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Chiral dynamics of three-mode non-Hermitian systems with a periodical driving
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The chiral dynamics of three-mode non-Hermitian systems with a periodical driving are studied. An exact
chiral behavior of the relative phases of the final states after encircling with opposite directions in parameter space
is obtained analytically with the solutions of the dynamical equations. It is shown that the relative phases of the
evolution states are opposite numbers for the clockwise and counterclockwise loops of the driving parameters.
But the density distributions have no chirality during the evolution. We examine the dynamical behavior by
a numerical simulation of the evolution equations, which agrees well with our analytical predictions for the
adiabatic evolution. The final density distributions are found to be independent of initial states and always
the same for the clockwise and counterclockwise encircling, while in most examples discussed in the literature
the amplitudes show a nonsymmetric behavior when the parameter space circles are in opposite directions. It
is also found that the dynamical behavior is steady for the long-time evolution. We attribute the results to the
special symmetry of the model, which might encourage others to work on physical realizations of the model.
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I. INTRODUCTION

Non-Hermitian physics, which studies the open systems
with dissipative energy, particle, and information, has become
a very active field in both experimental and theoretical re-
search (see the review papers in Refs. [1–5]). Many exotic
phenomena were found, which are absent in the traditional
Hermitian physics, such as the parity-time-symmetry (PT )
and anti-PT systems [6–33], the non-Hermitian skin effects
[34–58], etc.

The dynamics of non-Hermitian systems have attracted
increasing attention. A dissipative system is described by the
non-Hermitian Hamiltonian. For the time-independent Hamil-
tonian, there are two fundamental features of non-Hermitian
dynamics. In some parameter region, the eigenenergies of the
non-Hermitian Hamiltonian can be real due to the balance
between the gain and loss. In such a case, the dynamics of a
dissipative system behaves as a conservative system described
by the Hermitian Hamiltonian. The other feature is the selec-
tion of a state which dominates the final density distribution
after a long-time evolution. The reason is that the eigenstate
with a maximum nonzero imaginary part will decrease very
slowly or increase very rapidly among all the eigenstates,
which will be selected as the final state after a long-time
evolution [59,60].

For the time-dependent non-Hermitian Hamiltonian, the
dynamic is more complicated. A dramatic phenomenon is
the appearance of chirality in non-Hermitian dynamics with
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periodical driving [61–64]. Starting from the same point in
the driving-parameter space, the final states will be con-
verted at the same end point of one-period evolution for the
clockwise (CW) and counterclockwise (CCW) circles. The
chiral dynamics has been studied extensively in a two-mode
non-Hermitian system, especially with regard to the effects
of encircling exception points (EPs) on the chiral dynamics
[65–87]. Although there are some studies on the properties
of three-mode non-Hermitian systems [88–93], the chiral dy-
namics of a three-mode non-Hermitian system has not been
extensively studied and is yet to be investigated. Reference
[89] contains an example, which can be explained by a
three-mode non-Hermitian model. The nonadiabatic popula-
tion transfer was studied. The chiral dynamics of a three-mode
waveguide system has also been studied in Ref. [92], when
dynamically encircling EPs. Their investigation focused on
the final density distributions of the encircling and the chiral
behavior of the density distributions was found. In this paper,
we study a three-mode non-Hermitian model with a certain
symmetry. We find that the final density distributions are al-
ways the same for the CW and CCW encircling, namely, no
chiral behavior for the final density distributions. Meanwhile,
we observe an exact chiral behavior for the relative phases of
the final states, which are supported by both our analytical
results and numerical simulation of the dynamical equations.
We attribute the results to the special symmetry of the model,
which might encourage others to work on the physical real-
izations of the model.

The paper is organized as follows: In Sec. II, we intro-
duce the model of a three-mode non-Hermitian system with
a periodical driving. In Sec. III, the chirality of the evolution
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equations is observed analytically. We solve numerically the
evolution equations and confirm the chiral behavior of the
three-mode non-Hermitian systems in Sec. IV. Finally, we
summarize our results and give some remarks in Sec. V.

II. MODEL OF THREE-MODE
NON-HERMITIAN SYSTEMS

We consider a three-mode non-Hermitian system driven by
a periodical force with the following Hamiltonian [3],

Ĥ =

⎛
⎜⎝

ig + δ −1 0

−1 0 −1

0 −1 −ig − δ

⎞
⎟⎠, (1)

where the dimensionless parameters g and δ are both real and
time dependent.

The eigenvalues of the Hamiltonian (1) can be obtained as

λ0 = 0, λ± = ±
√

2 − Z2, (2)

where Z ≡ g − iδ. The corresponding right eigenstates are

|λ0〉 = 1√
n0

(1, iZ,−1)T ,

|λ±〉 = 1√
n±

(
1

iZ ∓ √
2 − Z2

, 1,
1

−iZ ∓ √
2 − Z2

)T

, (3)

where T is for the transpose and n0 = n± = 2 − Z2 are
the normalization constants. We emphasize here that the
instantaneous eigenvalues and corresponding instantaneous
eigenstates are as given for the entire time during the
evolution. For the time-independent eigenvalue λ0, the instan-
taneous eigenstate |λ0〉 is also time dependent.

The eigenstates of the Hermitian-conjugate Hamiltonian
Ĥ† can also be obtained as

|χ0〉 = 1√
n∗

0

(1,−iZ∗,−1)T ,

|χ±〉 = 1√
n∗±

(
1

−iZ∗ ∓ √
2 − Z∗2

, 1,
1

iZ∗ ∓ √
2 − Z∗2

)T

,

(4)

with the eigenvalues

χ0 = 0, χ± = ±
√

2 − Z∗2 = λ∗
±. (5)

〈χ0,±| = |χ0,±〉† describe the so-called left eigenstates. The
two sets of eigenstates satisfy the biorthogonal relation
〈χi|λ j〉 = δi j [59], where i, j = 0,±. A couple of left and
right eigenstates with the complex-conjugate eigenvalues are
normalized. For the other cases, they are orthogonal. Because
the symmetry ĤT = Ĥ of the Hamiltonian (1), the compo-
nents of the biorthogonal left eigenstates 〈χ0,±| are the same
as those of the right eigenstates |λ0,±〉.

For the particular parameter values Z = ±√
2, we arrive at

the third-order exception points (EPs),

λ0 = λ± = 0, (6)

with

|λ0,±〉 = (−i,
√

2, i)T . (7)

FIG. 1. Schematic showing the relation among the EPs, the start-
ing points, and the central points of the loops in the dimensionless
(g, δ) space. The red, green, and blue dots are for the EPs, the starting
points, and the central points of the loops, respectively.

The EPs locate at Z = ±√
2, namely, g = ±√

2 and δ = 0. It
is emphasized that the EPs (±√

2, 0) in the (g, δ) space are
time independent.

We assume the dependence of the driving parameters on
time g = g0 − ρ cos(γ t ) and δ = ρ sin(γ t ). γ measures the
driving frequency and in this paper we pay special attention
to the adiabatic evolution, namely, γ → 0. The parameters
will return to the starting point after one period T = 2πγ −1

in the (g, δ) space. This loop, centered at g0, has a radius of ρ.
Without loss of generality, we consider the case where ρ > 0.
γ > 0 (γ < 0) describes the CW (CCW) circle.

The number of EPs that the loop encircles depends on
the parameters g0 and ρ. There are four cases as follows:
(1) no EP is encircled, for example, g0 = 0 and ρ <

√
2;

see Fig. 1(a); (2) the right EP is encircled, for example,
0 < g0 <

√
2 and

√
2 − g0 < ρ < g0 + √

2; see Fig. 1(b);
(3) the left EP is encircled, for example, −√

2 < g0 < 0 and√
2 + g0 < ρ <

√
2 − g0; see Fig. 1(c); and (4) two EPs are

encircled, for example, 0 < g0 <
√

2 and g0 + √
2 < ρ; see

Fig. 1(d).
In Fig. 1, we schematically show the relation among the

EPs, the starting points, and the central points of the loops in
the (g, δ) space.

III. CHIRALITY OF THE DYNAMICAL EQUATIONS

The dynamical behavior can be described by the
Schrödinger equation

i
d

dt
� = Ĥ�, (8)

where � = (ψ1, ψ2, ψ3)T and we have taken h̄ = 1.
The general dynamics of an open quantum system should

be governed by the Lindblad master equation [94–96], which
contains the quantum jump term that is absent in the above
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Schrödinger equation based on the non-Hermitian Hamilto-
nian. The general Lindblad master equation of the density
matrix can describe the dynamics of mixed states, while the
above Schrödinger equation is only suitable for the pure state,
which is the case we considered in this paper.

For the Hamiltonian (1), we obtain

iψ̇CW
1 = i(g0 − ρeiγ t )ψCW

1 − ψCW
2 ,

iψ̇CW
2 = −ψCW

1 − ψCW
3 ,

iψ̇CW
3 = −ψCW

2 − i(g0 − ρeiγ t )ψCW
3 , (9)

for the three modes of the CW encircling of the parameters.
For the CCW case, namely, γ → −γ , we have

iψ̇CCW
1 = i(g0 − ρe−iγ t )ψCCW

1 − ψCCW
2 ,

iψ̇CCW
2 = −ψCCW

1 − ψCCW
3 ,

iψ̇CCW
3 = −ψCCW

2 − i(g0 − ρe−iγ t )ψCCW
3 . (10)

By taking the complex conjugation of the above equations, we
obtain

i
(
ψ̇CCW

1

)∗ = i(g0 − ρeiγ t )
(
ψCCW

1

)∗ + (
ψCCW

2

)∗
,

i
(
ψ̇CCW

2

)∗ = (
ψCCW

1

)∗ + (
ψCCW

3

)∗
,

i
(
ψ̇CCW

3

)∗ = (
ψCCW

2

)∗ − i(g0 − ρeiγ t )
(
ψCCW

3

)∗
, (11)

namely,

i
(−ψ̇CCW

1

)∗ = i(g0 − ρeiγ t )
(−ψCCW

1

)∗ − (
ψCCW

2

)∗
,

i
(
ψ̇CCW

2

)∗ = −(−ψCCW
1

)∗ − (−ψCCW
3

)∗
,

i
(−ψ̇CCW

3

)∗ = −(
ψCCW

2

)∗ − i(g0 − ρeiγ t )
(−ψCCW

3

)∗
.

(12)

Comparing Eqs. (12) with Eqs. (9), the CCW evo-
lution can be easily obtained by the replacement of
(ψCW

1 , ψCW
2 , ψCW

3 ) → [−(ψCCW
1 )∗, (ψCCW

2 )∗,−(ψCCW
3 )∗]. It

means that the density distributions are the same for the CW
and CCW loops, namely, |ψCW

i |2 = |ψCCW
i |2. But the phases

of the evolution states are different for the CW and CCW en-
circling, more exactly speaking, arg(ψCCW

1 , ψCCW
2 , ψCCW

3 ) =
(π − arg ψCW

1 ,−arg ψCW
2 , π − arg ψCW

3 ). To show the chi-
ral behavior of the system, we introduce the relative phase
θ31 ≡ arg(ψ3) − arg(ψ1). It is obvious that arg(ψCCW

3 ) −
arg(ψCCW

1 ) = −[arg(ψCW
3 ) − arg(ψCW

1 )], namely, θCCW
31 =

−θCW
31 .
We emphasize here that the exact chiral behavior is ob-

tained from the symmetry of the differential equations, which
describes the instantaneous behavior of the evolution states
at any evolution time t . For the long-time evolution, the final
state may be not. We will examine the dynamical behavior by
numerical simulation of the evolution equations.

The dynamical behavior of the left eigenstate can be
described by the Schrödinger equation with the driving
Hamiltonian Ĥ†,

i
d

dt
� = Ĥ†�, (13)

where � = (�1,�2,�3)T and �† describes the
left eigenstate. For the Hamiltonian (1), we can
obtain a similar result of arg(�CCW

1 ,�CCW
2 ,�CCW

3 ) =

FIG. 2. Real-time evolution of the relative phase θ31 for one
period T . The top is for the CW encircling and the bottom is for
the CCW encircling. The initial state is the instantaneous eigenstate
|λ+〉 at t = 0. The dimensionless parameters are g0 = 0, ρ = 1. The
driving frequency is |γ | = 0.01 Hz for the CW and CCW loops.

(π − arg �CW
1 ,−arg �CW

2 , π − arg �CW
3 ), namely,

arg(�CCW
3 ) − arg(�CCW

1 ) = −[arg(�CW
3 ) − arg(�CW

1 )].
For the numerical simulation, we have similar results for the
left eigenstates.

IV. CHIRAL DYNAMICS WITH
THE NUMERICAL SIMULATION

To confirm the dynamical behavior of the system, we do
the numerical simulation of the evolution equation (8). We
find that for all cases the final density distributions after the
evolution of one period T are independent of the choice of
the initial states. We have chosen some quite different initial
states, such as the instantaneous eigenstates |λ0〉 and |λ±〉
at t = 0, even the state (1, 1, 1)T , and other random initial
distributions.

Our numerical simulations confirm that the final density
distributions are indeed the same for the CW and CCW en-
circling, namely, no chiral behavior. This is a clear difference
from other systems, because in most examples discussed in
the literature the amplitudes show a nonsymmetric behavior
when the parameter space loops are in opposite directions.
We attribute the result to the special symmetry of the matrix
model, namely, ĤT = Ĥ .

But the chiral evolution can occur for the relative phases.
Next, we show the real-time evolution of the relative phases
θ31 for both the CW and CCW encircling. In Fig. 2, it is for the
loop with no EP enclosed, corresponding to that in Fig. 1(a).
The initial state is set as the instantaneous eigenstate |λ+〉 at
t = 0. In Fig. 3, it is for the loop with the right EP enclosed,
corresponding to that in Fig. 1(b). The starting point locates
at the right of the loop, corresponding to the driving parame-
ters g = g0 − ρ cos(γ t + π ) and δ = ρ sin(γ t + π ) now. The
initial state is set as the instantaneous eigenstate |λ−〉 at the
initial time. The chiral behavior can be seen clearly in the
two figures, which agree well with our analytical predictions,
namely, the relative phase θCCW

31 = −θCW
31 .
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FIG. 3. Real-time evolution of the relative phase θ31 for one
period T . The top is for the CW encircling and the bottom is for
the CCW encircling. The initial state is the instantaneous eigenstate
|λ−〉 at t = 0. The dimensionless parameters are g0 = 0.5, ρ = 1.
The driving frequency is |γ | = 0.01 Hz for the CW and CCW loops.

To examine the stability of the chirality, we have also
simulated the dynamics for a long time. The result show that
the chiral behavior of dynamics is steady for the long-time
evolution. In Fig. 4, we show the double-period evolution of
the relative phase θ31. The parameters are the same as those in
Fig. 2 except for the evolution time.

In Fig. 5, we show the loop with the left EP enclosed, cor-
responding to that in Fig. 1(c). The starting point locates at the
bottom of the loop, now corresponding to the driving parame-
ters g = g0 − ρ cos(γ t − π/2) and δ = ρ sin(γ t − π/2). The
initial state is set as the instantaneous eigenstate |λ−〉 at the
initial time. In Fig. 6, we show the loop with two EP enclosed,
corresponding to that in Fig. 1(d). The starting point locates at
the top of the loop, now corresponding to the driven parame-
ters g = g0 − ρ cos(γ t + π/2) and δ = ρ sin(γ t + π/2). The
initial state is set as the instantaneous eigenstate |λ+〉 at the
initial time.

FIG. 4. Long-time evolution of the relative phase θ31 for two
periods. The parameters are the same with those in Fig. 2 except for
the evolution time.

FIG. 5. Real-time evolution of the relative phase θ31 for one
period T . The top is for the CW encircling and the bottom is for the
CCW encircling. The initial state is the instantaneous eigenstate |λ−〉
at t = 0. The dimensionless parameters are g0 = −0.5, ρ = 1. The
driving frequency is |γ | = 0.001 Hz for the CW and CCW loops.

Obviously, the exact chiral behavior of the relative phases
θCCW

31 = −θCW
31 is absent now. We have simulated the dynam-

ics with the same parameters of Figs. 5 and 6, except that
the starting points locate on the g axis in the (g, δ) space,
namely, the same starting points as those in Figs. 2 and 3.
It shows the same chiral behavior as those in Figs. 2 and 3.
So the disappearance of the exact chiral dynamics is due to
the starting points not locating on the g axis in the parame-
ter space. Although the exact chiral behavior of the relative
phases θCCW

31 = −θCW
31 is now absent, the relative phases are

still different for the CW and CCW encircling. Then we can
say that the chiral behavior still exist in such cases.

The final density distributions of Figs. 5 and 6 are still
independent of the initial states and the same for the CW and
CCW encircling, namely, there is no chiral behavior for the

FIG. 6. Real-time evolution of the relative phase θ31 for one
period T . The top is for the CW encircling and the bottom is for
the CCW encircling. The initial state is the instantaneous eigenstate
|λ+〉 at t = 0. The dimensionless parameters are g0 = 1, ρ = 3. The
driving frequency is |γ | = 0.001 Hz for the CW and CCW loops.
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FIG. 7. Nonadiabatic evolution of the relative phase θ31 for one
period T . The other parameters are the same as those in Fig. 2 except
for the driving frequency γ , which is in units here.

density distributions, which still agrees with our analytical
result. We emphasize that the adiabatic parameter γ of Figs. 5
and 6 is different than those of Figs. 2 and 3. If we take the
same value of γ with those of Figs. 2 and 3, the final density
distributions will be different. The same density distributions
of the evolution states |ψCW

i |2 = |ψCCW
i |2 at any evolution

time t are obtained from the symmetry of the differential
equations, which describes the instantaneous behavior. For the
long-time numerical simulation of the evolution equations, the
final density distributions at the ending time of the loops may

not be the same. The long-time dynamics of the system is
strongly affected by the adiabatic parameter γ .

V. CONCLUSION AND REMARKS

In summary, we have studied the dynamics of a symmetric
three-mode non-Hermitian systems with a periodical driving.
The exact chiralities of the dynamical equations are obtained
analytically, which agree well with our numerical simulation
of the adiabatic evolution, if the starting points are accurately
chosen.

We have also done the nonadiabatic simulation of the same
system. It is shown that the chirality will be absent and the
final density distributions will be irregular. In Fig. 7, we show
the dynamical behavior of the relative phase θ31 for the nona-
diabatic evolution. The other parameters are the same as those
in Fig. 2 except for the driving frequency γ , which measures
the adiabaticity of evolution.

The chiral dynamics of three-mode waveguide system has
been studied in Ref. [92], so our symmetric non-Hermitian
model might be easier to be realized in optical waveguides.
The chiral behavior θCCW

31 = −θCW
31 of adiabatic evolution

might be measured with in situ control of the encircling loop
with a tunable external field [76].
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