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Tsirelson inequalities: Detecting cheating and quantumness in a single framework
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Quantumness refers to the peculiar and counterintuitive characteristics exhibited by quantum systems.
Tsirelson inequalities have emerged as a powerful tool in quantum theory to detect quantumness and en-
tanglement of harmonic oscillators, spins undergoing uniform precession, and anharmonic systems. In this
paper we harness the versatility of Tsirelson inequalities to address two distinct problems: detecting cheating
in classic shell games and probing quantumness in spatially separated systems and harmonic oscillators. By
adopting a black-box approach and a geometric characterization of the space of conditional probabilities, we
demonstrate that Tsirelson inequalities can be used in both scenarios, enabling us to uncover quantum signatures
and identify cheaters in a single unified framework. This connection provides an intuitive different perspective

on quantumness of mechanical systems.
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I. INTRODUCTION

The term “quantumness” refers to the unique and coun-
terintuitive features that arise in the quantum world and
distinguish quantum systems from systems obeying classical
physics. Detecting quantumness has become an increasingly
important task because all exciting applications of quantum
technology eventually are based on some aspect of quantum-
ness. There are several methods for detecting quantumness of
physical systems: the most notable ones are Bell nonlocality
[1-3], contextuality [4—12], and schemes based on macrore-
alism and sequential measurements [13-16]. For continuous
variable systems, quantumness is often associated with the
negativity of the Wigner function [17], since negative Wigner
functions have no classical analog. Wigner negativity is nec-
essary for the speedup of quantum computation [18,19], but
also for tunneling [20] and incompatibility of measurements
[21,22], and can be seen as a measure of nonclassicality [23].
Strikingly, this nonclassicality was recently demonstrated
with nanomechanical oscillators of masses reaching up to
micrograms, employing a tomographic scheme to reconstruct
the Wigner function [24-28].

An interesting approach for characterizing quantumness of
harmonic oscillators was initiated by Tsirelson in 2006 [29].
Consider a classical one-dimensional oscillator with period
T, which is observed at the three time steps, 7 /3, 2T /3,
and 7. Then independent of the initial conditions, the po-
sition coordinate for at least one of the time steps must be
negative. Consequently, the average probability of observ-
ing a positive position coordinate is bounded between 1/3
and 2/3; we will refer to this bound and its generalizations
as Tsirelson’s inequality. This, however, does not hold for
quantum mechanical oscillators. If the Wigner function is
positive, then Tsirelson’s inequality holds, so one may see
the inequality as an elegant way to detect the negativity
of Wigner function, complementing other Wigner negativity
witnesses [30,31]. The same approach was recently used to
certify nonclassicality of spin systems [32] and anharmonic
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systems [33], but also to detect entanglement between har-
monic oscillators [34].

In this paper we formulate the aforementioned inequalities
in a black-box approach in order to construct a framework in
which a complete list of relevant inequalities can be explicitly
derived from the underlying physical principles using con-
vex geometry. We thus replace previous counting arguments
used to guess some inequalities by a systematic approach that
finds all possible inequalities. This has two important benefits:
First, we are able to identify other applications of the in-
equalities beyond the detection of quantumness in mechanical
systems; explicitly, we demonstrate the detection of cheating
in the shell game and an alternative derivation of Bell inequal-
ities. The second advantage is that we are able to find all tight
inequalities for the given scenario, which we demonstrate by
finding new inequalities for the quantum harmonic oscillator,
some of which are violated for lower energies than previously
known inequalities.

II. BLACK-BOX APPROACH TO
TSIRELSON INEQUALITIES

Consider a generic experiment in which a certain discrete
event or outcome a € {1, ..., A} is observed, conditioned on
a made choice x € {1, ..., X}. The conditional probabilities
[p(alx)],x determining the likelihoods of outcomes can be
estimated through many trials of this experiment. The prob-
abilities are normalized as Zﬁzl p(alx) = 1 for every x. Here
we will use [p(alx)],.x to denote the whole matrix of numbers,
while p(a|x) will be only one entry of this matrix, i.e., a num-
ber between 0 and 1. We will investigate the question whether
there exists a constrained “classical” model for [p(alx)], s,
that is, a global probability distribution [p(a; . ..ax)l,....ay
such that [p(a|x)],.» can be obtained from [p(a; . .. ax)la4....ax
by marginalization,

plalx) = >
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and such that [p(a; . .. ax)la,...q satisfies one or several con-
straints of the form: p(a;,...,ayx) =0 for a specified set
of indices &y, ..., dy. Such constraints are strictly different
from the constraints in Bell and Kochen-Specker scenarios
where the constraints come from the structure of measure-
ments and from the properties of the classical model that is
attempting to explain the observed results. In our case there
is no generally valid way to justify the existence of specific,
here called classical, constraints; they must be derived from
the structure of the specific problem at hand. We remark that
constraints are necessary since without any constraints, we
can set p(aj...ax) = ]_[f: 1 P(ax|x) as the global probability
distribution, which has the correct marginals.

To define Tsirelson inequalities, we need to fix the size
of the conditional probability matrices (i.e., the numbers A
and X) and choose a set of constraints. We define a Tsirelson
inequality as a linear inequality that is satisfied by all condi-
tional probability matrices [p(a|x)], . for which a constrained
classical model exists, but that is violated by some conditional
probability matrix [p(a|x)], . for which a constrained classical
model does not exist. That is, Tsirelson inequalities are linear
witnesses that certify that for some conditional probabil-
ity matrix [p(a|x)],.x the classical constrained model cannot
exist.

Given a set of constraints, one can find all Tsirelson
inequalities as follows. First, we observe that the ex-
treme points of the set of global probability distributions
[p(ai, ..., ax)la,... q, are exactly the distributions which take
the value 1 for some specific choice of the indices ay, ..., ax,
but are zero everywhere else. By construction, these extreme
points are also extremal on the convex set of the corresponding
marginal distributions, since they fulfill p(a|x) = 1 whenever
a matches the chosen a, for each x and are zero otherwise.
We can thus identify each extremal distribution by a vertex
spanning the polytope of all possible probability matrices.

The constraints rule out some of the extreme points,
but the other extreme points satisfying the constraints re-
main unchanged; this follows since the extreme points of
the set of all probability distributions are Dirac delta dis-
tributions concentrated at single points. Accordingly, one
must exclude the corresponding vertices in the polytope
of conditional probability matrices [p(a|x)], ., leading to a
polytope P of all classically constrained conditional prob-
ability matrices. New extreme points cannot arise in the
space of conditional probability distributions due to linearity
of the marginalization and a simple counting argument: the
resulting polytope P in the space of conditional probabili-
ties can have at most the same number of extreme points
as the set of probability distributions satisfying the con-
straints; the result follows by counting the numbers of extreme
points. It also follows that whenever there is at least one
constraint, then there is some conditional probability distri-
bution [p(a|x)], which does not have a constrained classical
model.

Finally, in order to find all Tsirelson inequalities, one needs
to find all facets of P and express them via corresponding
inequalities. This can be done, e.g., with suitable software
tools such as polymake [35]. While some of these inequalities
will be trivial (e.g., enforce that probabilities are positive
numbers), one can identify all nontrivial inequalities that will
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FIG. 1. Polytope of all conditional probability matrices
[p(alx)].. that have a constrained classical model with the
constraint p(111) =0. A matrix [p(alx)],, is identified with a
vector (p(1]1), p(112), p(113)).

exactly correspond to Tsirelson inequalities for the given
scenario.

Consider the simplest case with A = X = 2 and only one
constraint, p(11) = 0, which rules out one extreme point of
the polytope P of conditional probabilities. The remaining
three extreme points of P form a triangle, and the only non-
trivial Tsirelson inequality is p(1|1) + p(1]2) < 1.

The situation becomes more interesting already for X = 3
and A = 2. Let us consider the constraint p(111) = O ruling
out the vertex given by p(1]x) = 1 for all x. The set of con-
ditional probabilities with constrained classical models has
seven extreme points (see Fig. 1), and the only Tsirelson
inequality in this case is

p(1{1) + p(112) + p(1]3) < 2. 2

As we will discuss later, Tsirelson [29] considered the two
constraints p(111) = 0 and p(222) = 0. Then the set of con-
ditional probabilities with constrained classical models has six
extreme points: the same as in the previous case except for the
one given by p(1]x) = 0 for all x (see Fig. 2). The Tsirelson
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FIG. 2. Polytope of all conditional probability matrices
[p(alx)],. that have a constrained classical model with the
constraints p(000) =0 and p(111) =0. A matrix [p(a|x)],. is
again identified with a vector (p(1]1), p(1|2), p(1|3)).
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inequalities in this case are

1< p(QID) + p(112) + p(113) < 2. 3)

III. NONLINEAR CONSTRAINTS

More generally, one can consider constraints of the
form  Amin < f([plai, ..., ax)la,...ax) < Amax for some
Amin> Amax € R. If the function f is linear, the described
methods generalize straightforwardly, and one also
obtains a polytope P of classically constrained conditional
probabilities, whose facets yield the sought inequalities. If f
is nonlinear, then the set of constrained classical probabilities
and their marginals may not be a polytope, in which case the
set of all Tsirelson inequalities is not finite and cannot be
found as in the case of linear constraints. Nevertheless one
may try to find nonlinear inequalities based on entropy [36],
but no general procedure is known that would be universally
applicable. To demonstrate this we present a simple example
of nonlinear constraints.

Let A = X = 2 and consider the nonlinear constraint

2 1\ 1
Z (P(Cllaz)—z) SZ 4

ay,ar=1

This constraint enforces that the probability vector of the

“classical” model is contained in the ball of radius % cen-

tered at the uniform distribution given by p(aa;) = i for
all aj, a; € {1,2}. In this case, one can numerically com-
pute the set of all conditional probabilities [p(alx)], . that
have the constrained classical model as follows: we can iterate
over subset vectors ¥ € R* such that Z?:I(x,- — }1)2 = }P ie.,
that belong to the surface of the ball corresponding to the
nonlinear constraint (4). We can do this by considering the
parametrization

x1 = g cos(p) + 1,

sin(g; ) sin(g2) cos(¢3) + 3.

1

2
1 1
Xy = 5 sin(gy) cos(¢2) + 7,

1

X3 = 2

1

2

x4 = 3 sin(gy) sin(g2) sin(gs) + g, ®)

and by picking ¢ = %n, Y = %n, Q= 2’%271 for ki, ky €
{1,...,N}andk; € {1,...,2N}and N € N. Then, if for such
a vector we have Z?:l x; = landx; > Oforalli € {1,...,4},
X corresponds to an extreme point of the set of “classical”
probability distributions satisfying the constraint (4). Then
we just compute the corresponding conditional probability
[p(alx)],, by marginalization and subsequently, we can find
the extreme points of this approximation of the set of all
conditional probabilities with constrained “classical” models.
The results are plotted in Fig. 3.

IV. SHELL GAME

The shell game is a game famously played on the streets of
New York and other big cities. The dealer presents three cups
and one ball, the ball is hidden beneath one of the cups, and
the cups are shuffled. The player’s task is to determine under
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FIG. 3. Polytope S of all conditional probability matrices
[p(alx)]..» and the convex body M of all conditional probabili-
ties with a constrained “classical” model. The orange dots are the
marginals of the sampled extreme points of the set of “classical”
probability distributions satisfying the constraint (4); they do not fill
the entire interior of M since they correspond on to the surface of
the “classical” probability distributions satisfying the constraint (4).
A matrix [p(alx)],.. is identified with a vector (p(1]1), p(1]2)), and
N = 500 was used for the sampling.

which cup the ball is hidden. The usual catch is that the dealer
is cheating by removing the ball, in which case the game is
unwinnable for the player. The dealer can, of course, also add
more balls to the game, making the game easier for the player.

We interpret the conditional probability p(2|x) as the prob-
ability of finding the ball if the cup labeled by x is chosen,
thus we have A = 2 and X = 3. The classical model p(a;azas)
will be interpreted as follows: p(111) is the probability that
there is no ball under any cup, p(211), p(121), p(112) is the
probability that the ball is under the first, second, third cup,
respectively, while, e.g., p(221) is the probability that there
are balls under the first and second cups. Finally, p(222) is the
probability that there is a ball under every cup. The constraint
corresponds to our assumption that there is at least one ball
in the game, which means that we must have p(111) = 0. It
follows that the Tsirelson inequality (2) must be satisfied and,
using p(2|x) = 1 — p(1|x), we can write

> pQ2lx)

S 3

(6)

W | =

The quantity on the right-hand side is nothing other than the
average probability of winning if we choose a random cup.
We thus see that, in this case, a violation of the Tsirelson
inequality (2) means that the dealer must be cheating by
removing the ball from the game at some rounds. Here we
have considered that the shell game is played with classical
systems, but it is also possible to violate the inequality (2) with
quantum systems. One may thus consider a quantum version
of the shell game which might give additional advantage to
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the dealer; this would be similar but not directly related to the
Specker’s parable of the overprotective seer [37,38].

V. BELL INEQUALITIES

To demonstrate that our formalism can be used to de-
rive Bell inequalities [1-3], we now show the derivation of
the Clauser-Horne-Shimony-Holt (CHSH) [39,40] inequality,
leaving generalizations for future work. Our approach is remi-
niscent of previous approaches to contextuality [41,42]. In the
CHSH scenario, we have two spatially separated parties, Alice
and Bob, each of which can choose one of two dichotomic
measurements, x, y € {1, 2}. Hence we have X = 4, and we
represent the choices using xy € {11, 12, 21, 22}. Let us group
the four possible outcomes Alice and Bob can measure by
A = 2 distinct results: p(1|xy) will denote the probability that
Alice and Bob obtain the same outcome if Alice chooses the
measurement x and Bob chooses y, whereas p(2|xy) corre-
sponds to obtaining different outcomes. The classical model
plaiiannaz ax) will be represented as follows: p(1111) is
the probability that Alice and Bob always obtain the same
outcome, p(1112) is the probability that Alice and Bob obtain
the same outcome if x +y < 3 but the opposite outcome if
x =y = 2, and analogically for the other options.

Now assume that the experiment is classical and we
can measure all of the xy possibilities simultaneously. Then
p(1112) = p(2221) = 0, because these options violate basic
logic: In the p(1112) case, Alice and Bob always must get the
same outcome for xy = 11, 12, 21, and different outcomes for
xy = 22. If both Alice and Bob choose the first measurement
(x =y =1) and Alice obtains, say, 1, then also Bob obtains
1. It follows that Bob obtains 1 also if x = 1 and y = 2, and
so Bob always obtains 1. If x =2, y =1 are chosen, then
Alice must obtain 1, because her outcome must be the same as
Bob’s and Bob always gets 1. But then they would always get
both 1 also for the x = y = 2 choice, which is a contradiction.
The p(2221) case follows similarly. From these constraints
and the previously outlined methods, we get the inequalities
0 < p(1]11) 4+ p(1]12) + p(1|21) — p(1]22) < 2. Expressing
p(llxy) = %(1 + E,y) in terms of the correlation E,,, we ar-
rive at —2 < Ego + Eo1 + Ejo — E1p < 2.

VI. QUANTUM HARMONIC OSCILLATORS

Let us now analyze how generalized Tsirelson inequalities
are used to certify the nonclassicality of states of a harmonic
oscillator of period T. Given some initial state, we fix X € N
and measure the position of the oscillator at time 7, = £ 7,
for a chosen x € {1, ..., X}. We repeat this prepare-measure
procedure many times (with the same initial state) in order to
obtain measurement data at every possible time .. Since each
position measurement is made on a newly initialized oscillator
state, the measurement backaction plays no role, unlike in a
Leggett-Garg test scheme [13,14,16].

We are interested only whether the measured position is
positive or negative; we will use Prob(g > 0|t,), Prob(g =
0]z,) to denote the probability that the position measured at
time ¢, is strictly positive, or equal to zero, respectively. Then
for A =2 we set

p(1]x) = Prob(g > 0lt,) + 1Prob(g = 0lr,),  (7)

where the latter term is added for consistency; see the ex-
planation in [32]. We will show that if the initial state of
the harmonic oscillator is classical, then the conditional prob-
ability matrix [p(alx)],x has a constrained classical model.
This result will enable us to derive inequalities that certify the
nonclassicality of the initial state.

Given a wave function |{) € H, where H is the Hilbert
space corresponding to a single harmonic oscillator, we define
the Wigner function Wy, corresponding to |/) as

1 - . 2px
Wy (g, p) = E/%t/f(qux)t/f(q—X)elex. (®)

It represents the wave function in phase space, with posi-
tion and momentum coordinates g and p. The Wigner-Weyl
picture in which Wigner functions replace wave functions is
an equivalent description of quantum theory [17,43—45]. The
probability distribution of position is obtained by marginaliza-
tion of Wy,

Prob(q) = [ (q)I* = /R Wy (g, p)dp. )

A state of a classical harmonic oscillator is given by a prob-
ability density in phase space p(q, p), where we now require
that p(q, p) = 0 for all ¢, p. For example, the state of a lo-
calized particle is described by a Dirac delta distribution. It is
well known that for the harmonic oscillator, the time evolution
of the classical and quantum harmonic oscillator in phase
space coincides [46], and the formula (9) for the position
marginal coincides too. Thus, the only nonclassical property
that the quantum harmonic oscillator can demonstrate in this
experiment is the negativity of the Wigner function Wy, of the
initial state.

Now assume that the Wigner function of the initial state is
positive, Wy, (g, p) > 0for all g, p. Then we can formally treat
Wy, as a state of a classical harmonic oscillator, and we can
thus, in principle, assume that we can measure the position of
the oscillator without disturbing its state. Instead of measuring
position only at one fixed time f,, we could measure it at
every possible time #, in a single run of the experiment. In
this way, we would obtain the global probability distribution
[p(ai ...ax)]a,... ay,the marginals of which are the [p(a|x)],,
given in (7).

Unless it is in the stationary ground state, a harmonic
oscillator swings periodically in configuration space, and the
position of the oscillator is continuously positive for half
of the period and continuously negative for the other half.
This basic insight, which constrains the probability distri-
bution [p(a; ...ax)la...ax corresponding to a Dirac delta
distribution in phase space, can be used to obtain Tsirelson
inequalities, since every positive Wigner function can be ex-
pressed as a convex combination of Dirac delta distributions
as Wy (q. p) = [ Wy (G, P)S(p — p)8(q — §)dGdp. In the
following, we will investigate only the cases where X = 3 and
X =5, but a similar analysis can be carried out for arbitrary
X.

For X = 3, we have to observe the position to be positive
at least once, but at most twice, since the oscillator must
eventually swing the other way. We thus get the classical
constraints p(111) = 0, which means that the position cannot
be always positive, and p(222) = 0, which means that the
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TABLE I. Maximal violations of the original Tsirelson inequal-
ities (10) (denoted as type T), type I inequalities (11), and type II
inequalities (12) by oscillator states that are superpositions of the first
N eigenstates of the Hamiltonian. We compute only the violations of
the respective upper bounds; one obtains analogical results for lower
bounds. Numerical values are rounded to three decimal places; a dash
indicates no violation for the given N

N Type T Type I Type I
5 - 2.007 -

6 3.046 2.01 1.018
10 3.046 2.038 1.046
15 3.11 2.067 1.072

position cannot be always negative. This is exactly the case
originally analyzed by Tsirelson [29], and there are only the
two Tsirelson inequalities (3).

For X =5, we have to observe the position to be posi-
tive at least twice, but at most thrice, because the times of
observation ¢, are evenly spread over the single period T.
We thus get the constraints p(11111) = 0, p(22222) = 0, and
all cyclic permutations of p(21111) = 0 and p(22221) = 0.
Using these constraints, we obtain

5
2<) pilx) <3, (10)
x=1

a generalization of the inequalities (3) already derived in [32].
We obtain new inequalities by using additional constraints
due to the fact that we observe the oscillator during a single
period. We must have p(21212) =0, p(12121) = 0, and all
cyclic permutations, which yields additional inequalities we
term type I and II, let x € {1, ..., 5} and & denote addition
modulo 5; then we have

Typel: 1< p(dlx)+pdix@2)+pllx®4) <2, (1D

TypeIl: 0 < p(llx) —p(llx® 1)+ p(llxd2) < 1. (12)

While it is currently unknown how to find the highest
possible violation of the inequalities (10)—(12), we can look
for the maximal violation by a quantum state restricted to
the subspace of the first N eigenstates of the Hamiltonian:

V) = ZQ’;OI ay|n), where |n) denotes the nth eigenstate and
o, € C. This can be done numerically in a similar manner as
described by Tsirelson [29]. While the original and the type 11
inequalities (10) and (12) are violated only for N > 6, the type
I inequalities (11) are already violated for N = 5. This may
prove viable for experimental tests of nonclassicality with
oscillators. Table I displays the detailed numerical results.

VII. CONCLUSIONS

We have formulated a black-box approach to Tsirelson
inequalities, which enabled us to systematically derive further
inequalities corresponding to the facets of a polytope. One can
apply this approach not only to construct witnesses for the
negativity of the Wigner function and for the entanglement
of physical systems undergoing periodic time evolution, but
also, as we have shown, to detect cheating in the shell game,
for example. Using our formulation based on constrained clas-
sical models, one can also look for Tsirelson inequalities for
quantum backflow [47,48], quantum tunneling [20], and other
mechanical tasks [49,50], but these investigations are left for
future work. It is also clear that our derivation of the CHSH
inequality can be generalized to more parties and outcomes,
which offers another future avenue of research.

Our findings demonstrate that Tsirelson inequalities serve
as a unifying framework for modeling and hypothesis testing
in diverse settings ranging from games of deception to probing
the quantumness of oscillators and other systems. Just as
the geometric characterization of probabilities in correlated
classical or quantum systems, this may pave the way to appli-
cations in quantum foundations and technology.
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