ

)
, (1)

is a four-vector, suggesting a candidate for the conserved
photon current. In the next section we will calculate the
commutator iε0

2h̄ [Âμ, F̂μν] and show that it describes a real
localizable four-current operator satisfying a continuity equa-
tion with a material source and sink current Ĵe. In the final
section its relationship to one-photon quantum mechanics and
experiment will be discussed.

II. CONSERVED PHOTON CURRENT

We first define the notation: SI units will be used through-
out. The contravariant space-time, wave vector, and momen-
tum four-vectors are x = xμ = (ct, x), k = (ωk/c, k), and
p = h̄k, where kx = ωkt − k · x is invariant, the four-gradient
is ∂ = (∂ct ,−∇ ), � ≡ ∂μ∂μ = ∂2

ct − ∇2, the four-potential is
A(t, x) = Aμ = ( φ

c , A), and a four-current is Jμ = (ρc, J).
The covariant four-vector corresponding to U μ = (U0, U) is
Uμ = gμνU ν = (U0,−U) where gμν = gμν is a 4 × 4 diago-
nal matrix with diagonal (1,−1,−1,−1) and UμU μ = U μUμ

is an invariant. The mutually orthogonal unit vectors eμ are de-
fined such that e0 = nμ = (1, 0, 0, 0) is timelike, ek = k/|k|
is longitudinal, and the definite helicity transverse Lorentz
invariant unit vectors are eλ(k) with λ = ±1.
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Based on the Maxwell equations ∇ · B = 0, ∇ × E +
∂t B = 0 the EM four-potential (φ/c, A) can be defined such
that

E = −∂t A − ∇φ, B = ∇ × A. (2)

The covariant Faraday tensor is then

Fμν =∂μAν − ∂νAμ = 1

c

⎛⎜⎜⎜⎝
0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0

⎞⎟⎟⎟⎠,

(3)
where

Fμν = −F νμ. (4)

The standard Lagrangian density is

L = − 1
4ε0c2FμνFμν − Jμ

e Aμ, (5)

where − 1
4ε0c2FμνFμν = 1

2ε0(E · E − c2B · B) and Jμ
e is the

conserved electric four-current. The Lagrangian is L =∫
dxL(t, x). The analog of the position coordinate in this

Lagrangian is Aμ(x) so the four-momentum conjugate to Aν

is ε0cF0ν . After second quantization the form of the classical
equations of motion, ε0c2∂μFμν = Jμ

e , is preserved so the
photon field operators satisfy

ε0c2∂μF̂μν = Ĵμ
e . (6)

The continuity equation describing propagation of the photon
four-current density [Âμ, F̂μν] is

∂ν[Âμ, F̂μν] = [(∂νÂμ), F̂μν] + [Âμ, (∂νF̂μν )],

[(∂νÂμ), F̂μν] = (∂νÂμ)(∂μÂν ) − (∂νÂμ)(∂νÂμ)

− (∂μÂν )(∂νÂμ) + (∂νÂμ)(∂νÂμ)

= 0,

∂ν[Âμ, F̂μν] = 1

ε0c2
[Âμ, Ĵμ

e ], (7)

where covariant and contravariant indices were exchanged
to prove the second equation and (6) was used to give the
final result (7). The equations of motion (6) are second quan-
tized versions of the MEs ∇ · E = ρe/ε0, ∂t E − c2∇ × B =
−ε−1

0 Je.

It is sufficient for the applications to be discussed here to
consider only transverse electric fields E = E⊥ that propagate
in free space and remain transverse when transmitted into a
dielectric and consider only AμFμν

⊥ . The four-potential Aμ

in (3) is gauge dependent but E‖ = −∂t A‖ − ∇φ = 0 gives
A‖ × B = −E⊥φ/c2 so

AμFμν

⊥ =
(

1

c
A · E⊥, A × B + 1

c2
E⊥φ

)
=

(
1

c
A⊥ · E⊥, A⊥ × B

)
(8)

is gauge independent and remains gauge independent when
second quantized. Although (2) and (3) depend explicitly on
gauge, the continuity Eq. (7) is gauge independent for trans-
verse fields.

Starting with the positive frequency annihilation operator
Â+

λ (x) the remaining EM creation and annihilation operators
can be calculated. The positive frequency operators are sec-
ond quantized versions of the classical analytic signal. These
operators provide a convenient mathematical description of
propagation in the optical circuit with phase shifters eiφ and
beam splitters with complex reflectivity and transmissivity r
and t that satisfy |r|2 + |t |2 = 1 and hence conserve photon
number. The remaining field operators are

Â−(x) = Â+†(x), (9)

Â(x) =
∑
λ=±1

[Â+
λ (x) + Â−

λ (x)], (10)

Ê⊥(x) = −∂t Â⊥(x), B̂(x) = ∇ × Â(x). (11)

Since annihilation and creation operators commute
amongst themselves,

[Âμ, F̂μν

⊥ ] = [Â+
μ, F̂μν−

⊥ ] + [Â−
μ, F̂μν+

⊥ ]. (12)

The photon current density operator array

Ĵλλ′
p12(x, x′) = −iε0

2h̄

[
Âλ+

2 (x) · Êλ′−
1 (x′)

− Êλ′+
1 (x′) · Âλ−

2 (x), Âλ+
2 (x) × cB̂λ′−

1 (x′)

− cB̂λ′+
1 (x) × Âλ+

2 (x′)
]

(13)

generalizes (7) to describe the creation and annihilation of
photons at different space-time points for different, possibly
orthogonal, states. The generalization to modes 1 and 2 is
only included for convenience in defining the scalar product.
The current density operator (13) describes the addition of one
photon to any Fock state.

The source-free MEs are space-time reversal invariant but
emission and detection of a photon in the laboratory is not.
It will be assumed that t > t ′ in the laboratory frame so
the creation of a photon at x with annihilation at x′ will be
interpreted as propagation of an antiphoton from x′ to x. The
A+(x) · E−(x′) term describes propagation of a photon from
space-time point x′ to x, while the E+(x′) · A−(x) term is
equivalent to an antiphoton propagating from x′ to x. Both
photons and antiphotons that propagate from x′ to x in the
laboratory frame will be counted as photons. Since the minus
sign in the commutation relation is canceled by the sign of
the space-time derivatives of A in E and B in (13), density is
positive and propagation is in a common direction for both its
terms.

The generalized photon number density operator is

ρ̂λλ′
p12(x, x′) = iε0

2h̄

[
Âλ+

2 (x) · Êλ′−
1 (x′)

− Êλ′+
1 (x′) · Âλ−

2 (x)
]
. (14)

Defining the scalar product in the normalized zero-photon
state as 〈0|0〉 = 1, the one-photon scalar product on the t
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hyperplane is

ρλλ′
p12 = 〈

0|̂ρλλ′
p12(x, x)|0〉

= iε0

2h̄

∫
dx

[
Aλ+

2 (x) · Eλ′−
1 (x) − Êλ′+

1 (x) · Aλ−
2 (x)

]
,

(15)

where Aλ
2 (x) and Eλ′

1 (x) are one-photon EM fields with helic-
ities λ and λ′, respectively. Since i× the integrand in (15) is
real, its localizability is not limited by the Hegerfeldt theorem.

In QFT it is conventional to define a plane-wave basis
localized in k space and a space-time basis that is localized in
position space. Here, we follow the derivation of Fock space
in Ref. [13] by starting with the periodic boundary conditions
kiL = 2π li for integral li with i = x, y, z in volume V = L3

and then taking the V → ∞ limit. The commutation relations
will be written as

[̂aλk, â†
λ′k′ ] = δλλ′δk,k′ . (16)

Defining the n-photon annihilation operator

âλkn ≡ (̂aλk )n

√
n!

, (17)

it can be verified using the commutation relations (16) that

|aλkn〉 = âλkn|0〉 (18)

are the normalized n-photon Fock states. The number of states
per unit volume for a photon with definite helicity is

lim
V →∞

�n
V

= dk
(2π )3

, (19)

so V −1 ∑
k → (2π )−3

∫
t dk and the scalar product

[̂aλ(k), â†
λ′ (k′)] = δλλ′δ(k − k′) (20)

defines a basis of orthonormal states. Since
∫

dk
ωk

is an invari-

ant, ωkδ(k − k′) and ω
1/2
k âλ(k) are invariant. The operator

n̂λ(k) = â†
λ(k )̂aλ(k) (21)

counts photons with wave vector k and helicity λ. This is
the Schrödinger picture. In the Heisenberg picture the pos-
itive frequency plane-wave annihilation operator âλ(k, t ) =
âλ(k)e−iωkt satisfies i∂t âλ(k, t ) = ωkâλ(k, t ).

In the plane-wave basis a general positive frequency vector
potential operator is

Â+
λ (x) = i

√
h̄

2ε0

∫
dk

(2π )3/2ω
1/2
k

cλ(k )̂aλ(k)eλ(k)e−ikx. (22)

The photon number (23) for a state with helicity λ is

nλ
p = iε0

2h̄

∫
dx

[
Aλ+

2 (x) · Eλ−
1 (x) − Êλ+

1 (x) · Aλ−
2 (x)

]
(23)

=
∫

dk
(2π )3

|cλ(k)|2, (24)

with mode 2 equal to mode 1 omitted from the notation now
that the scalar product (15) has been defined. For a one-photon
state nλ

p = 1.

If cλ(k) = eikx′
, expressions (11) and (16) to (20) substi-

tuted into (13) give

Jλλ′
p (x, x′) = 1

2

∫
dk

(2π )3
δλλ′ (1, eλ(k))e−ik(x−x′ ) + c.c., (25)

where c.c. is the complex conjugate. Its zero component is the
photon density

ρλλ′
p (x, x′) = 1

2

∫
dk

(2π )3
δλλ′eik(x−x′ ) + c.c. (26)

On the t = t ′ hyperplane

ρλλ′
p (x, x′) = δλλ′δ(x′ − x), (27)

so (22) describes an orthonormal basis of localized states. The
operators Â(t, x) and Ê(t, x′) commute for spacelike sepa-
rated points x′ �= x, so a measurement at x′ does not change
the outcome at x. This enforces causality in QED. Using (19),
the zero component of (25) can be written as

ρλλ′
p (x, x′) = 1

2

∑
k

δλλ′
eik(x−x′ )

V
+ c.c., (28)

verifying that at x = x′ it is a density equal to a sum over
plane-wave number densities.

With |�x| ≡ |x − x′| and �t ≡ t − t ′ (26) gives

ρλλ′
p (x, x′) = ρλλ′+

p (x, x′) + ρλλ′+∗
p (x, x′), (29)

where the positive frequency part of ρλλ′
p is

ρλλ′+
p (x, x′) =

∫
dk

2(2π )3
e−ik(x−x′ )δλλ′

= −1

8π2r

∂

∂r

[
πδ(|�x| − c�t )

+iP

(
1

|�x| − c�t

)]
δλλ′ , (30)

and P is the principal value. The positive and negative
frequency contributions to the photon number density are
separately nonlocal, but their sum is real and localized on a
spherical shell. The three-dimensional case can be used to
model emission from a localized atom or quantum dot initially
in an excited state.

For a one-dimensional photon pulse with a spatially uni-
form area A propagating in the +kx direction, the positive
frequency part of the photon density is

ρλλ′+
p (x, x′) =

∫ ∞

0

dkx

2πA
eikx (x−x′ )δλλ′

= 1

2A

[
δ(�x − c�t )

− i

π
P

(
1

�x − c�t

)]
δλλ′ , (31)

where �t ≡ t − t ′, �x ≡ x − x′, and

ρλλ′+
p + ρλλ′+∗

p = 1

A
δ(�x − c�t )δλλ′ (32)

is δ localized and propagates at speed c. This localized ba-
sis can be integrated over to describe localization in a finite
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region. An example of instantaneous localization in a square
well is given in Ref. [14].

In classical EM the macroscopic description of transmis-
sion and reflection at a dielectric interface is know to work
for visible and infrared light. This is based on averaging over
domains with dimensions of order 10−8 m that include many
molecules [15]. This classical macroscopic model will be
second quantized to model photon propagation in a dielectric
such as a transmission line. The photon source and photon
counting detectors are separate devices whose details are not
considered here, so it is only assumed that the sources emit
single photons and the detectors are photon counting devices.

Only whole numbers of EM excitations exist—there are
no fractional photons. This was verified experimentally in
Ref. [16] where a detector was placed in two paths and, within
experimental error, no coincident photon detection events
were observed. The photon number density in free space is
ε0E · A. When a one-photon pulse passes from free space
into a dielectric material or optical circuit, the photon number
must remain n = 1 until the photon is absorbed in a lossy
material or counted in an optical detector and reduced to the
n = 0 state. To preserve the normalization

∫
dxε0E · A = 1,

the photon density must be ε0E · A in the dielectric.
In a polarizable dielectric the transverse positive frequency

second quantized operators satisfy the MEs

∂t (ε0Ê+ + P̂+) − ∇ × Ĥ+= − Ĵ+s, (33)

where Ĥ+= μ−1
0 B̂+ = ε0c2B̂+ and, for simplicity, the mate-

rial has been assumed to be nonmagnetic. The current Ĵe in
(7) is driven by the electric field operator so it is also operator
valued. A single-photon pulse transmitted into a transparent
medium must remain normalized so its number density re-
mains ε0E · A as in free space.

When a light pulse with momentum pem propagating in
free space encounters a planar interface of a dielectric with
an index of refraction n, r = n−1

n+1 and t = 2n
n+1 are determined

by the Fresnel equations. Total momentum is conserved so if
this pulse is reflected off an ideal mirror with reflectivity r = 1
the mirror will gain momentum 2pem, and if it is absorbed the
dielectric slab will gain momentum pem [17]. A one-photon
pulse incident on this ideal mirror will remain a one-photon
pulse when reflected and will be reduced to the n = 0 state if
absorbed.

A one-dimensional plane wave with helicity λ, A+
λk =

exp[iωk (x/c − t )]/2πω
1/2
k , incident from free space on a

weakly absorbing dielectric medium with an index of re-
fraction n will be transmitted with probability amplitude t .
The index of refraction is in general complex with real and
imaginary parts n′(ω) and n′′(ω), so

n(ω) =
√

1 + χ (ω) = n′(ω) + in′′(ω), (34)

and, in the dielectric,

A+
λk (x, t ) = t

2πω
1/2
k

exp

(
−ωkx

n′′

c

)
exp

[
iωk

(
x

n′

c
− t

)]
.

(35)
Since the one-photon number density is ε0E · A in the di-
electric, its momentum is of the Abraham form, pA = pem =

εoE × B [15,17]. The Minkowski momentum pM = pem +
χpem includes the momentum due to polarization of the di-
electric medium. This acts as a drag force on the single
photon, reducing its speed from c to c/n′. In a PIC photons
propagate in multiple transmission lines with essentially iden-
tical characteristics and common dielectric susceptibility with
complex reflectivity r and transmissivity t of the light pulses
determined by the angles of their intersections [6].

III. DISCUSSION

In Sec. II a conserved photon four-current was derived
from the potential-field commutation relations. The photon
probability density was used to define a scalar product that
can form a basis for a first quantized theory of single pho-
tons. Here, this scalar product is derived from fundamental
principles according to which the minus from space-time dif-
ferentiation is cancelled out by minus from the commutation
relations to give a positive photon number density for both
positive and negative frequency fields. Previous definitions of
the one-photon scalar product were limited to use of non-
localizable positive frequency fields [18] or, motivated by
the observation that experimental one-photon pulses can be
modeled classically [19], use of the Mostafazadeh [20] sign
of the frequency operator [21]. In the latter case, the scalar
product (15), derived here from fundamental principles, was
constructed on an ad hoc basis. The propagation of highly
localized wave packets that remain localized at all times is
discussed in Refs. [22,23].

In a quantum optical circuit single photons are injected
into input modes of a linear interferometer described by a
unitary operator Û . Since Û is unitary, the photon number
is conserved, consistent with the conservation law derived in
Sec. II. The propagation of photon pulses in dielectric media
and through a beam splitter is discussed in Ref. [24]. Since∫

dxε0E · A = 1 for a one-photon state in free space, the free-
space form of the photon number density must be preserved
in a dielectric. The polarization induced in the medium by E
does not contribute to the photon number density, and instead
it acts as a drag force that reduces the propagation speed of
the single-photon pulse. Single-photon momentum density is
of the Abraham form, pem = ε0E × A.

There are no photons in classical electromagnetic theory—
the discrete excitations that we call photons are created and
annihilated by second quantized operators. The localizable
causally propagating photon number density derived here de-
termines the probability that the photon will be counted. The
photon density must necessarily be interpreted as a probability
density since photons are indivisible and can be counted only
once as verified experimentally in Ref. [16]. We have identi-
fied a conserved photon four-current operator that describes
both positive and negative frequency EM excitations. Their
sum is positive, real, localizable in a finite region, and propa-
gates causally. The photon number is conserved in the absence
of sources and sinks. Single-photon states are represented
by normalized fields that collapse to the zero-photon state
when the photon is counted. This is a purely quantum effect
described by second quantization—it has no counterpart in
classical EM. The one-photon density must be interpreted as
a probability density.

062221-4



CONSERVED PHOTON CURRENT PHYSICAL REVIEW A 109, 062221 (2024)

[1] B. Lounis and M. Orrit, Single photon sources, Rep. Prog. Phys.
68, 1129 (2005).

[2] E. Knill, R. Laflamme, and G. Milburn, A scheme for efficient
quantum computation with linear optics, Nature (London) 409,
46 (2001).

[3] J. Romero and G. Milburn, Photonic quantum computing,
arXiv:2404.03367.

[4] PsiQuantum Team, A manufacturable platform for photonic
quantum computing, arXiv:2404.17570.

[5] A. Chanana, H. Lorocque, R. Moreira, J. Carolan, B. Guha,
E. Melo, V. Anant, J. Song, D. Englund. D. Blumenthal, K.
Srinivasan, and M. Davanco, Ultra-low loss quantum photonic
circuits integrated with single quantum emitters, Nat. Commun.
13, 7693 (2022).

[6] B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundya,
M. A, Broome, P. Humphreys. K.-M. Jin, M. Barbieri, W. S.
Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R.
Smith, and I. A. Walmsley, Multi-photon quantum interference
in a multi-port integrated photonic device, Nat. Commun. 4,
1356 (2013).

[7] G. C. Hegerfeldt, Remark on causality and particle localization,
Phys. Rev. D 10, 3320 (1974).

[8] H. Reeh and S. Schleider, Bemerkugen zur unitaraquivalenz van
Lorentzinvarianten Feldern, Nuovo Cimento 22, 1051 (1961).

[9] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, UK, 1995, reprinted
2008).

[10] M. Gell-Mann and A. Pais, Behavior of neutral particles under
charge conjugation, Phys. Rev. 97, 1387 (1955).

[11] M. Hawton and V. Debierre, Maxwell meets Reeh-Schleider:
The quantum mechanics of neutral bosons, Phys. Lett. A 381,
1926 (2017).

[12] J. Southam, D. Hodgson, R. Purdy, and A. Beige, Locally-
acting mirror Hamiltonians, J. Mod. Opt. 68, 647 (2021).

[13] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, UK, 1997).

[14] E. Karpov, G. Ordonez, T. Petrosky, I. Prigogine, and G.
Pronko, Causality, delocalization, and positivity of energy,
Phys. Rev. A 62, 012103 (2000).

[15] J. D. Jackson, Classical Electromagnetism (Wiley, New York,
1962), Chap. 6.

[16] V. Jacques, E Wu, T. Toury, F. Treussart, A Aspect, P. Grangier,
and J.-F. Roch, Single photon wavefront-splitting interference:
An illustration of the light quantum in action, Eur. Phys. J. D
35, 561 (2005).

[17] M. Mansuripur, Resolution of the Abraham-Minkowski contro-
versy, Opt. Commun. 283, 1997 (2010).

[18] I. Bialynicki-Birula, Exponential localization of photons, Phys.
Rev. Lett. 80, 5247 (1998).

[19] S. M. Barnett, On single-photon and classical interference,
Phys. Scr. 97, 114004 (2022).

[20] H. Babaei and A. Mostafazadeh, Quantum mechanics of a
photon, J. Math. Phys. 58, 082302 (2017); A. Mostafazadeh,
A physical realization of the generalized PT -, C- and CPT -
symmetries and the position operator for Klein-Gordon fields,
Int. J. Mod. Phys. A 21, 2553 (2006).

[21] M. Hawton, Photon quantum mechanics in real Hilbert space,
Phys. Rev. A 104, 052211 (2021); Validation of classical
modeling of single-photon pulse propagation, 107, 013711
(2023).

[22] M. G. Raymer and P. Polakos, States, modes, fields and photons
in quantum optics, Acta Phys. Pol., A 143, S28 (2023).

[23] J. Southall, D. Hodgson, R. Purdy, and A. Beige, Local photons,
Front. Photonics 3, 978855 (2022).

[24] M. Federico, V. Dorier, S. Guerin, and H. R. Jauslin, Space-time
propagation of photon pulses in dielectric media, illustration
with beam splitters, J. Phys. B: At., Mol. Opt. Phys. 55, 174002
(2022).

062221-5

https://doi.org/10.1088/0034-4885/68/5/R04
https://doi.org/10.1038/35051009
https://arxiv.org/abs/2404.03367
https://arxiv.org/abs/2404.17570
https://doi.org/10.1038/s41467-022-35332-z
https://doi.org/10.1038/ncomms2349
https://doi.org/10.1103/PhysRevD.10.3320
https://doi.org/10.1007/BF02787889
https://doi.org/10.1103/PhysRev.97.1387
https://doi.org/10.1016/j.physleta.2017.04.004
https://doi.org/10.1080/09500340.2021.1936241
https://doi.org/10.1103/PhysRevA.62.012103
https://doi.org/10.1140/epjd/e2005-00201-y
https://doi.org/10.1016/j.optcom.2010.01.010
https://doi.org/10.1103/PhysRevLett.80.5247
https://doi.org/10.1088/1402-4896/ac971a
https://doi.org/10.1063/1.4999847
https://doi.org/10.1142/S0217751X06028813
https://doi.org/10.1103/PhysRevA.104.052211
https://doi.org/10.1103/PhysRevA.107.013711
https://doi.org/10.12693/APhysPolA.143.S28
https://doi.org/10.3389/fphot.2022.978855
https://doi.org/10.1088/1361-6455/ac7e0e

