
PHYSICAL REVIEW A 109, 062219 (2024)

Degeneracy in excited-state quantum phase transitions of two-level bosonic models
and its influence on system dynamics
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Excited-state quantum phase transitions (ESQPTs) strongly influence the spectral properties of collective
many-body quantum systems, changing degeneracy patterns in different quantum phases. Level degeneracies
in turn affect the system’s dynamics. We analyze the degeneracy dependence on the size of two-level boson
models with a u(n + 1) dynamical algebra, where n is the number of collective degrees of freedom. Below
the ESQPT critical energy of these models, the energy gap between neighboring levels that belong to different
symmetry sectors gets close to zero as the system size increases. We report and explain why this gap goes to zero
exponentially for systems with one collective degree of freedom but algebraically in models with more than one
degree of freedom. As a consequence, we show that the infinite-time average of out-of-time-order correlators is
an ESQPT order parameter in finite systems with n = 1, but in systems with n > 1, this average only works as
an order parameter in the mean-field limit.
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I. INTRODUCTION

Quantum phase transitions (QPTs) are zero-temperature
phase transitions driven by quantum instead of thermal fluc-
tuations. In QPTs the system’s ground state1 undergoes an
abrupt change once one or several Hamiltonian parameters,
referred to as control parameters, reach particular critical val-
ues [1]. In collective quantum systems, true discontinuities
only happen in the large-system-size limit (also known as the
mean-field limit). However, QPT precursors can be found in
finite-size systems [2–6]. The QPT concept was later extended
to encompass excited states, with the introduction of what
became known as excited-state quantum phase transitions
(ESQPTs), which are marked by discontinuities in the excited-
state energy-level density and in its dynamics as a function of
the control parameter (excited energy-level flow) at critical
values of the energy [7–9]. An extensive review paper on
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ESQPTs was recently published, where the interested reader
can find the main developments in the field [10].

In the present work we deal with two-level boson models
with a u(n + 1) Lie algebra as their dynamical algebra, where
n is the number of the system’s collective degrees of free-
dom. The dynamical algebra generators are built as bilinear
products of creation and annihilation operators of a scalar
boson plus an n-dimensional boson operator [11]. Within
the algebraic approach, the possible chains of subalgebras
that start in the u(n + 1) dynamical algebra and end in the
system’s symmetry algebra are called dynamical symmetries.
They provide analytically solvable examples of physical limits
of interest, as well as bases to carry out calculations [12,13].
These models make extensive use of symmetries and provide
good approximations to the collective degrees of freedom of
a variety of complex quantum systems. They have been suc-
cessfully applied to the collective degrees of freedom of nuclei
(interacting boson model [14,15]), molecules (vibron model
[16]), and baryons (algebraic approach to baryons [17,18]).

1This is why such transitions are also known as ground-state quan-
tum phase transitions.
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Quantum phase transitions [19] and ESQPTs [10] have at-
tracted a great deal of attention in algebraic models since
the pioneering works that introduced the concept of shape-
phase transitions in nuclei [20,21]. The ground-state QPTs
for collective quantum systems were classified in Ref. [22],
considering a general system Hamiltonian including one- and
two-body interactions.

In this paper we analyze a two-level boson model with
n = 1, the Lipkin-Meshkov-Glick (LMG) model, and a model
with n = 2, the two-dimensional limit of the vibron model
(2DVM). In Appendix A we extend our results to n = 3 and
n = 5 models [the vibron model (VM) and the interacting
boson model (IBM)]. All of these models exhibit a second-
order ground-state QPT between their u(n) and so(n + 1)
dynamical symmetries; their mean-field limit can be explored
using the coherent-state formalism and the resulting energy
functional indicates that their QPTs can be explained using a
cusp catastrophe model [22].

The LMG model and the 2DVM (as well as the models
presented in Appendix A) display an ESQPT in the broken-
symmetry phase of the second-order ground-state QPT. The
ESQPT precursors of these collective quantum models dis-
play many similarities, such as the abrupt localization at the
ESQPT energy of the systems’ eigenstates expressed in the
basis associated with the u(n + 1) ⊃ u(n) dynamical sym-
metry [23–25]. It would then seem plausible to expect that
ESQPT precursors and their influence on system dynamics
would be common to the different models under consider-
ation; however, we show that this is not the case. In the
broken-symmetry phase below the ESQPT, pairs of excited
levels, each level belonging to a different symmetry sector,
are (nearly) degenerate for both models, but the nature of this
degeneracy is qualitatively different [8].

In models with n = 1, the energy splitting between two
energy levels decreases exponentially as the system size in-
creases, while for models with n > 1, the splitting decreases
algebraically with the system size. This difference should
greatly affect the broken-symmetry phase dynamics. We illus-
trate this point with the calculation of the long-time-averaged
value of a microcanonical out-of-time-order correlator (MO-
TOC) [26] for the LMG model and the 2DVM. We confirm
that this quantity, for systems of finite size, can be used as an
order parameter for the ESQPT in the LMG model, as pro-
posed in [27,28], but we show that it is only an approximate
order parameter for the 2DVM and other models with n > 1.

The present work is structured as follows. Section II de-
scribes the LMG model and the 2DVM. Section III presents
our main results for the degeneracy of states in the broken-
symmetry phase of both models. In Sec. IV, through the
calculation of the long-time-averaged value of a MOTOC, we
show how the different nature of the degeneracies associated
with each model affects their dynamics. Our conclusions are
discussed in Sec. V.

II. SELECTED TWO-LEVEL BOSON MODELS

As mentioned above, we are dealing with two-level boson
models with a u(n + 1) Lie algebra as their dynamical algebra.
Such models have as a basic ingredient two types of boson
operators. The first boson operator is a scalar boson and the

second is an n-dimensional tensor operator. The number n is
determined by the number of collective degrees of freedom
of the system under study. The (n + 1)2 generators of the
dynamical algebra are built as the possible products of a cre-
ation and an annihilation boson operator [12]. Here we present
results for the LMG model and the 2DVM. In the LMG case,
the system has a single collective degree of freedom n = 1;
hence both bosons are scalar and the dynamical algebra is
u(2).2 The 2DVM was introduced for the study of systems
with two degrees of freedom n = 2 and the scalar boson is
combined with two Cartesian bosons. The models introduced
in Appendix A are the VM and the IBM. The first one was
introduced to model the rovibrational spectrum of diatomic
molecules, where the main ingredient is the dipole, and hence
n = 3. Therefore, the scalar boson is combined with the three
components of a vector boson and the dynamical algebra is
u(4). In the IBM case, devised to model collective surface
vibrations of nuclei, the scalar boson is combined with a
quadrupolar boson (angular momentum 2) and the resulting
dynamical algebra is u(6). We proceed to briefly describe the
LMG model and the 2DVM.

A. Lipkin-Meshkov-Glick model

The LMG model has a single effective degree of freedom
(n = 1). It was introduced as a toy model for the study of the
validity of approximate methods in nuclear structure studies
[29–31]. The LMG model has been extensively used in the
study of QPTs [32–37] and ESQPTs [23,27,28,38–47]. In
addition to its simplicity and rich physical content, this model
can be realized with a fully connected chain of N spins [23]
and it has several experimental realizations [48–56].

The general LMG model has first-, second-, and third-order
ground-state QPTs [33,36]. Here we work with the simplified
LMG model Hamiltonian

ĤLMG = (1 − ξ )

(
N

2
+ Ĵz

)
− 4ξ

N
Ĵ2

x , (1)

where Jz and Jx are quasispin components and ξ is a control
parameter ξ ∈ [0, 1]. This Hamiltonian is written in an inten-
sive form, dividing the second term (a two-body interaction)
by the system size N to facilitate the access to the large-size
limit of the system.

The algebraic structure of this model is made clear in its
bosonic realization, introducing scalar s and pseudoscalar t
bosons. The four generators of the u(n + 1) = u(2) dynamical
algebra are the bilinear products {s†s, t†t, t†s, s†t} and, mak-
ing use of the Schwinger representation, the generators can be
recast as the quasispin components {N̂, Ĵx, Ĵy, Ĵz} [12,13],

N̂ = t†t + s†s, Ĵx = 1

2
(t†s + s†t ),

Ĵy = 1

2i
(t†s − s†t ), Ĵz = 1

2
(t†t − s†s).

The N̂ operator in this case is constant and equal to the total
number of s and t bosons, denoting the totally symmetric

2The second boson is considered a pseudoscalar one, as discussed
in [13].

062219-2



DEGENERACY IN EXCITED-STATE QUANTUM PHASE … PHYSICAL REVIEW A 109, 062219 (2024)

u(2) irreducible representation that spans the system’s Hilbert
space. There are two possible dynamical symmetries starting
from the u(2) dynamical algebra chains

u(2) ⊃ u(1) (LMG-I), (2)

u(2) ⊃ so(2) (LMG-II), (3)

where we would like to emphasize that the u(1) and so(2)
subalgebras are isomorphic and, as explained in Refs. [12,13],
the u(1) generator should only depend on pseudoscalar boson
t and the so(2) generator should include both s and t bosons.
The Hamiltonian (1) can then be recast as

ĤLMG = (1 − ξ )n̂t + ξ

N
P̂t , (4)

where n̂t = t†t and P̂t = N2 − (t†s + s†t )2. Hence, the model
Hamiltonian combines the first-order Casimir operator of u(1)
and the squared Casimir operator of so(2). The LMG-I (II)
dynamical symmetry is recovered for ξ = 0 (1).

The simplified ĤLMG in Eq. (1) can be split into even-
and odd-symmetry blocks, as it conserves parity �̂ = eıπ n̂t .
The Hamiltonian (1) has a second-order ground-state QPT
for a critical value of the control parameter ξc = 0.2 and an
associated ESQPT [23,38,39].

B. Two-dimensional limit of the vibron model

The 2DVM was first introduced for the study of vibrational
bending degrees of freedom in molecules [57]. Molecular
bending is a planar motion and it implies two degrees of
freedom; hence n = 2 and the system dynamical algebra is
the u(3) Lie algebra. In this approach, bending vibrations
are treated as collective bosonic excitations and the model
building blocks are a scalar boson operator σ and two circular
bosons τi with i = +,− [58]. As in the LMG model case,
the nine u(3) generators are the possible bilinear products of
creation and annihilation operators [57,58]. The 2DVM is the
simplest two-level model with nontrivial angular momentum,
a fact that has made it a convenient model for QPT and ESQPT
studies [8,58–62]. It is worth emphasizing that the first ex-
perimental signatures of ESQPT precursors were found in the
molecular bending spectrum of nonrigid molecules [63–65].

As in the LMG model case, the 2DVM has two dynam-
ical symmetries: a dynamical symmetry that starts with a
u(2) subalgebra, whose generators contain exclusively cir-
cular bosons, and a dynamical symmetry that starts with an
so(3) subalgebra with generators that mix scalar and circular
bosons [58]. Both dynamical symmetries converge in the sys-
tem’s symmetry algebra so(2) = {�̂ = τ

†
+τ+ − τ

†
−τ−}, which

implies two-dimensional angular momentum conservation for
the chains

u(3) ⊃ u(2) ⊃ so(2) (2DVM-I), (5)

u(3) ⊃ so(3) ⊃ so(2) (2DVM-II). (6)

In this model, the total number of σ and τ bosons is denoted
by N , a constant that determines the totally symmetric irre-
ducible representation of u(3) that spans the system’s Hilbert
space. The dynamical symmetry in Eq. (5) is a convenient
approximation to model the bending degrees of freedom of

linear molecules. The dynamical symmetry in Eq. (6) is
applied to the modeling of rigidly bent molecular species
[57,58,65].

In the same spirit as we have done for the LMG model,
we introduce a simple model Hamiltonian that allows for the
transition between the limiting cases associated with the two
dynamical symmetries of the 2DVM,

Ĥ2DVM = (1 − ξ )n̂τ + ξ

N
P̂τ , (7)

where the control parameter ξ ∈ [0, 1] and the operator n̂τ =
τ

†
+τ+ + τ

†
−τ− is the first-order Casimir operator of the u(2)

subalgebra in Eq. (5). The pairing operator P̂τ = N (N + 1) −
Ŵ 2, where Ŵ 2 = 1

2 (D̂+D̂− + D̂−D̂+) + �̂2 is the second-
order Casimir operator of the subalgebra so(3) = span{D̂± =√

2(±τ
†
±σ ∓ σ †τ∓), �̂} in Eq. (6) [58].

Considering the conservation of the system angular mo-
mentum �,3 the model Hamiltonian is block diagonal for states
belonging to different irreducible representations of the sym-
metry algebra so(2). For molecular bending vibrations, this
conserved quantity can be identified either with the vibrational
angular momentum, in the u(2) dynamical symmetry, or with
the projection of the angular momentum on the molecular
figure axis, in the so(3) dynamical symmetry [58,65].

III. RESULTS

The ESQPT in the bosonic models considered here is
characterized by the divergence of the density of states at
the ESQPT critical energy. This is illustrated for the LMG
model and the 2DVM in Figs. 1(a) and 1(b), respectively.
The excitation energy, scaled by the system size, is depicted
as a function of the control parameter ξ for the LMG model
and the 2DVM with the same system size N = 50. For each
value of ξ larger than the critical value (ξc = 0.2), the point
where the energy levels accumulate marks the critical energy
of the ESQPT and the line of maximum density of states is the
separatrix between the ESQPT phases.

At energies below the critical energy, it can be clearly
appreciated in Fig. 1(a) how even- and odd-parity states (de-
picted with blue solid and red dashed lines, respectively)
are degenerate in the broken-symmetry region (ξc < ξ < 1)
at energies less than the critical energy. This degeneracy is
broken for states with energies greater than the critical ESQPT
energy. This phenomenon, also dubbed level kissing, has re-
cently been experimentally accessed using a squeeze-driven
Kerr oscillator realized with a superconducting circuit [66]
and the corresponding ESQPT features have been identified
in [67].

The level degeneracy at energies below the critical en-
ergy is common to ESQPTs in different systems and it has
been used to define a constant of the motion able to identify
ESQPT dynamic phases in quantum collective models with
a single degree of freedom [68,69]. The 2DVM correlation

3We use the denotation � for the so(2) quantum number, which is
commonly used in molecular spectroscopy for the vibrational angu-
lar momentum in the doubly degenerate bending degree of freedom
of linear species.

062219-3



JAMIL KHALOUF-RIVERA et al. PHYSICAL REVIEW A 109, 062219 (2024)

FIG. 1. (a) Excitation energy scaled by the system size ε = (E − E0)/N as a function of the control parameter ξ for the LMG model
with the model Hamiltonian (4) and system size N = 50. Blue solid (red dashed) lines mark even- (odd-)parity levels. (b) Excitation energy
scaled by the system size ε = (E − E0)/N as a function of the control parameter ξ for the 2DVM Hamiltonian (7) with a system size N = 50.
Blue solid (red dashed) lines mark levels with angular momentum � = 0 (1). In both panels the color-filled area marks the energy difference
between selected states with different (a) parity or (b) angular momentum. (c) Energy difference between selected pairs of states of the LMG
model Hamiltonian (4) having different parity as a function of the control parameter ξ . (d) Energy difference between selected states of the
Hamiltonian (7) with angular momentum � = 0 and 1 as a function of the control parameter ξ . In both cases, the labels of the selected pairs of
levels are provided in the legends and we use for each pair of states the same color used to fill the corresponding area in (a) and (b).

energy diagram is shown in Fig. 1(b) with a clear similarity
to Fig. 1(a). In this case, excitation energies for states with
angular momentum � = 0 (blue solid lines) and 1 (red dashed
lines) are plotted as a function of the control parameter ξ for a
system size N = 50. At first sight, the results for both models
seem to be completely equivalent, something that should not
be surprising considering that both cases have a second-order
ground-state QPT at ξc and an ESQPT associated with the
ground-state transition.

However, as already noted by Caprio et al. in Ref. [8],
the energy gap between even- and odd-parity state pairs in
the LMG model is much smaller than the energy difference
between the corresponding states with different angular mo-
mentum values in the 2DVM case for a common system
size. To illustrate this point, we select for each model four
pairs of states with different symmetry located at different
excitation energies in Figs. 1(a) and 1(b). We highlight the
energy difference between the states with blue, orange, green,
red, and purple colors. The blue color is used to fill the energy
gap that exists between the system ground state and the first

odd state in the LMG case and between the ground state
and the first � = 1 state in the 2DVM case. As the control
parameter increases from zero and the system gets closer to
the critical ESQPT energy, the width of the colored surface
decreases, disappearing once the pair of levels crosses the
ESQPT separatrix.

The difference between the two models is clearly evinced
once the energy gap between the selected level pairs (note
that this quantity is not scaled by the system size) is depicted,
using logarithmic scale and the same colors, in Figs. 1(c) and
1(d). In the LMG model case, shown in Fig. 1(c), the energy
difference tends to zero once the separatrix is crossed and soon
it becomes less than the numerical precision used in the calcu-
lations, even for a finite-size system. However, in the 2DVM,
shown in Fig. 1(d), the energy difference between adjacent
states with � = 0 and � = 1 experiences a fast decrease as the
separatrix is crossed, but then it smoothly decreases to values
between 10−3 and 10−2. For this model, the levels become
exactly degenerate only when the control parameter is ξ = 1,
right in the so(3) dynamical symmetry, where solutions are
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FIG. 2. (a) Difference of energy between even and odd energy levels in the LMG model, 	Ei = E−
i − E+

i with i = 0, 1, 2, 3, as a function
of the system size N using lin-log axes. Black lines are the result of the fit of the depicted data to an exponential law. (b) Difference of energy
between � = 0 and � = 1 energy levels in the 2DVM, 	Eν = E �=1

ν − E �=0
ν with ν = 0, 1, 2, 3, as a function of the system size N using log-log

axes. Black lines are the result of the fit of the depicted data to a power law. In both cases, the control parameter value is ξ = 0.5.

analytic and different angular momentum values are known
to collapse in the vibrational head [58]. A comparison of the
results in Figs. 1(c) and 1(d) reveals a fundamental difference
between the model with n = 1 and the model with n = 2.
Energy differences for adjacent states with different symmetry
tend to zero in the LMG model, even for finite-size systems,
while in the 2DVM case the corresponding energy differences
are expected to decrease with the system size, becoming zero
only in the large-system-size limit.

The difference between state degeneracy in the two models
considered is clear from Fig. 2, where we plot the energy
difference between the first four pairs of states with different
symmetry for a control parameter ξ = 0.5 as a function of the
system size. The results for the LMG model are depicted in
Fig. 2(a), computing the gap between even and odd states,
while results for the 2DVM � = 0, 1 states are shown in
Fig. 2(b). The abscissa axis is linear in the LMG model and
logarithmic in the 2DVM case. This implies an exponential
decrease with system size of the energy splitting between even
and odd states in the LMG model, while the corresponding
energy difference in the 2DVM follows a power law with
the system size. In the LMG model case, we have used a
library for real and complex floating-point arithmetic with
arbitrary precision to achieve the required accuracy in the
calculations [70].

The different results obtained for the two models can be
understood considering the mean-field limit of their broken-
symmetry phase. The LMG model can be mapped in the
classical limit to an energy functional for zero momentum
with three stationary points: two equivalent minima and a
maximum between them that is located at the origin. There-
fore, in one-dimensional models the tunneling between the
two possible stationary solutions is exponentially suppressed
with the barrier height. However, in higher-dimensional mod-
els such as the 2DVM, the broken-symmetry phase in the
classical limit is mapped to a sombrero potential, with a max-
imum at the origin and a minimum with revolution symmetry
at a given distance from the origin. In both cases, the critical
energy of the ESQPT corresponds to the energy of the max-
imum at the origin and the energy functional associated with
Hamiltonian operators (1) and (7) is a fourth-order function
on the classical coordinate that depends on a single variable.
However, for n � 2, the role of the angular momentum and

the centrifugal barrier should be included in the picture. This
is completely irrelevant for zero angular momentum states,
but as the angular momentum value increases, the centrifugal
barrier stymies the exploration of the maximum at the origin.
This has already been noticed when studying the influence
of angular momentum on other ESQPT precursors, as the
participation ratio [71]. The effect of the centrifugal barrier
can be clearly illustrated by plotting the correlation energy
diagram for levels with high angular momentum, as shown in
Fig. 3 for the 2DVM with N = 50. Levels in Fig. 3(a) have
angular momentum � = 0, 1; in Fig. 3(b) the angular momen-
tum is � = 14, 15; and in Fig. 3(c) � = 30, 31. It is clear how
the level flow deviates from the � = 0 ESQPT separatrix for
increasing angular momentum values. In Fig. 3(d) the energy
gap between the lowest-energy state with bands � = 1 (aqua
solid line), 14 (orange dashed line), and 30 (violet dotted
line) and the ground state is depicted as a function of the ξ

control parameter value. These differences are highlighted in
Figs. 3(a)–3(c) using the same colors. For the sake of clarity,
we have scaled in Fig. 3(d) the energy difference by the �

angular momentum value, to make all curves start in unity and
facilitate the comparison between the different case. Note that
all the considered states are completely degenerate for ξ = 1,
in the dynamical symmetry limit.

IV. APPLICATION TO A MICROCANONICAL
OUT-OF-TIME-ORDER CORRELATOR

The different nature of the degeneracy that occurs in the
two models under consideration is expected to have a notice-
able influence on the system dynamics. In order to illustrate
this point, we consider the time evolution of a MOTOC.

Out-of-time-order correlators (OTOCs) are four-point tem-
poral correlation functions originally introduced in the context
of superconductivity studies [72]. In recent times, OTOCs
have been in the limelight for two key reasons [73]. On the one
hand, they were suggested as an efficient quantum chaos probe
once it was shown that OTOCs grow exponentially and in ac-
cordance with the system’s Lyapunov exponent value at early
times in nonintegrable systems [26,74–76]. In addition to this,
it has also been found that OTOCs tend to their long-time limit
saturation value in a characteristic way in chaotic systems
[61,77–79]. On the other hand, they can be used to quantify
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FIG. 3. Excitation energy values as a function of the control parameter ξ for the 2DVM Hamiltonian (5) with a system size N = 50 and
angular momenta (a) � = 0, 1, (b) � = 14, 15, and (c) � = 30, 31. (d) Shown in logarithmic scale is the excitation energy for minimum-energy
states of angular momenta � = 1 (aqua solid line), � = 14 (orange dashed line), and � = 30 (violet dotted line) with respect to the ground state,
divided by the angular momentum value �. These differences have been highlighted in (a)–(c) using the same color code.

information scrambling in quantum systems, as they depend
on the system entanglement spread [80–83]. Despite the fact
that the unusual time ordering of its constituent operators hin-
ders the experimental access to OTOCs using local operators,
several approaches using different platforms have successfully
provided OTOC data [84–90]. Out-of-time-order correlators
have also been recently used to characterize QPTs [37,91–
95]. Finally, it has been recently found that they are also
valuable ESQPT probes, because the instability associated
with ESQPTs’ critical points fosters an exponential OTOC
increase at short times, even in integrable systems [67,96–99].

Given any two operators Ŵ and V̂ , where Ŵ (t ) is the oper-
ator Ŵ in the Heisenberg representation Ŵ (t ) = eıĤtŴ e−ıĤt ,
the spread of Ŵ (t ) with V̂ can be obtained through the expec-
tation value of the squared commutator [26,73,80]

Cw,v (t ) = 〈[Ŵ (t ), V̂ (0)]†[Ŵ (t ), V̂ (0)]〉. (8)

The expectation value (8) is usually computed in the canonical
ensemble. In the present case, we compute the microcanon-
ical version of the correlator as the expectation value of
the correlator over system eigenstates [26,99]. The squared
commutator (8) can be expressed as Cw,v (t ) = Aw,v (t ) −
2 Re[Fw,v (t )], the sum of a two-point correlator Aw,v (t ) =

〈Ŵ †(t )V̂ †(0)V̂ (0)Ŵ (t )〉 + 〈V̂ †(0)Ŵ †(t )Ŵ (t )V̂ (0)〉 and the
real part of a four-point correlator Fw,v (t ), where out-of-time-
order effects take place

Fw,v (t ) = 〈Ŵ †(t )V̂ †(0)Ŵ (t )V̂ (0)〉. (9)

Two of the authors (Q.W. and F.P.-B.) have recently shown
that the long-time-averaged value of a MOTOC operator is
a valid ESQPT order parameter for the LMG model Hamil-
tonian (1) [27]. The long-time-averaged value of a similar
OTOC has proved also a valid order parameter in an anhar-
monic version of the LMG model [28]. In both cases, the
average value of the MOTOC at the infinite-time limit is able
to distinguish between the dynamic phases below and above
the ESQPT critical energy. In the present work our aim is to
show how different the results obtained for the long-time MO-
TOC values are depending on the number of effective degrees
of freedom in the model, something that can be explained
considering the different nature of the degeneracy below
the ESQPT critical energy shown in Fig. 1. For this purpose,
we derive the formulas needed to compute the long-time-
averaged value of the MOTOC. Using Eq. (9) and the
closure for the system eigenstates, |ψk〉 with k = 1, . . . , D,
the MOTOC for a system’s jth eigenstate F ( j)

VW (t ) can be
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FIG. 4. (a) Time-averaged MOTOC F ( j)
VW (T ) for the LMG model with V̂ = Ŵ = Ĵx as a function of the system’s excitation energy scaled

by the system size E/N for even-parity eigenstates of the Hamiltonian (1) with a system size N = 300. (b) Time-averaged MOTOC F ( j)
VW (T )

for � = 0 eigenstates of the 2DVM Hamiltonian in Eq. (7) with N = 300 with V̂ = D̂− and Ŵ = D̂+. Results are plotted as a function of the
system’s excitation energy scaled by the system size (E − Egs )/N . In both panels the control parameter value is ξ = 0.6 and the red solid
line is the stationary value obtained with Eq. (11). Dashed lines are the result of averaging for different time interval values (see the legends).
The inset in (a) is a close-up of the vicinity of the ESQPT critical energy. A vertical pink dash-dotted line marks the ESQPT critical energy in
the mean-field limit.

expressed as

F ( j)
VW (t ) =

D∑
j1, j2, j3=1

eiω( j, j1, j2, j3 )t N ( j)
j1, j2, j3

, (10)

where ω( j, j1, j2, j3) = Ej + Ej2 − Ej1 − Ej3 and N ( j)
j1, j2, j3

=
〈ψ j |Ŵ †|ψ j1〉〈ψ j1 |V̂ †|ψ j2〉〈ψ j2 |Ŵ |ψ j3〉〈ψ j3 |V̂ |ψ j〉.

The time-averaged value of F ( j)
VW (t ) in the infinite-time

limit, denoted by F ( j)
VW , is the equilibrium value of this four-

point correlator

F ( j)
VW = lim

T →∞
1

T

∫ T

0
F ( j)

VW (t )dt = lim
T →∞

F ( j)
VW (T )

=
D∑

j1, j2, j3

N ( j)
j1, j2, j3

δω( j, j1, j2, j3 ),0. (11)

Taking Eq. (10) into consideration, it is clear that a nonzero
average value of F ( j)

VW (t ) in the long-time limit implies that
one or more instances of the ω( j, j1, j2, j3) quantity should be
equal to zero, to avoid oscillations. In order to check this, we
have performed calculations for the LMG model and 2DVM
cases. Following Ref. [27], in the LMG model we define V̂ =
Ŵ = Ĵx. The use of Eq. (11) allows for a direct calculation
of the long-time-averaged value of the correlator, avoiding the
evaluation of computationally expensive oscillatory time inte-
grals. The results obtained in the stationary t → ∞ limit for
the even-parity states of the LMG model Hamiltonian (4) with
a system size N = 300 and a control parameter ξ = 0.6 are
shown in Fig. 4(a) with a red solid line. This result agrees with
the results obtained in Ref. [27]. If one computes intermediate
average values for finite times, depicted with blue dashed lines
in Fig. 4(a), one can see how the results tend to the stationary
solution as the averaging time increases. This is clearly seen in

the inset, which shows a close-up of the results in the vicinity
of the ESQPT critical energy. As already noticed in [27], only
eigenstates with energies less than the ESQPT critical energy,
where even and odd states are degenerate, have a nonzero

value of F ( j)
VW , as shown in Fig. 1(c). This can be explained

taking into account that the operator Ĵx transforms even-parity
states into odd-parity ones (see Appendix B). Hence, from
Eq. (10) for V̂ = Ŵ = Ĵx, it is clear that levels j and j2 are
even-parity states, while levels j1 and j3 are odd-parity states.
Therefore, the ω( j, j1, j2, j3) = 0 condition can be fulfilled
for degenerate even- and odd-parity eigenstates. It could also
be zero whenever the sum of the energies of two even-parity
states is equal to the sum of the energies of two odd-parity
eigenstates, but this is something that does not occur for the
LMG model Hamiltonian (1). The mean-field limit value of
the critical energy is marked by a vertical pink dash-dotted
line in Fig. 4(a).

In the 2DVM case, an equivalent choice for the MOTOC
operators would be V̂ = D̂− and Ŵ = D̂+. These two gen-
erators are part of the pairing operator and connect states
with different values of the vibrational angular momentum
	� = ±1 (see Appendix B). If this is the case, assuming
that we compute the MOTOC for � = 0 states, the fulfillment
of the ω( j, j1, j2, j3) = 0 condition in Eq. (11) implies that
the sum of energies of the jth and j2th � = 0 eigenstates
should be equal to the sum of energies for the j1th and j3th
|�| = 1 eigenstates. From the results in Fig. 1(d) it is clear
that 2DVM eigenstates belonging to Hamiltonian blocks with
different values of the angular momentum are not degenerate
for finite-size systems, though eigenstates with energies below
the ESQPT critical energy can be close in energy. Due to
this, no ω( j, j1, j2, j3) term is zero and the stationary value

of the four-point correlator F ( j)
VW is zero for all possible values

of j [see the red solid line in Fig. 4(b)]. The small energy
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FIG. 5. (a) Time-averaged value of the MOTOC F ( j)
VW (T ) for the LMG model with V̂ = Ŵ = Ĵx as a function of the system’s excitation

energy scaled by the system size (E − Egs )/N for even-parity eigenstates of the Hamiltonian (1) for various system-size values (see the legend).

(b) Time-averaged value of the MOTOC F ( j)
VW (T ) for the 2DVM with V̂ = D̂− and Ŵ = D̂+ as a function of the system’s excitation energy

scaled by the system size (E − Egs )/N for � = 0 for eigenstates of the 2DVM Hamiltonian (7) for various system-size values N (see the
legend). In both panels calculations are carried out for a control parameter value ξ = 0.6 and the time average is performed over a time interval
T = 1000. Dashed lines are the results for different system-size values. A vertical pink dash-dotted line marks the ESQPT critical energy in
the mean-field limit.

gaps occurring for eigenstates with energies under the ESQPT
critical energy imply that it should take a longer time for
them to reach the zero stationary limit value of the MOTOC
compared to what happens for states with energies above the
ESQPT critical energy. This is clearly seen in Fig. 4(b), where
for shorter times (lighter green dashed lines) eigenstates above
and below the critical energy can be distinguished. As in
the previous case, the mean-field critical ESQPT energy is
marked by a vertical pink dash-dotted line. As the time over
which the average value is computed increases, F ( j)

D−D+ → 0
for all eigenstates. However, the small energy gap between
levels with different angular momentum below the critical
energy of the ESQPT indicates that F ( j)

D−D+ could be con-
sidered as an approximate order parameter for the ESQPT,
computing the average time value of F ( j)

VW (t ) for finite-time
values and taking the profit of the much longer time needed
for states below the critical energy to reach the MOTOC
stationary value.

To check our previous results, we have performed a second

set of calculations where we display F ( j)
VW (T ) for the two

models under study, fixing the averaging time to a constant
value T = 1000 and including results for different system
sizes. The obtained results are shown in Fig. 5. As in the
preceding figure, the results for the LMG model are shown
in Fig. 5(a), with different shades of blue for the different
system size values, and the results for the 2DVM are shown
in Fig. 5(b), using different shades of green. Again, as in
Fig. 4, we have marked the mean-field limit value of the
critical energy with a vertical pink dash-dotted line. In the
LMG model case, there is no dependence on the system size
for eigenstates with energies below the ESQPT critical energy,
something that can be understood considering that these states
are (up to the calculation numerical precision) degenerate for
all system sizes considered. In the inset in Fig. 5(a) we show
a close-up of the critical energy region where it can be clearly

appreciated how, for larger system sizes, the time-averaged
MOTOC goes to zero as one approach the mean-field critical

value. Values of F ( j)
VW (T ) for eigenstates with energies larger

than the ESQPT critical energy are closer to the expected
stationary limit value of zero for smaller system sizes. This
can be understood considering that we are performing the
averaging of the four-point MOTOC over a finite-time value
T = 1000, which is large enough to cancel the oscillatory
integral for the smaller system sizes but not for the larger
ones. The results for the 2DVM case are shown in Fig. 5(b).
In this case, the smaller the system size, the closest to the
zero stationary result for all eigenstates. Differences from
the stationary value increase for increasing system sizes, in
particular for states with energies less than the critical ESQPT
energy. As in the LMG model case, the MOTOC at energies
less than the critical energy tends to zero for increasing system
sizes when the energy is close to the ESQPT critical energy.
The difference from the zero stationary limit increases with
system size for states with energies below the critical energy,
due to the decreasing energy gap between states with different
angular momentum values in this zone, as shown in Fig. 2(b).

V. CONCLUSIONS

The present work shows that below the critical energy of
an ESQPT, the nature of the degeneracy of the eigenvalues of
two-level bosonic models depends on the number of degrees
of freedom of the model. If the model has a single degree
of freedom, neighboring levels belonging to different parity
sectors approach each other exponentially as the system size
increases, while the decrease of the energy splitting is only
algebraically in models with two or more degrees of freedom.
Hence, in the latter case the pairs of states only become
degenerate in the mean-field limit. This difference was illus-
trated with the LMG model and the 2DVM as well as with
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models with three and five collective degrees of freedom in
Appendix A.

In the broken-symmetry phase of the 2DVM case, when
considering all possible � values, not all levels converge to
the � = 0 state energy. This can be explained by considering
the influence of the centrifugal barrier. In fact, in models with
two or more collective degrees of freedom (n � 2), states with
angular momentum larger than zero only exactly converge to
form degenerate rotational bands in the dynamical symme-
try case (ξ = 1). For smaller values of ξ , states with large
angular momentum values do not follow the � = 0 ESQPT
separatrix line.

The effects that the degeneracy dependence on the number
of degrees of freedom have on the system dynamics were
analyzed by computing the long-time average of a MOTOC.
Our results make it clear that, as proposed in [27], this quantity
works as an order parameter for the ESQPT in the LMG
model even for finite system sizes. This finding can be ex-
tended to other one-dimensional models, where the energy
separation between levels with different symmetries decreases
exponentially as the system approaches the classical limit,
for example, the one-dimensional limit of the vibron model
[13,16] or the one-dimensional bosonic pairing models [8].
Even in cases where the ESQPTs are associated with an
infinite-dimensional Hilbert space, the present results are ex-
pected to hold, such as the quantum quartic oscillator [9] or
the squeeze-driven Kerr oscillator [67], where the exponential
decrease of the energy difference has been shown experimen-
tally [66]. However, in models with two or more collective
degrees of freedom, the MOTOC can only be considered an
order parameter in the mean-field limit and only for states
with angular momentum values low enough to converge on
the corresponding � = 0 rotational band head.
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APPENDIX A: EXTENSION TO MODELS IN n = 3
AND n = 5 DIMENSIONS

The vibron model was introduced by Iachello, extending
the algebraic approach to the study of molecular structure
[13,16]. In particular, rovibrational excitations for a diatomic
molecule are treated as bosonic collective excitations [16].
Due to the three-dimensional nature of the problem associated
with the dipole degree of freedom in diatomic molecules, this
case has n = 3 and a u(4) Lie algebra as its dynamical algebra.
The bosonic operators needed to build the 16 generators of
the dynamical algebra are a scalar boson operator s†(s) and a
boson of angular momentum one, p†

μ(pμ) with μ = ±1, 0. As
in the previous cases, the u(4) generators are built as bilinear
products of creation and annihilation operators [13,16]. As in
the two previous cases, the VM has two dynamical symmetry
chains converging in so(3), the system’s symmetry algebra,
associated with the conservation of the angular momentum

u(4) ⊃ u(3) ⊃ so(3) (VM-I), (A1)

u(4) ⊃ so(4) ⊃ so(3) (VM-II). (A2)

In this case, the total number of s and p bosons is denoted by N
and [N] corresponds to the totally symmetric u(4) irreducible
representation that spans the system’s Hilbert space. The dy-
namical symmetry in Eq. (A1) is a convenient approximation
to model the vibration of floppy, weakly bent molecules and
the dynamical symmetry in Eq. (A2) provides a Morse-like
spectrum and has been applied to many molecular species
[16]. A model Hamiltonian defined in the same way as in the
previous two cases can be built using the first-order Casimir
operator of the u(3) subalgebra in Eq. (A1) and the so(4)
pairing operator, built with the second-order Casimir operator
of so(4) in Eq. (A2),

ĤVM = (1 − ξ )n̂p + ξ

N
P̂p, (A3)

with a control parameter ξ ∈ [0, 1], n̂p = ∑
μ p†

μ pμ, and P̂p =
N (N + 2) − D̂2 − Ĵ2, where D̂2 + Ĵ2 is the second-order
Casimir operator of the so(4) subalgebra [12,13,16,57]. In this
case the symmetry algebra is so(3), due to conservation of
angular momentum, and the Hamiltonian (A3) is split into
different blocks, one for each angular momentum value J
considered [16].

The model Hamiltonian (A3) has a second-order ground-
state QPT between the u(3) and so(4) dynamical symmetries,
and an associated ESQPT. The correlation energy diagram is
displayed in Fig. 6(a) for levels with angular momenta J = 0
(blue solid lines) and J = 1 (red dashed lines). The correlation
energy diagram is akin to the correlation energy diagrams of
the LMG model and the 2DVM shown in Fig. 1. Once again,
the difference between levels with different angular momen-
tum is highlighted. In Fig. 6(c) these differences are plotted
using semilogarithmic scale. As we observed in the 2DVM,
the order of the degeneracy does not reach the numerical
precision until ξ = 1.

The IBM has a very successful history in the study of
nuclear structure using algebraic methods. This model was
introduced by Arima and Iachello [14]. Since then, it has
become a standard tool in the study of nuclear structure from
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FIG. 6. (a) Excitation energy scaled by the system size ε = (E − E0)/N as a function of the control parameter ξ for the VM with model
Hamiltonian (A3) and system size N = 50. Blue solid (red dashed) lines mark levels with angular momentum J = 0 (1). (b) Excitation energy
scaled by the system size ε = (E − E0)/N as a function of the control parameter ξ for the IBM Hamiltonian Eq. (A6) with a system size
N = 50. Blue solid (red dashed) lines mark levels with seniority νs = νd = 0 (νs = νd = 1). In both panels the color-filled area marks the
energy difference between selected states with different (a) angular momentum or (b) seniority. (c) Energy difference between selected pairs
of states of the VM Hamiltonian (A3) having different angular momentum as a function of the control parameter ξ . (d) Energy difference
between selected states of the Hamiltonian (A6) with different seniority as a function of the control parameter ξ . In both cases, the labels of
the selected pairs of levels are provided in the legends of (c) and (d) and the color used for each pair of states is the same color used to fill the
corresponding area in (a) and (b).

a collective point of view [14]. In this case, n = 5 due to
the five dimensions that characterize the nuclear collective
problem and the model dynamical algebra is u(6) [14]. The
nuclear excitations are treated as bosons that can be traced
back to coupled nucleons with angular momentum zero or 2.
Therefore, the model building blocks are a scalar boson s and
a boson with angular momentum 2, dμ, with μ = ±2,±1, 0,
and the 36 generators of u(6) are expressed as the bilinear
products of creation and annihilation boson operators [12–14].
As in the previous case, the angular momentum is conserved
in this case and therefore the system’s symmetry algebra is
so(3). In this case there are at least three relevant dynami-
cal symmetries, but we concentrate in this work on the two
subalgebra chains that are equivalent to the cases previously
mentioned

u(6) ⊃ u(5) ⊃ so(5) ⊃ so(3) (IBM-I), (A4)

u(6) ⊃ so(6) ⊃ so(5) ⊃ so(3) (IBM-II). (A5)

In this case, the total number of s and d bosons is denoted
by N and it defines the totally symmetric u(6) irreducible
representation that spans the system’s Hilbert space. The dy-
namical symmetry in Eq. (A4) is a convenient approximation
to model nuclear structure in spherically symmetric (vibra-
tional) nuclides, while the dynamical symmetry (A5) provides
a way to model the so-called gamma-unstable nuclei [13,14].
Hence, we define a model Hamiltonian in the same way as in
the previous cases. The first term n̂d is the number operator
of d bosons, which is the first-order Casimir operator of u(5)
in Eq. (A4). The second term is the Casimir operator of the
so(6) subalgebra in Eq. (A5), P̂d = 2{N (N + 4) − [d† · d† −
s†s†][d̃ · d̃ − s̃s̃]},

ĤIBM = (1 − ξ )n̂d + ξ

N
P̂d . (A6)

As in the three previous cases, the Hamiltonian has one con-
trol parameter ξ ∈ [0, 1] [12–14]. If we do not consider other
possible dynamical symmetries, the symmetry algebra is so(5)
instead of so(3) and the conserved quantity is the seniority
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(νs or νd ), which is related to the label τ of the irreducible
representation. This implies that Hamiltonian (A6) can be
split into seniority blocks [12–14]. As in the previous cases,
the model Hamiltonian (A6) has a second-order ground-state
QPT between the u(5) and so(6) dynamical symmetries, and
the corresponding ESQPT. The correlation energy diagram is
plotted in Fig. 6(b) for τ = 0 and 1 levels. On more time,
a very similar spectrum is obtained, where the eigenvalues
seem to be degenerate in the broken-symmetry phase. How-
ever, the highlighted differences in Fig. 6(b) are plotted using
the log-linear scale in Fig. 6(d). As expected, the degen-
eracy is not achieved until the system is in the dynamical
symmetry so(6).

APPENDIX B: MATRIX ELEMENTS OF THE RELEVANT
OPERATORS OF THE u(2) AND u(3) MODELS

In this Appendix we provide the matrix elements that are
needed to develop the calculations presented in the present
paper.

1. Matrix elements of the LMG model

Chain I of the LMG model, introduced in Eq. (2), provides
one label nt to name the states of the basis {|[N]nt 〉, nt =
0, 1, . . . , N}. The elements of this basis conserve the parity
�̂|[N]nt 〉 = (−1)nt %2|[N]nt 〉, where the symbol % denotes

the modulo-2 operation. The expected value of the operator
Ĵx in this basis is

〈[N]n′
t |Ĵx|[N]nt 〉 = 1

2

√
(N − nt )(nt + 1)δn′

t ,nt +1

+ 1
2

√
(N − nt − 1)ntδn′

t ,nt −1. (B1)

From Eq. (B1) it is trivial to realize that the operator Ĵx mixes
elements with different parity; however, Ĵ2

x connects the state
|[N]nt 〉 with itself and with |[N]nt ± 2〉, both with the same
parity.

2. Matrix element of the 2DVM

The relevant operators in this model are n̂, D̂±, �̂, and
Ŵ 2; the last can be expressed as Ŵ 2 = 1

2 (D̂+D̂− + D̂−D̂+) +
�̂2. The basis most frequently used is the one associated
with chain 2DVM-I, Eq. (5). The element of this basis
can be labeled using the vibrational quantum number n
and the vibrational angular momentum � as {|[N]n, �〉 ≡
|n�〉}, with n = N, N − 1, N − 2, . . . , 0 and � = ±n,±(n −
2), . . . ,±(n mod2). The matrix elements of the operators n̂
and �̂ are trivial and the matrix elements of D̂± are

〈n′�′ |D̂±|n�〉 = ±
√

(N − n)(n ± � + 2)δ�′,�±1δn′,n+1. (B2)

From Eq. (B2) it is understood how D̂± connect a state with
angular momentum � to another with �′ = � ± 1. The matrix
elements of Ŵ 2 can be easily derived from Eq. (B2) and
preserve the vibrational angular momentum �.
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